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Positive selection distorts the structure of genealogies and hence alters patterns of genetic variation
within a population. Most analyses of these distortions focus on the signatures of hitchhiking due to
hard or soft selective sweeps at a single genetic locus. However, in linked regions of rapidly adapt-
ing genomes, multiple beneficial mutations at different loci can segregate simultaneously within the
population, an effect known as clonal interference. This leads to a subtle interplay between hitch-
hiking and interference effects, which leads to a unique signature of rapid adaptation on genetic
variation both at the selected sites and at linked neutral loci. Here, we introduce an effective coa-
lescent theory (a “fitness-class coalescent”) that describes how positive selection at many perfectly
linked sites alters the structure of genealogies. We use this theory to calculate several simple statis-
tics describing genetic variation within a rapidly adapting population, and to implement efficient
backwards-time coalescent simulations which can be used to predict how clonal interference alters
the expected patterns of molecular evolution.

I. INTRODUCTION

Beneficial mutations drive long-term evolutionary
adaptation, and despite their rarity they can dramati-
cally alter the patterns of genetic diversity at linked sites.
Extensive work has been devoted to characterizing these
signatures in patterns of molecular evolution, and using
them to infer which mutations have driven past adapta-
tion.

When beneficial mutations are rare and selection is
strong, adaptation progresses via a series of selective
sweeps. A single new beneficial mutation occurs in a
single genetic background, and increases rapidly in fre-
quency towards fixation. This is known as a “hard” se-
lective sweep, and it purges genetic variation at linked
sites and shortens coalescence times near the selected lo-
cus [1]. Most statistical methods used to detect signals
of adaptation in genomic scans are based on looking for
signatures of these hard sweeps [2–6].

Hard selective sweeps are the primary mode of adap-
tation in small to moderate sized populations in which
beneficial mutations are sufficiently rare. However, in
larger populations where beneficial mutations occur more
frequently, many different mutant lineages can segregate
simultaneously in the population. If the loci involved are
sufficiently distant that recombination occurs frequently
enough between them, their fates are independent and
adaptation will proceed via independent hard sweeps at
each locus. However, in largely asexual organisms such
as microbes and viruses, and on shorter distance scales
within sexual genomes, selective sweeps at linked loci can
overlap and interfere with one another. This is referred
to as clonal interference, or Hill-Robertson interference
in sexual organisms [7, 8]. These interference effects can

dramatically change both the evolutionary dynamics of
adaptation and the signatures of positive selection in pat-
terns of molecular evolution. We illustrate them schemat-
ically in Fig. 1.

We and others have characterized the evolutionary dy-
namics by which a population accumulates beneficial mu-
tations in the presence of clonal interference [7, 9–13].
Many recent experiments in a variety of different sys-
tems have confirmed that these interference effects are
important in a wide range of laboratory populations of
microbes and viruses [14–18]. These theoretical and ex-
perimental developments have recently been reviewed by
Park et al. [19] and Sniegowski and Gerrish [20].

Although this earlier theoretical work has provided a
detailed characterization of evolutionary dynamics in the
presence of clonal interference, it does not make any pre-
dictions about the patterns of genetic variation within
an adapting population. In this paper, we address this
question of how clonal interference alters the structure
of genealogies, and how this affects patterns of molecular
evolution both at the sites underlying adaptation and at
linked neutral sites. This has become particularly rele-
vant in light of recent advances that now make it possible
to sequence individuals and pooled population samples
from microbial adaptation experiments [18, 21–23].

We note that much recent work in molecular evolution
and statistical genetics has analyzed related scenarios
where adaptation involves multiple mutations, motivated
by recent theoretical work [24–26] and empirical data
from Drosophila [27] and humans [28, 29] that suggests
that simple hard sweeps may be rare. This includes most
notably analysis of the effects of “soft sweeps,” where re-
current beneficial mutations occur at a single locus, or
selection acts on standing variation at this locus [30–32].
Soft sweeps drive multiple genetic backgrounds to moder-
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FIG. 1. Schematic of the evolutionary dynamics of adaptation. (a) A small population adapts via a sequence of selective
sweeps. (b) In a large rapidly adapting population, multiple beneficial mutations segregate concurrently. Some of these mutant
lineage interfere with each others’ fixation, while others hitchhike together.

ate frequencies, leaving several deeper coalescence events
and hence a weaker signature of reduced variation in the
neighborhood of the selected locus than a hard sweep
[33].

In contrast to the situation we analyze here, both hard
and soft sweeps refer to the action of selection at a sin-
gle locus. We consider instead a case more analogous to
models in quantitative genetics, where selection acts on a
large number of loci that all affect fitness. In other words,
our analysis of clonal interference can be thought of as a
description of polygenic adaptation, where selection fa-
vors the individuals who have beneficial alleles at mul-
tiple loci. Recent work has argued for the potential im-
portance of polygenic adaptation from standing genetic
variation [6, 34], loosely analogous to the case where soft
sweeps act at many loci simultaneously [35, 36]. Our
analysis in this paper, by contrast, describes polygenic
adaptation via multiple new mutations of similar effect
at many loci, where each locus has a low enough mu-
tation rate that it would undergo a hard sweep in the
absence of the other loci.

As with hard and soft sweeps, the signatures of this

form of adaptation on nearby genomic regions are de-
termined by how it alters the structure and timing of
coalescence events. In this paper, we therefore focus on
computing how clonal interference alters the structure of
genealogies. This involves two basic effects. On the one
hand, mutations at the many loci occur and segregate si-
multaneously, interfering with each others’ fixation. This
preserves some deeper coalescence events, as in a soft
sweep. On the other hand, since the mutations occur
at different sites, multiple beneficial mutations can also
occur in the same genetic background and hitchhike to-
gether. This tends to shorten coalescence times, making
the signature of adaptation somewhat more like a “hard
sweep.” Together, these effects lead to unique patterns
of genetic diversity characteristic of clonal interference.

Our analysis of these effects is based on the fitness-
class coalescent we previously used to describe the effects
of purifying selection on the structure of genealogies [37].
This in turn is closely related to the structured coales-
cent model of Hudson and Kaplan [38]. We begin in the
next section by describing our model, and summarize our
earlier analysis of the rate and dynamics of adaptation
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in the presence of clonal interference, which describes the
distribution of fitnesses within the population [11]. We
then show how one can trace the ancestry of individuals
as they “move” between different fitness classes via mu-
tations (our fitness-class coalescent approach). We com-
pute the probability that any set of individuals coalesce
when they are within the same fitness class. This leads to
a description of the probability of any possible genealog-
ical relationship between a sample of individuals from
the population. Finally, we show how the distortions in
genealogical structure caused by clonal interference alter
the distributions of simple statistics describing genetic
variation at the selected loci as well as linked neutral loci.
We also use our approach to implement coalescent sim-
ulations analogous to those previously used to describe
the action of purifying selection [39, 40], based on the
structured coalescent method of Hudson and Kaplan [38].
These coalescent simulations can be used to analyze in
detail how this form of selection alters the structure of
genealogies.

Our results provide a theoretical framework for under-
standing the patterns of genetic diversity within rapidly
evolving experimental microbial populations. Our anal-
ysis may also have relevance for understanding how per-
vasive positive selection alters patterns of molecular evo-
lution more generally, but we emphasize that our work
here focuses entirely on asexual populations or on diver-
sity within a short genomic region that remains perfectly
linked over the relevant timescales. In the opposite case
of strong recombination, adaptation will progress via in-
dependent hard selective sweeps at each selected locus.
Further work is required to understand the effects of in-
termediate levels of recombination, where the approach
recently introduced by Neher et al. [41] may provide a
useful starting point.

II. MODEL AND EVOLUTIONARY DYNAMICS

A. Model

We consider a finite haploid asexual population of con-
stant size N , in which a large number of beneficial mu-
tations are available, each of which increases fitness by
the same amount s. We define Ub as the total mutation
rate to these mutations. We neglect deleterious muta-
tions and beneficial mutations with other selective ad-
vantages. We have previously shown that the dynamics
in rapidly adapting populations are dominated by ben-
eficial mutations of a specific fitness effect [11, 13, 42],
so this model is a useful starting point, but we return
to discuss these assumptions further in the Discussion.
We also assume that there is no epistasis for fitness, so
the fitness of an individual with k beneficial mutations
is wk = (1 + s)k ≈ 1 + sk. This is the same model
of adaptation we have previously considered [11] and is

largely equivalent to models used in most related theo-
retical work on clonal interference [10, 19, 43]. We will
later also consider linked neutral sites with total muta-
tion rate Un, but for now we focus on the structure of
genealogies and neglect neutral mutations.

To analyze expected patterns of genetic variation, we
must also make specific assumptions about how muta-
tions occur at particular sites. We will consider a per-
fectly linked genomic region which has a total of B loci at
which beneficial mutations can occur. We assume these
mutations occur at rate µ per locus, for a total beneficial
mutation rate Ub = µB. We will later take the infinite-
sites limit, B → ∞, while keeping the overall beneficial
mutation rate Ub constant. Each mutation is assumed
to confer the same fitness advantage s, where s � 1.
We will also assume throughout that selection is strong
compared to mutations, s � Ub, which allows us to use
our earlier results in Desai and Fisher [11] as a basis for
our analysis. Analysis of the opposite case where s < Ub
remains an important topic for future work, which could
be based on alternative models of the dynamics such as
the approach of Hallatschek [12]. Although our model is
defined for haploids, our analysis also applies to diploid
populations provided that there is no dominance (i.e., be-
ing homozygous for the beneficial mutation carries twice
the fitness benefit as being heterozygous).

This model is the simplest framework that captures
the effects of positive selection on a large number of inde-
pendent loci of similar effect. However, the dynamics of
adaptation in this model can be complex. Beginning from
a population with no mutations at the selected loci, there
is first a transient phase while variation at these loci ini-
tially increases. There is then a steady state phase during
which the population continuously adapts towards higher
fitness. Finally, adaptation will eventually slow down as
the population approaches a well-adapted state. In this
paper, we focus on the second phase of rapid and con-
tinuous adaptation, which has been the primary focus of
previous work by us and others [11, 12, 19, 43]. Our goal
is to understand how this continuous rapid adaptation
alters the structure of genealogies and hence patterns of
genetic variation. We begin in the next subsection by
summarizing the relevant aspects of our earlier results
for the distribution of fitness within the population.

B. The distribution of fitness within the population

In our model in which all beneficial mutations confer
the same advantage, s, the distribution of fitnesses within
the population can be characterized by the fraction of the
population, φk, that has k beneficial mutations more or
less than the population average. We refer to this as
“fitness class k.”

When N and Ub are small, it is unlikely that a sec-
ond beneficial mutation will occur while another is seg-
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regating. Hence adaptation proceeds by a succession of
selective sweeps. In this regime, beneficial mutations des-
tined to survive drift arise at rate NUbs and then fix in
1
s ln[Ns] generations. Thus adaptation will occur by suc-
cessive sweeps provided that

NUb �
1

ln[Ns]
. (1)

When this condition is met, the population is almost al-
ways clonal or nearly clonal except during brief periods
while a selective sweep is occurring. Thus we will have
φ0 = 1 and φk = 0 for k 6= 0.

In larger populations, however, new mutations contin-
uously arise before the older mutants fix. Thus the pop-
ulation maintains some variation in fitness even while it
adapts. The distribution of fitnesses within the popula-
tion is determined by the balance between two effects.
On the one hand, new mutants arise at the high-fitness
“nose” of this distribution, generating new mutants more
fit than any other individuals in the population. This in-
creases the variation in fitness in the population. (While
new mutations occur throughout the fitness distribution,
the mutations essential to maintain variation are those
that arise at the nose and generate new most-fit indi-
viduals.) On the other hand, selection destroys less-fit
variants, increasing the mean fitness and decreasing the
variation in fitness within the population. This is illus-
trated in Fig. 2.

We showed in previous work that this balance between
mutation and selection leads to a constant steady state
distribution of fitnesses within the population, measured
relative to the current (and constantly increasing) mean
fitness [11]. In this steady state distribution, the fraction
of individuals with k beneficial mutations relative to the
current mean in the population is typically

φk = φ−k = Ce−
∑k

i=1
isτ̄ , (2)

where τ̄ is defined below and C is an overall normaliza-
tion constant that will not matter for our purposes. Note
that the distribution φk is approximately Gaussian.

This distribution φk is cut off above some finite maxi-
mum k which corresponds to the nose of the distribution,
the most-fit class of individuals. We define the lead of
the fitness distribution, qs, as the difference between the
mean fitness and the fitness of these most-fit individuals
(so q is the maximum value of k; the most-fit individ-
uals have q more beneficial mutations than the average
individual). In Desai and Fisher [11], we showed that

q =
2 ln [Ns]

ln [s/Ub]
≈ e−(sτ̄k)2/2. (3)

This is illustrated in Fig. 2.
Above we have implicitly defined τ̄ to be the “establish-

ment time,” the average time it takes for new mutations

to establish a new class at the nose of the distribution,

τ̄ =
ln2 [s/Ub]

2s ln [Ns]
. (4)

As we will see below, the characteristic time scale for co-
alescent properties will turn out to be the time for the
fitness class at the nose to become the dominant popu-
lation — i.e. for the mean fitness to increase by the lead
of the fitness distribution. This takes q establishment
times, so that the this “nose-to-mean” time is

τnm ≈ qτ̄ ≈
ln(s/Ub)

s
, (5)

which is roughly independent of the population size for
sufficiently large N . We note that no single mutant
sweeps to fixation in this time: rather, a whole set of
mutants comprising a new fitness class at the nose will
come to dominate the population a time τnm later.

III. THE FITNESS-CLASS COALESCENT
APPROACH

We now wish to understand the patterns of genetic
variation within a rapidly adapting population in the
clonal interference regime. To do so, we will use a fitness-
class coalescent method in which we trace how sampled
individuals descended from individuals in less-fit classes,
moving between classes by mutation events. In each fit-
ness class, there will be some probability of coalescence
events. To calculate these coalescence probabilities, we
must first understand the clonal structure within each
fitness class: this we now consider.

A. Clonal structure

Each fitness class is first created when a new beneficial
mutation occurs in the current most-fit class, creating a
new most-fit class at the nose of the fitness distribution
(see inset of Fig. 2). This new clonal mutant lineage
fluctuates in size due to the effects of genetic drift and
selection before it eventually either goes extinct or estab-
lishes (i.e. reaches a large enough size that drift becomes
negligible). After establishing, the lineage begins to grow
almost deterministically. Concurrently additional muta-
tions occur at the nose of the distribution, also founding
new mutant lineages within this most-fit class. This pro-
cess is illustrated in Fig. 3a.

We wish to understand the frequency distribution of
these new clonal lineages, each founded by a different
beneficial mutation. In our infinite-sites model, each such
lineage is genetically unique. We can gain an intuitive

understanding of this frequency distribution with a
simple heuristic argument. After it establishes, the size of
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FIG. 2. Schematic of the evolution of large asexual populations, from Desai and Fisher [11]. The fitness distribution within
a population is shown on a logarithmic scale. (a) The population is initially clonal. Beneficial mutations of effect s create a
subpopulation at fitness s, which drifts randomly until it reaches a size of order 1

s
, after which it behaves deterministically. (b)

This subpopulation generates mutations at fitness 2s. Meanwhile, the mean fitness of the population increases, so the initial
clone begins to decline. (c) A steady state is established. In the time it takes for new mutations to arise, the less fit clones die
out and the population moves rightward while maintaining an approximately constant lead from peak to nose, qs (here q = 5).
The inset shows the leading nose of the population.

the current most-fit class, nq−1(t), grows approximately
deterministically according to the formula

nq−1(t) =
1

qs
e(q−1)st, (6)

as we described in Desai and Fisher [11]. New mutations
occur in individuals in this class at rate Ubnq−1(t), cre-
ating even more-fit individuals. Each new mutation has
a probability qs of escaping genetic drift to form a new
established mutant lineage. Thus the `th established mu-
tant lineage at the nose will on average occur at roughly
the time t` that satisfies∫ t`

0

qsUbnq−1(t)dt = `. (7)

Solving this for t` and then noting that the size, n`, of the
`th established lineage will be proportional to eqs(t−t`),

we immediately find

n`
n1
≈ 1

`1+1/q
. (8)

This provides a good estimate of the typical frequency
distribution of clonal lineages within this fitness class at
the nose, each lineage founded by a single new mutation.

The analysis above describes the clonal structure cre-
ated as a new fitness class is formed, advancing the nose.
After approximately τ̄ generations, the mean fitness of
the population will have increased by s, and the growth
rates of all the fitness classes we have described will de-
crease correspondingly. Thus we can strictly only use
the calculations above up to some finite number of mu-
tations, `max, after which all growth rates will have de-
creased due to the advance of the mean fitness of the
population. Mutations will continue to occur after this
time, but their frequency distribution will be slightly dif-
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FIG. 3. Schematic of the establishment and fate of clonal lin-
eages in a given fitness class, shown for a case where q = 3.
(a) Three new clonal lineages (denoted in different colors) are
established at the nose of the fitness distributions by three
independent new mutations. These lineages have relative fre-
quencies determined by the timing of these mutations. (b)
After the population evolves for some time, the class that
was at the nose of the distribution in (a) is now at the mean
fitness. The class is still dominated by the three clonal lin-
eages established while the class was at the nose (subsequent
mutations represent only a small correction). These three
clonal lineages have the same relative frequencies as when
they were established at the nose; these relative frequencies
remain “frozen” even as the population adapts.

ferent. Fortunately, in the strong selection regime we
consider (s � Ub), the total contribution of all muta-
tions after this point to the total size of the class is small
compared to the contributions of the mutations that oc-
cur while this class is at the nose [11, 44]. We therefore
neglect this cutoff to the number of mutations that occur
at the nose, as well as the contribution of later muta-
tions. This approximation will break down for very large
samples. However, the errors it introduces can be shown
to be relatively small even when considering quantities
such as the time to the most recent common ancestor of
the whole population.

Another important aspect of the dynamics that sim-
plifies the behavior is that despite the changing growth
rate of the fitness class as a whole, the frequencies of
the established lineages within the class remain fixed. In
other words, the clonal structure within the class remains
“frozen” after it is initially created, rather than fluctu-
ating with time (see Fig. 3b). As we will see, this and
the neglect of late-arising mutations are good approxi-
mations in the regimes we consider here.

While our heuristic analysis provides a good picture
of the typical frequency distribution of clonal lineages
within each fitness class, it misses a crucial effect. Occa-
sionally a new mutation at the nose will, by chance, occur
anomalously early. This single mutant lineage can then
dominate its fitness class. These events are quite rare,
but when they do occur this single lineage can purge a
substantial fraction of the total genetic diversity within
the population. As we will see, these events together
with less-rare but still early mutations are essential to
the understanding the structure of genealogies within the
population as they lead to a substantial probability of
“multiple merger” coalescent events.

To capture these effects, we must carry out a more
careful stochastic analysis of the clonal structure within
each fitness class. As before, we focus on the clonal struc-
ture created when that class was at the nose of the fitness
distribution, since it remains “frozen” thereafter. To do
so, we note that the population size at the nose can be
written as

n = n̄(t)
∑
i

νi(t), (9)

where n̄(t) reflects the average growth of all clones due
to selection, and νi(t) reflects the stochastic effects of
a clone generated from mutations at site i (of B total
possible sites). At late enough times, the distribution of
νi becomes time-independent, as shown previously [11].
This time-independent νi summarizes the combined ef-
fect of all the stochastic dynamics of mutations at this
site that are relevant for the long-term dynamics. We
showed that the generating function of νi is

Gi(z) =
〈
e−zνi

〉
= exp

[
− 1

B
z1−1/q

]
= e−z

α/B =

[
1− zα

B

]
,

(10)
where angle brackets denote expectation values, the last
equality follows for large B, and we have defined

α ≡ 1− 1

q
. (11)

The total size of this fitness class is proportional to

σ ≡
B∑
i=1

νi. (12)

This generating function Gi(z) for the size of the clonal
lineage founded at each possible site contains all of the
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relevant information about the lineage frequency distri-
bution, including the stochastic effects described above.
Below we will use it to calculate coalescence probabili-
ties within our fitness-class coalescent approach, which
we now turn to.

B. Tracing Genealogies

To calculate the structure of genealogies, we take a
fitness-class approach analogous to the one we used to
analyze the case of purifying selection [37]. We first con-
sider sampling several individuals from the population.
These individuals come from some set of fitness classes
with probabilities given by the frequencies of those fitness
classes, φk. We note that in the purifying selection case,
fluctuations in the φk due to genetic drift were a poten-
tial complication in determining these sampling proba-
bilities. Here, these fluctuations are much less important
provided that Ub/s � 1. We note however that fluctu-
ations in different φk are correlated due to the stochas-
ticity at the nose. Furthermore, averages of φk are far
larger than their typical values due to rare fluctuations.
Such fluctuations, which we discuss in detail elsewhere
[45], may lead to some slight corrections to our results.
But for most purposes, the typical values of the φk are
what matters: thus we make the simple approximation
that the probability of sampling one individual from class
k1 and a second from class k2 is simply φk1φk2 , with φk
as given in Eq. (2). Analogous formulas apply for larger
samples.

Each sampled individual comes from a specific fitness
class k, and belongs to a specific clonal lineage within
that class. This clonal lineage was created when this
fitness class was at the nose of the distribution, approx-
imately (q − k)τ̄ generations ago. It was created by a
single new mutation in an individual from what is now
fitness class k − 1. That individual in turn belonged to
some clonal lineage within class k− 1, which in turn was
created when that class was at the nose by a new muta-
tion in an individual from what is now fitness class k−2,
and so on.

We now describe the probability of a genealogy relating
a sample of several individuals. Imagine, for simplicity,
that we sampled two individuals that both happened to
be in the same fitness class, k. If these individuals were
from the same clonal lineage within that class, then they
are genetically identical at all the B positively selected
sites. We say they coalesced in class k and did so when
this class was at the nose of the fitness distribution, ap-
proximately (q − k)τ̄ generations in the past. If these
individuals were not from the same clonal lineage within
the class, then they both descended from individuals, in
what is now fitness class k−1, that got distinct beneficial
mutations. If the individuals in which these mutations
occurred are from the same clonal lineage within class

k − 1, we say the sampled individuals coalesced in class
k−1. If so, they differ at two of the B positively selected
sites, and coalesced when class k − 1 was at the nose of
the fitness distribution, approximately [q− (k−1)]τ̄ gen-
erations ago. If not, they descended from individuals, in
what is now fitness class k − 2, that got distinct bene-
ficial mutations, and so on. We can apply similar logic
to larger samples or when the individuals were sampled
from different fitness classes. We illustrate this fitness-
class coalescent process in Fig. 4.

We note that the probability a sample of individuals
comes from the same clonal lineage is the same in each
fitness class, since the clonal structure of the class was
always determined when that class was at the nose of
the distribution (nevertheless, conditional on some indi-
viduals coalescing in a class, the probability of additional
coalescence events is substantially altered; see below). In
addition, the coalescence probabilities do not depend on
when the mutations occurred in the ancestral lineages
of each sampled individual, since all clonal lineages were
founded when a class was at the nose of the fitness dis-
tribution. These are major simplifications compared to
the case of purifying selection, where the relative timings
of mutations and the differences in clonal structure in
different classes are important complications [37, 46].

To use the fitness-class coalescent approach to calcu-
late the probability of a given genealogical relationship
among a sample of individuals from the population, it
only remains to calculate the probabilities that arbitrary
subsets of these individuals coalesced within each fitness
class. In the next section, we use the above described
clonal structure to compute these fitness-class coales-
cence probabilities.

C. Fitness-class coalescence probabilities

We begin our calculation of the fitness-class coales-
cence probabilities by considering the probability that
H individuals coalesce to 1 in a given class. We call this
probability DH1. This coalescence event will occur if and
only if all H of these individuals are members of the same
clonal lineage. The probability an individual is sampled
from a clone of size ν is ν/σ, so summing over all possible
clones we have

DH1 =

〈
B∑
i=1

νHi
σH

〉
(13)

with σ ≡
∑
i νi. In Appendix A we use the expression

for distribution of ν from Eq. (10), and take the B →∞
limit, to find

DH1 =
Γ(H − α)

Γ(H)Γ(1− α)
. (14)

We can use a similar approach to calculate the prob-
abilities of more complicated coalescence configurations.
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FIG. 4. Schematic of the fitness-class coalescent process. The distribution of fitnesses within the population is shown (here for
a case where the nose is ahead of the mean by q = 6 beneficial mutations). Clonal lineages founded by individual beneficial
mutations are shown in different colors within each fitness class. Three individuals (A, B, and C) were sampled from the
population, from classes k = 3, k = 2, and k = 1 respectively. The ancestors of individuals A and B descended from individuals
in the silver lineage in fitness class k = 0, and this individual shared a common ancestor with individual C in the gray lineage
in class k = −3. Individuals A and B differ by 5 beneficial mutations, while individual C differs by 7 beneficial mutations from
the common ancestor of B and C. Individuals A and B coalesce when the silver lineage in class k = 0 was originally created
which occurred when this class was at the nose of the fitness distribution, TAB = 6τ̄ generations ago. Individuals A, B, and C
last shared a common ancestor when the gray lineage in class k = −3 was originally created when this class was at the nose of
the fitness distribution, TMRCA = 9τ̄ generations ago.

Consider the general situation where H individuals coa-
lesce into K in a given fitness class, with h1 individuals
coalescing into lineage 1, h2 individuals coalescing into
lineage 2, and so on, up to hK individuals coalescing into

lineage K (note that
∑K
j=1 hj = H). In Appendix A, we

show that this probability, CH,K,{hj}, is given by

CH,K,{hj} =
HαK−1

K

K∏
j=1

Γ(hj − α)

Γ(hj + 1)Γ(1− α)
. (15)

In order to compute any quantity that depends on ge-
nealogical topologies, it will be important to know not
just that H individuals coalesced into K lineages, but
that they did so in a specific configuration {hj}. For
example, if we have four individuals coalescing into two,
this could occur by three of them coalescing into one and

the other lineage not coalescing, or alternatively by two
pairwise coalescence events. These different topologies
will affect some aspects of molecular evolution such as
the polymorphism frequency distribution. To compute
these quantities, we must work with the full coalescence
probabilities in Eq. (15).

However, the specific coalescence configurations do not
affect non-topology-related quantities such as the total
branch length, time to most recent ancestor, or any
statistics that depend on these quantities (e.g. the total
number of segregating sites Sn). To compute the statis-
tics of these aspects of genealogies, we only need to know
H and K. Thus it will be useful to sum the probabilities
of all possible configurations {hj} that lead to a partic-
ular K. We call this total probability of H individuals
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coalescing to K lineages DHK . We have

DHK =
∑
{hj}

CH,K,{hj}, (16)

where the sum over the {hj} is constrained to values such

that
∑K
j=1 hj = H.

To compute DHK , we first make the definition

f(H,K) =
∑
{hj}

K∏
j=1

Γ(hj − α)

Γ(hj + 1)Γ(1− α)
, (17)

and note that

DHK =
H

Kα
f(H,K). (18)

We can compute f(H,K) using a simple contour integral,

f(H,K) =
1

2πi

∫
dz

zH+1
[1− (1− z)α]

K
, (19)

where the integral is taken circling the origin. We can
alternatively the generating function for f(H,K),

Rf (z) ≡
∞∑
H=0

f(H,K)zH . (20)

In Appendix A, we show that

Rf (z) = [1− (1− z)α]
K
. (21)

We can now compute f(H,K) for arbitrary H and K by
noting that

f(H,K) =
1

H!

dH

dzH
Rf (z)|z=0, (22)

and substitute this into Eq. (18) to compute DHK . To
give a few examples, we find

D21 =
1

q
(23)

D31 =
1

2q

(
1 +

1

q

)
(24)

D32 =
3

2q

(
1− 1

q

)
. (25)

Taking more derivatives, we can easily make a table of
f(H,K) and evaluate any arbitrary DHK . We note that
in the large H limit, one can directly obtain f(H,K) us-
ing saddle point evaluation of the contour integral defined
above.

Note that the case of rapid adaptation, for which clonal
interference is pervasive, corresponds to the case where q
is reasonably large (conversely q = 1 corresponds to se-
quential selective sweeps, and our analysis does not apply

in this limit). In the large-q regime, D21 is small. In neu-
tral coalescent theory, the probability of a three-way co-
alescence event would then be even smaller: D31 ∼ D2

21.
However, this is not the case here: the probability three
lineages coalesce is of the same order as the probability
two lineages coalesce, D31 ∼ D21, so “multiple-merger”
coalescence events are not uncommon. This is a signature
of the fact that occasionally a fitness class is dominated
by a single large clone, as described above. When this
happens, that clone dominates the structure of genealo-
gies, as any ancestral lineages we trace through the fitness
distribution are very likely to have originated from this
single large lineage, and hence will coalesce within this
fitness class. Although these anomalously large clones
are rare, they are sufficiently common that they are re-
sponsible for a significant fraction of the total coalescence
events, and they are responsible for tendency of genealo-
gies to take on a more “star-like” shape.

IV. GENEALOGIES AND PATTERNS OF
GENETIC VARIATION

From the results above for the probabilities of all pos-
sible coalescence events in each fitness class, we can cal-
culate the probability of any genealogy relating an arbi-
trary set of sampled individuals. From these genealogies,
we can in turn calculate the probability distribution of
any statistic describing the expected patterns of genetic
diversity in the sample.

We begin by neglecting neutral mutations and calculat-
ing the structure of genealogies in “fitness-class” space.
That is, we consider individuals sampled from some set
of fitness classes. We trace their ancestries backwards
in time as they “advance” from one fitness class to the
next, via mutational events, and calculate the probability
that they coalesce in a particular set of earlier-established
classes. Since each step in the fitness-class coalescent tree
corresponds to a beneficial mutation, this immediately
gives us the pattern of genetic diversity at the positively
selected sites. We later consider how these “fitness-class”
genealogies correspond to genealogies in real time, and
use this to derive the expected patterns of diversity at
linked neutral sites.

A. The distribution of heterozygosity at positively
selected sites

We first describe the simplest possible case, a sample
of two individuals. If we sample two individuals at ran-
dom from the population, the first comes from class k1

and the second from class k2 with probability φk1φk2 . If
these two individuals coalesce in class `, their total pair-
wise heterozygosity at positively selected sites, πb, will
be (k1 − `) + (k2 − `) = k1 + k2 − 2`.
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We can now calculate the average πb given k1 and k2

by noting that

〈
πbk1,k2

〉
= |k2 − k1|+

〈
πbk,k

〉
. (26)

By conditioning on whether two individuals sampled
from class k coalesce within that class (in which case
they have πb = 0), we have

〈
πbk,k

〉
= 0D21 + (1−D21)

[〈
πbk,k

〉
+ 2
]
, (27)

which implies

〈
πbk,k

〉
=

2(1−D21)

D21
. (28)

Plugging this into the above, we find

〈
πbk1,k2

〉
= |k2 − k1|+

2(1−D21)

D21
. (29)

We can now average this over k1 and k2 to find the overall
average. Since k1 and k2 are approximately normally
distributed with variance 1/(sτ̄), their average absolute

difference is
√

4/(sτ̄π). Thus we have

〈
πbk1,k2

〉
=

√
4

πsτ̄
+

2(1−D21)

D21
. (30)

Note that for large q, the second term (corresponding
to heterozygosity between individuals sampled from the
same class) is approximately 2q, while the first term is

approximately
√

4q/π log(s/Ub), which is smaller by a

factor of 1/
√

2π log(Ns). This is because most individ-
uals are much closer to the mean than to the nose, so
that |k1 − k2| � q. In other words, a rough but very
simple approximation is to assume that all individuals
are sampled from the mean fitness class.

We can use a similar approach to compute the full
probability distribution of πb. We have

P (πbk,k = γ) = D21δγ,0 +(1−D21)P (πbk,k = γ−2), (31)

which implies that

P (πbk,k = γ) =

{
D21(1−D21)γ/2 for γ even
0 for γ odd

. (32)

We can then write the more general result

P (πbk1,k2 = γ) = D21δγ,k1−k2+(1−D21)P (πbk1,k2 = γ−2),
(33)

from which we find

P (πbk1,k2 = γ) =

{
D21(1−D21)

γ−(k1−k2)

2 for γ−(k1−k2)
2 even and γ ≥ k1 − k2

0 otherwise
. (34)

If desired, we can now average these results over the dis-
tributions of k1 and k2 to get the unconditional distribu-
tion of πb. In Fig. 5a and Fig. 5b, we illustrate these
theoretical predictions for the overall distribution of pair-
wise heterozygosity with the results of full forward-time
Wright-Fisher simulations, for two representative param-
eter combinations. We see that the distribution of het-
erozygosity has a nonzero peak, and that the agreement
with simulations is generally good.

We emphasize that our results for P (πb) describe the
ensemble distribution of heterozygosity. That is, if we
picked a single pair of individuals from each of many in-
dependent populations, this is the distribution of πb one
would expect to see. It is not the population distribu-
tion: if we were to pick many pairs of individuals from
the same population, the πb of these pairs would not be
independent because much of the coalescence within in-
dividual populations occurs in rare classes that are dom-
inated by a single lineage for which D21 is much higher
than its average value. Thus if we measured the average

πb within each population by taking many samples from
it, the distribution of this π̄b across populations would be
different from the distribution computed above. In order
to understand these within-population correlations, we
now consider the genealogies of larger samples.

B. Statistics in larger samples

We can compute the average and distribution of statis-
tics describing larger samples in an analogous fashion to
the pair samples. For example, consider the total number
of segregating positively selected sites among a sample of
3 individuals, which we call S3b. These three individ-
uals are sampled (in order) from classes k1, k2, and k3

respectively with probability φk1φk2φk3 . For three indi-
viduals sampled from the same fitness class k, by condi-
tioning on the coalescence possibilities within class k we
find that the average total number of segregating posi-



11

π
b

π
b

(a) (b)

(c) (d)

π
n

π
n

P(
π b

)

P(
π b

)
P(
π n

)

P(
π n

)

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

simulation
theory

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

 

simulation
theory

0 5 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

simulation
theory

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

simulation
theory

FIG. 5. The distribution of pairwise heterozygosity. (a) Comparison of our theoretical predictions for the distribution of
pairwise heterozygosity at positively selected sites, πb with the results of forward-time Wright-Fisher simulations, for N = 107,
s = 10−2, and Ub = 10−4. Simulation results are an average over 56 independent runs, with 106 pairs of individuals sampled
from each run. (b) Pairwise heterozygosity at positively selected sites for N = 107, s = 10−2, and Ub = 10−3. (c) Comparison
of our theoretical predictions for the distribution of pairwise heterozygosity at linked neutral sites, πn with the results of
forward-time Wright-Fisher simulations, for N = 107, s = 10−2, Ub = 10−4, and Un = 10−3. (d) Pairwise heterozygosity at
linked neutral for N = 107, s = 10−2, Ub = 10−3, and Un = 10−3.

tively selected sites is

〈Skkk〉 = 0D31 +D32

[
2 +

〈
πbk,k

〉]
+D33 [3 + evSkkk] .

(35)
Solving this for 〈Skkk〉, we find

〈Skkk〉 =
2D32/D21 + 3D33

D31 +D32
. (36)

More generally we have

〈Sk1k2k2〉 = (1−D21)k2−k1 [2(k2 − k1) + 〈Skkk〉] (37)

+

k2−k1−1∑
i=0

D21(1−D21)i
[
k2 − k1 + πbk,k + i

]
,

and even more generally we have

〈Sk1k2k3〉 = k3 − k2 + 〈Sk1k2k2〉 . (38)

If desired, we can average these over the distribution of
k1, k2, and k3 using the properties of differences of Gaus-
sian random variables, as above. Alternatively, as in sam-
ples of size two, in large populations we can make the
rough approximation that all sampled individuals come
from the mean fitness class. Analogous calculations can
be used to find the average number of segregating posi-
tively selected sites in still larger samples.

In Fig. 6 we illustrate some of these predictions (in
practice samples are generated from coalescent simula-
tions; see below) for samples of size 2, 3, and 10, and com-



12

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Ub/s

 

 

<π
b
>  theory

S
3b
       theory

S
10b

     theory

<π
n
>  theory

S
3n

  theory

S
10n

  theory

simulations

(a)

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Ns

 

 

<π
b
>  theory

S
3b
       theory

S
10b

     theory

<πn>  theory

S
3

  theory

S
10

  theory

simulations

(b)

FIG. 6. Comparisons between theoretical predictions (from
coalescent simulations) and forward-time Wright-Fisher simu-
lations for the average pairwise heterozygosity and total num-
ber of segregating sites in samples of size 3 and 10 at positively
selected sites and at linked neutral sites, (a) as a function of
Ub/s and (b) as a function of Ns. In both panels, N = 107

and Ub = 10−4 while s is varied. Forward-time Wright-Fisher
simulation data represents an average over 56 forward simu-
lation runs, with 106 pairs of individuals sampled from each
run. Theoretical predictions generated using backwards-time
coalescent simulations represent the average of 3 × 106 inde-
pendently simulated pairs of individuals. Note that both (a)
and (b) show the same data, plotted as a function of different
parameters.

pare these to the results of forward-time Wright-Fisher
simulations. We note that the agreement is generally
good.

We can apply similar thinking to describe the distri-
bution of the total number of segregating selected sites.
First consider this distribution for a sample of size 3, all

of which happen to be sampled from the same fitness
class k, Skkk. We have

P (Skkk = γ) = D31δγ,0 +D32P (πbk,k = γ − 2)

+D33P (Skkk = γ − 3). (39)

We can multiply by zγ and sum over γ to pass to gener-
ating functions, U3(z) ≡

∑
zγP (Skkk = γ). This yields

U3(z) = D31 +D32z
2U2(z) +D33z

3U3(z), (40)

which we can solve to find

U3(z) =
D31 + z2D32U2(z)

1−D33z3
, (41)

where we have introduced the obvious notation.
More generally, we have that the total number of seg-

regating sites among a sample of H individuals all chosen
from the same fitness class k, which we will call SH , has
the distribution

P (SH = γ) = DH1δγ,0 +DH2P (S2 = γ − 2) + (42)

DH3P (S3 = γ − 3) + . . . DHHP (SH = γ −H).

We can again pass to generating functions, giving

UH(z) = DH1 +DH2z
2U2(z) +DH3z

3U3 + . . . , (43)

which we can easily solve to give

UH(z) =
DH1 +

∑H−1
`=2 z`DH`U`(z)

1−DHHzH
. (44)

It still remains to consider the distribution of the total
number of segregating selected sites among H individu-
als chosen at random from arbitrary fitness classes. The
general case becomes quite unwieldy to compute analyt-
ically, because we must average over all fitness classes in
which internal coalescence events can occur. Computing
these averages for the case of a sample of size three, we
find that the generating function for the distribution of
the total number of segregating positively selected sites
among a sample of three individuals sampled from classes
k1, k2, and k3 is given by

W3(z|k1, k2, k3) =
zk1−k3U2(z)D21

[
1− (zD22)

k1−k2
]

1−D22z

+Dk1−k2
22 U3(z). (45)

Note that these distributions are all for samples each
taken from an independently evolved population, rather
than found from averaging many samples from each pop-
ulation and then finding the distribution of this across
populations.

Analogous expressions can be computed for larger sam-
ples, but these involve ever more complex combinatorics.
One may also wish to compute other statistics describ-
ing genetic variation in larger samples, such as the allele
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frequency spectrum. While in principle it is possible to
calculate analytic expressions for any such statistic using
methods similar to those described above, in practice it
is easier to use our fitness-class coalescent probabilities
to implement coalescent simulations, and then use these
simulations to compute any quantity of interest. We de-
scribe these coalescent simulations in a later section. Al-
ternatively, for large populations we can make use of the
rough approximation that all individuals are always sam-
pled from the mean fitness class; we explore some conse-
quences of this approximation further in a later section
below.

C. Time in generations and neutral diversity

Thus far we have focused on the fitness-class struc-
ture of genealogies and the genetic variation at positively
selected sites. We now describe the correspondence be-
tween our “fitness-class coalescent” genealogy and the ge-
nealogy as measured in actual generations. Fortunately,
this correspondence is extremely simple: each clonal lin-
eage was originally created by mutations when that fit-
ness class was at the nose of the fitness distribution. Thus
if we define the current mean fitness to be class k = 0,
the current nose class will be at approximately k = q,
and some arbitrary class k will have been created at the
nose approximately (q − k)τ̄ generations ago. Although
there is some variation in each establishment time, we ne-
glect this variation throughout our analysis here, since it
is small compared to the variation between coalescence
times within clones in different classes. As we will see
below, this approximation holds well in comparison to
simulations in the parameter regimes we consider. This
makes the correspondence between real times and step-
times much simpler here than in our previous analysis
of purifying selection, where the variation in real times,
even given a specific fitness-class coalescent genealogy,
was substantial [37].

The simple approximation of neglecting the variations
in time of establishment of the fitness classes allows us
to make a straightforward deterministic correspondence
between the fitness-class coalescent genealogy and the
coalescence times. We can then compute the expected
patterns of genetic diversity at linked neutral sites: the
number of neutral mutations on a genealogical branch of
length T generations is Poisson distributed with mean
UnT . From this we can compute the distribution of
statistics describing neutral variation (e.g. the neutral
heterozygosity πn or total number of neutral segregating
sites in a sample Sn) from the corresponding statistics
describing the variation at the positively selected sites.
We illustrate these theoretical predictions for the distri-
bution of neutral heterozygosity πn in Fig. 5c and Fig.
5d, and compare these predictions to the results of full
forward-time Wright-Fisher simulations. In Fig. 6 we

also show our predictions (generated using the coales-
cent simulations described above) for the mean number
of segregating neutral sites in samples of size 2, 3, and 10,
compared to the results of forward-time Wright-Fisher
simulations. We note that the agreement is good across
the parameter regime we consider, though there are some
systematic deviations for smaller values of Ub/s where
our approximations are expected to be less accurate.

D. Time to the Most Recent Common Ancestor

Thus far we have considered the coalescence events at
each mutational step separately: this is necessary to de-
scribe the full structure of genealogies. However, another
important quantity of interest is the time to the most re-
cent common ancestor — i.e. the coalescence time of the
entire sample. We begin by considering this time mea-
sured in mutational steps, and then describe how this
relates to the coalescence time measured in generations.

We can derive relatively simple expressions for the
number of mutational steps to coalescence of an entire
sample by directly calculating the probability of coales-
cence events over several steps at once. To do so, we
note that since the dynamics at each mutational step are
identical, the generating function of the number of indi-
viduals descended from a mutation at site i that occurred
` mutational steps ago, ν

(`)
i , is given by

G
(`)
i (z) =

〈
e−zν

(`)
i

〉
= exp

[
− 1

B
zη`
]
, (46)

where we have defined

η` ≡ α` = (1− 1/q)
`
. (47)

From this expression, we can immediately compute the
distribution of the number of mutational steps to coales-
cence of H individuals sampled from the same fitness
class, J(H). The cumulative distribution of J is given
by

F (H, `) ≡ Prob [J(H) ≤ `] ≈
B∑
i=1

(
ν

(`)
i∑B

i=1 ν
(`)
i

)H
. (48)

We can compute 〈F (H, `)〉 using identical methods to
those used to calculate the fitness-class coalescence prob-
abilities above, and find

〈F (H, `)〉 =
Γ(H − η`)

Γ(H)Γ(1− η`)
. (49)

From this, we find

〈J(H)〉 =

∞∑
`=0

(1− 〈F (H, `)〉) . (50)
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Note that we could alternatively obtain expressions for
J(H) more directly from the fitness-class coalescence
probabilities in a single step, by conditioning on the co-
alescence events that can happen in the first step in a
similar way to that we used to compute 〈πb〉 and 〈S3b〉.

In the large-q limit, the ratios of these coalescence
times (measured in mutational steps) in samples of dif-
ferent sizes are independent of q:

〈J(3)〉
〈J(2)〉

=
5

4
,
〈J(4)〉
〈J(2)〉

=
25

18
,
〈J(5)〉
〈J(2)〉

=
427

288
. (51)

These ratios are identical to those given by the
Bolthausen-Sznitman coalescent [47], which has recently
been shown to describe a number of other very different
models of selection [48]. We return to this point in the
Discussion. For large H we find

〈J(H)〉
〈J(2)〉

→ log logH +O(1). (52)

These results suggest that there is a q-independent lim-
iting process: we discuss this briefly below. We also note
that the distribution of times to coalescence for large H is
quite different than in the neutral case — the between-
populations variation in J(H)/ 〈J(2)〉 is only of order
unity, compared to its mean of log logH. In contrast, for
the neutral coalescent, the time to last common ancestor
of the whole population has mean of 2 〈J(2)〉 and random
variations of the same order.

As with other aspects of genealogical structures, it is
straightforward to convert these expressions for the coa-
lescence times measured in mutational steps to the time
in generations to the most recent common ancestor of a
sample, TMRCA(H). Specifically, J = ` corresponds to
the case where the most recent ancestor occurs ` muta-
tional steps ago, so if the sampled individuals were from
class k the time to the most recent common ancestor is
[q − (k − `)] τ̄ generations. We note that for a sample
of two this implies that the nose-to-mean time τnm is
the characteristic time scale of the coalescent, as claimed
above.

Thus far we have considered the most recent common
ancestor of H individuals all sampled from the same fit-
ness class k. However, in general we will typically sam-
ple individuals from a variety of different classes. In this
case, we must sum over all possible internal coalescence
events, until we reach a state where all remaining ances-
tral lineages are together in the same fitness class. This
quickly becomes unwieldy in larger samples. In practice,
it is easier to compute times to the most common re-
cent ancestor in these cases using coalescent simulations
based on our fitness-class coalescent approach, which we
describe below.

As with other statistics described above, however,
there is a simple approximation which is asymptotically
correct for large populations: we can simply assume that

all individuals are sampled from the mean fitness class.
This approximation relies on the fact that most individ-
uals sampled randomly from the population will have
fitnesses close to the mean: within of order

√
v of it.

Thus the time differences between their establishments
will typically be substantially smaller than the nose-to-
mean time, τnm. As this is the time scale on which typical
coalescent events take place, treating all the individuals
as if they were in the dominant fitness class is a reason-
able rough approximation. In this approximation, the
results for the times to most common ancestor for sam-
ples of H can be simply obtained from the single-fitness
class results above. We find:

〈TMRCA(2)〉 ≈ 2τnm, (53)

and in larger samples we have

〈TMRCA(3)〉
〈TMRCA(2)〉

=
9

8
, (54)

〈TMRCA(4)〉
〈TMRCA(2)〉

=
43

36
, (55)

〈TMRCA(5)〉
〈TMRCA(2)〉

=
715

576
. (56)

We note however that the dominant-fitness-class approx-
imation is valid only in the limit that the lead of the pop-
ulation, qs, is much larger than the standard deviation of
the fitness distribution,

√
v. As this ratio is

√
2 log(Ns),

in practice it never becomes very large.

E. The Frequency of Individual Mutations

An alternative way to compute many of the coalescent
properties is to consider the fraction of the population
with a particular mutation, which is closely related to
the site frequency spectrum. The frequency of a given
mutation at a particular site is determined by when that
mutation occurred relative to others in its fitness class.
In addition, its frequency at later times is determined by
whether or not later mutations occur in its genetic back-
ground at each subsequent mutational step. Consider a
mutation that occurred ` steps in the past, and define
f ≡ ν

σ to be the fraction of the current nose class that its
descendants constitute. The probability density of f is

ρ`(f)df =
df

B

1

Γ(η`)Γ(1− η`)f1+η`(1− f)1−η`
, (57)

where as before we have defined η` = (1 − 1/q)`. Coa-
lescent properties depend on averages of fH . Summing
over all B sites and using the standard integrals of powers
of f and 1 − f expressed in terms of gamma functions,
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we obtain immediately the result we had found above:

〈F (H, `)〉 = Γ(H−η`)
Γ(H)Γ(1−η`) .

More generally, one can consider how the frequency of

a mutation changes in time due to successive mutations
in its lineage. If a given mutation has frequency g at
one time, then a time `τ̄ later (after ` further beneficial
mutations have occurred) the probability density of its
frequency will be:

ρ`(f |g)df = df

g(1−g)
Γ(η`)Γ(1−η`)f(1−f)

(1− g)2
(

f
1−f

)η`
+ g2

(
1−f
f

)η`
+ 2g(1− g) cos(πη`)

. (58)

From this, quantities such as the variance of the proba-
bility of H individuals coalescing ` steps in the past and
hence the variances in the coalescent times of H individ-
uals can be computed.

In the limit of large q, the exponent η that parameter-
izes the time difference, t = `τ̄ , is simply η ≈ e−t/τnm .
This is independent of q: only the “nose-to-mean” time
that it takes for the new mutants to dominate the pop-
ulation matters. In this limit, a single mutational step
occurs in a time that is a very small fraction, ε = 1/q, of
the nose-to-mean time τnm. The conditional probability
of going from g to f in this step is

ρ`(f |g)df ≈ g(1− g)ε df

(f − g)2 + π2ε2[g(1− g)]2
. (59)

Eq. 59 is an approximate delta-function in f − g, as one
would expect in the limit of a small time step. But it
also corresponds to a probability per unit time of a jump
from g to f of 1

τnm
dfg(1 − g)/(f − g)2. Specifically it

describes the genetic background either containing the
mutation (frequency g) or not containing the mutation
(frequency 1 − g) increasing in size by a factor between
1+h and 1+h+dh with rate 1

τnm
dh/h2 (with ε providing

a small h cutoff). This corresponds to a continuous time
birth process in a sub-population of (large) size n with
rate per individual to give birth to k offspring, 1

τnm
1
k2 .

These considerations provide an alternative way to com-
pute coalescent statistics.

F. Coalescent Simulations

We can use the fitness-class coalescence probabilities
in Eq. (15) to implement an algorithm for coalescent
simulations along the lines of Gordo et al. [39], using the
structured coalescent framework of Hudson and Kaplan
[38]. Specifically, to describe the diversity in a sample
of n individuals, we first randomly sample their fitness
classes independently from the distribution φk. We then
start with the individual in the most-fit class, and trace
back its ancestry as it steps through successive classes
within the fitness distribution. When that individual

enters a class with other individuals, we use Eq. (15)
to determine the probabilities of all possible coalescence
events in that class. We then continue to trace back the
ancestry of the sample further through the distribution,
allowing for coalescence events at each step according to
the appropriate probabilities. We continue this proce-
dure until all individuals have coalesced.

This simple coalescent algorithm produces a fitness-
class coalescent tree drawn from the appropriate proba-
bility distribution of genealogies. We can then compute
any statistic of interest describing this genealogy. By
repeating this algorithm, we can obtain the probability
distribution of the statistic. In practice this is a highly ef-
ficient procedure, since the coalescent simulations are ex-
tremely fast and the computational time required scales
only with the size of the sample rather than the size of
the population.

G. Comparison to Simulations

Our coalescent simulations represent an algorithmic
implementation of our fitness-class coalescent, using all
of the analytical expressions for the sampling and coales-
cence probabilities described above. Thus these coales-
cent simulations rely on all of the approximations under-
lying our method. To test the validity of these approxi-
mations and the accuracy of our fitness-class coalescent
method, we compared the predictions of these coalescent
simulations to full forward-time Wright-Fisher simula-
tions of our model. These comparisons are illustrated
in Fig. 5 and Fig. 6 and in Table I.

Our Wright-Fisher simulations were implemented as-
suming a population of constant size N , in which each
generation consisted of a mutation and a selection step.
In the mutation step, we independently choose the num-
ber of beneficial and neutral mutations within each ex-
tant genotype from the appropriate multinomial distri-
bution. Each new mutation was assigned a unique index
and all unique genotypes were tracked. In the selection
step, we sample N individuals with replacement from
the previous generation, using a multinomial sampling
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ub/s Ns D10 theory D10 simulations

0.2000 5000 -3.3199 -3.3378

0.1000 10000 -3.3489 -3.3569

0.0200 50000 -3.3533 -3.3322

0.0100 100000 -3.3571 -3.4188

0.0020 500000 -3.3665 -3.3024

0.0010 1000000 -3.3717 -3.3670

TABLE I. Comparisons between theoretical predictions (from
coalescent simulations) and forward-time Wright-Fisher sim-
ulations for Tajima’s D [49] in a sample of size 10, D10. Here
Ub = 10−4 and N = 107 while s is varied. Theoretical pre-
dictions are obtained by sampling 107 backward coalescent
simulations. Forward-time simulation results are an average
over 56 forward simulation runs, with 106 samples of n = 2
and n = 10 individuals.

weight adjusted for selective differences between individ-
uals relative to the population mean fitness [50].

V. DISCUSSION

We have developed a fitness-class coalescent method
to calculate how positive selection on many linked sites
alters the structure of genealogies. This has allowed us
to calculate how clonal interference shapes the patterns
of genetic diversity in rapidly adapting populations. Our
approach moves away from the traditional method of cal-
culating the structure of genealogies in real time. Rather,
we treat each mutational step from one fitness class to
the next as an “effective generation,” and trace how a
sample of individuals descended by mutations through
these fitness classes. In each “effective generation” we
calculated the total probability of all possible coalescence
events, Eq. (15). This allows us to calculate the struc-
ture of genealogies in this “fitness-class space,” which
directly corresponds to the genetic diversity at positively
selected sites. We then converted this fitness-class coa-
lescent to the genealogy in real time in order to calculate
the expected patterns of neutral diversity.

We have shown that we can use this approach to com-
pute analytic expressions for the distributions of several
simple statistics describing patterns of molecular evolu-
tion. However, it is often easiest to compute expected
patterns of variation using backwards-time coalescent
simulations which explicitly implement the fitness-class
coalescent algorithm using the distribution of the frac-
tion of the population in each fitness class φk and the
coalescence probabilities in Eq. (15) to simulate genealo-
gies. These coalescent simulations are extremely efficient,
and in practice it is usually faster to run millions of
these backwards-time simulations than it is to numeri-
cally evaluate the sums over fitness classes involved in
the corresponding exact analytic expressions. These coa-

lescent simulations also have the advantage of being very
similar in spirit to structured coalescent simulations that
describe the effects of purifying selection (see e.g. Gordo
et al. [39] and Seger et al. [40]), so they can in principle be
used for parameter estimation and inference in analogous
ways.

Our analysis throughout this paper is very similar in
spirit to the fitness-class coalescent method we previously
used to describe how purifying selection at many linked
sites alters the structure of genealogies and patterns of
molecular evolution [37, 46]. However, there are two im-
portant technical differences. First, in the case of pu-
rifying selection, fluctuations in the frequencies of each
fitness class φk due to genetic drift can be substantial in
certain parameter regimes. These fluctuations are partic-
ularly important near the nose of the distribution, where
they can lead to effects such as Muller’s ratchet. Al-
though individuals are unlikely to be sampled from this
nose, they are very likely to coalesce there. Neglecting
these fluctuations was therefore an important approxima-
tion that substantially restricted the regime of validity of
our analysis. By contrast, in the case of positive selection,
fluctuations in the sizes of each fitness class are negligi-
ble (except at the nose) across a broad range of relevant
parameter values. Furthermore, fluctuations at the nose
are much less important for patterns of diversity than in
the case of purifying selection, because individuals are
unlikely to either be sampled there or to coalesce there.
This reflects a fundamental difference between the neu-
tral and purifying selection processes and the rapid adap-
tation dynamics analyzed here. For the former, genetic
drift plays a key role in driving the fluctuations, while for
the latter, genetic drift is almost irrelevant: the fluctua-
tions are dominated by the stochasticity in the timings
of the beneficial mutations that occur near the nose of
the fitness distribution.

A second key simplification of our analysis of positive
selection, compared to the purifying selection case, is
that the clonal structure of each fitness class becomes
effectively “frozen” once that class is no longer at the
nose of the fitness distribution. This means that coa-
lescence probabilities are identical in all fitness classes
which stands in contrast to the case of purifying selec-
tion, where the clonal structure within all classes is con-
stantly changing. This also avoids the need to carefully
analyze the timing and order of mutation events in the
history of a sample and simplifies the mapping between
our fitness-class coalescent genealogy and the genealogy
measured in real time.

Our results demonstrate how positive selection on
many linked sites distorts the structure of genealogies
away from neutral expectations. We show several ex-
amples of these selected genealogies, for various different
parameter values, in Fig. 7. The most striking quali-
tative conclusion of our analysis is that multiple merger
events, where several ancestral lineages coalesce into one
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in a single effective generation, occur with comparable
probabilities to pairwise coalescence events. We note that
these events are multiple mergers within a single effective
generation in our fitness-class coalescent, and hence are
not actually multiple mergers within a single real gener-
ation. However, these events happen very close together
in real time compared to the other relevant timescales,
so they will appear as effectively instantaneous. This
leads to a more “starlike” shape of genealogical trees.
This signature is characteristic of the action of positive
selection; our analysis here illustrates how starlike we ex-
pect genealogies to be (and how many deeper coalescence
events are preserved) given the interplay between inter-
ference and hitchhiking effects characteristic of this rapid
adaptation regime. It may prove useful in future work to
analyze this specific situation in the context of more gen-
eral models of the coalescent with multiple mergers [51].

We note that the characteristic time scale of the co-
alescence is the “nose-to-mean” time, τnm, which is the
time after which the collection of new mutants at the nose
take to dominate the population. In units of this time,
trees for different values of q become statistically simi-
lar for large q. One striking feature, that occurs roughly
once each τnm, is the coalescence of a substantial frac-
tion of all the (remaining) lineages at a single time step:
this is caused by one new beneficial mutation occurring
so much earlier than typical that its descendants repre-
sent a substantial fraction of the population in the nose.
Examples of this can be seen in Fig. 7. Another perhaps-
surprising feature of the genealogies in large samples is
that some aspects are less variable from one population
to another than neutral coalescent trees, while other as-
pects are more variable. In the recent past, for times
much shorter than the mean coalescence time of pairs of
individuals, neutral coalescent trees, tend to be rather
similar, while the multiple-coalescence events that char-
acterize the positively selected genealogies cause larger
variations between populations. In contrast, the time to
last common ancestor of large samples is broadly dis-
tributed for neutral trees but narrowly distributed (at
least asymptotically) for positively selected trees.

Because individuals are unlikely to be sampled from
near the nose of the distribution, the initial coalescence
events in the history of the sample are typically in the
bulk of the fitness distribution. Since these coalescence
events happened well in the past when these classes were
at the nose of the distribution, the terminal branches in
the genealogies of a sample are likely to be longer com-
pared to internal branches than we would expect under
neutrality. In other words, recent branches of genealo-
gies are longer relative to more ancient branches. This
effect is qualitatively similar to the situation in which ef-
fective population size declines as time recedes into the
past: this has long been recognized as a general signature
of the effects of both purifying and positive selection. It
leads to an excess of singleton mutations in the site fre-

quency spectrum, and the negative values of Tajima’s
D that we have observed. However, clonal interference
mitigates these effects relative to a hard selective sweep.

Our results also demonstrate that even when benefi-
cial mutations are rare compared to neutral mutations,
Ub � Un, positively selected sites can still contribute
a significant fraction of the total genetic variation ob-
served in a population. For example, in a sample of two
individuals the total heterozygosity at positively selected
sites will typically be several times q. The typical neu-
tral heterozygosity, on the other hand, will be of order
πn ∼ Unτnm. Thus even when Un � Ub, πb will often be
comparable to or even greater than πn. This is consis-
tent with the general observation in microbial evolution
experiments that a substantial fraction of observed mu-
tations are beneficial [18, 21–23]. The fact that positively
selected sites can be a significant fraction of the polymor-
phisms emphasizes the importance of understanding the
patterns of diversity at these sites, which have distinct
patterns compared to linked neutral variation and hence
may provide important signatures in sequence data of
adaptation that involves clonal interference.

Our predictions for the structure of the fitness-class ge-
nealogies depend on the population size, mutation rate,
and strength of selection only through the combinations
log[Ns] and log[Ub/s]. The timescales in generations are
also proportional to the inverse of the strength of se-
lection. Thus the patterns of genetic variation in an
adapting population depend only very weakly (logarith-
mically) on population size and mutation rate in the
large-q regime where clonal interference is pervasive, sug-
gesting that there is limited power to infer these parame-
ters from patterns of molecular evolution. This is a con-
sequence of the fact that the evolutionary dynamics are
also only very weakly dependent on these parameters in
the clonal interference regime.

We have seen that in the large-q limit of our model,
the ratios of the number of mutational steps to the most
recent common ancestors in samples of different sizes are
exactly equivalent to those expected in the Bolthausen-
Sznitman coalescent [47]. This is identical to the limiting
behavior of these ratios in several very different models of
selection recently studied by Brunet, Derrida, and others
[52–56]; see [48] for a recent review. The reason for this
equivalence between very different models remains un-
clear, but suggests a degree of universality: an interesting
topic for future work. We emphasize, however, that the
times to most recent ancestors in our model reduce to the
Bolthausen-Sznitman ratios only when measured in mu-
tational steps and only when all individuals are sampled
from the same fitness class. The ratios of time to most
recent common ancestors, measured in generations, have
a different form. Nevertheless, in the limit of very large
q, almost all the individuals will have fitness much closer
to the mean than to the nose. As the rate of coalescence
is proportional to the difference between the mean and
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FIG. 7. Examples of fitness-class coalescent genealogies in samples of size 50 from forward-time Wright-Fisher simulations. The
tips of each tree correspond to individuals sampled from the present. Each tip is placed horizontally according to the fitness
class from which that individual was sampled (classes are numbered according to the number of beneficial mutations relative to
the most recent common ancestor of the sample). Coalescence events are depicted according to the fitness class in which they
occurred. Each unit of time on the horizontal axis corresponds to one beneficial mutation, so that two individuals separated
by a branch length of ` have πb = `. These fitness-class genealogies can be converted to genealogies in real time by using our
approximation that all coalescent events happen when the relevant class was at the nose of the fitness distribution. Note that
the characteristic time for coalescence is the time it takes for q successive beneficial mutations: this varies considerably with
the parameters used. In all trees, N = 107 and Ub = 10−4. (a) An example of a genealogical tree for s = 10−3. (b) An example
of a tree for s = 5 × 10−3. (c) An example of a tree for s = 10−2. (d) An example of a tree for s = 5 × 10−2.

the nose, the approximation of sampling only from the
largest fitness class is asymptotically good. The modifi-
cations of the Bolthausen-Sznitman ratios are then sim-
ply determined by adding the nose-to-mean time, (which
turns out to be equal to the mean pairwise correlation
time), to all the coalescent times.

Our analysis in this paper has focused on the simplest
possible model of positive selection on a large number of
linked sites, and we have neglected many potential com-
plications. For example, we have assumed that epistatic
interactions between mutations can be neglected, and
that the total potential supply of beneficial mutations

is not significantly depleted over the course of adapta-
tion. This is consistent with our focus on rapidly adapt-
ing populations in the large-q clonal interference regime.
As a population approaches a fitness peak, these approx-
imations will likely fail and the dynamics of adaptation
and patterns of genetic variation may either become more
complex, or return to the regime where further adapta-
tion is driven by isolated selective sweeps. We have also
focused exclusively on beneficial mutations which all have
the same fitness effect s, and have neglected both dele-
terious mutations and beneficial mutations which confer
different fitness effects. This is justified by earlier work
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by us and others that suggests that in rapidly adapting
populations, clonal interference ensures that evolution is
dominated by beneficial mutations that confer a specific
fitness advantage [13, 42, 43]. However, we have recently
analyzed the evolutionary dynamics within a population
in a model which explicitly allows for a distribution of
fitness effects of beneficial mutations [13]. We and others
have also analyzed the case where a mix of both bene-
ficial and deleterious mutations are possible [10, 43, 57].
Those works describe the variation in fitness within pop-
ulations in these more complex models and hence could
form the basis for a more complex version of the fitness-
class coalescent method we have used here. This gener-
alized fitness-class coalescent would admit the possibility
of mutational steps of various different sizes and towards
both lower and higher fitness.

An alternative approach by one of us allows for benefi-
cial mutations to have a variety of different effects, with-
out making reference to fitness classes [45]. As long as
the distribution of fitness effects of potential beneficial
mutations falls off faster than a simple exponential for
large s, the dynamics in large populations is dominated
by mutations with s close to some value, s̃ [13, 45]. In
this case, most properties of the dynamics on time scales
longer than the nose-to-mean time τnm are quite univer-
sal (and more strongly so when v/s̃2 is large). As τnm is
also the time scale of the coalescence, this suggests that
the coalescent statistics should also be universal. The
continuous time results quoted above for the evolution of
the frequency of a sub-population emerges naturally in
this more general analysis, and indeed correspond to the
universal limit of asymptotically-large populations [45].
In the alternative regime where the distribution of fit-
ness effects of potential beneficial mutations falls of more
slowly than exponentially, mutations can jump from the
bulk of the distribution to the lead. These play an impor-
tant role in the dynamics, and cause q to remain small
even for asymptotically large populations [11]. The be-
havior is then less universal, but this situation is likely
to be relevant in real populations, especially in the ini-
tial stages of adaptation to a new environment. Further
study into these effects of the distribution of effects of
beneficial mutations, of initial transient dynamics, and
of large numbers of deleterious mutations are interesting
topics for future research.

The final simplification of our analysis is its focus on
purely asexual populations: we have neglected the ef-
fects of recombination. Thus our results are primarily
applicable to interpreting the patterns of genetic varia-
tion in asexual microbial evolution experiments, though
they may also be relevant to sexual organisms on short
genomic distance scales within which recombination is
rare on the relevant timescales. We note however that
our results provide an essential ingredient for predicting
the effects of infrequent recombination on the evolution-
ary dynamics. Specifically, we can use our predictions

for the genetic variation between a pair of individuals
sampled from the population to predict the distribution
of fitnesses of recombinant offspring resulting from sex
between these individuals. This in turn determines how
rare recombination alters the evolutionary dynamics and
the distribution of fitnesses within the population. It
may prove possible to then in turn calculate how these
shifts in evolutionary dynamics alter the patterns of ge-
netic diversity in the population. These extensions of
our approach to analyze the effects of recombination on
both evolutionary dynamics and patterns of molecular
evolution are an important direction for future research.
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APPENDIX A: COALESCENCE PROBABILITIES

In this Appendix, we carry out the calculations of co-
alescence probabilities in detail. Consider H individuals
who coalesce into K lineages, with h1 individuals coalesc-
ing into lineage 1, h2 individuals coalescing into lineage
2, and so on, up to hK individuals coalescing into lineage

K. We note that
∑K
j=1 hj = H. We begin by asking the

probability that H individuals coalesce into K lineages
at a specific set of K sites (out of the total of B) in the
genome: call these sites 1 through K in the genome, for
concreteness. We also assume for now that the H indi-
viduals coalesce in a specific way into these K lineages:
i.e. individual 3 coalesces into the lineage at site 5, etc).
We denote the frequency of the lineage at site j in the
genome by fj ; so that fj =

νj
σ . We denote by A the

probability that the H individuals coalesce into the K
lineages at these specific sites according to the specific
configuration {hj}.

Given these definitions, we have:

A =

〈
K∏
j=1

f
hj
j

〉
=

〈
K∏
j=1

ν
hj
j

σhj

〉
=

〈
1

σH

K∏
j=1

ν
hj
j

〉
. (60)

We make use of the identity

1

σH
=

∫ ∞
0

xH−1

(H − 1)!
e−xσdx (61)
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to obtain

A =

∫ ∞
0

xH−1

Γ(H)

〈
e−xσ

K∏
j=1

ν
hj
j

〉
dx. (62)

We now use the definition of σ as the sum of the νj and
separate out the νj that correspond to the lineages we
are considering. Note that the νj are independent of
each other. Thus one obtains

A =

∫ ∞
0

xH−1

Γ(H)

〈
e
−x
∑B

j=K+1
νj

〉〈 K∏
j=1

ν
hj
j e−xνj

〉
dx

(63)
whence, by independence,

A =

∫ ∞
0

xH−1

Γ(H)

〈
e−xν1

〉B−K 〈 K∏
j=1

ν
hj
j e−xνj

〉
dx. (64)

From Eq. (10) we have〈
e−zνi

〉
= e−µi/Uz

1−1/q

= e−z
α/B , (65)

where α ≡ 1 − 1
q . Substituting this in, and assuming

large B so that (B −K)/B ≈ 1, we find

A =

∫ ∞
0

xH−1

Γ(H)
e−x

α

〈
K∏
j=1

ν
hj
j e−xνj

〉
dx. (66)

We then use that

〈
νhe−xν

〉
= (−1)h

∂h

∂zh

[
e−z

α/B
]
. (67)

Making the large-B approximation that e−z
α/B ≈ 1− zα

B
and differentiating, we find

〈
νhe−xν

〉
=
α

B

Γ(h− α)

Γ(1− α)
xα−h. (68)

Using this result, we have

A =

∫ ∞
0

xH−1

Γ(H)
e−x

α
K∏
j=1

αxα−hjΓ(hj − α)

BΓ(1− α)
dx. (69)

Since
∑K
j=1 hj = H we can rewrite this as

A =

∫ ∞
0

xKαdx

x

αK

BKΓ(H)
e−x

α
K∏
j=1

Γ(hj − α)

Γ(1− α)
. (70)

Now we define

y = xα dy = αxα−1dx
dy

αy
=
dx

x
, (71)

and making this change of variables obtain

A =

∫ ∞
0

dy

α

yK−1e−yαK

BKΓ(H)

K∏
j=1

Γ(hj − α)

Γ(1− α)
. (72)

The dy integral yields a Γ function, giving

A =
Γ(K)αK−1

BKΓ(H)

K∏
j=1

Γ(hj − α)

Γ(1− α)
. (73)

So far we have considered the probability of this coa-
lescence event involving K lineages at a specific set of K
sites on the genome. We now want to sum over all the
possible sets of K sites on the genome at which this could
occur. There are a total of BK/K! of these. We define E
to be the probability of this coalescence event involving
K lineages at any set of K sites on the genome. We have

E =
αK−1

KΓ(H)

K∏
j=1

Γ(hj − α)

Γ(1− α)
. (74)

Now so far we have assumed that specific individuals
coalesce into specific lineages. But given a set {hj} there

are a total of
(

H
h1,h2,...hK

)
ways to assign specific indi-

viduals to specific lineages. Thus the total probability
of H individuals coalescing into K lineages, in a specific
configuration {hj}, which we will call CH,K,{hj}, is

CH,K,{hj} =
H!∏K
j=1 hj !

αK−1

KΓ(H)

K∏
j=1

Γ(hj − α)

Γ(1− α)
(75)

=
HαK−1

K

K∏
j=1

Γ(hj − α)

Γ(hj + 1)Γ(1− α)
,

equivalent to Eq. (15) in the main text.
To compute DHK , we first make the definition

f(H,K) =
∑
{hj}

K∏
j=1

Γ(hj − α)

Γ(hj + 1)Γ(1− α)
, (76)

and note that

DHK =
H

Kα
f(H,K). (77)

There is no simple analytic expression for f(H,K). How-
ever, we can define its generating function

Rf (z) ≡
∞∑
H=0

f(H,K)zH . (78)

Note we are summing from H = 0: even though for
H < K this is not biologically relevant, it will be use-
ful formally. Now we have

Rf (z) =

∞∑
H=0

constrained∑
{hj}

f(H,K)zH (79)
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=

∞∑
h1=0

∞∑
h2=0

. . .

∞∑
hK=0

f(H,K)zH .

Substituting in for f(H,K), we find

Rf (z) =

[ ∞∑
h=0

αΓ(h− α)zh

Γ(h+ 1)Γ(1− α)

]K
, (80)

where we have used the fact that the sums over the dif-
ferent h are now independent. Recognizing the Taylor
series, we have

Rf (z) = [1− (1− z)α]
K
, (81)

as quoted in the main text. Note we can also plug in
K = 1 to recover the result for DH1 quoted in Eq. (14).
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