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Introduction
Diseases result from one or more forms of “stress.” In some 
cases, the stress is best described as environmental, while in 
others the instigator is genetic stress, that is, one or more 
mutations. It is commonplace for both forms of stress to con-
tribute. Especially in the many cases for which the underlying 
cause is unknown, the identification of chinks in the armor of 
disease and selection of satisfactory therapeutic targets pres-
ent a daunting challenge of broad significance. The follow-
ing comments are generally relevant to cancers, as well as for 
other diseases.

Forms of cancer that show simple inheritance should be 
contrasted to those that appear to be of multigenic origin or 
to be sporadic. Unfortunately, only a minority of cases exhibit 
simple inheritance. These prototypes are instructive and impor-
tant, but do not begin to account for the full scope of disease.

Although evolution has certainly contributed to mitigating 
severe forms of malignancy, the late onset and low incidence 
of most cancers place them in a chaotic realm that is largely 
outside of evolutionary improvement. Moreover, the fine-tun-
ing that would seem desirable in order to limit expression of 
deleterious proteins is often not feasible: too many of the key 
players function in conjunction with multiple targets. Indeed, 
this issue lies at the heart of understanding the evolvability 
of organisms. If all control networks were separate from each 
other, specificity of regulation could be exquisite; however, 
the size of the corresponding genome or transcriptome would 
need to be vast.

Progression Through States
It is plausible to conceive of the healthy cell as being in a dynamic 
“status quo,” for which many aspects of prevailing physiology 
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fluctuate. Examples of metabolic fluctuations are provided by 
studies in which fluorescent reporters allow cell-by-cell scrutiny 
of single transcripts or their products in real time. The causes of 
these fluctuations are often hard to pin-point; however, tran-
scription is subject to stochastic variability of the concentration 
and localization of key regulatory factors.1–4 Frequent adjust-
ments of the levels of many metabolites and proteins are surely 
characteristic of all cells. Some of these adjustments may be 
homeostatic, while others may be destabilizing.

In the simplest model, progression of a healthy cell toward 
disease involves a linear sequence of intermediates, and culmi-
nates in changes that are responsible for overt symptomatol-
ogy, which can coincide with entry into a terminal state, for 
example, complete lack of growth control or death (Fig.  1, 
upper rectangle).

In reality, most primary molecular changes that are trig-
gered in disease seem likely to have multiple downstream 
repercussions (Fig.  1, lower), reflecting widespread interde-
pendence of the sort that is conspicuous in transcriptional 
profiling of cells in which a single gene has been silenced or 
overexpressed. The resulting branching cascades obviously 
become extremely complicated, especially if feed-forward 

events and interactions between temporally separated events 
occur. Branching cascades define composite perturbed states 
for the cell. By including changes quite distinct from those 
that were first present, they can dramatically alter and amplify 
symptoms. They can readily be misleading with regard to 
identification of events of causal significance.

In cancer genome research, it is useful to discriminate 
between mutations that “drive” the disease and genes that 
carry “passenger” mutations, which can result from secondary 
genetic accomodations.5,6 Recent progress along these lines has 
been achieved by large-scale comparison of exome sequences 
of tumors and matched normal samples from the same indi-
viduals, for example, using samples from The Cancer Genome 
Atlas and International Cancer Genome Consortium. In addi-
tion to the published databases that have enumerated somatic 
mutations for different cancer types,7 the saturation analysis of 
cancer genes across 21 tumor types has allowed identification of 
additional somatic mutations that are associated with cancers.8

Commitment Points and the Point of No Return
The cumulative impact of initiating events and/or their combi-
nation with others can cause what began as an inconsequential 
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Figure 1. Axes of progression leading to pathogenesis. 
Notes: The rectangle at the top encloses a linear pathway, with the axis of causal progression proceeding from left to right. The lower part of the figure 
diagrams branching paths in which many changes occur, some of which are ultimately symptomatic. A subset of these contributes to loss of growth 
control or to cell death. In this diagram, each of several early events (1, 2, and 3) is shown as being linked to a subset of downstream events.
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or meta-stable perturbation to progress to a “commitment 
point,” signifying that the cell or organism can no longer read-
ily return to its initial condition. At the organismal level, an 
example is that of cells that have already lost one functional 
allele of a tumor suppressor or – if already malignant – have 
entered the circulation and therefore gained wide access to 
the body. Other examples include those discussed in several 
recent overviews.9–11 Once cells are “trapped” in such a state, 
they would be all the closer to a point that allows them to be 
pushed toward a terminal state. The stochastic nature of some 
such events, and their low probability, could critically account 
for much of the variability of the timing of symptoms.

At a later point in progression, it is useful to think of 
arrival at a “point of no return,” which leads to major inca-
pacitation of the cell (Fig. 2). By definition, this second critical 
transition is also irreversible. Beyond the point of no return 
are terminal events that often furnish a characteristic meta-
bolic or histologic signature of disease. This signature is likely 
to be far removed from the initiating circumstances.

It is often difficult to discriminate between the commit-
ment point and the point of no return. Nevertheless, efforts to 
identify driver and passenger genes in cancer genome studies 
seek to target genes at these two stages, with the intent of 
using them as predictive biomarkers. Among these biomark-
ers for individual diagnosis are KRAS mutations in metastatic 
colorectal cancer, EGFR mutations in advanced non-small cell 
lung cancer, and BRAF mutations in metastatic malignant 
melanoma. Prognostic biomarkers of value after the point of 
no return can be identified through analysis of the recurrence 
risk stratification using the OncotypeDx and Mammaprint 
gene expression signatures in breast cancer.12

Diseases of monogenic causation provide a simplified pro-
totype for reasoning. Yet the struggle against many diseases is 
fundamentally distinct from the game-like staged challenges 
of simplified experimental models. Only in exceptional cases 
do we know the initial provocateur and even in this situation, 

there is every reason to expect that multiple genetic and/or 
environmental factors contribute to progression and outcome.

It is instructive to compare this situation to the notori-
ously high complexity of chess matches in which players start 
from fixed positions and are allowed access to only 64 posi-
tions. Even though the beginning of each match appears to 
be perfectly balanced, the winner can be different in succes-
sive matches between the same opponents. By comparison, in 
disease progression even the number of interacting elements 
and the equivalent of their initial positions are generally 
unknown.

Contributions from Neighboring Cells
Overt symptomatology at the level of the organism results 
from collective dysfunction of more than a critical number of 
cells. The multicellular nature of organs can buffer the physio
logic consequences of changes in single cells. For example, 
neighboring cells in a given tissue can sustain their neighbors, 
both by providing extracellular nutrients and growth factors, 
and also via junctional complexes that allow exchange of low 
molecular weight constituents. Furthermore, extracellular 
factors can be critical, for example, immune and inflamma-
tory mediators, metalloproteases that facilitate cell migration, 
etc. Therefore, any full understanding of disease progression 
will require cell-specific information for multiple cell types, 
and ultimately such information needs to be obtained in the 
intact organism.

Differences Between Monogenic, Polygenic, and 
Environmentally Caused Disease
Linear and branching models of pathogenesis are relevant to the 
comparison of therapeutic options for diseases of monogenic, 
polygenic, or environmental origin. Adding to this complexity 
is the realization that different mutations in a single gene can 
sometimes lead to a broad range of seemingly distinct con-
ditions.13–16 Moreover, the issue of polygenic causation itself, 

Point of
no return

Permanent change –
Loss of control?
Cell death?

Initial
state

Symptomatic

Commitment
point

1 2 3 4

Figure 2. The commitment point and the point of no return. 
Notes: As illustrated, the initial molecular changes are reversible without being symptomatic. Later changes eliminate the possibility of return to the 
initial state, for example (3) cannot revert to (2), thereby defining a commitment points. Still later changes are irreversible and lead to loss of growth 
control or to death.
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although surely at least as complex as monogenic causation, 
defies generalization since in most cases polygenic causation is 
a hypothesis rather than an established fact.17,18

To understand how polygenic causation may work, bio-
informatics/biostatistical tools have increasingly been focused 
on regulatory networks that make it possible to integrate mul-
tiple levels of genomic data from tumors.19–21 Other analytic 
tools also suggest that significant pathways or sets of genes 
work together.22–24

Therapeutic Target Priorities
What are the implications of these reflections for the choice of 
therapeutic targets? For diseases in which the key mutation is 
in an enzyme or receptor, rational design of active-site ligands 
can be enormously effective (Gleevec, Herceptin, Vemurafenib, 
etc.).25,26 Furthermore, datasets based on high throughput drug 
screens of cancer lines, for example cMap, often can suggest 
which drugs or compounds will be most effective.27

Moreover, if the mutation is in an identified protein 
of unknown function, or if the normal protein is altogether 
unimportant, gene knock-out or RNAi-based strategies could 
ultimately be successful. If elimination of the normal protein 
is itself deleterious, it would, on the other hand, be necessary 
to replace the mutant copy with a normal copy or, perhaps, to 
silence only the mutant copy.28

For disorders of more complex causation, the value of 
attempting to correct any identified changes depends critically 
on their position along the axis of progression. Critical tar-
gets include those that include a feed-forward feature or those 
that control passage beyond a commitment point. Targets that 
perform the ultimate coup de grace in unleashing uncontrolled 
growth are less likely to be optimal.

Natural Indicators of Therapeutic Options
Faced with the difficulty of identifying early events on a causal 
pathway that leads to pathogenesis, it could be valuable to 
focus on any candidate modifier genes (eg, identified through 
association with single nucleotide polymorphisms) that corre-
late with outcomes.29 This strategy can be directly extended to 
investigation of model organisms with distinct genetic back-
grounds, for example, different inbred strains of mice,30 and 
animals with engineered genomes.31

A further important consideration is the cell type or tissue 
specificity of disease. For example, both upon transplantation 
and during metastasis, many cancers are known to flourish 
only at selected sites. In principal, these divergences provide an 
opportunity: Unaffected or less-affected tissues could express 
protective factors. Alternatively, affected tissues could express 
factors that sensitize them. Moreover, since cancer of any one 
tissue often comprises several distinct molecular cancer sub-
types, distinct therapies may be required for different tumor 
subtypes, as in breast cancer and lung cancer.32

There is a central distinction between modifiers identi-
fied in populations and factors identified in varied cell types of 

the same individual. Modifiers presumably are mostly allelic 
variants among naturally occurring polymorphisms. By con-
trast, factors that characterize varied cell types (or ages) largely 
reflect differences of expression of products of the same genes.

Random Screens and Selections
Given the many molecular features that can distinguish nor-
mal cells from malignant cells, it is not obvious which aber-
rations could become therapeutic targets. Many such features 
could be entirely secondary, while others – although close to 
the axis of disease progression – could be so inextricably linked 
to other vital processes that their manipulation is fool-hardy.

As a complement to classical genetic studies of animals 
or random mutagenesis, available libraries of drugs, cDNAs, 
or shRNAs/siRNAs make it possible to explore the impact 
of near-random groups of single agents on cell-culture-based 
models of disease. These strategies can either test single candi-
dates separately, or – for the nucleic acid-based strategies – pool 
thousands of candidates and then recognize and pursue the 
phenotypic consequences of those that are shown to be effec-
tive.33,34 In the simplest case in which a single, well-defined 
molecular target exists, one might expect all effective drugs or 
DNAs/RNAs to be recognizably related to each other. Alter-
natively, they could appear unrelated yet (a) perturb distinct 
sites on the same molecular target or (b) perturb components 
that function upstream or downstream of that target. As a 
first approximation, the possibility of their affecting the same 
target can be assessed by inquiring whether the simultaneous 
use of more than one agent increases efficacy.

Given the often incomplete specificity of corrective 
agents and their association with secondary effects, it seems 
reasonable to anticipate that effective molecular therapies will 
require combinatorial approaches. One strategy to identify 
pairs of agents could begin with a candidate that is helpful and 
use it as an “anchor.” Secondary screens or selections can then 
be conducted with the first agent already in place. Combina-
torial options for which no experimental procedure presently 
exists are those for which the single agents do not by them-
selves affect phenotype. Examples of such effective combina-
tions likely exist among the genetic background effects that 
are characteristic of outbred populations.

Diseases with Fractional Genetic Linkage
Diseases are initially classified according to phenotype, 
emphasizing terminal characteristics. With the realization 
that many diseases with a characteristic terminal phenotype 
do not show uniform genetic linkage, their analysis becomes 
highly complex, poses therapeutic difficulties, and raises 
problems of nomenclature. In diseases for which no more 
than a fraction of cases share a given genetic linkage, it is 
reasonable to suppose that distinct events can be initiators 
and that their effects ultimately converge on similar out-
comes (Fig. 3). A good example is that of amyotrophic lateral 
sclerosis. Here, mutations of multiple distinct genes – even 
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though they seem quite unrelated to each other (TDP-43, 
FUS/TLS, SOD1) – can account for the same ultimate 
phenotype.35,36 Fractional linkage is also characteristic of 
Alzheimer’s Disease, for which only a small minority of 
cases are inherited.

The most valuable therapeutic targets are those that lie 
relatively early along the axis of progression; however, in cases 
of fractional linkage – since distinct events initiate progression –  
early events surely differ from one example to the next. Since 
later events are increasing likely to lie downstream of a point 
of no return, one can only hope that the ultimate intersection 
of physiologic changes is not limited to late events.

The implications of fractional linkage for therapy develop-
ment are sobering in the context of the development of geneti-
cally based animal models of disease. If an animal model is 
based on phenotypic similarity rather than on an orthologous 
underlying mutation, understanding of the phenocopy seems 
unlikely to be sufficient.

Progression Signatures and the Axis of Time 
Prospective
To identify predictive biomarkers, one interrogates selected tis-
sues, cell types, or fluids biochemically,29,37 both from individuals 
who will remain healthy and from those who later will exhibit 
a disease characteristic. One then looks empirically for single 
parameters or conjunctions of parameters that correlate with out-
come. For example, scrutiny of transcriptional profiles can allow 
subclassification of cancers, prediction of their progression, and 
response to therapeutic regimens.38 Classical biomarkers are col-
lected at a single time point; however, in principal, they could 
define a chronology of change at a succession of time points. Bio-
markers in general are not causal precursors of the outcome.

For diseases that are known to be of simple causation, 
a directed experimental strategy could be used to search for 
biomarkers (Fig. 4, upper). Thus, one could activate a single 
oncogene using cells in culture or a model organism and then 
monitor the successive appearance of biochemical or transcrip-
tional changes (a, b, c, etc. in Fig. 4, upper). If the simulation 
generates a sufficiently distinctive “progression signature,” 
single or composite early changes that are characteristic of the 
condition under study should provide useful biomarkers.

As an extension of this strategy, one could ask whether 
any potential biomarker lies along the causal axis of patho-
genesis, as opposed to being irrelevant bystanders. This would 
involve opposing individual changes (a, b, c, etc.) – so long 
as indirect consequences are tolerable – and then inquiring 
whether progression still occurs. The search for such markers 
could be conducted with model organisms which had been 
engineered to express the oncogene in question.

Since BRCA1/2 mutation carriers tend to develop especially 
aggressive breast tumors, BRCA1 is often considered a prospec-
tive biomarker.39 Ongoing comparative exome sequencing of 
germline and tumor samples for cancer genomes will aid identifi-
cation of further biomarkers for prediction of cancer risk.

Retrospective
When confronted with a recurrent condition of unknown eti-
ology, one must learn how to combat both precursor events and 
progression. We suggest that an interpolation strategy could 
be used to identify early targets of functional significance.

In interpolation strategies, one compares the state of an 
unknown condition to a reference dataset (eg, transcriptional 
profiles) obtained after treating the same cell type with panels 
of drugs, shRNAs, etc., or expressing pathogenic proteins.40,41 
The discriminatory power of such reference datasets depends 
on the density of their information content. Such reference sets 
could be extended to progression signatures, that is, following 
the chronology of changes of transcript levels through time 
(Fig. 4, lower). In the present context, the central idea is to iden-
tify progressive changes that occur either in cell culture or in tis-
sues of an intact organism – comparing the unknown to a set of 
experimental variants imposed on normal cells or organisms.

Once the progression signature of the unknown has been 
defined (eg, 12, 76, 33), if a sufficiently close match can be found 
among the reference sets (eg, 12, 77, 31 in Fig. 4), the earlier 
states of that entry in the reference set (15, 88, 92, 3) could 
approximate the circuitry that led to the downstream observ-
able characteristics for the unknown. This inferential strategy 
thus could provide a way to read time backwards and, there-
fore, to identify corresponding early therapeutic targets. Even 
when many cells have already undergone irreversible changes, 
identification of such molecular targets should make it possible 
to rescue cells that had not yet been irreversibly affected.

In the upper panel, cells are exposed to a known insult 
and the goal is to identify relatively early events (potential bio-
markers) that precede the terminal change. The biomarkers 
might be collected at a single time point or correspond to 
a sequence of characteristics.

The lower panel schematizes the sequential consequences of 
experimental perturbations (A, B, C, etc.) that have been imposed 
on a cell of interest. Once reference panels of changes are available 
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Figure 3. Phenotypically similar diseases can result from multiple 
causes. 
Notes: Distinct causes (1, 2, 3, 4, and 8) lead to shared events 
(5, 6, and 11). If the shared events (eg, 5, 6) lie beyond a commitment 
point or point of no return, therapies that target them will not reverse 
earlier events.
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(1, 7, 27, etc.), when confronted with an unknown, one would ask 
whether it exhibits characteristics (static or progressive) that match 
one of the prototypes (A, B, C, etc.). When a satisfactory match 
is found (eg, for the observed characteristics of perturbant C), one 
would then read backwards in time for the closest match to infer 
the precursor events. Those which are causally linked to progres-
sion could become targets for intervention, unless they already lie 
far along the axis of progression. The complexity and resolution of 
these strategies depend on the extent to which changes that occur 
with one perturbant overlap with others.
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