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The complex manner in which patterns of presynaptic neural activity are translated into
short-term plasticity (STP) suggests the existence of multiple presynaptic calcium (Ca2+)
sensors, which regulate the amplitude and time-course of STP and are the focus of
this review. We describe two canonical Ca2+-binding protein domains (C2 domains and
EF-hands) and define criteria that need to be met for a protein to qualify as a Ca2+ sensor
mediating STP. With these criteria in mind, we discuss various forms of STP and identify
established and putative Ca2+ sensors. We find that despite the multitude of proposed
sensors, only three are well established in STP: Munc13, protein kinase C (PKC) and
synaptotagmin-7. For putative sensors, we pinpoint open questions and potential pitfalls.
Finally, we discuss how the molecular properties and modes of action of Ca2+ sensors can
explain their differential involvement in STP and shape net synaptic output.

Keywords: C2 domain, protein kinase C, Munc13, synaptotagmin, calmodulin, post-tetanic potentiation, residual
calcium, short-term plasticity

INTRODUCTION
Synaptic transmission is initiated by action potential-evoked
influx of calcium (Ca2+) into the presynaptic terminal, which
triggers fusion of vesicles by binding to a specialized Ca2+ sensor.
Bursts of action potentials lead to the buildup of residual Ca2+

([Ca2+
]residual) in the terminal, which outlives neuronal activity,

and induce multiple forms of short-term presynaptic plasticity
(STP), including facilitation, depression, augmentation and post-
tetanic potentiation (PTP) (reviewed in Fioravante and Regehr,
2011). STP plays a crucial role in synaptic computations and
shapes the properties of microcircuits (reviewed in Abbott and
Regehr, 2004; Regehr, 2012).

The dynamics of some forms of STP are dictated by the
kinetics of [Ca2+

]residual (Delaney et al., 1989; Kamiya and Zucker,
1994) and can be explained by changes in vesicular release prob-
ability (Katz and Miledi, 1968; Zucker and Stockbridge, 1983)
or by depletion of the readily releasable pool (RRP) of vesicles
(Bailey and Chen, 1988; Liu and Tsien, 1995; von Gersdorff and
Matthews, 1997). However, at several synapses the magnitude
of facilitation is higher than can be explained by [Ca2+

]residual

alone, and both facilitation and PTP decay slower than the
[Ca2+

]residual signal (Regehr et al., 1994; Atluri and Regehr, 1996;
Brager et al., 2003; Felmy et al., 2003; Fioravante et al., 2011;
Figure 1). Furthermore, many types of STP rely on the regulation
of steps upstream of vesicle fusion (Dittman and Regehr, 1998;

Wang and Kaczmarek, 1998), including RRP refilling and Ca2+

influx through voltage-gated Ca2+ channels (VGCCs; Stevens and
Wesseling, 1998; Xu and Wu, 2005; Mochida et al., 2008; Müller
et al., 2008; Leal et al., 2012). These events are strongly Ca2+-
dependent, and thus Ca2+ sensors must be activated to induce
and sustain STP. The Ca2+ sensors that mediate STP are the topic
of this mini-review. First, we will discuss the molecular structure
and function of two Ca2+-binding domains employed by Ca2+

sensors: C2 domains and EF-hands. Subsequently, we will define
the criteria for establishing Ca2+ sensors for STP, and, guided by
these criteria, discuss a body of recent literature on well accepted
and putative sensors that regulate STP.

Ca2+-BINDING MOTIFS
C2 DOMAINS
The best described Ca2+ sensors in the context of synapses
are C2 domains, which are found in many signal transduction
and membrane trafficking proteins (Rizo and Südhof, 1998). C2
domains consist of ∼130 amino acids that form a compact β-
sandwich of two 4-stranded β-sheets. Three loops connecting the
β-sheets at the top of the domain contain 4–5 highly conserved
aspartates that coordinate the binding of 2 to 3 Ca2+ ions (Shao
et al., 1996; Ubach et al., 1998; Fernandez et al., 2001). The
Ca2+-binding properties of C2 domains have been described in
detail in synaptotagmin (syt), which acts as the Ca2+ sensor for
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FIGURE 1 | Overview of established and putative presynaptic Ca2+

sensors in evoked release and short-term plasticity (STP). Left panel
displays idealized traces of [Ca2+]residual and excitatory postsynaptic
currents (EPSCs; A and B) or baseline-normalized responses (C and D)
during synaptic plasticity based on experiments at parallel fiber synapses,
mossy fiber-CA3 synapses, the crayfish neuromuscular junction and the
calyx of Held. Typical stimulation paradigms used to elicit various forms of
STP are indicated in gray. Scale bars are approximate, but note that the
amplitude and kinetics of the Ca2+ signal and STP vary significantly
between preparations. Right panels show established and putative Ca2+

sensors for evoked release (A) and each form of STP (B–D), and their Ca2+

dissociation constant (Kd). Kd values were obtained from: syt-1 C2AB (with
PIP2) (van den Bogaart et al., 2012), free calmodulin (CaM; Xia and Storm,
2005), visin-like protein (VILIP-1) (myristroylated) (Li et al., 2011), neuronal
calcium sensor 1 (NCS-1) (myristroylated) and CaBP1 (Aravind et al., 2008),
Munc13 C2B (Shin et al., 2010), Rabphilin C2B (Ubach et al., 1999), PLCδ1
(Grobler and Hurley, 1998) PKCα, -β and γ (Torrecillas et al., 2004). The Kd

values of syt-2, -7 and -9 have not been measured directly, but indirect
measurements suggest that syt-2 is similar to syt-1, whereas syt-7 and 9
may have lower Kd (Sugita et al., 2002).

synchronous vesicle fusion at most synapses (Pang and Südhof,
2010). Mutations that interfere with Ca2+ binding on syt-1 alter
the Ca2+-sensitivity of vesicle fusion (Nishiki and Augustine,
2004; Shin et al., 2009; Kochubey and Schneggenburger, 2011;
Kochubey et al., 2011). Analogous mutation analyses of other
C2 domains showed similar effects on Ca2+ binding (Shin et al.,
2010; Fioravante et al., 2014; Liu et al., 2014). Some C2 domains
naturally lack these aspartate residues and cannot bind Ca2+

(e.g., Pappa et al., 1998). Ca2+ binding increases the affinity of
C2 domains for phospholipids (Brose et al., 1992; Fernandez
et al., 2001), thus recruiting the domain to the plasma mem-
brane. In addition, it may trigger a conformational change that
increases association with effector proteins (for instance syt-1

binding to SNAREs (Bai et al., 2004)) or exposes a domain within
the protein (e.g., the MUN domain of Munc13 (Shin et al.,
2010)). Many C2 domains display a steep increase in Ca2+ affinity
in the presence of phosphatidylinositol 4,5-biphosphate (PIP2;
van den Bogaart et al., 2012), which helps localize the domain
to the PIP2-enriched active zone (Rohrbough and Broadie,
2005).

EF-HANDS
The EF-hand is the most common Ca2+-binding motif, with
diverse cellular functions including cytoplasmic Ca2+ buffer-
ing and signal transduction (Skelton et al., 1994; Schaub and
Heizmann, 2008; Schwaller, 2009). The motif consists of two
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α-helices connected by a linker of 12 amino acids (Lewit-Bentley
and Réty, 2000). Six residues within this linker coordinate binding
to a single Ca2+ ion, and their mutation abolishes Ca2+ binding
(Maune et al., 1992). Examples of EF-hand-containing proteins
with proposed Ca2+-sensing roles in STP include calmodulin
(CaM), neuronal calcium sensor 1 (NCS-1) and visin-like pro-
teins (VILIPs).

CaM is the prototypical EF-hand protein that interacts
with numerous effector proteins in a Ca2+-dependent man-
ner (Xia and Storm, 2005). Important presynaptic effectors are
CaM-dependent kinase II (CaMKII), myosin light chain kinase
(MLCK), adenylyl cyclase, the protein phosphatase calcineurin,
Munc13, VGCCs and Ca2+-activated potassium channels, all of
which regulate presynaptic function (de Jong and Verhage, 2009;
Adelman et al., 2012). Because the Ca2+ affinity of CaM is differ-
entially regulated by its binding partners, different CaM-protein
complexes vary in their Ca2+ sensitivity (Olwin and Storm,
1985; Xia and Storm, 2005) and could therefore be differentially
engaged during various forms of STP. Direct assessment of the
role of CaM as a Ca2+ sensor for STP has proven difficult because
manipulations of CaM levels alter expression of >200 genes (Pang
et al., 2010) and rescue experiments in neuronal preparations with
Ca2+-binding mutants of CaM have not been conducted thus far.

DEFINITION OF A Ca2+ SENSOR FOR STP
With a plethora of C2- and EF-hand-containing proteins in the
presynaptic terminal, there are numerous candidate Ca2+ sensors
for STP. We propose that in order to qualify as a sensor for STP, a
protein must fulfill the following three criteria:

1. Ca2+ must bind directly to the protein. An obvious requirement
for a Ca2+ sensor is that it must bind Ca2+. Some EF-hands
and C2 domains lack the Ca2+-coordinating residues and
cannot bind Ca2+. Therefore, Ca2+ binding must be experi-
mentally established for each protein.

2. Protein must be part of, or directly modulate, vesicle availability
or the vesicle release machinery. Changes in availability and/or
fusogenicity of synaptic vesicles and in presynaptic Ca2+ influx
shape STP (Dutta Roy et al., 2014). A Ca2+ sensor for STP
must therefore directly affect vesicle availability (recruitment,
docking, priming) and/or the vesicle fusion machinery,
including VGCCs and SM proteins (for a discussion of
release machinery, see Südhof, 2013). This definition includes
enzymes like kinases, which directly regulate the properties
of these components. For the purpose of this review, we do
not consider Ca2+ buffers (e.g., parvalbumin) and pumps,
which indirectly affect STP by changing the spatiotemporal
distribution of free Ca2+ through binding or extrusion (Müller
et al., 2007; Scullin and Partridge, 2010), or components of the
endocytotic machinery, which can affect vesicle or release site
availability after prolonged episodes of exocytosis (Wilkinson
and Lin, 2004; Hosoi et al., 2009).

3. Mutations that interfere with Ca2+binding affect STP. Even if a
protein satisfies criteria 1 and 2, it is not a Ca2+ sensor for STP
unless Ca2+ binding is required for the protein’s function in
STP. For instance, whether Ca2+ binding to Doc2 is required
for spontaneous release is debated and the role of Doc2 as a

Ca2+ sensor for spontaneous release remains unclear (Groffen
et al., 2010; Pang et al., 2011). Therefore, it is necessary to show
that mutation of the Ca2+ binding site abolishes function (for
example using a knockout/rescue or knockin approach) in
order to conclude that a protein is a Ca2+ sensor mediating
STP. It could even be argued that a requirement for Ca2+

binding during plasticity must be demonstrated in order to
establish a protein as a Ca2+ sensor, but the technology for
this type of experiments is currently lacking.

Ca2+ SENSORS IN STP
FACILITATION
At synapses with low initial release probability, brief bursts of
activity can induce transient facilitation of release, which relies on
increased release probability due to elevated [Ca2+

]residual (Katz
and Miledi, 1968; Kamiya and Zucker, 1994; Regehr et al., 1994).
However, this mechanism alone cannot fully explain the magni-
tude of facilitation at all synapses (Atluri and Regehr, 1996; Felmy
et al., 2003), and additional Ca2+-dependent processes have been
suggested (Zucker and Regehr, 2002), including the existence of
a yet unidentified presynaptic Ca2+ sensor distinct from syt-1
(Bain and Quastel, 1992; Saraswati et al., 2007). Enhancement
of Ca2+ currents is an attractive mechanism to mediate facilita-
tion, and the capability of Ca2+/CaM to modulate overexpressed
VGCCs during strong depolarization has been studied extensively
(Catterall et al., 2013). Ca2+/CaM binds to a regulatory domain
of Cav2.1, the VGCC that mediates the P/Q type Ca2+ current
driving synaptic transmission in most synapses. In heterolo-
gous cell lines, this interaction leads to enhancement of Ca2+

currents, which depends on Ca2+ binding to CaM (Lee et al.,
1999; DeMaria et al., 2001). Several EF-hand-containing proteins
including VILIPs, CaBPs and NCS-1 (collectively named neu-
ronal Ca2+ sensors, or nCaS) also modulate Ca2+ influx through
VGCCs (Few et al., 2005; Lautermilch et al., 2005; Burgoyne, 2007;
Dason et al., 2012; Catterall et al., 2013) and may affect facilitation
in a manner that depends on the nCaS binding domain of VGCCs
(Tsujimoto et al., 2002; Sippy et al., 2003; Mochida et al., 2008;
Leal et al., 2012). For none of these protein functions, however,
has a Ca2+ binding requirement been established, and some of
them may actually be independent of Ca2+ (Few et al., 2005). In
addition, due to the lack of suitable genetic models, most exper-
iments rely on overexpression of exogenous proteins (Mochida
et al., 2003). Whether nCaS are specifically involved in the reg-
ulation of STP, or the altered STP is a consequence of altered basal
synaptic properties, remains controversial (Dason et al., 2012).

DEPRESSION AND RECOVERY FROM DEPRESSION
Prolonged high-frequency stimulation leads to transient decrease
in presynaptic strength, which can be due to depletion of
the RRP (Elmqvist and Quastel, 1965; Liu and Tsien, 1995;
Schneggenburger et al., 2002) and activity-dependent decrease
in Ca2+ influx (Forsythe et al., 1998; Xu and Wu, 2005) (for
a complete review of known mechanisms of depression, see
Regehr, 2012). CaM, CaBP1 and NCS-1 have been proposed as
putative Ca2+ sensors to mediate the latter effect (Xu and Wu,
2005; Catterall and Few, 2008; Mochida et al., 2008). Depression
can be slowed by Ca2+-dependent replenishment of the RRP
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(Stevens and Wesseling, 1998; Wang and Kaczmarek, 1998).
The vesicle priming factor Munc13 acts as a Ca2+ sensor to
determine the rate of depression, via its C2B and CaM-binding
domains. Ca2+ binding to the C2B domain of Munc13 acti-
vates its MUN domain that promotes assembly of the machin-
ery responsible for vesicle fusion, thereby increasing refill-
ing of the RRP (Shin et al., 2010; Ma et al., 2011). Indeed,
Munc13 knockout neurons expressing a variant of the protein
with mutated Ca2+-coordinating aspartates display increased
synaptic depression without affecting initial release probabil-
ity (Shin et al., 2010). In addition, Munc13 binds Ca2+/CaM,
and this interaction also accelerates RRP refilling (Junge et al.,
2004; Lipstein et al., 2012, 2013). In line with this obser-
vation, CaM inhibitors slow the RRP refilling rate (Sakaba
and Neher, 2001; Hosoi et al., 2007). Although a Ca2+-
binding CaM mutant has not been studied in this context,
the CaM/Munc13 interaction is strongly Ca2+-dependent (Junge
et al., 2004; Dimova et al., 2006; Lipstein et al., 2012), thus
making the Ca2+/CaM-Munc13 complex a likely Ca2+-sensor for
STP.

Synaptotagmin-7 has also been identified as a sensor that regu-
lates depression, operating via its two Ca2+-binding C2 domains
(Liu et al., 2014). At the zebrafish neuromuscular junction, syt-
7 regulates desynchronized release (Wen et al., 2010), but its
function in mammalian neurons has been debated (Maximov
et al., 2008; Bacaj et al., 2013; Liu et al., 2014). A recent study
showed that in syt-7 knockout mice, initial release probability
is unaffected but the rate of vesicle replenishment during and
after bursts of activity is significantly reduced (Liu et al., 2014).
This phenotype is rescued by wild-type syt-7 but not by syt-
7 carrying mutations of the Ca2+ binding sites, demonstrating
that syt-7 is a Ca2+ sensor that mediates RRP refilling. Syt-
7 also probably interacts with Ca2+/CaM (Liu et al., 2014),
but the functional significance of this complex remains to be
identified.

In contrast to the proteins discussed above that promote recov-
ery from depression, rabphilin is thought to slow down recovery
from depression (Deák et al., 2006). Rabphilin is a synaptic
vesicle protein with two Ca2+-sensing C2 domains (Yamaguchi
et al., 1993; Ubach et al., 1999; Coudevylle et al., 2008), but
whether Ca2+ binding is required for its role in STP has not been
determined.

AUGMENTATION AND PTP
Augmentation and PTP are two closely related forms of STP that
require prolonged high-frequency stimulation (Magleby, 1973;
Magleby and Zengel, 1976a; Stevens and Wesseling, 1999; Habets
and Borst, 2005; Korogod et al., 2005). For augmentation, varying
stimulus duration increases the peak amplitude of the enhance-
ment without significantly affecting the time course of decay
(Magleby, 1979). The mechanisms underlying augmentation are
not well understood and changes in both release probability
and Ca2+-dependent replenishment of the RRP have been pro-
posed (Magleby and Zengel, 1976b; Stevens and Wesseling, 1999;
Rosenmund et al., 2002; Kalkstein and Magleby, 2004). Munc13
and syt-7 have been suggested as Ca2+ sensors for augmenta-
tion (Shin et al., 2010; Lipstein et al., 2013; Liu et al., 2014),

but since both sensors affect depression as well, dissociation of
their roles in synaptic depression vs. augmentation has not been
possible. Various phospholipase C (PLC) isoforms could also act
as Ca2+ sensors because they require binding of a Ca2+ ion for
activation of their catalytic domain (Grobler and Hurley, 1998;
Rebecchi and Pentyala, 2000). Pharmacological studies suggest
that PLC activation is required for augmentation (Rosenmund
et al., 2002) but not PTP (Genc et al., 2014). PLC hydrolyses PIP2
to diacylglycerol, which could lead to potentiation of synaptic
transmission via Munc13 and protein kinase C (PKC; de Jong and
Verhage, 2009).

PTP typically lasts longer than augmentation and shows a
progressive increase in the time course of decay with increased
duration and frequency of stimulation (Magleby, 1979; Korogod
et al., 2005). Pharmacological (e.g., Alle et al., 2001; Brager
et al., 2002; Beierlein et al., 2007; Korogod et al., 2007)
and genetic (Fioravante et al., 2011, 2012, 2014; Chu et al.,
2014) studies at several synapses have firmly established the
requirement for PKC in PTP. Three PKC isoforms (α, β and
γ) possess a C2 domain and bind Ca2+ with low micromo-
lar affinity (Torrecillas et al., 2004; Newton, 2010; Figure 1).
PKCs enhance release through phosphorylation of effectors,
including components of the vesicular release machinery such
as Munc18 (Wierda et al., 2007; de Jong and Verhage, 2009;
Genc et al., 2014). Mutations of the Ca2+-coordinating aspar-
tates in the C2 domain of PKCβ abolish its ability to support
PTP, without affecting basal synaptic function (Fioravante et al.,
2014).

PKCβ is probably not the only Ca2+ sensor for PTP. At the
immature calyx of Held, PTP depends on PKCγ (Chu et al.,
2014). Moreover, at the parallel fiber-Purkinje cell synapse in
the cerebellum, PKCα can readily support PTP in the absence
of PKCβ and γ (Fioravante et al., 2012). It remains to be tested
whether Ca2+ binding to PKCα and γ is necessary for PTP and
whether all PKC isoforms act through Munc18 phosphorylation.
Finally, pharmacological studies suggest that Ca2+/CaM, acting
via MLCK, makes a small contribution to PTP at immature, but
not functionally mature, synapses (Lee et al., 2008; Fioravante
et al., 2011).

Tetanic stimulation enhances not only evoked responses (i.e.,
PTP) but also spontaneous events in a Ca2+-dependent manner.
The frequency (Zengel and Magleby, 1981; Zucker and Lara-
Estrella, 1983; Eliot et al., 1994; Habets and Borst, 2005), and at
some synapses also the amplitude (He et al., 2009), of sponta-
neous events increase after tetanization. Because of similarities in
the time course of these effects with PTP, a common mechanism
has been speculated (Zengel and Magleby, 1981). However, the
effects of [Ca2+

]residual on spontaneous transmission were recently
shown to be independent of PKC (Xue and Wu, 2010; Fioravante
et al., 2011; but see Brager et al., 2003) and the increase in
amplitude requires syt-2 (He et al., 2009). The Ca2+ sensors
remain unknown.

DIFFERENTIAL ENGAGEMENT OF Ca2+ SENSORS AND
IMPLICATIONS FOR STP
Different patterns of neuronal activity result in variable Ca2+

signals stretching over an order of magnitude (Figure 1). Diverse
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sensors are therefore needed to translate the Ca2+ signals into
distinct forms of STP. Factors such as Ca2+ affinity, specific
(sub-)cellular expression and mechanisms of action contribute
to the specialization of sensors for different forms of STP. For
example, NCS-1 has high affinity for Ca2+ and localizes at the
plasma membrane (O’Callaghan et al., 2002; Burgoyne, 2007)
where it could rapidly respond to local Ca2+ signals. PKCβ,
on the other hand, has lower Ca2+ affinity, is cytoplasmic at
rest (Newton, 2010) and likely has to phosphorylate more than
one substrates to induce plasticity; therefore, sustained, global
Ca2+increases are likely required for its activation, in agreement
with the prolonged stimulation requirement for PTP (Habets and
Borst, 2005; Korogod et al., 2005). Even for the same sensor, Ca2+

affinity can vary as a result of effector binding, phospholipid
binding, and post-translational modifications (Xia and Storm,
2005; Li et al., 2011; van den Bogaart et al., 2012). Finally,
specific expression patterns of Ca2+ sensors could help explain
why identical activation regimes do not always lead to the same
STP across synapses or during development (Rosenmund et al.,
2002; Chu et al., 2014).

Most synapses exhibit multiple forms of STP and the net
synaptic output reflects the interaction between these different
forms (de Jong and Verhage, 2009). It is therefore likely that
different Ca2+ sensors interact, and might even compete (Chu
et al., 2014), during STP. The dynamics of these interactions
should be considered when building computational models of
STP. Traditionally, such models combine use-dependent deple-
tion and Ca2+-dependent facilitation to explain synaptic output
(Tsodyks et al., 1998; Fuhrmann et al., 2002; Pfister et al., 2010).
Introduction of additional components such as vesicle replen-
ishment, which are engaged under conditions that activate the
corresponding Ca2+ sensors, more accurately reflects our under-
standing of the underlying biology and allows better prediction of
synaptic and network behavior (Hennig, 2013).
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