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Abstract

Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use
marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions.
Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to
improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it
empirically estimates the contribution of each functional annotation to the trait of interest directly from summary
association statistics while allowing for multiple causal variants at any risk locus. We devise efficient algorithms that estimate
the parameters of our model across all risk loci to further increase performance. Using simulations starting from the 1000
Genomes data, we find that our framework consistently outperforms the current state-of-the-art fine-mapping methods,
reducing the number of variants that need to be selected to capture 90% of the causal variants from an average of 13.3 to
10.4 SNPs per locus (as compared to the next-best performing strategy). Furthermore, we introduce a cost-to-benefit
optimization framework for determining the number of variants to be followed up in functional assays and assess its
performance using real and simulation data. We validate our findings using a large scale meta-analysis of four blood lipids
traits and find that the relative probability for causality is increased for variants in exons and transcription start sites and
decreased in repressed genomic regions at the risk loci of these traits. Using these highly predictive, trait-specific functional
annotations, we estimate causality probabilities across all traits and variants, reducing the size of the 90% confidence set
from an average of 17.5 to 13.5 variants per locus in this data.

Citation: Kichaev G, Yang W-Y, Lindstrom S, Hormozdiari F, Eskin E, et al. (2014) Integrating Functional Data to Prioritize Causal Variants in Statistical Fine-
Mapping Studies. PLoS Genet 10(10): e1004722. doi:10.1371/journal.pgen.1004722

Editor: Anna Di Rienzo, University of Chicago, United States of America

Received May 24, 2014; Accepted September 1, 2014; Published October 30, 2014

Copyright: � 2014 Kichaev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work is supported in part by the National Institutes of Health (R03-CA162200, R01-GM053275, and R21-CA182821). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: bpasaniuc@mednet.ucla.edu

Introduction

Recent breakthroughs in high throughput genotyping technol-

ogies have ushered in the era of genome-wide association studies

(GWAS) that have reproducibly identified thousands of genetic

variants associated to many diseases and complex traits [1].

GWAS leverage the linkage disequilibrium (LD) patterns among

genetic markers for probing genetic variation beyond the typed

variants. Thus, it is often the case that the associated variant is not

itself biologically causal, but rather, a proxy as a result of LD.

Identification of causal variants underlying risk loci is performed

within fine-mapping studies [2,3,4] through sequencing (or array

typing and imputation) followed by variant prioritization using

marginal association statistics or posterior probabilities [5,6,7].

Using these measures, a set of top candidate variants is selected for

testing in functional experiments to validate biological causality.

Many statistical approaches have been introduced for fine-

mapping ranging from a simple ranking of marginal association

statistics to Bayesian approaches that integrate elaborate priors

[5,8,9,10,11,12,13,14,15,16,17]. Due to the fact that fine-mapping

can be casted as a variable selection problem, both LASSO-like

procedures that estimate empirical probabilities of inclusion for

SNPs based on sub-sampling [13], as well as Bayesian approaches

that perform joint multipoint inference to compute posterior

inclusion probabilities [14] have been proposed. The inclusion

probabilities provided by these methods offer a natural way to

prioritize variants in fine-mapping. However, although neither of

the two variable selection approaches assume a fixed number of

causal variants, they both require individual level data which is

often not readily available. Ranking of SNPs for follow-up analysis

can also be performed based on correlation-adjusted t-scores that

explicitly take into account the correlation structure among

variants, thus requiring individual level data [12] as well. Recent

works [5,8,9] have proposed to estimate posterior probabilities and

credible sets for variants to be causal under the simplifying

assumption of single causal variant per locus. A key advantage of
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such approaches is that they only require marginal association

statistics which are readily available for large-scale data sets.

Large-scale initiatives such as The Encyclopedia of DNA

Elements (ENCODE) [18] have ascribed functional importance to

more than 80% of the human genome and have provided a

genome-wide catalogue of regulatory regions. This functional

annotation data can be used jointly with the standard association

signal to gain insights into the genetic basis of common traits.

Indeed, variants associated with certain ENCODE genomic

functional annotations such as DNase I Hypersensitive Sites,

transcription factor binding sites and expression quantitative loci

are enriched among GWAS hits [19,20,21,22,23], with recent

work demonstrating that it is possible to integrate such data with

the GWAS association signal to identify novel risk loci [10].

However, existing integrative frameworks typically either assume a

single causal variant per risk locus [10] that is likely to be incorrect

at many risk loci [10,24,2,7,25,26,27,28] or do not make use of

functional data [29,30]. Although ENCODE functional annota-

tion data are clearly beneficial for fine-mapping [22], a rigorous

statistical framework for integrating the different types of

information for the purpose of prioritizing plausible causal variants

is currently lacking.

In this work we introduce PAINTOR (Probabilistic Annotation

INTegratOR), a framework to combine external functional

annotations (sets of variants that localize within certain genomic

features, e.g. enhancers, repressors) with genetic association data

(the strength of association between genetic variants and the

phenotype) to improve the prioritization of causal variants in fine-

mapping studies. As compared to existing approaches that only

rely on the strength of association between genotype and

phenotype [31,5,6], our framework combines two orthogonal

lines of evidence to estimate variant-specific probabilities for

causality: functional relevance and genotype-phenotype associa-

tion. These probabilities can then be used for prioritization of

variants for functional validation studies to determine biological

causality. More specifically, we incorporate the external functional

annotation data through an Empirical Bayes prior [32] with

parameters inferred from targeted fine-mapping data, obviating

the need to make assumptions on which tissue-specific annotation

is relevant to the trait of interest. Finally, budgetary constraints will

invariably restrict the number of potential variants that can be

validated in functional studies. We address this issue by proposing

a cost-to-benefit optimization framework to guide the design of

experimental follow-up studies.

We use extensive simulations starting from the 1000 Genomes

data to show that our approach improves resolution of statistical

fine-mapping and is superior to existing frameworks. In our

simulations of a trait with a heritability of h2
g~0:25 across 100 risk

loci, one needs to test in functional assays an average of 12.3 SNPs

per locus to identify 90% of all causal variants if using our

approach. In addition, if causal variants are preferentially enriched

within certain genomic regions [19,21,10,23], PAINTOR further

reduces the average number of SNPs per locus needed to capture

90% of the causal variants to 10.4. We show in simulations that

the enrichment estimates provided by PAINTOR are largely

unbiased, a fact that we can subsequently use to search for the

annotations most phenotypically relevant. We then demonstrate

an application of our approach using data from a large-scale meta-

analysis study of blood lipid phenotypes (triglycerides (TG), total

cholesterol (TC), high density lipoprotein (HDL), low density

lipoprotein (LDL) [33])and find that causal variants at risk loci are

preferentially enriched within coding regions and significantly

depleted from repressed regions. In real data, PAINTOR is able to

reduce the size of the 90% confidence set from an average 17.5 to

13.5 SNPs per locus, a reduction consistent to simulation results.

We provide software implementing our framework freely available

to the research community at http://bogdan.bioinformatics.ucla.

edu/software/paintor/.

Results

Overview of statistical fine-mapping with functional
annotation

To illustrate PAINTOR, consider the case of two risk loci that

are fine-mapped through sequencing to elucidate the causal

variant(s) driving the phenotype (Figure 1). The observed associ-

ation statistics at all SNPs at these loci are a function of the causal

variants, their effect size and the locus-specific LD structure. We

use a multivariate normal approximation to connect the LD

structure of a fine-mapping locus to the association statistics (e.g.

association z-scores) which allows for the possibility of modeling

multiple causal variants – an important feature since the number

of causals variants per locus is typically unknown a priori. We

integrate functional annotation data through an Empirical Bayes

prior [32] such that the prior probability of a variant to be causal is

governed by its membership to functional classes (see Methods).

We perform maximum likelihood estimation over all fine-mapping

loci using a variant of the Expectation Maximization algorithm to

infer the parameters of the model, followed by estimation of the

probabilities for each variant to be causal (see Methods).

Intuitively, PAINTOR up-weights variants residing in certain

functional annotations (e.g. transcription start sites) while down-

weighting variants within annotations less relevant to the trait (e.g.

intergenic). The weight associated to each functional annotation is

inferred from the data itself without making any ad-hoc

assumptions on which tissue-specific annotations are relevant to

the trait of interest. The main output of PAINTOR is a probability

for each variant to be causal that can be used for selection of SNPs

to be tested for biological causality in functional assays.

Functional annotation data improves statistical fine
mapping performance

Numerous approaches for fine-mapping have been proposed,

ranging from methods that require individual genotype data to

methods that take as input summary association data and integrate

functional annotations (see Table S1). We used simulations to

compare PAINTOR to previously proposed methods. It is

Author Summary

Genome-wide association studies (GWAS) have successful-
ly identified numerous regions in the genome that harbor
genetic variants that increase risk for various complex traits
and diseases. However, it is generally the case that GWAS
risk variants are not themselves causally affecting the trait,
but rather, are correlated to the true causal variant
through linkage disequilibrium (LD). Plausible causal
variants are identified in fine-mapping studies through
targeted sequencing followed by prioritization of variants
for functional validation. In this work, we propose methods
that leverage two sources of independent information, the
association strength and genomic functional location, to
prioritize causal variants. We demonstrate in simulations
and empirical data that our approach reduces the number
of SNPs that need to be selected for follow-up to identify
the true causal variants at GWAS risk loci.
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generally the case that in fine-mapping studies several risk loci are

simultaneously sequenced (or densely genotyped) and a set of

plausible causal SNPs is selected for follow-up in functional assays.

We therefore simulated fine-mapping data sets across one hundred

10 KB risk loci that collectively explained 25% of the phenotypic

variance h2
g~0:25

� �
in N = 10,000 individuals. We created three

synthetic ‘‘functional annotations’’ that roughly correspond to

coding exons (2.2% of all variants), transcription start sites (2.2%

of all variants), and DNase Hypersensitivity Sites (30.7% of all

variants) and enriched them with causal variants at 9.5, 5.7 and

3.7-fold to approximately match what we observed in real data

(see below). Each simulation resulted in approximately 64 loci that

harbor at least one causal variant with 34 harboring a single causal

variant and the remaining harboring multiple causal variants (see

Methods). We compared all approaches across only loci with at

least one causal variant.

We find that prioritizing variants using PAINTOR posterior

probabilities achieves superior accuracy over existing methodol-

ogies (see Figure 2 and Table 1). Our approach identifies more

causal variants at all selection thresholds, and is a consequence of

PAINTOR’s ability to model multiple causal variants while

incorporating functional priors. For example, in order to find

(50%, 90%) of all causal variants one needs to select an average of

(1.3, 10.4) SNPs per locus if using PAINTOR. In contrast, ranking

SNPs using frameworks that assume a single causal variant, such as

Maller et al. [5] and fgwas [10], require (2.7, 25.4) and (2.0, 21.5)

SNPs per locus, respectively. In general, we observe an increase in

performance for methods that incorporate functional data and

allow for multiple causal variants at a risk locus (see Tables 1 and

2). Despite having access to individual level data, variable selection

strategies [13,14] were less accurate than PAINTOR in our

simulations (see Figure 2 and Table 1). Ranking SNPs based on

correlation-adjusted t-scores [12] was superior to existing meth-

odologies, however, still failed to achieve the same level of

accuracy of PAINTOR, requiring an average of (2.0,13.3) SNPs per

locus to find (50%, 90%) of all causal variants. Across all

methodologies, the relative performance holds irrespective of

whether SNPs are prioritized across all fine-mapping loci or within

each locus independently (generally the latter strategy is sub-optimal

(see Table 1)). Finally, we note that iterative conditioning, a method

typically used to detect multiple independent signals, performs

worse than the prioritization strategies described here (see Figure

S1) [7]. Interestingly, as the number of SNPs selected for follow-up

increases, the naive approach of selecting based on association p-

value alone attains high accuracy, most likely due to the much

smaller set of assumptions as compared to other methods.

Factors impacting fine-mapping performance
Having established that PAINTOR increases fine-mapping

accuracy over existing methods in simulations, we next explored

the gain in performance attributable to having access to functional

annotation data. We find that prioritizing variants using

PAINTOR with functional data increases accuracy at all

significance thresholds. For example, in order to find (50%,

90%) of all causal variants one needs to select an average of (1.3,

10.4) SNPs per locus if integrating functional data as opposed to

(1.7, 12.3) if excluding annotation data. We note that our

approach that does not empirically estimate the prior, but uses

the known prior information does not lead to superior perfor-

mance over PAINTOR in these simulations (see Table 1)

reflecting the fact that the prior probability for each SNP is

accurately estimated. Furthermore, as the size of the fine-mapping

locus is increased, PAINTOR continues to outperform simpler

approaches. In particular, to resolve 90% of the causal variants for

loci (10 Kb, 25 Kb, 50 Kb) in size, one needs to select (27.4, 52.3,

110.7) SNPS per locus if ranking on posterior probabilities

assuming a single causal variant as opposed to (11.4, 16.0, 24.1)

SNPs per locus if ranking using PAINTOR (see Table 3).

We next sought to determine at what types of loci is functional

prior data providing the biggest increase in accuracy. Loci where

the association signal is strong (i.e. loci where the p-value at the

causal variants are in the top quartile across all loci with at least

one causal variant) do not gain much from integration of

functional annotation data, with the number of SNPs required

to find 90% of the causal variants decreasing by only 6.5%. On the

other hand, at loci where the association signal is weak (i.e. loci

where the p-value at the causal variants are in the bottom quartile)

we observe a 21.4% decrease in the total number of SNPs to be

Figure 1. Illustration of model input. PAINTOR is a statistical model for incorporating functional annotations on top of association statistics to
ascribe probabilistic confidence of causality to the SNPs at the loci. Depicted here are two loci with functional annotations from three different cell
lines/tissues and three different classes. Causal variants are enriched within the green annotation class while depleted from others. PAINTOR is
designed to upweight (with probability mass) SNPs residing in the green annotation while down-weighting SNPs residing in the red annotation.
doi:10.1371/journal.pgen.1004722.g001
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followed-up to find 90% of all causal variants (see Table S2). This

suggests that as the causal status for a SNP becomes increasingly

ambiguous on the basis of association data alone (e.g. small effect

size), the importance of incorporating additional sources of

information is magnified.

It is not guaranteed that the true causal variant will be present

in the fine-mapping data set due to technical reasons (e.g.

capture sequencing technology or imputation accuracy). To

explore this scenario, we simulated fine-mapping data sets at a

locus 100 Kb in size after which we masked the true causal(s)

from the data (see Methods). To measure fine-mapping

performance when causal variant is absent from the data, we

looked at the distance in base-pairs between variants in the top

N SNPs to the true masked causal SNP. As expected, we

observed a decrease in performance when causal variants are

absent from the fine-mapping dataset (e.g. the average median

distance to the true causal variant in the set of top 5 SNPs

increases by 6% when the causal variant is masked, see

Table 4). The rather small nominal decrease in localization

distance suggests that accurate localization may be attained

even in the absence of the causal variant.

Alternatively, we can recast the observed improvement in causal

variant localization when incorporating functional annotations as

a decrease in size of the set of SNPs to account for a fixed amount

of posterior probability mass. We extend existing work for single-

locus fine-mapping [5,8,9,7] to define an r-level causal set as the

set of top SNPs (rank-ordered based on probabilities) across all

fine-mapping loci that consume an r fraction of the total posterior

probability mass. We observe a reduction in the number of SNPs

within the 90%, 95% and 99% confidence sets when using

functional annotations as compared to no functional data (see

Table 2). In addition, although PAINTOR with annotation yields

fewer SNPs with high probability than the PAINTOR with no

annotation (232.8 vs 265.2 at a threshold of w0:1), having access

to annotation yields more simulated causals with high posterior

probability (78.6 vs 73.8 at a threshold of w0:1) (see Table S3).

Estimation of relevant annotation data for fine mapping
A vast resource for functional annotations is the ENCODE

project [18], which has ascribed regulatory biological function to a

large fraction of the human genome and has shown that regulatory

DNA regions are highly cell-specific. Coupling this insight with the

fact that for most complex diseases the relevant tissues are

unknown, stresses the importance of carefully selecting cell-specific

annotations for any specific trait [22]. A byproduct of our

framework is the estimation of enrichment of causal variants

within functional annotations (i.e. the ratio of prior probability of

causality for SNPs within annotation versus those outside the

annotation). Therefore, we can use PAINTOR to infer which

functional annotations show significant effect on the probability of

causality and use only those annotations to estimate probability of

causality. To assess how accurately PAINTOR can recapitulate

functional enrichment, we simulated fine-mapping studies over

100 loci with a synthetic functional annotation (see Methods) and

either enriched or depleted causal variants within this annotation.

We also compared our approach to fgwas [10] as it too is capable

of inferring enrichment from summary data. Figure 3 demon-

strates that both PAINTOR and fgwas are able to provide

unbiased estimates of enrichment. However, we find that

PAINTOR is more efficient than fgwas, and has a smaller

variance attached to those estimates. We note that as causal

variants become increasingly depleted from functional categories,

fgwas tends to fail to converge (e.g. fgwas fails in nearly 21% of

cases for simulations with 8-fold depletions). Finally, we assessed

PAINTOR and fgwas for more realistic annotation data (i.e.

contiguous segments in the genome) and find that both methods

attain very similar results (see Figure S2).

Selecting the optimal number of SNPs for functional
testing

Although PAINTOR (and previous methods) provide a

quantification of the probability of each variant to be causal that

can be used to rank variants based on their plausible causality, it

remains unclear how to choose the number of variants to test in

functional assays. The optimum number is constrained by the

budget of the study and by an implicit cost to benefit ratio for

selecting the optimal number of SNPs to be followed up. We

propose a framework that assumes that every causal variant

identified adds a benefit (B) while every selected variant is tested at

a cost (C); therefore, the utility function we propose to maximize is

U~B �Nc{C �Nt, where Nc is the total number of true causal

variants from the total number of selected SNPs (Nt). We note that

the ratio r~B=C is the critical parameter of the utility function.

Using the results from simulations with functional annotation

enrichment described above, we assessed the capacity of the

proposed utility function in selecting the number of SNPs for

follow-up under various values for the ratio r~B=C (Figure 4).

For example, at a ratio r~10 (the benefit of finding a causal

outweighs 10 times the cost of testing 1 SNP), the utility is

maximized by selecting approximately 3.5 SNPs per locus for

validation resulting in 72.6% of causal variants successfully

identified (see Figure S3).

Selection of a set of variants for follow-up is usually performed

based on a threshold on posterior probability or based on credible

sets that account for a given amount (e.g. r~90%) of the

probability of capturing all causal variants [5,8]. We assessed these

two strategies for selecting variants for functional testing within the

context of our benefit-to-cost framework. We find that a posterior

probability threshold of (0.9, 0.5, 0.1) roughly corresponds to

optimizing benefit-to-cost-ratios of r~(1:25,5,10). These results

suggest that a simple translation of the arbitrary thresholds on

posterior probabilities into cost-to-benefit optimum is attainable.

In a similar fashion, we can assess credible sets within our cost-to-

benefit framework. For example, the 90% credible set yields an

average of 393 SNPs which is approximately 88% of the optimum

for a benefit-to-cost of r~10.

Figure 2. PAINTOR outperforms existing methodologies for fine-mapping. We simulated datasets consisting of 10 K genotypes over one
hundred 10 KB loci using three synthetic functional annotations randomly dispersed at fixed percentages (2.2%, 2.2%, 30.7%). SNPs falling within
these annotations were enriched (9.5, 5.7, 3.65) times more with causal variants relative to unannotated SNPs. We fixed the variance explained by
these loci to h2

g~0:25 and repeated the simulation 500 times. The top figure corresponds to the overall performance at causal loci (64 loci) with
PAINTOR clearly achieving the greatest overall accuracy. The bottom figures correspond to loci with a single causal variant (an average of 34 per
simulation) (left) or multiple causal variants (average of 30 per simulation) (right). At loci where there is one true causal variant, fgwas achieves greater
accuracy than PAINTOR due to the fact that fgwas assumes the correct number of causal variants. We note that the version of PAINTOR that assumes
a single causal variant yields very similar to fgwas at loci where the truth is of a single causal (both requiring 2.63 SNPs per locus to identify 90% of the
causal variants.) However, at loci with multiple causal variants, the power of methods that assume a single causal is greatly deflated leading to
PAINTOR’s superior overall accuracy.
doi:10.1371/journal.pgen.1004722.g002
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Application to meta-analysis data of lipid phenotypes
To validate our approach, we applied PAINTOR to association

summary data from a large meta-analysis of four lipid traits. Our

goal was to build a model that incorporated all the independent

sources of available information (i.e. association signals alongside

carefully selected functional annotations) to produce a prioritiza-

tion of plausible causal SNPs for these phenotypes. We used the

GWAS hits reported by Teslovich et al. [33] under the assumption

that these regions contain causal variants and therefore well-suited

to fine-map using PAINTOR. We first ran our method on 450

cell-type-specific annotations (see Methods) and fit the model to

each annotation independently on both the original and densely

imputed data sets for all four traits. Consistent to previous works,

we observe that imputation consistently enhances the signal of

enrichment [34,23,10]; for example, for HDL, the relative

probability for causality for coding exons increases from 7.4 to

12.4 from using the original data to 1KG-imputed data (see Table

S4). This effect is most likely due to the availability of more

variants through imputation thus being able to localize the

association signal to genomic annotation more accurately. Across

the four traits in general, we see consistent signal of increased

relative probability for causality within transcribed regions (e.g.

exons and transcription start sites (TSS)) and a depletion of causal

variants in repressed regions; for example, for TG, the coding

exons show a log2 relative probability for causality of 3.4 while the

repressed regions show an log2 relative probability of 21.6.

Having identified functional annotations that are relevant to the

four traits of interest (see Table 5), we devised trait-specific

PAINTOR models that included the top marginal annotations in

conjunction with the association statistics to estimate the

probability of causality for all SNPs from the risk loci on the

densely imputed data sets (see Methods). Table 6 shows the HDL

SNPs that attain a posterior PAINTOR probability greater than

0.9 (results for the other traits are displayed in the Tables S5, S6,

S7). Unsurprisingly, the majority of these top SNPs localize in

functional elements and attain a high marginal association statistic.

Table 2. Leveraging functional priors leads to improved fine-mapping resolution.

r-level Method Annotations Causals Identified SNPs Selected

90% Maller et al. 2 64.2 265.0

fgwas + 64.5 209.6

PAINTOR 2 91.9 510.3

PAINTOR + 91.2 393.7

95% Maller et al. 2 69.6 343.7

fgwas + 70.2 290.8

PAINTOR 2 97.2 687.8

PAINTOR + 97.0 567.2

99% Maller et al. 2 77.7 506.6

fgwas + 77.9 457.3

PAINTOR 2 102.6 1074.4

PAINTOR + 102.7 954.3

We define an r-level confidence set as the number of SNPs we need to select in order to consume an r fraction of the total posterior probability mass over all loci.
Results in the table correspond to averaging over 500 independent simulations where the average number of true causals SNPs per simulation was 109.2. The size of
90%, 95%, and 99% confidence sets are reduced by 22.8%, 17.5% and 11.1% when incorporating functional annotations as prior probabilities. Methods that assume one
causal variant are miss-calibrated due to loci with multiple causals.
doi:10.1371/journal.pgen.1004722.t002

Table 3. Performance of PAINTOR compared to standard methodologies at variable sized loci.

Locus Size %Causal p-value Maller et al. PAINTOR

10 Kb 10% 1.04 0.17 0.17

50% 5.73 2.20 1.35

90% 12.87 27.35 11.41

25 Kb 10% 1.68 0.16 0.16

50% 8.88 2.73 1.57

90% 21.93 52.32 16.01

50 Kb 10% 2.50 0.17 0.16

50% 13.69 3.65 1.87

90% 36.92 110.69 24.07

To expedite simulations, we used a modified version of the simulation setup. As before, causal SNPs were drawn according to a logistic prior such that in expectation
there were a total of 100 causal variants – we did not enrich causal in any annotations. For this experiment, Z-scores were drawn directly from a multivariate normal
distribution; this gave virtually identical results to using simulated genotypes derived from HAPGEN (see Methods). We find that PAINTOR increasingly outperforms
existing methodologies as the size of the loci become larger.
doi:10.1371/journal.pgen.1004722.t003
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We observe an abundance of liver associated cell types, DNase

Hypersensitivity Sites, and genic elements annotated to these top

SNPs. Notably, PAINTOR identifies four non-synonymous

variants (rs7607980, rs1260326, rs5110, rs13107325), two of

which were not reported in the initial Teslovich et al. findings.

Overall by incorporating functional annotations we see a marked

improvement in fine-mapping resolution across all four traits as

indicated by a reduction in the 90% confidence sets relative to

PAINTOR models with no annotations of 19.0%, 34.9%, 50.6%,

and 24.2% for HDL, LDL, TC, and TG, respectively (Table 7).

This corresponds to approximately an average reduction of 17.5 to

13.5 SNPs per locus across the four traits.

Discussion

Recent efforts by large consortia such the ENCODE have

provided a genomic map of regulatory regions and have shown

that GWAS associated variants are preferentially enriched within

Table 4. Fine-mapping resolution when causal variant is missing.

Method Causal Variants N = 1 N = 5 N = 10 N = 25

PAINTOR Typed 17.6 (17.6) 20.4 (3.2) 21.6 (1.6) 23.1(0.5)

Masked 22.7 (22.7) 21.7(6.9) 22.0 (4.0) 23.3 (1.8)

Random Typed 32.1 (32.1) 30.2 (8.9) 30.3 (4.5) 30.1 (1.7)

Masked 32.0 (32.0) 30.6 (9.1) 30.6 (4.7) 30.2 (1.9)

Average median (minimum) distance in Kb to true causal variant(s) for SNPs in the set of top N SNPs when causal variant is either present or absent from the fine-
mapping data set. We simulated one 100 Kb locus with causal status drawn from a uniform prior. We then masked the causal variant(s) to explore how this would effect
fine-mapping resolution.
doi:10.1371/journal.pgen.1004722.t004

Figure 3. Accuracy of enrichment estimation for a synthetic annotation that contains 8-fold depletion to 8-fold enrichment of
causal variants across simulations of fine-mapping data sets over 100 loci. Using a background and a synthetic functional annotation at a
frequency of 1/3 (A0,A1), we simulated with annotation effect sizes such that in expectation, we attained approximately 100 causal variants while
maintaining enrichment at a fixed point. We used the standard simulation parameters, fixing the variance explained by these 100 loci to 0.25 and
using N~10000 genotypes. We discarded simulations where fgwas failed to converge (see Methods). Displayed here are the mean inferred Log2
enrichment estimates (+ 1 SD) that were conducted over 500 independent simulations at each enrichment level.
doi:10.1371/journal.pgen.1004722.g003
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these regions. In this work, we propose a principled approach to

unifying these genomic features with the standard association

signal to improve the localization accuracy in fine-mapping

studies. Our method relies on empirical data to select trait-specific

genomic annotations, thus removing the need for ad-hoc selection

of relevant functional annotations a priori. Through simulated and

real data results, we have shown that our integrative framework is

able to reduce the number of variants that need to be investigated

to identify causal variants that alter risk of disease.

Our method shares similarities to recent integrative approaches

proposed in the context of GWAS [10]. Although conceptually both

approaches integrate functional and association signal, the two

methodologies are fundamentally distinct in their aims. Whereas

[10] seeks to identify novel risk loci by leveraging functional

information, we instead propose our method as way to refine signal

at known GWAS loci. This fundamental distinction leads to

different statistical models and optimization procedures allowing for

superior accuracy for refining association signal through fine-

mapping. In addition our method addresses a limitation of [10] by

allowing for the possibility of multiple causal variants at a risk locus.

Several hierarchical Bayesian methods have been developed

that combine prior information with genomic association data to

help prioritize variants in various contexts [29,30]. The main

contribution of our approach is that we explicitly account for LD

between SNPs which we can learn from external reference panels

such as the 1000 Genomes. Additionally, because we do not take a

fully Bayesian approach [30] (i.e. integrate over the entire hyper-

parameter space), we are able to devise computationally efficient

algorithms that allow our method to search over the ever-

increasing number of functional annotations (e.g. ENCODE) to

identify the most informative subset while retaining the ability to

model multiple causal variants.

We have shown that PAINTOR can unbiasedly estimate

enrichment of causal variants in different functional elements on

the basis of summary association data alone. This may prove to be

particularly important as access to individual genotype data is more

cumbersome than summary-level statistics. The unbiased nature of

the estimation procedure may provide clues to the genetic basis of

common traits. For example our results suggest that although coding

variants are more likely to be causal than regulatory variants, the

majority of the genetic variation contributing to the trait at these risk

loci may lie within regulatory as opposed to coding regions due to the

larger number of variants residing in regulatory regions. This is

consistent with recent work that concluded that variants in regulatory

regions show a higher contribution to traits than coding variants,

however, such an analysis required individual level data [23].

One interesting implication of our results is that while higher-

order functional data is very useful for gleaning insight into to the

genetic architecture of human diseases genome-wide [20,23], a

critical component of accuracy in a fine-mapping study is the

Figure 4. Thresholding on posterior probabilities provides a principled way to assess utility. We demonstrate how utility curves are
optimized by selecting SNPs that achieve a minimum posterior probability threshold at various benefit-to-cost ratios (R). The total number of SNPs
selected at the maximum utility for R = (1.25, 1.5, 2, 5, 10, 20) is (29.8, 39.2, 52.4, 119.1, 221.4, 405.4) which identifies approximately (29.8, 35.6, 43.4,
65.33, 79.9, 91.8) causal variants.
doi:10.1371/journal.pgen.1004722.g004
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sample size (see Table S8). Consequently, the success of a fine-

mapping experiment may hinge on first obtaining an adequate

sample size and then augmenting that sample size with functional

data. These findings are largely in-line with what was previously

reported in the context of GWAS [10].

In this work we have applied our framework to known risk loci

identified in GWAS in the search for plausible causal variants. As

future work, our approach could be extended to risk loci that do

not pass a genome-wide stringency, potentially leading to

discovery of novel risk loci. Additionally, risk loci for related traits

Table 5. Top 10 most significant annotations for lipid traits.

Phenotype Cell Line Type Frequency
Log2 Relative Probability
to be Causal P.value

HDL hepg2 TSS* 2.2% 3.46 1e-5

- Coding Exons* 1.4% 3.63 1e-3

K562 Weak Enhancer* 0.7% 3.74 0.01

MCF7 DHS* 30.5% 1.18 0.03

gm12878 TSS* 1.8% 2.38 0.04

fMuscle (leg) DHS 39.5% 1.02 0.04

fKidney (renal cortex) DHS 26.9% 21.57 0.04

fStomach DHS 33.9% 21.14 0.07

- DHS UCSC NA% 1.08 0.07

h1hesc Promoter Flanking 2.9% 1.84 0.08

LDL fKidney DHS* 40.4% 2.23 6e-3

fLung DHS* 34.3% 1.99 7e-3

- Coding Exons* 3.9% 2.92 0.01

Hepatocytes DHS* 38.2% 1.97 0.02

HAsp DHS* 33.7% 1.76 0.02

WI_38 DHS * 31.9% 1.72 0.02

AG09309 DHS 36.9% 1.68 0.02

HFF_MyC DHS 41.9% 1.61 0.02

fKidney (renal cortex) DHS 38.7% 1.73 0.03

fKidney (renal pelvis) rDHS 41.2% 1.67 0.03

TC hepg2 Repressed* 53.9% 21.87 6e-3

fLung DHS* 30.4% 2.18 6e-3

fIntestine(Lg) DHS* 18.8% 1.93 0.01

hepg2 Transcribed* 31.2% 1.64 0.01

NHDF_Neo DHS* 26.0% 1.76 0.02

k562 Repressed 60.9% 21.51 0.03

LNCap DHS 41.9% 1.68 0.04

fStomach DHS 32.6% 1.50 0.04

AoAF DHS 27.9% 1.39 0.05

fIntestine (Sm) DHS 33.6% 1.39 0.06

gm12878 Transcribed 26.3% 1.36 0.06

TG - Coding Exons* 1.5% 3.42 3e-3

hepg2 Repressed* 57.9% 21.63 6e-3

GM19238 DHS* 22.4% 1.71 0.01

fIntestine (Sm) DHS* 29.9% 1.67 0.01

- Non-coding Exon* 2.5% 2.81 0.02

- DNASE UCSC 21.7% 1.72 0.02

fKidney DHS 31.9% 1.54 0.02

fThymus DHS 27.6% 1.39 0.04

pHTE DHS 39.5% 21.52 0.04

- 39 UTR Exons 1.8% 2.97 0.04

NT2 DHS 26.9% 22.66 0.05

Displayed are the log2 relative probabilities of SNPs to be causal if they fall within the listed annotation. *Indicates use in final PAINTOR model for the phenotype.
doi:10.1371/journal.pgen.1004722.t005
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that are known to share a genetic basis could potentially be

combined, leading to an increase in power to identify variants that

contribute to both traits. Finally, we anticipate that the approx-

imations of the non-centrality parameters could be handled in a

more principled fashion using a Bayesian approach that integrates

a prior distribution of effect sizes. We leave a thorough

investigation of these directions as future work.

Methods

PAINTOR probabilistic model
A standard approach to model the strength of association of

genotype to phenotype is through the Z-score. For a continuous

phenotype, the trait values are marginally regressed on each SNP

and the corresponding Z-score is taken to be the Wald statistic (i.e

b̂b

SE(b̂b)
), which is distributed N(0,1) under the null. For case-

control designs, the Z-score can also be obtained through the

standard test statistic for two proportions (assuming equal sample

sizes of
N

2
):

ffiffiffiffiffi
N
p

(f z
i {f {

i )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fi(1{fi)

p , where f z
i (f {

i ) denotes the frequency

of the SNP in the cases (controls) and f ~
f z
i

zf {
i

2
. We define a fine-

mapping locus as a contiguous region of the genome flanking a

GWAS ‘‘hit’’ on both sides. Let Zj be a vector of Z-scores from the

jth locus (1ƒjƒL) of length Nj . In addition, let Sj be the

corresponding LD matrix of pairwise correlation coefficients for

Table 6. HDL SNPs with high confidence for causality.

rsID Chrom Pos -Log10(P.value) PAINTOR Probability Annotations

rs1366544 chr16 56964719 43.86 w0:99 K562 Weak Enchancers,
MCF7 DHS

rs1645788 chr19 54808174 10.79 w0:99 MCF7 DHS

rs3136447 chr11 46744368 16.08 w0:99 hepg2 TSS, MCF7 DHS

rs7241918 chr18 47160953 48.86 w0:99 -

rs1077834 chr15 58723479 83.32 w0:99 -

rs367070 chr19 54800500 14.69 w0:99 -

rs3809630 chr16 67879400 32.32 0.99 hepg2 TSS, MCF7 DHS,
gm12878 TSS

rs7239867 chr18 47164717 47.53 0.99 -

rs13107325? chr4 103188709 10.44 0.97 Coding Exons

rs7607980? chr2 165551201 9.71 0.96 hepg2 TSS, Coding Exons,
MCF7 DHS

rs4366775 chr17 76382079 8.50 0.93 gm12878 TSS

rs737337 chr19 11347493 8.81 0.92 hepg2 TSS, Coding Exons,
MCF7 DHS

rs4490057 chr17 76375095 8.20 0.90 hepg2 TSS, MCF7 DHS,
gm12878 TSS

SNPs with posterior probability causality w0:90 for HDL phenotype across the 37 risk loci (Results for TG/TC/LDL in Tables S5, S6, S7).
? denotes a non-synonymous variant.
doi:10.1371/journal.pgen.1004722.t006

Table 7. Reduction in the number of SNPs in the 90% Credible Set after incorporating functional annotations.

Phenotype Total SNPs SNPs with P-value ,5e-8 Annotations # SNPs # Loci # SNPS per locus

HDL 10778 1792 – 926 37 25.0

+ 778 21.0

LDL 3903 955 – 112 14 8

+ 83 5.9

TG 5513 975 – 488 23 20.3

+ 324 13.5

TC 5504 1381 – 390 24 17.0

+ 314 13.7

Average 6425 1276 – 479 24.5 17.5

+ 375 13.5

Shown here are the number of SNPs in the 90% Confidence Set for each of the lipid phenotypes as estimated using PAINTOR. After marginally running PAINTOR on the
entire pool of annotations, we selected the top five annotations for each trait and fit full trait-specific models on each of the densely imputed data sets. We compared
PAINTOR with or without integration of functional annotation data. The magnitude in the reduction in the size of the confidence set approximately mirrors what we
observe in simulations.
doi:10.1371/journal.pgen.1004722.t007
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locus j that can be derived directly from individual level data if

available, or approximated using an appropriate reference panel

such as the 1000 Genomes. We obtain K annotations (1ƒkƒK)
from external repositories (e.g. ENCODE [18]) and for each SNP

i, create a (Kz1)-length binary annotation vector Ai, j , where

Ai, j, k~1 if the ith SNP at the jth locus is part of annotation k.

For example, one such annotation could be all coding sites and

the annotation vector will contain a 1 only if the SNP is located

within coding region. We note that Ai, j, 0~1 V i, j and serves to

represent the ‘‘baseline’’ annotation whose corresponding coef-

ficient can be interpreted as the baseline prior odds for causality

of any SNP within the set of fine-mapping loci. Let k be the

effect size of the kth annotation on the probability of a SNP being

causal and the non-centrality parameter, i, j , be the standardized

effect size of SNP i at locus j. Finally, let Cj be an indicator vector

of causality where Ci, j~1 if SNP i at locus j is causal and 0

otherwise. Now, we can define the likelihood of the data relative

to these terms as:

L(Z; , ,A)~
X
C[C

P(Z,C; , ,A)

~P
j

X
Cj[Cj

P(Zj DCj ; j)P(Cj ; ,A�, j)

(By independence of each locus)

ð1Þ

where the sum is taken across all causal indicator vector sets C.
We note that in order to keep the enumeration of the causal

vector sets combinatorially tractable, we restrict the total number

of potential causal variants at each locus to three or less in

practice (see Figure S4 for assessment of run time versus number

of causal variants considered). We define the annotation effect on

the causal probability through a standard logistic model:

P(Cj ; )~P
i

P(Cij ; )

P(Cij ; )~(
1

1z exp ( T Aij)
)Cij (

1

1z exp ({ T Aij)
)1{Cij ð2Þ

and relate the causal set of SNPs to the observed association Z-

scores under a standard multivariate normal assumption

[35,36,37] as:

P(Zj jCj ; j )~N (Zj ; Sj( j0Cj),Sj)

(p:d:f of multivariate normal)
ð3Þ

where j0Cj denotes the elemental pairwise multiplication

between two vectors. A summary of model parameters can be

found in Table 8.

Model fitting
In order to compute the probability of causality, we must first fit

the data to our model. We accomplish this through a maximum

likelihood estimation over . The formulation of our approach

lends itself to the standard Expectation Maximization (EM)

algorithm. The E-step of the EM involves computing at each

locus independently, the posterior probability of each Cj [ Cj using

an application of Bayes Theorem:

P(Cj DZj ,
(t), )~

P(Zj DCj ; j)P(Cj ;
(t)))P

Cj[Cj
P(Zj DCj ; j)P(Cj ; (t))

ð4Þ

To obtain the posterior probability, P(Cij DZj ;
(t), ), for each

SNPi,j we marginalize across all Cj~(C1j ,C2j ,:::,CNj j) such that

Cij~1.

P(Cij DZj ,
(t), )~

X
Cj[Cj :Cij~1

P(Cj DZj ,
(t), ) ð5Þ

Despite the fact that posterior probabilities are calculated

independently at each locus, we can set up the objective function

to aggregate the results and borrow information across loci to

compute estimates of (t). In doing so, we prevent over fitting of

the data to any one locus, offering more robust estimates of the

model parameters leading, in turn, to more accurate posterior

probabilities. We define our Q function for the M step as follows

Q( , D (t), )~
X

j

X
Cj

P(Cj DZj ,
(t), ) ln P(Zj ,Cj ;

(t), j)

~
X

j

X
Cj

P(Cj DZj ,
(t), ) ln P(Cj ;

(t))z ln P(Zj DCj , j)
� �

~
X

j

X
Cj

P(Cj DZj ,
(t), ) ln P(Cj ;

(t))

z
X

j

X
Cj

P(Cj DZj ,
(t), ) ln P(Zj DCj , j)

~Q( D (t))zQ( D )

thereby partitioning the likelihood, decoupling the estimation of

’s from the ’s. We simplify Q( D (t)) to obtain

Q( D (t), )~
X

j

X
i

X
cij[0,1

P(cij DZj ;
(t), ) ln P(cij ;

(t))

~{
X

i

X
j

P(cij~1DZj ;
(t), ) ln (1z exp ( T Aij))

{
X

i

X
j

P(cij~0DZj ;
(t), ) ln (1z exp ({ T Aij))

which is a concave function whose gradient is simply

LQ( D (t), )

L
~{

X
i

X
j

P(cij~1DZj ;
(t), )

1

1z exp ({ T Aij)
Aij

z
X

i

X
j

P(cij~0DZj ;
(t), )

1

1z exp ( T Aij)
Aij

We optimized this function using the NLopt C++ package’s

implementation of the limited-memory BFGS algorithm [38], a

quasi-Newton method that only requires the objective and

the gradient as input [39]. As stated previously, we fix the
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non-centrality parameters, , and only optimize over due to the

fact that our model would be over-specified otherwise. Specifically,

we set the non-centrality parameters at each SNP to the observed

Z-score if the absolute Z-score is greater than 3.7 (corresponding

to a p-value of 10e-4) or the sign of the observed Z-score times 3.7

otherwise. Simulation results show that our strategy yields high

accuracy to detect causal variants among several simulated

approaches to approximate (Figure S5).

Simulation framework
Starting from the 1000 Genomes (1 KG) European samples, we

used HAPGEN [40] to simulate fine-mapping data sets over

10 Kb loci. We filtered monomorphic/rare SNPs (MAF v 0.01)

and normalized genotypes to be mean-centered with unit variance.

For each simulation we randomly chose one hundred 10 Kb loci

and randomly assigned SNPs to binary annotations at a pre-

specified proportion. We drew causal status for each SNP

according to the logistic model above and varied to induce a

desired prior probability for causality for SNPs part of the

‘‘functional’’ annotation, while maintaining an approximately

fixed number of causals – typically one per locus in expectation.

For example, to induce an 8-fold causal enrichment in a synthetic

‘‘functional’’ annotation that contained 1/3 of the SNPs, the

( 0, 1) values were set to be (4.62, 22.15). We note that the

random assignment of causal status would lead to loci with either

zero (36), one (34), or multiple causal (30) variants on the average.

Once we established the causal SNPs, we used a linear model to

simulate continuous phenotypes such that the causal SNPs

aggregated to explain a fixed proportion of the phenotypic

variance (h2
g). This phenotypic variance was partitioned equally

amongst all the causal SNPs (qualitatively similar results were

obtained when phenotypic variance was unevenly partitioned

among causal variants (see Figure S6)). In particular, the mth

individual’s phenotype was drawn according to

Ym~
PNc

i~1

bi � Gi,mzEm, where Nc is the total number of causal

variants, bi is the effect size of the i’th causal SNP, Gi,m is number

of copies of the risk allele i (randomly assigned as reference or

alternate) for individual m, and Em*N(0,1{h2
g). Finally, we

calculated association Z-scores (Zi, j ) at each SNP i, j by taking the

Wald statistic from the regression of the Y on Gi, j , where Y is a

vector of phenotypes for M individuals and Gi, j is the vector of

corresponding genotypes for the ith SNP at the jth locus. For

simulations that required loci greater than 10 KB, we instead drew

Z-scores from a Multivariate Normal distribution with covariance

equal to LD based on the European 1 KG and non-centrality

parameters at causal sites drawn from a Normal distribution with

mean 5 and standard deviation 0.2. When measuring performance

of our simulations, we examine the proportion of causal SNPs

identified as a function of the average number of SNPs per locus

selected for follow-up restricted to loci that contain at least one

causal variant (we show in Figure S7 that using Positive Predictive

Value as a metric of accuracy attains qualitatively similar results).

Existing approaches for fine mapping
We compared our approach to a several of existing methods

that can be used for fine-mapping[5,10,12,13,14]. To compute

Maller et al. [5] posterior probabilities, we first calculated Bayes

factors with the R package, BayesFactor, using the default settings.

We converted the resultant Bayes factors into posterior probabil-

ities of association using the following formula: PPAi~
BFiP

j
BFj

. We

show in Figure S8 and Supplementary Note S1 that posterior

probabilities approximated directly from the Z-scores give virtually

indistinguishable results. We downloaded fgwas [10] version 0.3.4

from GitHub and ran the software using the -fine flag. Due to the

fact that we fit linear models to obtain Wald statistics for each

SNP, we were able to provide standard errors for the estimates of

the prior variance. We segmented our input based on the

individual loci as instructed in user manual, but provided a single

file that contained all the fine-mapping SNPs so that fgwas could

compute enrichment. The Guan and Stephens [14] method is

implemented in the software piMass which we ran using the flags

and MCMC parameters given in the user manual as defaults

(burn-in = 1000, samples = 100,000, step-size = 10). We used the

posterior inclusion probabilities (PIPs) that had undergone Rao-

Blackwellisation for prioritization due to the fact these had

superior performance over naive PIPs. The R package imple-

menting LLARRMA [13] was run using the default settings.

Zuber et al. was implemented in the R package, care, which we

also applied to the data using the default settings. We prioritized

variants using the square of the CAT scores as described in [12].

We note that with exception fgwas, all the aforementioned

methods were applied to each locus independently. Conditional

analysis is a common procedure used to tease out secondary

signals at associated loci [41]. For a single locus, we iteratively

condition on the SNP most strongly associated with the simulated

phenotype. We accomplish this in a step-wise fashion through

marginal regression of the phenotype onto each SNP and

subsequently conditioning on the one that is most significantly

associated. At each iteration a new SNP will enter the regression

model as a covariate until all the causal SNPs have been selected.

The order in which the SNPs enter the model provides a natural

Table 8. List of model parameters for the jth locus (j [ ½1, L� where L is the total number of fine-mapping loci).

Parameter Description

Nj Number of SNPs at the the jth locus

Zj Vector of Z-scores (16Nj )

Sj Linkage disequilibrium matrix consisting of pairwise Pearson Correlation coefficients between SNPs (Nj6Nj )

Ai,j Vector of annotations for the ith SNP. Aijk~1 if member of annotation (16 (Kz1))

j Vector of Non-centrality parameters (NCPs) (16Nj )

Cj Indicator vector giving the causal status of all the SNPs at a locus. Cij~1 if the ith SNP is causal (16Nj ).

Cj
Set of all possible causal configurations. (DCj D~

PS
i~0

Nj

i

� �
, where S = number of causals one wants to consider at a locus).

doi:10.1371/journal.pgen.1004722.t008
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ranking thus enabling us to compare iterative conditioning to

other methods that rank SNPs probabilistically. As expected, we

show in Figure S1 that conditioning is suboptimal for fine-

mapping.

Functional information
We explored whether integration of the location of tissue-

specific regulatory and coding DNA regions could increase

resolution in statistical fine-mapping. The ENCODE [18] project

provided a wealth of genomic landmarks that were systematically

integrated to segment the genome into seven major classes:

transcription start site and predicted promotor region (TSS)

(1.2%), predicted promotor flanking region (PF) (0.7%) predicted

enhancer (E) (1.8%) predicted weak enhancer (WE) (2.5%),

CTCF-enriched element (CTCF) (0.1%) predicted transcribed

region (T) (19.3%) and finally, predicted repressed or low-activity

region (R) (69.6%). We examined these genomic segmentations for

the six primary ENCODE cell lines: gm12878 (lymphoblastoid),

h1hesc (embryonic stem cells), helas3 (cervical cancer), hepg2 (liver

carcinoma), huvec(umbilical vein endothelial cells), and k562

(chronic myelogenous leukemia). In addition, we also explored 403

broadly defined (peak + 1 Kb) DNase I Hypersensitivity Sites

spanning numerous tissues and cell lines. Of these 403 DHS I

maps, 349 came from Maurano et al. [19], 73 DHS I annotations

from Thurman et al. [42], with the remaining DHS annotation

being an overall DHS map derived from UCSC genome browser.

These annotations have been used recently in the context of

GWAS [10].

Measuring enrichment significance
Due to the fact that we fit our model using maximum likelihood,

a natural way to ascribe statistical confidence to the inferred

parameters is to use a likelihood ratio test. For example, to

calculate the significance of a single annotation, we can compare a

fitted null model to a model that contains the annotation under

consideration using the following test statistic:

{2 � ln(L(Z; ^
0, )z2 � ln(L(Z; ^

0,^1, )). We demonstrate in

simulations that under the null, this test statistic follows

approximately its theoretical x2
df ~1 distribution (see Figure S9).

In addition to a point estimate for the enrichment of functional

annotation, it would be useful to derive an estimate of the

variance. Unfortunately, the complex structure of the likelihood

makes it difficult to derive an analytically tractable parameter

covariance estimator. However, since we assume fine-mapping loci

to be independent, we propose to use bootstrapping (i.e. re-

sampling entire loci with replacement) and subsequently re-fitting

the model (see Methods). We confirm that such a strategy does

indeed reproduce a correct estimate of the parameter variance in

simulations. We find that the mean bootstrap standard deviation

largely mirrors the ‘‘true’’ standard deviation of the parameter

estimates (see Figure S10). As a result, a confidence interval based

on the bootstrap standard deviation will attain desirable coverage

properties due to the fact that estimation of the model parameters

is unbiased.

An optimization framework for selecting the number of
SNPs to follow-up

The budget of a fine mapping follow-up study constrains the

total number of causal variants to be further examined for

evidence of causality. This motivates approaches that, in addition

to providing a prioritization of SNPs, also identify an optimal

number of SNPs to be tested. We introduce here a benefit-to-cost

framework for selecting the optimal number of SNPs for follow-up.

Our framework assumes that every causal variant identified adds a

benefit (B) while every selected variant is tested at a cost (C);

therefore, the utility function we propose to maximize is U = B*Nc

- C*Nt, where Nc is the total number of true causal variants

identified from the total number of selected SNPs. A key

parameter of the utility framework is the ratio of r~B=C of

benefit to utility.

Lipids data set
Publicly available GWAS summary data across four blood lipids

phenotypes was downloaded from public access websites [43].

Data was part of a meta-analysis conducted in w100,000
individuals of European ancestry that examined four plasma lipid

traits (number of significant loci): LDL cholesterol (14 loci), HDL

cholesterol (37 loci), trigylcerides (23 loci), and total cholesterol (24

loci). From the original 2.0 M SNPs, we imputed an additional 5.3

million Z-scores using ImpG-Summary [34]. For each significant

GWAS hit reported by Teslovich et al., we centered a 100 KB

window on the lead SNP and estimated LD from the European

reference panel of the 1 KG. We chose a conservative window of

50 Kb on either side of the GWAS hit, as it has been previously

shown that within European populations, average LD decays after

25 KB [44]. These loci contained an average of 718 SNPs in the

1000 genomes reference panel, of which we were able to on

average accurately impute 261 (see Table S9). This resulted in

2837 (10778), 1231 (3903), 1693 (5504), 1615 (5513) SNPs (with

1 KG imputation) to which we fit our model for HDL, LDL, TC,

and TG respectively. In addition, we created the corresponding

pool of functional annotations described above for every SNP in a

window. We analyzed the dataset using PAINTOR in two phases.

In the first phase we fit our model for each annotation

independently to ascertain the functional annotations most

phenotypically relevant. We did this for all four lipid traits for

both the original and densely imputed data sets. After running

PAINTOR marginally on each annotation, we selected the the top

five most significant annotations for the final model (denoted with

a * in Table: 5). We note that in the case of experimental replicates

(i.e. same tissue and class), we only report the top replicate.

Supporting Information

Figure S1 Single locus fine-mapping using four different

prioritization strategies. Using HAPGEN-derived genotypes from

a randomly selected a 10KB locus on chromosome 1, we simulated

10,000 fine-mapping data over N = 2500 samples at a locus that

explains 5% of variance in the phenotype. Each variant has a prior

probability of 1/L (where L is the total number of variants at the

locus) to be casual; the total variance was divided equally among

variants when multiple causal variants were present. As previously

observed, prioritization under the assumption of a single causal

variant is identical to ranking based on p values at a single locus.

(EPS)

Figure S2 Contiguous annotations do not lead to appreciably

different performance to randomly assigned annotations. Dis-

played here is the accuracy of enrichment estimation for a

synthetic annotation that contains 8-fold depletion to 8-fold

enrichment of causal variants across simulations of fine-mapping

data sets over 100 loci. We enriched causal variants in an

annotation that spanned a block 1/3 of the size of the locus and

simulated with annotation effect sizes such that in expectation, we

attained approximately 100 causal variants while maintaining

enrichment at a fixed point. We used the standard simulation

parameters, fixing the variance explained by these 100 loci to 0.25
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and using N~10000 genotypes. We discarded simulations where

fgwas fails to converge (see Methods).

(EPS)

Figure S3 Selection of optimal fine-mapping set according to an

utility function. Using our standard simulation parameters

(N~10,000 and h2
g~0:25), causal variants were enriched in three

functional annotations at relative marginal probabilities of 9.5, 5.7,

and 3.65. Since different ratios will give different scales for the

utility function, we normalize the output by the maximum utility.

(EPS)

Figure S4 Runtime scales exponentially as the number of causal

variants integrated over increases. We assesed run-time within the

context of our standard simulation framework (ten simulations per

point) and varied the number of causal variants PAINTOR

integrated over. These simulations were carried out on a single

core of an Intel(R) Xeon(R) E5335 2.00 GHz CPU. As the results

suggest, we are required in practice to restrict the number of causal

variants to a small fixed constant c in order to keep the

computational burden reasonable.

(EPS)

Figure S5 Performance using different strategies for approximat-

ing the non-centrality parameters . Observed Z-score corresponds

to setting the ’s to the observed z-score at that SNP. Maximum z-

score corresponds to setting the NCPs to the maximum z-score at

the locus times the sign of the observed z-score. Standard NCP’s is

the strategy described in the main Methods section wherein the

NCP’s are set to to the observed Z-score if the absolute Z-score is

greater than 3.7 (corresponding to a p-value of 10e-4) or the sign of

the observed Z-score times 3.7 otherwise.

(EPS)

Figure S6 Overall performance with heterogenous SNPs effect

sizes. To induce heterogeneity on SNPs, effect sizes of causal sites

were drawn from an x1. These effect sizes were then normalized

such that their aggregated effect summed up to a heritability of

h2
g~0:25. Other simulation parameters were equivalent to the

standard framework (N = 10,000, Loci = 100).

(EPS)

Figure S7 Comparison of current methodologies using positive

predictive value (PPV) as the metric (defined as: Nc

Nt
). We find that

the relative performance of all the methods investigated in this

manuscript is maintained when assessing accuracy with the PPV.

(EPS)

Figure S8 Posterior probabilities for causality under the

assumption of a single causal variant approximated from z-scores

give indistinguishable performance to that of the Bayesian

approach described in Maller et al. [5]. Using the standard

simulation framework (h2
g~0:25,N~10,000) we calculated poste-

rior probabilities from either Bayes Factors computed using the R

package BayesFactor or directly from the association statistics. We

then used these posterior probabilities to rank SNPs across all

causal loci. The average tau rank correlation between the resulting

posterior probabilities is w0:99.

(EPS)

Figure S9 QQ Plot of likelihood ratio test statistics for a single

annotation. Using the standard simulation conditions (see

Methods), we ran 5000 null simulations wherein 1/3 of the SNPs

were annotated to a ‘‘functional’’ annotation with zero effect size.

We calculated LRT statistics (see Methods) from each simulation

which are theoretically distributed x2 with df = 1 under the null.

The resultant LRT statistics from the 5000 simulations have mean

= 1.005, variance = 2.11, and median = 0.44, suggesting that our

test statistic is well-calibrated.

(EPS)

Figure S10 Bootstrap standard deviations for different log2

enrichment values. Using the standard simulation conditions (see

Methods), we ran 100 simulations at three causal variant log2

enrichment values (23,0,3) and for each of the simulations calculated

1000 bootstrap estimates. The standard deviations of the estimated

coefficients were calculated across the 100 simulations (blue) and

compared to the mean standard deviations of the bootstrap

estimates(red). Background and functional refer to the whether the

annotation represents the background SNPs or the synthetic

functional annotation that we randomly assigned to 1/3 of the SNPs.

(EPS)

Table S1 Basic summary of fine-mapping methods assessed. We

highlight the key contribution of our approach is that we can use

PAINTOR to do fine-mapping with functional priors while

modeling multiple causal variants directly from summary

association statistics (Z-scores).

(PDF)

Table S2 Incorporating prior probabilities provides larger

benefit when Z-scores at the causal SNPs are smaller. Here, we

illustrate the efficacy of fine-mapping at loci where the p-value at

the causal SNPs fall in either the top or bottom quartile of

significance (as indicated by the absolute z-score).

(PDF)

Table S3 Performance of PAINTOR with and without integrating

annotations if thresholding on the posterior probability (Average number

of causals per simulation = 108). The objective function is given as ratio

from the maximum objective at a cost to benefit ratio of 10.

(PDF)

Table S4 Imputation boosts estimates of enrichment/depletion.

The original data set was imputed up to the HapMap. Using ImpG-

Summary we further imputed Z-scores up to the 1000 genomes

reference panel. We combined enrichment estimates across all 4

phenotypes and examined the tails of log2 enrichment distributions.

(PDF)

Table S5 LDL SNPs attaining PAINTOR posterior probabil-

iites w0.9 with functional annotations.

(PDF)

Table S6 TC SNPs attaining PAINTOR posterior probabiliites

w0.9 with functional annotations.

(PDF)

Table S7 TG SNPs attaining PAINTOR posterior probabiliites

w0.9 with functional annotations.

(PDF)

Table S8 Performance of PAINTOR as a function of sample

size. We fixed the proportion of phenotypic variance explained in

a simulated trait to h2
g~0:25 and selected a variable number of

individuals to conduct fine-mapping experiments over. Displayed

are the average number of SNPs per locus that need to be selected

in order to identify the listed percentage of causals.

(PDF)

Table S9 Average number of SNPs that were well-imputed at the

loci for the four lipid phenotypes. The top row corresponds to the

average number of common SNPs in the 1000 Genomes reference

panel at these loci. The bottom row corresponds to the average

number of SNPs that were imputed with accuracy w0:6 at these loci.

(PDF)
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Note S1 Comparison of methods for single locus fine-mapping

and approximation of posterior probabilities from z-scores under

the assumption of a single causal variant.

(PDF)
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