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Abstract

Spinal cord injury (SCI) has a huge impact on the individual, society and the economy. Though 

advances in acute care resulted in greatly reduced co-morbidities, there has been much less 

progress preventing long-term sequelae of SCI. Among the long-term consequences of SCI is 

bone loss (osteoporosis) due to the mechanical unloading of the paralyzed limbs and vascular 

dysfunction below the level of injury. Though osteoporosis may be partially prevented via 

pharmacologic interventions during the acute post-injury phase, there are no clinical guidelines to 

treat osteoporosis during the chronic phase. Thus there is need for scientific advances to improve 

the rehabilitative approaches to SCI-related osteoporosis. Recent advances in application of a new 

technology, functional electrical stimulation, provide a new and exciting opportunity to improve 

bone metabolism and to provide mechanical strain to the paralyzed lower limbs sufficient to 

stimulate new bone formation in individuals with SCI. The purpose of this minireview is to 

delineate our current understanding of SCI-related osteoporosis and to highlight recent literature 

towards its prevention and treatment.
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There are approximately six million people living with spinal cord injury (SCI)-related 

paralysis in the United States – nearly one in every 50 people. Though advances in acute 

care resulted in greatly reduced co-morbidities in the initial few years following a spinal 

cord injury, there has been much less progress preventing medical complications associated 

with SCI in the long-term. Therefore, understanding the long-term consequences of SCI is 

Copyright: © 2013 Tan CO, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Can Ozan Tan, Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, 1575 Cambridge Street, 
Cambridge, MA 02138, USA, Tel: 617–758–5510; Fax: 617-758-5514; cotan@partners.org. 

NIH Public Access
Author Manuscript
Int J Phys Med Rehabil. Author manuscript; available in PMC 2014 November 20.

Published in final edited form as:
Int J Phys Med Rehabil. 2013 ; 1: .

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



critical to develop evidence-based rehabilitation programs that would provide optimal 

treatment for the reversal of co-morbidities.

Individuals with SCI are at increased risk for developing an array of inactivity-related health 

problems during the chronic stages of injury. Among several consequences of SCI is bone 

loss (osteoporosis) following injury, which is both rapid in onset and severe in nature. In 

motor complete SCI, the long bones of the lower extremity adapt to minimal mechanical 

strain by atrophying. Bone loss occurs rapidly in the acute phase of the injury and slows two 

to three years after injury [1]. While the nature and magnitude of the effects of SCI on bone 

vary by skeletal site, sex, and age [2], all individuals with motor complete SCI develop 

osteoporosis below the level of the injury [1,3,4]. Perhaps as a result, individuals with 

complete SCI are twice as likely to experience fractures compared to healthy controls [5], 

and as many as 40% of the individuals with chronic SCI experience fractures [5–8], with the 

most common occurrence at the metaphyses of the proximal tibia and distal femur [9]. 

Fractures are discovered after minimal trauma and are most commonly treated with 

prolonged bed-rest and bracing in many cases. However, the combination of the injury and 

extended bracing results in prolonged immobility, worsening disability, and serious medical 

complications, such as pressure ulcer formation, increased pain and spasticity, and lower 

extremity amputation. Thus, it is critical to develop rehabilitation programs that may 

effectively reverse the sequelae of prolonged lower extremity disuse and minimize the 

medical complications due to osteoporosis secondary to lower extremity paralysis. 

Unfortunately, however, physical therapy does not appear to have proven efficacy [10], and 

there are no studies that conclusively showed an effective pharmacologic intervention for 

prevention and treatment of osteoporosis in chronic SCI [11]. Part of the culprit may be that 

only a small number of individuals with SCI volunteer for long-term studies, and adequately 

matching individuals by the level, completes, and duration of lesion, as well as age is not 

always possible [7,11]. Thus long-term longitudinal randomized investigations on 

osteoporosis in individuals with SCI have been difficult. Nevertheless, the lack of effective 

rehabilitative strategies underlines the importance of an integrated understanding of the 

factors, both neural and local, that are involved. The purpose of this mini-review is to 

delineate our current understanding of SCI-related osteoporosis and to highlight recent 

literature towards its prevention and treatment.

Neural Denervation, Limb Unloading, and Mechanisms of Bone Loss 

Following SCI

Trabecular and cortical bone as well as the bone marrow are innervated by sympathetic 

neural fibers [12–15], and functional noradrenaline and various neuropeptide receptors have 

been identified on bone cells [16,17]. Thus, sympathetic innervation appears to play an 

important role in bone function. In fact, experimental sympathetic denervation in animal 

models results in reduced bone deposition and mineralization and increased bone resorption 

[18,19], suggesting a potential direct impact of denervation on bone function. In addition to 

its direct impact, sympathetic denervation may also have an indirect impact on bone 

metabolism via vascular dysregulation. For example, interruption of sympathetic signaling 

causes the opening of bone intravenous shunts, leading to venous and capillary vascular 
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stasis [20,21]. Among the consequences of vascular stasis is osteoclast formation due to 

local hyper-pressure, which may accelerate bone resorption [22]. Therefore, vascular 

dysfunction below the level of injury may promote and/or facilitate the development of 

osteoporosis.

In addition to nervous denervation and subsequent vascular alterations, the rapid loss of 

bone due to any type of prolonged immobilization is also related to limb unloading and 

consequent alterations in calciotropic hormones and local messenger systems [23]. The 

general consensus is that SCI-related bone loss occurs in 2 phases: 1) a rapid, acute phase 

characterized by increased bone resorption that plateaus somewhere between 18–24 months 

post-injury and 2) a chronic phase, characterized by inhibition of bone formation with 

ongoing bone loss that is more gradual in nature [24–27]. Early studies of circulating levels 

of bone turnover markers in SCI subjects reported that bone formation is suppressed 

immediately following SCI [28]. Other reports using animal models of hind limb unloading 

have described immediate osteocyte and osteoblast apoptosis [29], and an increased 

osteoclastic bone resorption with reduced bone formation [30]. Thus, mechanical unloading 

following SCI leads to a rapid increase in bone resorption by osteoclasts and suppresses 

bone formation by osteoblasts, ultimately leading to bone loss.

The discovery of the role of Wnt signaling pathways in bone homeostasis has radically 

transformed our understanding of the cellular and molecular mechanisms responsible for the 

adaptation of bone to unloading [31,32]. While Wnt signaling pathways include a large 

family of growth factors that participate in various developmental events, these pathways are 

also implicated in adult homeostatic mechanisms [24,33]. For example, dysfunction of Wnt 

pathways have been implicated in a variety of degenerative diseases and abnormalities, 

including those associated with impaired bone homeostasis [34]. Indeed, several studies in 

rodents have defined the central role of Wnt signaling antagonists in the pathogenesis of 

disuse osteoporosis. Osteocytes, the cells responsible for mechano-transduction in bone, 

represent the first cellular response to unloading [35], and release sclerostin, a potent Wnt 

signaling antagonist [36–38]. Several studies have shown that sclerostin levels are inversely 

proportional to bone mass and that production of sclerostin by osteocytes is dramatically 

reduced by mechanical loading [1,37,39]. Thus, mechanical unloading results in up-

regulation of sclerostin, which leads to reduced Wnt/β-catenin signaling in osteoblasts and to 

inhibition of bone formation and growth. Moreover, sclerostin causes up-regulation of 

RANKL (a key factor that promotes osteoclast differentiation), and down-regulation of 

osteoprotegerin (a key inhibitor of osteoclast differentiation) expression by osteocytes, 

which leads to increased osteoclast activity and ultimately to bone resorption [40,41]. Thus, 

in addition to its anti-anabolic role, sclerostin also appears to have catabolic effects.

Recent work has also shown a positive relation between circulating sclerostin levels and 

bone density in chronic (>5 years) immobility in humans. Considering the mechanism of 

sclerostin-induced bone loss in acute SCI, this relation in the chronic phase seems 

paradoxical at first. However, though sclerostin levels may initially increase after SCI in 

response to mechanical unloading, in the long-term, circulating sclerostin may serve as a 

biomarker of osteoporosis severity and not a mediator of ongoing bone loss. Indeed, recent 

research supports this duality. On one hand, sclerostin levels are greatest in subjects with 
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short-term SCI and decrease significantly over the first 5 years post-injury [42]. On the other 

hand, in subjects with long-term (>5 years post-injury) SCI, sclerostin levels are positively 

associated with lower extremity bone density and bone mineral content [42].

Pharmacologic Strategies Toward Treatment of Osteoporosis Following 

SCI

Currently there are no clinical guidelines for the prevention or reversal of SCI-related 

osteoporosis. Traditionally, bisphosphonates have been considered as the most appropriate 

therapy to prevent bone loss following SCI. Bisphosphonates strongly inhibit bone 

resorption. Various reports indicate that they provide an effective preventive treatment 

strategy when initiated within 12 months of the injury [43–46], and early bisphosphonate 

administration increase ash weight, maximal torque capacity, maximal angle capacity and 

rigidity of the bone atrophied by immobilization [47]. However, the efficacy of 

bisphosphonate treatment appears to be limited to only within the acute phase (< 1 year) of 

injury [48]. This may be related to the fact that though bisphosphonates reduce bone 

resorption, they have limited effect on bone formation [49]. This is explained by the fact that 

bisphosphonates reduce coupled bone remodeling because they suppress osteoclastic bone 

resorption, which is required in order for osteoblastic bone formation to proceed.

The role of sclerostin in the adaptation of bone to unloading during the acute phase of SCI 

suggests that sclerostin may provide an alternative therapeutic target during the acute phase 

of injury as a prevention strategy to prevent initial, rapid osteoporosis. The higher sclerostin 

levels in acute SCI and lower levels in chronic SCI strongly suggest that the time frame for 

limiting bone resorption is limited. Thus, there may be an optimal time frame - the 

“therapeutic window” - for targeting sclerostin and preventing bone loss following SCI [6]. 

Unfortunately, however, there is no longitudinal information that defines the kinetics of 

bone loss and its relation to circulating sclerostin in the acute phase of SCI (i.e., within the 

first year), when acute mechanical unloading and most bone loss occurs.

The ongoing discussion suggests that although bone loss in individuals with SCI may be 

partially prevented via pharmacologic interventions, notably during the acute post-injury 

phase, current pharmacologic treatments do not appear to be capable of reversing bone 

demineralization. Thus, currently there is no effective pharmacologic intervention for 

prevention and treatment of disuse osteoporosis due to SCI, especially after the first year of 

injury. Perhaps as a consequence, a recent, emerging theme in the literature is the utility of 

novel, non-pharmacologic paradigms that are specifically designed for individuals with SCI 

to prevent and reverse the bone loss due to prolonged immobility.

Physical Exercise and Effective Reversal of Osteoporosis Following SCI

Bone is a dynamic organ that modulates the rate of new bone formation in response to 

varying levels of physical exercise and mechanical strain, and there is already ample 

evidence that physical exercise in those with SCI is broadly beneficial to health [50,51], 

improves quality of life [52], and impacts outcome after SCI [53]. Therefore, it would not 

come as a surprise that physical exercise can reduce, prevent, and even reverse SCI-related 
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osteoporosis. There is evidence of improved circulation in bone vasculature during muscular 

work. For example, recent work has shown that resting femoral bone blood flow almost 

doubles in response to isometric exercise, although the increase in blood flow plateaus with 

increasing exercise intensities [54]. The blood flow response to muscular work appears to be 

mediated by a metabolically induced stimulus, rather than neural mechanisms [55]. Thus, 

physical exercise may promote bone blood flow, alleviate the bone vascular dysfunction due 

to neural denervation, and facilitate bone metabolism and growth in SCI. Furthermore, 

mechanical loading of the bone during exercise may reverse the alterations in local Wnt 

signaling cascade that occur due to immobilization and unloading, contributing to disuse 

osteoporosis. Therefore, it is conceivable that re-introduction of mechanical loading via 

physical exercise may also reverse atrophy and bone loss in individuals with SCI.

However, though a majority of SCI patients regard physical activity as important, more than 

half do not have access to appropriate exercise [56]. For the general population, physical 

exercise is an inexpensive, safe, and effective approach for avoiding health problems. 

However, a typical individual with SCI experiences many barriers to exercise due to their 

immobility, such as the inability to use a large portion of their muscle mass, and inability to 

locate appropriate facilities and affordable equipment. Fortunately, exercise programs based 

on functional electrical stimulation (FES) have been developed to overcome these barriers. 

FES-exercise uses electrical stimulation of the paralyzed muscles to cause muscle 

contractions. Loading the bones through muscular contractions initiated by FES has yielded 

positive results. For example, in both acute and chronic SCI, up-right standing via force 

feedback-controlled electrical stimulation of paralyzed quadriceps appears to provide 

sufficient loading to the paralyzed lower limbs closer to load levels with known osteogenic 

potential [57]. Moreover, recent adaptation of cycling and rowing exercises for FES 

provides a new and exciting opportunity to provide mechanical strain to the paralyzed lower 

limbs sufficient to stimulate bone formation in individuals with SCI.

Recent research has shown that FES-cycling initiated during the very early stages of spinal 

cord injury (1 – 2 months post-injury) may attenuate the bone loss [58], though at least one 

study show that this may not be the case [59]. However, the attenuation of bone loss fades 

quickly, within 6 months once cycling exercise is discontinued [58,60]. Though the reasons 

for these discrepant results are unknown, one culprit may be the limited mechanical 

efficiency of cycling exercise. In all individuals, able-bodied or not, exercise must meet 

certain intensity and volume criteria to induce significant health benefits. For example, 

passive weight bearing of paralyzed lower extremities appears to be ineffective, and the 

intensity, frequency, and duration of stress to the bones appear to be important determinants 

of improved bone parameters [9]. Yet, the mechanical efficiency of FES-cycling is 

estimated as ~8% [61], less than a third of that for cycling in ablebodied individuals. One 

issue may be that cycling exercise does not achieve high levels of aerobic work and a 

plateau in training effect is quickly reached [62]. Therefore, though promising, this modality 

of FES-exercise may not be sufficient to promote enough bone blood flow and mechanical 

strain to reliably prevent and reverse SCI-mediated bone loss beyond the very early stages of 

injury.
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In contrast to typical FES cycling exercise, it appears that significant benefits can be 

achieved via high volume FES cycling training. For example, in patients with chronic SCI, 

high-volume (five 60-min training sessions a week for 12 months) FES cycling training can 

partially reverse the loss of bone mineral density [63]. Moreover, though the benefits 

achieved through 1 year of high volume FES cycling training may be lost if the training 

discontinues, the benefits appear to be maintained when reduced intensity exercise is 

continued after the initial training [64]. Recently, in an attempt to overcome the limitations 

of typical FES-cycling, rowing has been adapted for FES exercise to provide a better 

exercise modality for individuals with SCI. FES-rowing uses electrical stimulation of the 

paralyzed quadriceps and hamstrings to actively engage both the arms and the legs in the full 

rowing cycle. Though it is currently unknown if FES-rowing can prevent osteoporosis 

during acute phase of SCI, a recent pilot study from our laboratory with three individuals 

with chronic SCI has shown that the cyclical mechanical loading of the lower extremities 

during FES-rowing can promote new bone formation (up to 50%), improve bone strength, 

and may revert osteoporosis during the chronic stage of SCI [65]. Further studies are 

required to assess the utility of FES-rowing on effective reversal of SCI-mediated 

osteoporosis. Nevertheless, FES-rowing appears to provide sufficient exercise intensity and 

mechanical strain to the paralyzed lower limbs to stimulate new bone formation. In addition 

to the improvement in musculoskeletal health, the advantages of FES-rowing exercise 

include an improvement in cardiovascular health more than most options currently available 

[66], the use of a relatively inexpensive ergometer, and integration into existing rowing 

programs and communities because of its similarity to rowing by the general population. 

According to participants, FES-rowing is intuitive and easy to learn, and a more engaging 

and natural exercise, similar to what would be used by able-bodied individuals. Moreover, 

FES exercise has been shown to be safe for participants [67], and FES-rowing paradigm has 

been used in our laboratory for exercise by more than 100 individuals with SCI over the past 

5 years without any adverse events. Therefore, FES-rowing is offers many new and exciting 

physiological, economic, and social opportunities for the SCI population.

Conclusions and Future Directions for Rehabilitative Strategies

Chronic SCI and consequent osteoporosis have a huge impact on the individual, society and 

the economy, and thus there is need for scientific advances to improve the effectiveness of 

rehabilitative approaches. In rehabilitation medicine, the shortage of evidence-based practice 

has been a major barrier to advancing care and promoting the timely identification, 

application, and assessment of advances in science and technology with the potential to 

improve rehabilitation outcomes in chronic SCI. For example, sclerostin may provide an 

alternative therapeutic target during the acute phase of injury as a prevention strategy to 

prevent initial, rapid osteoporosis, and to improve rehabilitation outcomes in chronic stages. 

However, future work should define the kinetics of bone loss and its relation to circulating 

sclerostin when acute mechanical unloading and most bone loss occur. In addition, recent 

advances in application of a new technology (functional electrical stimulation) provide an 

exciting new avenue to improve functional mobility, to foster behavioral adaptation to 

functional losses, and to further facilitate development of improved assistive technologies 

for individuals with chronic SCI. Future work should address both the physiologic and 
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clinical impact of FES exercise and develop exercise programs that can provide loading to 

the paralyzed lower limbs sufficient not only to prevent osteoporosis but also to promote 

osteogenesis to ensure effective reversal of SCI-mediated osteoporosis.
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