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Trends in the salience of data collected in a multi user virtual environment:  

An exploratory study 

M. Shane Tutwiler 

Abstract 

In this study, by exploring patterns in the degree of physical salience of the data 

the students collected, I investigated the relationship between the level of students’ 

tendency to frame explanations in terms of complex patterns and evidence of how they 

attend to and select data in support of their developing understandings of causal 

relationships. I accomplished this by analyzing longitudinal data collected as part of a 

larger study of 143 7th grade students (clustered within 36 teams, 5 teachers, and 2 

schools in the same Northeastern school district) as they navigated and collected data in 

an ecosystems-based multi-user virtual environment curriculum known as the EcoMUVE 

Pond module (Metcalf, Kamarainen, Tutwiler, Grotzer, Dede, 2011) .   

Using individual growth modeling (Singer & Willett, 2003) I found no direct link 

between student pre-intervention tendency to offer explanations containing complex 

causal components and patterns of physical salience-driven data collection (average 

physical salience level, number of low physical salience data points collected, and 

proportion of low physical salience data points collected), though prior science content 

knowledge did affect the initial status and rate of change of outcomes in the average 

physical salience level and proportion of low physical salience data collected over time.  

The findings of this study suggest two issues for consideration about the use of 

MUVEs to study student data collection behaviors in complex spaces. Firstly, the 

structure of the curriculum in which the MUVE is embedded might have a direct effect 



vii	  
	  

on what types of data students choose to collect.  This undercuts our ability to make 

inferences about student-driven decisions to collect specific types of data, and suggests 

that a more open-ended curricular model might be better suited to this type of inquiry. 

Secondly, differences between teachers’ choices in how to facilitate the units likely 

contribute to the variance in student data collection behaviors between students with 

different teachers. This foreshadows external validity issues in studies that use behaviors 

of students within a single class to develop “detectors” of student latent traits (e.g., Baker, 

Corbett, Roll, Koedinger, 2008).  
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Chapter 1: Introduction 

 I broke my leg in the winter of 2008. The nature of the injury was not particularly 

severe.  In fact, it was so mild that I did not even know it was broken. I walked around 

with said broken leg, unaware, for approximately one week, until a nagging pain in my 

back prompted a visit to the doctor. He poured over my recent medical history, examined 

the area of pain, and then roundly informed me that there was nothing wrong with my 

back. After a quick radiographic examination of my knee, he nodded sagely and gave me 

the bad news. The barely-noticeable break in my right leg had caused me to change my 

walking gate and posture, which was in turn straining muscles in my lower back.  

 I peered over his shoulder at the various vital signs and notes in his charts, and 

stood beside him as he inspected the processed radiographic film. None of it made any 

sense to me, but painted a very clear picture of my medical condition for him. And then, 

he pointed out a hair-thin dark line on the film. That was the break. I had a chance to 

view more x-rays and sonographs over the course of my recovery, and eventually became 

quite adept at identifying features therein.  

A few years later I stood beside my wife as we viewed the screen during one of the 

half dozen sonograms she would undergo during the course of her first pregnancy. I was 

so easily able to attend to subtle shifts in tone that I found it very simple to perceive the 

lines and patterns that defined the anatomical features of our fast-growing daughter; to 

such a degree that the technician asked if I worked in the prenatal medical field. My wife, 

in contrast, could hardly make heads or tails of the live image, and benefitted greatly 

from being given labeled still images at the conclusion of the visit.  
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The above vignette highlights the interplay between the perception of and 

attention to specific types of data. Past experiences and prior knowledge allowed me to 

perceive aspects of the scans that my wife could not, and thus drew my attention to 

specific areas that she did not see.  This anecdote also highlights the use of those data to 

draw causal inferences based on covariation and ordering of events. The myriad data my 

doctor used to establish my diagnosis were largely random blips on pages to me, and yet 

he was able to order and use them in a meaningful way. Ultimately, it makes clear the 

shift that must occur for novices to perceive potentially important data in a complex 

environment, a necessary precondition if one is to use said data to infer causal 

relationships.  

Although researchers are often reminded to adhere to the maxim that “correlation 

does not imply causation,” the two concepts are tightly intertwined. Inferring causal 

relationships based on probabilistic data about the co-occurrence of events is a central 

aspect of the endeavor of science. Philosophers of science such as Hume (1777) have 

noted that the only insights humans have on possible causal relationships lies in our 

observations of covariation. The study of how humans might use such data has occupied 

psychologists for decades, spurring them to create ever-more complex models of human 

causal inference including a set of models based on networks of event probabilities 

(Shultz, 2007). For various reasons, findings from these experimental studies are difficult 

to generalize to more complex data collection scenarios due to constraints in the 

experimental paradigms. Perhaps the most important limiting factor is that they all 

include a relatively small set of well-defined possible causes, a luxury not often found 
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outside of the laboratory. Research on causal inferences in more complex and authentic 

spaces is thus warranted.  

Virtual environments are digital representations of physical spaces. These 

environments allow researchers to collect rich behavioral information by registering and 

recording the actions of people who interact with them in the form of event logs. These 

rich event log data provide ideal means to conduct research on learning and behavior 

(e.g., Ketelhut, 2007; Ketelhut, Nelson, Clarke, & Dede, 2010). The virtual world under 

analysis in this study is the EcoMUVE, a multi-user virtual environment developed by 

Drs. Chris Dede and Tina Grotzer at Harvard University.  Comprised of two distinct 

ecosystem settings, a virtual pond and virtual forest, the EcoMUVE was designed to help 

support knowledge of ecosystems science concepts and complex causal patterns in 

middle-school students (Metcalf, Kamarainen, Tutwiler, Grotzer, Dede, 2011). Using 

event log data from the EcoMUVE Pond, I mapped relationships between key measures 

within the candidate virtual environment and specific learner traits so that they can be 

manipulated effectively in future studies. To do so, I studied changes in the salience of 

data collected in the virtual world over time.  

What exactly is salience, however? In its most general sense, salience is how 

visible or noticeable a piece of data is compared to surrounding data. This visibility can 

be impacted by two conditions—physical properties of the item and prior knowledge by 

the observer. Melloni, van Leeuwen, Alink, & Muller (2012f) propose a dual-channel 

theory of salience, in which the salience of an object is defined by both its physical 

features (bottom-up salience) as well as the cognitive framing of the observer (top-down 

salience). Consider the following examples.  
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The actual physical properties of the datum may be such that it is dissimilar in 

some respects to its surround. Imagine a novice pilot learning to fly a new type of 

aircraft. There are myriad buttons on the control panel. However, a flashing button will 

more likely be visible to the pilot compared to its non-flashing counterparts. She is more 

likely to attend to and perceive this data, and use it to inform her decision making. It has 

a higher physical, or bottom-up, salience value. 

Additionally, the observer may have prior knowledge that makes her more likely 

to perceive the data point. Returning to our novice pilot example, we find that as she 

gains more experience and learns more about the instrumentation of the plane, the novice 

pilot notices subtle changes in gauge levels that transfer important information about the 

aircraft’s performance. Her prior knowledge was guiding her attention and perception of 

data. This is top-down salience.  

My measure of a student’s tendency to offer explanations containing complex 

causal components represents the proportion of answers students gave to a causal 

scenario that were framed in terms of causally complex relationships such as action at a 

distance or non-obvious causes (Grotzer, 2012), and is one of the many aspects of the 

top-down component of salience (Melloni et al., 2012). This work is among the first to 

explore the interaction of the two aspects of salience in an authentic data-rich 

environment.  

This dissertation study is divided into six chapters, the first being this 

introduction. In the Chapter Two I highlight key theories of data-driven human causal 

inference, culminating in approaches based on the Causal Bayes Nets (CBN) framework 

(Pearl, 1988), and outline the use of data salience, in a method first proposed by Tutwiler 
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and Grotzer (2012) and expanded by Tutwiler (2013), to impact the perceived strength of 

covariation that drives causal inference within the CBN framework. I then outline the use 

of data from a specific ecosystems science based MUVE, the EcoMUVE (Metcalf, et al., 

2011), to explore the relationship between prior knowledge and preference for complex 

causal answers and the salience of data collected in a complex inquiry space.  I then 

propose three research questions and outline the research plan I used to answer them. In 

the Chapter Three I give details of the procedures and methods used to answer these 

research questions.  I present my findings in the Chapter Four, and discuss potential 

contributions, implications, and limitations of the work in Chapter Five.  I conclude with 

final thoughts in Chapter Six.  
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Chapter 2: Background and Context 

 In this chapter I present the empirical and theoretical background of my study, 

while placing it in the larger contexts of causal learning and MUVE-based research. I 

begin by highlighting past research on data-driven human causal inferences. I then make 

the critical connection between the salience of data in a system and the attention and 

selection behaviors of observers, postulating that data more likely to be selected is also 

more likely to be included in updating causal hypotheses. Next, I summarize research on 

the MUVE being studied, and highlight past research that has effectively used MUVE-

generated data to facilitate inferences from student behaviors therein. I conclude by 

presenting my research questions and hypotheses.  

Inferring causal connections from data 

 In the course of our daily experiences, we are awash with information about 

possible cause-and-effect relationships. Events continuously occur in temporal sequences, 

and our brains automatically connect the dots, often (but not always) correctly inferring 

causal associations. The attempt to answer the question of how we are able to do so, often 

with very sparse evidence, has resulted in numerous theories, and models to represent 

them. Here, I present a summary about the development of a specific class of such 

models that are central to my thesis study.  

 The most basic model for predicting human causal inference based on 

covariational data (data representing the co-occurrence of events), dubbed ∆P, accounts 

for judgments based on the frequency of target event occurrence in the presence and 

absence of a common cause (Jenkins & Ward, 1965). One way to expand this simple 

model to include multiple candidate causes is to let the learner view training trials with 
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each candidate cause either present or absent; a model known as probabilistic contrast 

(PC) (Cheng & Novick, 1990). However, neither of these models is able to distinguish 

pure covariation from causation to detect the presence of possible causes that are not 

directly observed (Novick & Cheng, 2004), which humans do quite frequently. For 

example, one could draw a causal connection between yellowed fingers and lung cancer 

given these two models when, in fact, their relationship is conditional based on 

unobserved common cause of both (smoking).  

 One method to address these shortcomings is to incorporate the concept of causal 

power (the strength of the causal connection) into the covariation-based predictive 

models. By assuming non-zero probabilities of effects occurring—or not occurring—in 

the presence or absence of causes (that is to say, assuming that causal processes are truly 

probabilistic), Cheng’s (1997) Power-PC model is able to predict human causal inference 

using the generative or preventative power of candidate causes with invariant 

probabilities on observed effects. Therefore, it would distinguish between instances 

where one cause, such as studying for more hours, acts generatively on test scores, while 

losing sleep acts preventatively.   In their Necessary and Sufficient (NS)-Power model, 

Lu, Yuille, Liljeholm, Cheng, and Holyoak (2007) further restrain the Power-PC model 

parameters by assuming that humans prefer simple causal models and deterministic 

relationships.   

Glymour (1998) reframes Cheng’s (1997) power-PC theory as a noisy-OR 

Boolean problem, in which two causes can independently produce the same effect; this 

can be represented visually as a directed acyclic graph (DAG, Figure 1), a graphical 

model in which the arrows radiate from possible causes to effects with no feedback loops. 
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For example, in Figure 1, below, C and D are both candidate causes of effect E and 𝜔0 

and 𝜔1 are calculations of causal power1: 

 
Figure 1. Example of a DAG with C and D being candidate causes of E and 𝜔0 

and 𝜔1 representing the causal strength between candidate causes and the effect. 
 

 This framing of covariational learning as a DAG is important because, with two 

extra assumptions—that effects are independent conditional on their possible causes 

(Pearl, 1988), and that no parameterization of the DAG exists that would nullify the 

cause-effect relationship (Sprites, Glymour, & Scheines, 1993)—Cheng’s (1997) Power-

PC model represents a machine learning algorithm known as a Causal Bayes Net (CBN) 

(Pearl, 1988; Pearl, 2000). These CBN-based learning models are frequently used in the 

fields of machine learning and bioinformatics to detect causal strength and structure from 

sets of covariational data (e.g., Bishop, 2006; Neopolitan, 2009), and have been shown to 

be effective models of human learning of causal strength and structure as well (Griffiths 

& Tenenbaum, 2005).  

 Following Glymour’s (1998) lead, numerous researchers have explored the use of 

CBNs as normative models for human data-driven causal inferences in scenarios with 

sparse data. For example, young children were shown to use direct and indirect 

probabilistic information to make simple causal inferences (Gopnik, Sobel, Shultz, & 

Glymour, 2001).  Sobel, Tenenbaum, & Gopnik (2004) found that four year old children 

showed a preference for one cause over another when more than one cause is present (an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 In practice, people are often trying to compare candidate events in order to determine a 
unitary cause of an observed effect (Sobel, Tenenbaum, & Gopnik, 2004).  
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ability known as backwards-blocking), though three year olds did not. This ability to 

make causal inferences from probabilistic data was also found to be present across 

domains (Schulz & Gopnik, 2004).   

 And yet, there were limits to how subjects used and interpreted the effect of 

probabilistic causes on observed outcomes. For example, despite the fact that causes did 

not always lead to the expected effect in every trial, young children consistently assume 

that causes produce effects deterministically (Schulz & Sommerville, 2006). The 

accuracy of children’s causal inferences from probabilistic data were also higher when 

observations of cause and effect were relatively spatially close (Kushnir & Gopnik, 

2007). Additionally, Lu, Rojas, Beckers, & Yuille (2008) found that adults preferred 

possible causes that appeared across multiple trials, as opposed to those that only appear 

in one trial in a series, even if single-event possible causes had slightly higher generative 

power (Cheng, 1997).  

Therefore, researchers have had success using CBN-based models of human data-

driven causal inference. It should be noted that, in sharp contrast to this paper, possible 

causes and effects were made clearly apparent to the subjects, either through the direct 

observation of highly-salient events, or in well-defined summary tables of data across all 

of these studies. This is because CBN-based models are highly sensitive to information 

quality—the less well defined the event occurrences are, the more data is required for the 

models to accurately detect the presence of a causal relationship (Bishop, 2006). This is 

an important trait to consider, since humans are often forced to make causal inferences 

with scarce amounts of relatively low-quality data.  
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What is the role of data salience in causal inference? 

 Like all algorithms, CBN-based models are highly sensitive to the quality of data 

used in the inference process. As outlined above, the less informative the data (the higher 

the entropy), the more data that is required for individuals doing the reasoning to 

correctly infer causal connections. This concept of the quality of data in terms of 

information entropy is a central tenant of Shannon’s (1948) information theory. It has 

previously been proposed that, based on information theory, one way for science 

educators to help scaffold student learning in complex, data-rich environments is to make 

relevant data more salient by either directly manipulating the data, or by teaching 

students to recognize important patterns (Tutwiler, 2013).  

This connection between the physical salience of data and attention and perception is 

well established in both cognitivist and behaviorist literatures outside of the CBN-based 

research, but has not been explored directly in connection with CBN-based models. From 

a neurological perspective, salience is the degree to which certain data is distinguishable 

from other data in a perceptual field, and is modulated in the thalamus by the pulvinar 

nuclei during the attentional selection process (Snow, Allen, Raphal, & Humphries, 

2009). As such, salience plays a role in attentional selection in psychological theories of 

data-driven learning (e.g., Wickens & McCarley, 2001; Tsakanikos, 2004). In these 

theories, the salience of an object is defined by both its physical features (bottom-up 

salience) as well as by observer-specific traits such as prior knowledge (top-down 

salience) (Melloni et al, 2012). Information about data is then processed along these two 

channels, and an overall degree of salience is determined. Data with higher salience, due 

to weighting along either channel, tend to garner more attention and are more likely to be 
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considered when updating mental models of causal systems, a process known as 

attentional selection (e.g., Walther, Itti, Riesenhuber, Poggio, & Koch, 2002). This 

relationship between salience and attentional selection of data is a critical component of 

this study, as well as in future studies of student learning in virtual environments. 

In this study, physical salience is analogous to the bottom-up salience (Melloni et al, 

2012) described above, and is defined as the degree to which data is conspicuous in 

relation to the surrounding environment (Itti, Koch, & Nieber, 1998), a definition which 

has been operationalized and used in the Salience, Effort, Expectancy, and Value (SEEV) 

model of attention capture (Wickens, Helleberg, Goh, Xu, & Horrey ,2001; Wickens, 

Goh, Horrey, Helleberg, & Talleur, 2003; Wickens, McCarley, & Steelman-Allen, 2009) 

and guided Clarke (2009) in her exploration of the systematicity of data collection 

behaviors in River City, a MUVE developed by Dr. Chris Dede and colleagues at 

Harvard University to help support student understanding of the spread of diseases in a 

historical context (Ketelhut et al., 2010). Clarke (2009) found that students became more 

systematic in their data collection over successive visits to the River City MUVE.  Her 

measure of systematicity accounted for the physical salience of the data each student 

collected over time. It is this aspect of her work upon which I draw most heavily here.   

Student data collection in a complex virtual environment: The EcoMUVE 

 In this study I explore student data collection in a data-rich MUVE: the 

EcoMUVE pond module. As introduced above, the EcoMUVE is a multi-user virtual 

environment designed to help support middle-school student understanding of 

ecosystems science topics and complex causal patterns. In the EcoMUVE, students take 

on the roles of specific types of data-collection specialists (related to flora/fauna 
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population, water chemistry, weather, personal testimony) and work in teams of four 

through a jigsaw pedagogical model (e.g., Colosi & Zales, 1998; De Baz, 2001) to solve a 

scientific mystery in one of two ecological settings: pond or forest (Metcalf et al, 2011).  

To do so, students must interact with the virtual environment through the use of specific 

data-collection tools, make careful observations about changes within the system over 

time, and interact with residents of the virtual world. They then share data from these 

interactions in order to formulate a possible hypothesis about the cause of the scientific 

mystery at hand, which they share with their classmates.  

The present study is embedded within the larger design-based research agendas of 

the EcoMUVE Project Team, and is intended to provide guidance for future research 

involving this specific virtual environment. In the broader project work, two different 

modules were developed to test the feasibility of using specific affordances of virtual 

environments (Dede, 2009) to impact students’ ecosystems content knowledge and 

recognition of complex causal patterns (Grotzer, Basca, & Donis, 2002). In the first 

module, EcoMUVE Pond, students exploring a virtual ecosystem centered on a pond 

observe that all of the large fish die on a given date. They must then travel back and forth 

through time (a specific affordance of the technology) within the MUVE, collecting data 

to explain the fish die-off. In the second module, EcoMUVE Forest, students travel back 

and forth through time to explore the impact on the ecosystem created by populations of 

wolves and deer on various forested islands.  

Results of preliminary research indicated that use of the EcoMUVE in middle-

school classrooms was feasible (Metcalf, Kamarainen, Grotzer, & Dede, 2012), and that 

students who used the EcoMUVE modules demonstrated positive shifts in measures of 



13	  
	  

content knowledge (Metcalf, Kamarainen, Tutwiler, Grotzer, & Dede, 2013), science 

attitudes (Kamarainen, Metcalf, Grotzer, & Dede, 2012; Chen & Metcalf, 2013), and 

complex causal understanding (Tutwiler, Grotzer, Kamarainen, Metcalf, & Dede, 2011; 

Grotzer, Kamarainen, Tutwiler, Metcalf, & Dede, 2013). Prior research has also 

established that the initial use and rate of use of tools to collect data vary over the course 

of the student use of the EcoMUVE Pond module and are related to student prior 

knowledge of ecosystems science content and understanding of complex causal models 

(Tutwiler, Grotzer, Kamarainen, Metcalf, & Dede, 2013). 

 What of the salience of the data collected, however? The EcoMUVE Pond 

module is a data-rich virtual environment, with said data representing a wide range of 

physical salience. For example, a student in the role of water chemist may notice that the 

clarity of the water in the pond changes over time and might collect turbidity 

measurements across multiple days. Compared to the shift in turbidity measurements, the 

changing water clarity is a more easily recognizable feature of the pond, though they 

essentially both measure the same thing. In short, the shift in water clarity is a more 

salient feature.  

In future research, we intend to vary the level of salience of data within the 

EcoMUVE Pond curriculum to measure its impact on student data collection and causal 

inferences. First, however, we need to understand the initial value and rate-of-change of 

the salience of data collected by students in the EcoMUVE Pond curriculum in its current 

state, and its relationship to student prior ecosystem content knowledge, attitudes about 

science, and knowledge of complex causal patterns.  
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Inferring student behavior from event log data 

 Traditional observational techniques, such as video-taped sessions or direct 

researcher observation, would not allow for the detailed exploration of change in the 

behavior of hundreds of students over time. Modern technologies allow us to overcome 

these limitations, however. For example, student actions in MUVEs can be meticulously 

observed and stored in longitudinal event log format. These records can then be analyzed 

via a host of exploratory and hypothesis-testing methods.  

 Researchers have utilized event log data to explore behavior in various MUVEs. 

For example in Quest Atlantis, a MUVE based on social and environmental citizenship 

for middle-school aged students, event log data have been parsed to explore student 

navigation and chat (Borner & Penumarthay, 2003; Penumarthay & Borner, 2006). In 

Whyville, a MUVE focused on upper-elementary to middle school science and social 

science learning, researchers used event log data to track user reaction to a virtual 

epidemic (Kafai, Quientero, & Feldon, 2010). Neither of these sets of analyses fully 

utilized the longitudinal nature of the event log data to explore and test hypotheses about 

student behavior in MUVEs, however.  

 The use of event log data to explore student behavior in the River City MUVE has 

been particularly fruitful. Using the River City MUVE as a case study, Dukas (2009) 

outlined design heuristics to maximize the use of MUVE-based event log data in 

exploratory and confirmatory research. Combining longitudinal event log data with pre-

and-post intervention assessment data, Nelson (2007) found that students who used 

individual reflective guidance systems more frequently showed larger learning gains. In a 

similar vein of inquiry, Ketelhut (2007) found that students in the River City MUVE 
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increased their scientific data gathering behaviors with each visit to the River City virtual 

world. Additionally, middle-school students who used the River City MUVE were found 

to become more systematic in their scientific behavior over time (Clarke, 2009). It is to 

this latter body of work that this dissertation study contributes by, as outlined below, 

formatting the event log data as a person-period data set and fitting individual growth 

models (Singer & Willett, 2003), similar to those used by Ketelhut (2007) and Clarke 

(2009), to specifically look at the relationship between the top-down and bottom-up 

salience of data collected by students exploring and learning in a MUVE.  

Research Questions 

 In this chapter, I have reviewed theories on data-driven causal inferences in 

humans and highlighted their sensitivity to various properties of the data, specifically 

salience. I then framed how data salience drives attentional selection of data. Next, I 

outlined how event log data from MUVEs have been used to explore student data 

collection behaviors in past research. In this study, I contribute to the literature by 

exploring the relationship between aspects of students’ prior knowledge and their 

attentional selection of data over time, based on the physical salience levels of the data 

they collect. Understanding this relationship is crucial, as it will inform curriculum 

designers and researchers as to what users attend to in the MUVE, but also potentially in 

similar real-world settings as well. This should allow content creators to better scaffold 

student learning in complex environments such as science labs, field trips, and MUVEs.  

To discover potential methodological issues inherent to future research on the 

impact of data salience on causal inferences in a high fidelity virtual environment, I 

conducted an exploratory study of the ways in which students’ prior preference for 
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complex causal explanations is related to the physical salience of the data they collect in 

one such virtual environment, the EcoMUVE Pond. To do so, I fit models predicting 

three outcomes based on the level of physical salience of data collected by students 

across a number of visits to the EcoMUVE pond module in the spring of 2011. I then use 

these measures, as well as measures of pre-intervention preference for complex causal 

explanations, prior knowledge, and indicators of which teacher each student had, to 

answer the research questions below. For each research question, I offer an a priori 

hypothesis about the nature of the relationship between student pre-intervention 

tendencies to offer complex causal explanations and each outcome based on the extant 

research. 

RQ1: Do students with a higher pre-intervention tendency to offer explanations 

containing complex causal components demonstrate more focused attentional selection of 

data by reducing the salience of the data they collect during each visit to the virtual 

world more rapidly than their peers with a lower pre-intervention tendency to offer 

explanations containing complex causal components? 

 Based on prior research on student data collection in the EcoMUVE (Tutwiler et 

al, 2013) and River City MUVE (Clarke, 2009), as well as the goal of the EcoMUVE 

curriculum, I hypothesize that students in the EcoMUVE will focus their attention on less 

physically salient data over time. I further hypothesize that students with a greater 

tendency to use more complex causal explanations will initially collect less physically 

salient data, and experience a steeper decline in the average salience of the data they 

collect over time in the EcoMUVE.  
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RQ2: Do students with a higher pre-intervention tendency to offer explanations 

containing complex causal components demonstrate more focused attentional selection of 

data by decreasing the number of collected data points that have low physical salience 

each visit to the virtual world less rapidly than their peers with lower pre-intervention 

tendency to offer explanations containing complex causal components? 

 In general, students collect less data each time they use the EcoMUVE (Grotzer et 

al, 2013). However, students with a greater tendency to use more complex causal 

explanations will collect comparatively more data points classified as having low 

physical salience over time compared to their peers with less complex causal 

understanding. 

RQ3: Do students with a higher pre-intervention tendency to offer explanations 

containing complex causal components demonstrate more focused attentional selection of 

data by increasing the proportion of data they collect with low physical salience each 

visit to the virtual world more rapidly than their peers with a lower pre-intervention 

tendency to offer explanations containing complex causal components? 

 Students with a tendency to use more complex causal explanations will initially 

have a higher proportion of low physical salience data, and increase the proportion of low 

physical salience data they collect over time more rapidly than their peers with less 

complex causal understanding.  
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Chapter 3: Research Design 

Site 

Data for this study were collected in the Spring of 2011 from 143 7th-grade 

students (nested within five teachers) in a two schools in a suburban school district in the 

North Eastern United States. The student population of this district is approximately 61% 

White Non-Hispanic, 6% Asian, 23% Latino/Hispanic, and 7% Black/African American, 

with approximately 21% of students qualifying for Special Education status, 36% of 

students classified as First Language Not English, 13% of students classified as English 

Language Learners, and 39% of students qualifying for free or reduced price lunches. 

Teachers for this sample were recruited by the research team, and written consent was 

obtained from each student included in the dataset.  

Dataset 

 Three types of data were analyzed for this study: time-stamped event log data 

from students’ actions within the EcoMUVE pond module, pre-intervention assessment 

of prior knowledge and complex causal understanding, and demographic data collected 

prior to the EcoMUVE pond intervention. The unit of analysis for my study was at the 

student level. Taken as a set, these data allowed me to answer my research question as 

such: The average salience level of data collected, number of low-salience data points, 

ratio of low salience to total data collected per visit, and the record of student visits to the 

EcoMUVE pond module were all calculated from records in the event log. The question 

predictors were developed based on the pre-intervention assessment data, and the control 

variables were derived from demographic data and pre-intervention assessment data.  
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Sample 

 The sample for this study was comprised of 143 7th grade students, 53% of which 

are female. Student responses to the pre-intervention causal survey, described below, 

yielded a mean score of 0.58(SD=0.44) with a minimum of 0 and maximum of 1.0. I 

expect to be able to detect an effect size of 0.33 standard deviation units at a statistical 

power of 0.80 at standard levels (.05) of Type I error.  

Instruments 

  To create a measure of the physical salience level of data gathered in the 

EcoMUVE Pond module, I used a method first employed by Clarke (2009). I developed 

and applied a rubric of salience for the various types of data in the EcoMUVE pond 

scenario based on visibility and location in the MUVE (Appendix B). For example, data 

on the size of the population of bass in the pond may be given a salience score of 2 out of 

4 because it is in the pond (where students collect most data), but requires the student to 

look under the water to collect the information, whereas collecting bacteria population 

data using the submarine tool would score a salience of 1, since it requires the additional 

use of the submarine tool and multiple layers of magnification before using the 

“population tool” to collected the desired data.  

Guidelines derived from the procedures used by Clarke (2009) were used to 

develop a basic coding scheme based on location and visibility of the data. Two 

independent raters2  and I then applied this rubric to subsets (approximately 25% each 

rater per round) of the various types of data students are able to collect in the EcoMUVE 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The first rater was a graduate student in the educational technology program of a private 
university in New York . She was familiar with coding data in virtual worlds based on 
her course work with Professor Ryan Baker. The second rater was a graduate student in 
the educational technology program at a private university in Connecticut.  
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pond module. I discussed any points of departure between our scoring independently with 

each rater, and iteratively updated my rubric after each round. Once a high degree of 

agreement was met (>75%) between each of the raters and myself regarding the physical 

salience levels of the data in those subsets, I revised the rubric and used the final coding 

scheme to rate the degree of physical salience of the data collected by students in the 

EcoMUVE pond module.  

 With the physical salience accounted for, I explored the relationship between 

student tendency to offer explanations containing complex causal components and prior 

content knowledge, hypothesized to be critical components of top-down salience 

(Melloni et al, 2012), in relation to the level, amount, and proportion of physical salience 

collected. One such component was the degree to which each student had a tendency to 

offer explanations with complex causal patterns (Grotzer, 2012) that underlay the 

observed events in the EcoMUVE pond module. The other was the level of prior content 

knowledge possessed by each student (Melloni et al, 2012). 

 Student pre-intervention tendency to offer explanations containing complex 

causal components was assessed via the c (Grotzer & Derbiszewska, 2011), designed to 

assess the degree to which students reason about an ecological scenario using complex 

causal components (such as non-obvious causes, across spatial gaps, change over time, 

and changes in population levels) by coding responses to prompts about these complex 

causal patterns. A high or score on the complex causal components (low on simple 

components) or balanced score between them (as the ecosystem scientists argued for) is 

considered more sophisticated. The assessment is closely aligned with the EcoMUVE 
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Pond Module. Scoring of student responses by independent raters yielded a high inter-

rater reliability (over .89 Cohen’s Kappa).  

 Student pre-intervention content knowledge was measured using a 19 question 

mixed-format assessment comprised of 14 multiple choice and 5 open-response items 

(Metcalf & Kamarainen, 2011).  Student responses to the multiple choice questions were 

marked right or wrong, and multiple assessors coded their open-ended responses (over 

.80 Cohen’s Kappa). The instrument, as a whole, had adequate reliability (Cronbach’s 

standardized alpha = 0.75).  

Procedures 

Student use of the EcoMUVE. 

 The EcoMUVE Pond unit is a ten day curriculum designed to be used with 

middle-school science students.  A full account of the daily activities each student 

undertook is given in Appendix A.  Students’ tendencies to offer complex causal 

explanations, their prior content knowledge, and their demographic information were 

collected prior to the first day of the intervention. Students then visited the EcoMUVE 

(that is to say, logged-in to the world and collected data during a given class period) 

approximately six of the next ten class periods, exploring and collecting data within the 

virtual world.   

 Data for this study were collected on each student’s second, third, and fourth visit 

to the EcoMUVE Pond. Students were introduced to the fish die-off on the second visit 

(the second day of the unit), and collected data within the MUVE on that visit as well as 

on the remaining four visits to the EcoMUVE (the fourth, fifth, seventh, and eighth days 

of the unit.) Prior to their third visit (day five of the unit), students were assigned to teams 
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and chose roles to guide their data collection within the MUVE (see Appendix A for 

details.)   

 Data from the first, fourth, fifth, or sixth visits to the EcoMUVE were not 

analyzed. As outlined in Appendix A, the first visit (on the first day of the unit) occurred 

before the students were made aware of the fish die-off event; they were tasked with 

collecting photographs of flora and fauna within the virtual world to help them learn 

about the different areas and how to navigate therein.  The data from this visit would not 

be appropriate to answer my research questions, which assume students are collecting 

data in service of unraveling the causal-and-event relationships that resulted in the fish 

die-off event. Observations of student use of the EcoMUVE in similar classroom 

environments showed that later in the curriculum (visits four through six) students often 

shared information by talking in groups outside of the MUVE, or shared information 

across groups. This erodes the validity of any inferences about student-level data 

collection behaviors, and resulted in my decision to exclude those visits from this 

analysis.  

Measures 

 Given the longitudinal nature of the outcomes, the values of all measures were 

recorded in a person-period dataset (Singer & Willett, 2003). Time was recorded from 

each student’s first visit to the EcoMUVE pond module until their last visit. For example, 

if a student used the EcoMUVE three times over the course of one school week (five 

days), there are three rows of data for that particular student. The outcome predictors all 

represent different measurements of bottom-up salience, whilst the question predictor and 

covariates (vector of teacher fixed effects notwithstanding) represent top-down 
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contributions to salience (Melloni et al, 2012). Descriptive statistics of the measures are 

given in Table 1.  

Outcomes. 

AVG_SALIENCEij is a continuous variable that represents the average level of 

salience of data collected by a student j on a given visit i to the EcoMUVE pond module. 

It was constructed by summing across the salience scores (ranging from 1 to 4) of each 

piece of data collected that day and dividing by the number of discrete data collection 

events for that student on the particular day.  

NUM_LOWij is a continuous variable that represent the number of data points 

collected by student j on visit i that have low values (1 or 2) of physical salience. To meet 

distributional assumptions, this variable was natural-log transformed. 

PROP_LOWij is a continuous variable3 that represents the proportion of data 

collected by student j on visit i that are classified as having low physical salience (values 

of 1 or 2). It was constructed by summing the number of low-salience data points 

collected each day and dividing it by the total number of data points collected. To meet 

distributional assumptions, the square-root of this variable was arcsine transformed 

(Kirchner, 2001).  

Question predictors. 

To answer my research questions, I first modeled each of the outcome variables 

on the predictor VISITij, an ordinal variable (0, 1, 2) which represents the second through 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Though proportions are strictly bound by 0 and 1, proper transformation allows for 
tentative inferences to be made based on regression-based analysis of this outcome 
(Johnston, 2014). 
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fourth visit to the EcoMUVE by student j on day i. In my individual growth models, the 

intercepts correspond to a student’s second visit to the EcoMUVE. 

I then included a measure of tendency to give complex causal explanations 

(CAUSAL_PREj), derived from the pre-intervention assessment as described in the 

Instruments and Procedures sections above. I calculated the proportion of complex 

explanations by creating a ratio of complex (non-obvious and distant) to total (obvious, 

local, non-obvious, and distant) count scores on the Causal Dynamics Assessment to 

produce the CAUSAL_PREj measure. This measure was then centered on the sample 

mean to aid in interpretability of the associated regression coefficients (Singer & Willett, 

2003).  

Controls. 

Based on prior research (Metcalf et al, 2013), I included a vector of dummy 

control variables to account for between-teacher variability (TEACHERj)4, again 

withholding one from the model for comparison. In addition, I included a dummy 

variable set to 1 if the student was female and 0 if they were male (FEMALEj), based on 

findings of the impact of gender on student data collection in past MUVE research 

(Ketelhut, 2007). Finally, to control for the possible effects of prior knowledge of 

ecosystems science concepts, an important top-down salience component per Melloni et 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Exploratory intra-class correlation analyses across all three outcomes in this study 
resulted in my excluding random effects or vectors of fixed-effects to control for possible 
autocorrelation due to clustering by team and class period.  
 
I also excluded controls for the roles that students took on in the EcoMUVE.  This is due 
to the fact that they were assigned those roles after having already made two visits to the 
EcoMUVE and their influence is only reflected in one day of data for this study.  Roles 
were also chosen by students, and not exogenously assigned by the teacher. An 
exploratory analysis showed that they were not statistically significantly related to the 
outcomes, and were thus excluded from the analysis.  
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al. (2012), on data gathering behaviors. I included the total score, centered on the sample 

mean, from the pre-intervention content knowledge assessment described in the 

Instruments and Procedures sections (PRE_CONTENTj). These controls are represented 

in the models below as the student-level vector Z!. 

Table 1. Descriptive statistics 
  

 
  Mean SD Min Max Obs. 
AVG_SALIENCE 2.46 0.87 1 4 389 
NUM_LOWa 2.48 1.14 0.69 5.07 389 
PROP_LOWb 0.78 0.44 0 1.57 389 
VISIT 1.02 0.81 0 2 389 
PRE_CAUSALc 0.00 0.15 -0.41 0.34 389 
PRE_CONTENTc 0.00 4.66 -11.85 11.14 389 
FEMALE 0.53 0.50 0 1 389 
TEACHER1 0.23 0.42 0 1 389 
TEACHER2 0.22 0.41 0 1 389 
TEACHER3 0.25 0.44 0 1 389 
TEACHER4 0.12 0.33 0 1 389 
TEACHER5 0.18 0.39 0 1 389 

a Natural log transformed 
b Arcsine-square root transformed  
c Centered on sample mean 

Data Analytic Plan 

Cleaning and shaping of event log data. 

 As with any complex quantitative study, cleaning and shaping of data were major 

parts of the overall effort undertaken in conducting this study.  In general, the cleaning 

and shaping process consisted of four major steps: 1) Exporting data from the EcoMUVE 

back-end to Microsoft Excel via SQL, 2) cleaning and mining the data in Microsoft Excel 

using VBASIC and Pivot Table functions, 3) evaluating the cleaned data with the 

physical salience rubric described above, and 4) shaping the data into the required format 

for longitudinal analysis.  
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 The first two steps were relatively straightforward.  Student data records, 

previously anonymized and organized by an assigned student id number, were 

downloaded from the server in which they were stored via a secure web portal.  This was 

accomplished primarily through the use of SQL scripts.  This produced approximately 

sixty-thousand rows of data that had to be further cleaned and mined prior to analysis.  

To accomplish this, using VBASIC I deleted any events that were canceled prior to 

student completion. For example, if a student took a photograph of a duck in the pond, 

but chose not to store the information in the virtual field guide, that data entry was 

removed.  I then screened out any events that were not related to data collection, such as 

logging-in to or out of the MUVE. 

 Next, I used the finalized physical salience rubric (Appendix B) to calculate the 

physical salience scores of the various data that students could collect in the EcoMUVE 

Pond.  The data were ordered by their location and visibility and coded per the rubric.  

After the salience codes were added, student pre-intervention demographic, causal, and 

content-knowledge scores were merged.  Finally, the data were arranged into a person-

period format (Singer & Willett, 2003) in order to support the subsequent analyses.  This 

required me to sort and group all of the observations first by student ID number, and then 

by date (converted to the VISIT variable described above.) 

Data analysis. 

 To answer my research questions, I fitted a series of multi-level individual growth 

models (Singer & Willett, 2003). The same structural (regression coefficients) and 

stochastic (residuals) components were used across all three models. In this section, I 
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present the model used to answer the first research question, and explain how the other 

two were answered using similarly fitted models.  

RQ1: Do students with a higher pre-intervention tendency to offer explanations 

containing complex causal components demonstrate more focused attentional selection of 

data by reducing the salience of the data they collect during each visit to the virtual 

world more rapidly than their peers with a lower pre-intervention tendency to offer 

explanations containing complex causal components? 

To answer this question, I first propose the following level-1 trajectory for the 

salience of data collected by student j on visit i: 

AVG_SALIENCE!" =   π!" +   π!"(VISIT!")+   ε!"   

where  ε  ~  N(0, σε!) 

In this hypothesized level-1 population model the intercept parameter,  π!", represents the 

initial average salience of data collected while the slope parameter, π!", represents the 

rate of change of salience of data collected per visit to the EcoMUVE pond module. The 

level-1 residual term, ε!", which denotes within-person differences in the outcome, is 

hypothesized to be normally distributed with a mean of zero and variance σε!.  

 To answer the first research question, I also propose the following level-2 model: 

π!" =    γ!! +   γ!"CAUSAL_PRE! + δ!Z! + ξ!" 

π!" =    γ!" +     γ!!CAUSAL_PRE! + δ!Z! + ξ!" 

where
  ξ!"  
ξ!"

~  N   0  
0 , σ!

! σ!"
σ!" σ!!

 

In this hypothesized level-2 population model the intercept parameters, γ!! and  γ!", 

represent the population average initial values of the level and rate of change, 
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respectfully, of the salience of data collected during each visit of a hypothetical male 

student with no pre-intervention tendency to offer explanations containing complex 

causal components and no prior ecosystems content knowledge in the classroom of the 

teacher who filled the comparison role in the EcoMUVE pond module. The slope 

parameters γ!" and  γ!! represent the effect of student pre-intervention tendency to offer 

explanations containing complex causal components on the initial level and rate of 

change, respectively, of the salience of data collected during each visit of a hypothetical 

male student with no prior content knowledge in the classroom of the teacher who filled 

the comparison role in the EcoMUVE pond module. The parameter δ represents the 

effect of a vector of control variables accounting for the effect prior content knowledge, 

gender, and the student’s teacher on the initial level (γ02- γ07) and rate of change (γ12- γ17), 

respectively, of the salience of data collected during each student’s visit to the EcoMUVE 

pond module. It is assumed that the level-2 residuals, ξ!" and ξ!" are randomly drawn 

from a bivariate normal distribution with respective variances of σ!! and σ!!, and a 

covariance of σ!".  

 To answer my first research question, I examined the parameters γ!" and  γ!!. For 

example, if γ!" and γ!! are negative and statistically significant, then I can claim that 

students with a higher pre-intervention tendency to offer explanations containing 

complex causal components will initially collect less salient data as well as demonstrate a 

more rapid focusing of their attention on less-salient data compared to their peers with a 

lower pre-intervention tendency to offer explanations containing complex causal 

components, on average in the population and controlling for all other variables in the 

model.  
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The preceding two-level model can also be represented as the following 

hypothesized population mixed model:  

AVG_SALIENCE!"

=    γ!! +   γ!" VISIT!" + δ!Z! +   γ!"CAUSAL_PRE! + γ!!(CAUSAL_PRE!

∗ VISIT!")+ δ!(Z! ∗ VISIT!")+ {ε!" + ξ!" + ξ!" ∗ VISIT!"}   

To answer my second and third research questions, I replaced AVG_SALIENCEij with 

the outcomes NUM_LOWij (log transformed) and PROP_LOWij (arcsine-square root 

transformed) respectively. I then examined I examined the parameters γ!" and  γ!! in each 

model, making inferences as outlined above.   
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Chapter 4: Findings 

In this section I first report the shift in trends of physical salience of data collected 

in the second, third, and fourth visits to the EcoMUVE Pond unit. I then present the 

results, organized by research question, of fitting the aforementioned individual growth 

models. In each section I will first refer to a table with fitted taxonomies of regression 

models. Column 1 of each table includes the fixed-effects measures of initial value (Rows 

1-9) and rate of change (Rows 10-16) of each model. Variance components are given in 

Rows 17-19, while a range of fit statistics are given in Rows 20-22. Column 2 of each 

table presents the coefficient symbols given in the population-level model above. In each 

table, I follow the same pattern of model building, moving from an unconditional growth 

model (Column 3) with time as the only predictor, adding key control variables (Column 

4), adding the question predictor (CAUSAL_PREj) (Column 5), and then presenting a 

final parsimonious model for further evaluation (Column 6). No statistically significant 

interactions were detected. Finally, I highlight key findings via figures with plots of 

prototypical students. Further insights on these findings are given in the discussion 

section that follows. 

Trends in Physical Salience over Time  

 Figure 2 is a panel of plots summarizing the data collected across all three 

measured student visits to the EcoMUVE.  The vertical axes are counts of data collected, 

and the horizontal axes are physical salience levels of the data. Note that, across all three 

observed visits to the EcoMUVE Pond virtual environment, a majority of the data 

collected were coded as low physical salience (mostly level 1). Looking at Panel A, I see 

that students collected just over seven thousand pieces of data on their second visit to the 
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EcoMUVE.  This rises to just over eight thousand collected pieces of data on visit 3 

(Figure 2, Panel B), before dropping sharply to just over five thousand pieces on visit 4 

(Figure 2, Panel C).  I also note that students collected a higher number of very high 

physical salience (level 4) data on the second and third visits relative to the amount of 

moderately physically salient data (level 3).   

   
Figure 2. Panel of plots showing the frequency of data collected by students (n=143) at 
each level of physical salience across the second (Panel A), third (Panel B), and fourth 

(Panel C) visits to the EcoMUVE pond unit.  

RQ1: Average physical salience collected per visit to the EcoMUVE 

 Viewing Table 2, Model 1, note that without controlling for the effect of prior 

knowledge, gender, or teacher, the average level of physical salience of data collected by 

students on their second visit to the EcoMUVE is 2.34 (γ00 , p<.001), and increases by 

about 0.12 (γ01, p<.05) per visit over the next two days of the curriculum.  

Controlling for these factors (Table 2, Model 2), on average in the population 

every one point difference in pre-intervention content equates to an average physical 

salience score that is 0.02 (γ02 , p<.05) points lower on Visit 2. In addition, the rate of 

A B C 
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change of the level of physical salience of data collected does not differ based on prior 

content knowledge (γ12=0.01, n.s.). The vector of fixed-effects accounting for teacher 

impact on the initial level (γ04- γ07) and rate of change (γ14- γ17) are both statistically 

significant (p<.05). Student gender was not statistically significantly related to the initial 

value (γ03= -0.10, n.s.) or the rate of change (γ13= 0.16, n.s.) in average physical 

salience level of data collected over time, controlling for prior knowledge fand teacher.  

Adding the question predictor (PRE_CAUSAL) in order to answer my first 

research question (Table 2, Model 3), I observe that student causal knowledge prior to the 

intervention, as measured by the proportion of complex responses given on the 

assessment, does not have a statistically significant effect on the starting value (γ01, n.s.) 

or rate of change (γ11, n.s.) of the average physical salience level of data collected, 

controlling for all other factors in the model. That is, students with higher pre-

intervention tendency to offer explanations containing complex causal components do not 

exhibit any more or less rapid change in the physical salience of data they choose to 

collect over time compared to their peers with lower pre-intervention tendency to offer 

explanations containing complex causal components, controlling for prior content 

knowledge, gender, and the effects of their teacher. 

The final parsimonious model (Table 2, Model 4), then, represents the starting 

point and change in average physical salience levels of data collected by 7th grade 

students over time in the EcoMUVE pond module.  I highlight two important trends from 

this model in the fitted plots of prototypical students that follow. Figure 2 illustrates the 

effect of prior knowledge on the physical salience level of data collected over time for 

two randomly selected students (i.e., each measure in the vector of teacher fixed effects 
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was set to 0.5), one of whom has high prior content knowledge (two standard deviations 

above the sample mean) and one of whom has low prior knowledge (two standard 

deviations below the sample mean). Figure 3, on the other hand, highlights differences in 

the average physical salience levels of data collected over time by prototypical students 

(with prior knowledge at the sample mean) across the five teachers in the sample.  

 
Figure 3. Average physical salience level of data collected by randomly selected students 

as a function of visit by students with high and low prior knowledge (n=143). 
Observing Figure 3, note that there is a marginal initial difference (p<.10) 

between randomly selected students with high and low prior knowledge. Students with 

high prior knowledge initially collect data with an average physical salience value of  

1.58, whereas randomly selected students with low prior knowledge initially collect data 

with a physical salience value of 1.79. This gap is then consistent over time, with high 

prior-knowledge students collecting data with lower average physical salience values 

than their peers with lower prior knowledge.  
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Figure 4. Average physical salience level of data collected by prototypical students (prior 

content knowledge at sample mean) as a function of visit, by teacher (n=143). 
Inspection of Figure 4 yields another side of the story, however. If one considers 

prototypical students (with prior content knowledge at the sample mean) from the class of 

each teacher, then a wide range of variance between teachers in the trends of physical 

salience levels of collected data becomes apparent. For example, note that the initial 

value of average physical salience was indistinguishable for teachers 2 and 5 on Visit 2. 

However, their longitudinal trends in data collection were strikingly different, with 

teacher 2’s prototypical students collecting data that was more physically salient and 

teacher 5’s prototypical students collecting data that was less salient. As such, teacher 2’s 

prototypical students collected the data with the highest average physical salience on 

Visit 4, whereas teacher 5’s prototypical students collected the least salient data, a 

difference that was statistically significant (p<.05). I explore potential sources of this 

variance in the discussion section that follows.  
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Table 2. Results of fitting individual growth models of the change in average physical 
salience of data collected over time by middle school students in a multi-user virtual 
environment (n_teach=5; n_student=143; n_observations=389)   

   

Model 1.  
 

Unconditional 
Growth 
Model 

Model 2. 
           

Model 1 
+Controls 

Model 3. 
           

Model 2 
+Predictor 

Model 4. 
 

Final 
Model 

Fixed Effects      

INTERCEPT γ00 
2.34*** 
(0.06) 

2.80*** 
(0.15) 

2.78*** 
(0.16) 

2.73*** 
(0.14) 

VISIT γ10 
0.12* 
(0.06) 

-0.54*** 
(0.14) 

-0.53*** 
(0.14) 

-0.43*** 
(0.12) 

PRE_CAUSAL† γ01 
   0.22 

(0.33)  

PRE_CONTENT† γ02 
  -0.02* 

(0.01) 
-0.02* 
(0.01) 

-0.01~ 
(0.01) 

FEMALE γ03 
  -0.10 

(0.11) 
-0.09 
(0.10)  

TEACHER1 γ04 
  

-0.56** 
(0.18) 

-0.55** 
(0.18) 

-0.55** 
(0.18) 

TEACHER2 γ05 
  

0.03 
(0.18) 

-0.04 
(0.18) 

0.05 
(0.18) 

TEACHER3 γ06 
  

-0.55** 
(0.17) 

-0.54** 
(0.17) 

-0.54** 
(0.19) 

TEACHER4 γ07 
  

-1.10*** 
(0.21) 

-1.10*** 
(0.21) 

-1.05*** 
(0.20) 

PRE_CAUSAL*VISIT γ11 
   -0.10 

(0.33)  

PRE_CONTENT*VISIT γ12 
  0.01 

(0.01) 
0.01 

(0.01)  

FEMALE*VISIT γ13 
  0.16 

(0.10) 
0.16 

(0.10)  

TEACHER1*VISIT γ14 
  

0.37* 
(0.16) 

0.36* 
(0.17) 

0.35* 
(0.16) 

TEACHER2*VISIT γ15 
  

0.76*** 
(0.16) 

0.76*** 
(0.15) 

0.73*** 
(0.15) 

TEACHER3*VISIT γ16 
  

0.69*** 
(0.16) 

0.68*** 
(0.16) 

0.66*** 
(0.16) 

TEACHER4*VISIT γ17 
  

1.19*** 
(0.19) 

1.19*** 
(0.19) 

1.11*** 
(0.19) 

Variance Components      
Level1 Residual σε2 0.6064*** 0.5436*** 0.5423*** 0.5513*** 

Level 2 Initial σ0
2 -0.06701~ -

0.1211*** 
-

0.1210*** -0.1263*** 

Level 2 Rate of Change σ1
2 0.1202*** 0.06648** 0.06686** 0.06996*** 



36	  
	  

Goodness of fit  
     

-2LL  966.0 837.0 836.4 841.4 
AIC  976.0 871.0 874.4 869.4 
BIC  990.8 921.4 930.7 910.9 
† Centered on the 
sample mean 

 
    

~p<.1; *p<.05; **p<.01; 
***p<.001      

 

RQ2: Number of low physical salience data points collected per visit to the EcoMUVE 

Viewing Table 3, Model 1, note that without controlling for the effect of prior 

knowledge, gender, or teacher, the (log transformed) number of low physical salience 

data points collected by students on their second visit to the EcoMUVE is 2.74 (γ00, 

p<.001), and decreases by about 0.26 (γ01, p<.05) per visit over the next two days of the 

curriculum.  

 How do the student’s prior knowledge, gender, and teacher affect this trend? Note 

while looking at Model 2 of Table 3 that neither prior knowledge nor gender have a 

statistically significant relationship with initial value (γ02= 0.02, n.s.; γ03= 0.10, n.s.) or 

change over time (γ12= -0.02, n.s.; γ13= -0.18, n.s.) in the (log transformed) number of 

low physical salience data points collected over time in the EcoMUVE. However, as with 

the trend in average level of physical salience, the vectors of dummy variables predicting 

the effect of teachers on initial value (γ04- γ07) and rate of change (γ14- γ17) were 

statistically significant (p<.05).  

To answer my second research question, I added the question predictor 

(CAUSAL_PREj) to Model 2 (Table 3, Model 3). Notef that student pre-intervention 

causal understanding is not statistically significantly related to the starting value (γ01= -
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0.61, n.s.) or change over time (γ12= -0.02, n.s.) in the (log-transformed) number of low 

physical salience data points collected by students in the EcoMUVE, when controlling 

for prior knowledge, gender, and teacher. In other words, students with higher pre-

intervention tendency to offer explanations containing complex causal components do not 

reduce the number of low salience data points collected over time any less rapidly than 

their peers with lower pre-intervention tendency to offer explanations containing complex 

causal components. 

 The final model (Table 3, Model 4), then, reflects the fact that student pre-

intervention tendency to offer explanations containing complex causal components, 

content knowledge, and gender have no effect on trends in the amount of (log-

transformed) low physical salience data they collect over time, when controlling for the 

effects of their teacher. I highlight this via two plots of prototypical students. Figure 43 

shows the trend in number of low salience data points collected by a randomly chosen 

student of either gender and of any level of prior causal and content knowledge. Figure 5 

shows how this trend differs across prototypical students with different teachers.  
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Figure 5. Number of (log transformed) low physical salience data points collected by a 

randomly selected student as a function of visit (n=143). 
 Inspecting Figure 5, Note that, regardless of prior knowledge or gender, a student 

chosen at random initially collects approximately 4 (log-transformed) low physical 

salience data points on Visit 2. However, she or he only collects 1 (log-transformed) low 

physical salience data point on Visit 4. This represents a statistically significant (p<.001) 

change across visits.  
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Figure 6. Number of (log transformed) low physical salience data points collected by 

prototypical students as a function of visit, by teacher (n=143). 
 

Evaluating the trend from a different perspective, Note in Figure 6 that 

prototypical students in teacher 5’s classes collected more (log-transformed) low physical 

salience data points over time, as opposed to their peers in other teachers’ classes. For 

example, teacher 2 and teacher 5’s students both collect about 2 (log-transformed) low 

physical salience data points on Visit 2, a difference that is not statistically significantly 

different. However, by Visit 4 teacher 2’s students collected about 1 (log-transformed) 

low physical salience data point, whereas teacher 5’s students collected about 3 (log-

transformed) low physical salience data points, a difference that is statistically significant 

(p<.05).  
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Table 3. Results of individual growth models of the log-transformed number of low 
physical salience data (level 1 or 2) collected over time by middle school students in 
a multi-user virtual environment (n_teach=5; n_student=143;n_observations=389)   

   

Model 1.  
 

Unconditional 
Growth 
Model 

Model 2. 
           

Model 1 
+Controls 

Model 3. 
           

Model 2 
+Predictor 

Model 4. 
 

Final 
Model 

Fixed Effects      

INTERCEPT γ00 
2.74*** 
(0.09) 

1.79*** 
(0.23) 

1.82*** 
(0.23) 

1.87*** 
(0.21) 

VISIT γ10 
-0.26*** 

(0.07) 
0.70*** 
(0.18) 

0.68*** 
(0.18) 

0.58*** 
(0.16) 

PRE_CAUSAL† γ01 
   -0.61 

(0.49)  

PRE_CONTENT† γ02 
  0.02 

(0.02) 
0.03 

(0.02)  

FEMALE γ03 
  0.10 

(0.15) 
0.08 

(0.16)  

TEACHER1 γ04 
  

1.46*** 
(0.27) 

1.44*** 
(0.27) 

1.45*** 
(0.26) 

TEACHER2 γ05 
  

0.32 
(0.26) 

0.37 
(0.26) 

0.30 
(0.26) 

TEACHER3 γ06 
  

1.04*** 
(0.26) 

1.01*** 
(0.26) 

1.01*** 
(0.26) 

TEACHER4 γ07 
  

1.65*** 
(0.31) 

1.67*** 
(0.31) 

1.55*** 
(0.30) 

PRE_CAUSAL*VISIT γ11 
   0.66 

(0.43)  

PRE_CONTENT*VISIT γ12 
  -0.02 

(0.01) 
-0.02 
(0.01)  

FEMALE*VISIT γ13 
  -0.18 

(0.14) 
-0.15 
(0.14)  

TEACHER1xVISIT γ14 
  

-1.01*** 
(0.15) 

-1.00*** 
(0.22) 

-0.99*** 
(0.22) 

TEACHER2xVISIT γ15 
  

-0.92*** 
(0.22) 

-0.92*** 
(0.21) 

-0.89*** 
(0.22) 

TEACHER3xVISIT γ16 
  

-1.02*** 
(0.21) 

-1.00*** 
(0.22) 

-0.99*** 
(0.21) 

TEACHER4xVISIT γ17 
  

-1.40*** 
(0.26) 

-1.43*** 
(0.26) 

-1.30*** 
(0.25) 

Variance Components      
Level1 Residual σε2 1.2718*** 0.9988*** 1.0793*** 1.1000*** 
Level 2 Initial σ0

2 -0.09770 -0.1676** -0.1641** -0.1740** 
Level 2 Rate of Change σ1

2 0.04643 0.04880 0.04725 0.05193 
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Goodness of fit  
     

-2LL  1189.2 1095.1 1092.7 1099.1 
AIC  1199.2 1129.1 1130.7 1125.1 
BIC  1214.0 1179.4 1187.0 1163.6 
† Centered on the 
sample mean 

 
    

p<.1; *p<.05; **p<.01; 
***p<.001      

 

RQ3: Proportion of low physical salience data collected per visit to the EcoMUVE 

 Viewing Table 4, Model 1, Note that without controlling for the effect of prior 

knowledge, gender, or teacher in an unconditional growth model, the (arcsine square root 

transformed) proportion of low physical salience data points collected by students on 

their second visit to the EcoMUVE is 0.84 (γ00, p<.001), and decreases by about 0.06 

(γ01, p<.05) per visit over the next two days of the curriculum.  

 When I add the controls for the effects of prior content knowledge, gender, and 

teacher to the unconditional growth model (Table 4, Model 2), Note that prior content 

knowledge has a statistically significant effect on the initial value (γ02= 0.02, p<.01) and 

a marginally significant effect on the rate of change (γ12= -.01, p<.10) of the (arcsine 

square root transformed) proportion of low physical salience data points collected by 

students over Visits 2 through 4 in the EcoMUVE. As in the previous models, gender has 

no effect on the initial value (γ03= 0.06, n.s.) or rate of change (γ13= -0.09, p<.n.s.) of 

the (arcsine square root transformed) proportion of low physical salience data points 

collected by students in the EcoMUVE over Visits 2 through 4. Also, as in previous 

models, the vector of teacher fixed effects on the initial status and rate of change on the 

(arcsine square root transformed) proportion of low physical salience data points 
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collected by students in the EcoMUVE over Visits 2 through 4 are statistically significant 

(p<.05).  

 Adding the question predictor (PRE_CAUSAL) to Model 2 (Table 4, Model 3) 

Note that student pre-intervention tendency to offer explanations containing complex 

causal components is not statistically significantly related to the starting value (γ01= 

0.09, n.s.) or change over time (γ12= -0.02, n.s.) in the (arcsine square root transformed) 

proportion of low physical salience data points collected during Visits 2 through 4 of the 

EcoMUVE. In other words, students with higher pre-intervention tendency to offer 

explanations containing complex causal components do not increase the proportion of 

low physical salience data they collect any more or less rapidly over time than their 

peers with lower pre-intervention tendency to offer explanations containing complex 

causal components.  

 The final parsimonious model is given in Table 4, Model 4, and shows that the 

initial value and rate of change of the (arcsine square root transformed) proportion of low 

physical salience data points collected by students over time in the EcoMUVE are 

affected by their prior content knowledge, when controlling for the effect of their 

teachers. I highlight two trends from this model via fitted plots of prototypical students. 

In Figure 6, I show the effect of prior content knowledge on data collection over time. In 

Figure 7, I highlight the differential trends between students with different teachers.  
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Figure 7. Proportion of low physical salience (arcsine square root transformed) data 

collected by randomly selected students as a function of visit by students with high and 
low prior knowledge (n=143). 

 

 Inspecting Figure 7, note that a prototypical student chosen at random from the 

teachers with high prior content knowledge (two standard deviations above the sample 

mean) initially collect a statistically significantly (p<.05) high proportion (arcsine square 

root transformed) of low physical salience data (1.37) than a prototypical student chosen 

at random with lower prior content knowledge (two standard deviations below the sample 

mean) on Visit 2 (1.09). Both students collect a smaller proportion of low physical 

salience data over time, but the rate of decrease is greater for the high prior knowledge 

student. As such, the high prior knowledge student collects a marginally (p<.10) smaller 

(arcsine square root transformed) proportion (0.16) of low physical salience data than 

their low prior knowledge peer (0.29) on Visit 4.  
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Figure 8. Proportion of (arcsine square root transformed) low physical salience data 
points collected by prototypical students as a function of visit, by teacher (n=143). 

 
 Note in Figure 8 that, much as in previous analyses, a prototypical student (prior 

knowledge at the sample mean) in teacher 5’s class is indistinguishable from a 

prototypical student in teacher 2’s class, when being evaluated on the (arcsine square root 

transformed) proportion of data they collect on Visit 2 to the EcoMUVE. However, the 

change over time for the student in teacher 5’s class is the opposite of their peer in 

teacher 2’s class (as well as their peers taught by all of the other teachers). By Visit 4, the 

prototypical student in Teacher 5’s class collects a relatively large (1.04) proportion 

(arcsine square root transformed) of low physical salience data, whereas the student in 

teacher 2’s class’s (arcsine square root transformed) proportion is approximately 0.38, a 

difference that is statistically significant (p<.05).  
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Table 4. Results of individual growth models of the proportion low physical salience 
data (level 1 or 2, arcsine transformation of the square root) collected over time by 
middle school students in a multi-user virtual environment (n_teach=5; 
n_student=143;n_observations=389)  

   

Model 1.  
 

Unconditiona
l Growth 
Model 

Model 2. 
           

Model 1 
+Controls 

Model 3. 
           

Model 2 
+Predictor 

Model 4. 
 

Final 
Model 

Fixed Effects      

INTERCEPT γ00 
0.84*** 
(0.03) 

0.56*** 
(0.08) 

0.56*** 
(0.08) 

0.59*** 
(0.07) 

VISIT γ10 
-0.06* 
(0.03) 

0.28*** 
(0.08) 

0.27*** 
(0.07) 

0.22*** 
(0.06) 

PRE_CAUSAL† γ01 
   0.09 

(0.17)  

PRE_CONTENT† γ02 
  0.02** 

(0.01) 
0.02** 
(0.01) 

0.02** 
(0.01) 

FEMALE γ03 
  0.06 

(0.05) 
0.06 

(0.05)  

TEACHER1 γ04 
  

0.38*** 
(0.09) 

0.38*** 
(0.09) 

0.37*** 
(0.09) 

TEACHER2 γ05 
  

0.04 
(0.09) 

0.04 
(0.09) 

0.03 
(0.09) 

TEACHER3 γ06 
  

0.31*** 
(0.09) 

0.31*** 
(0.09) 

0.31*** 
(0.09) 

TEACHER4 γ07 
  

0.57*** 
(0.11) 

0.58*** 
(0.11) 

0.56*** 
(0.11) 

PRE_CAUSAL*VISIT γ11 
   0.07 

(0.17)  

PRE_CONTENT*VISI
T 

γ12 
  -0.01~ 

(0.01) 
-0.01~ 
(0.01) 

-0.01~ 
(0.01) 

FEMALE*VISIT γ13 
  -0.09 

(0.05) 
-0.09 
(0.05)  

TEACHER1xVISIT γ14 
  

-0.25** 
(0.09) 

-0.24** 
(0.09) 

-0.24** 
(0.09) 

TEACHER2xVISIT γ15 
  

-0.35*** 
(0.09) 

-0.35*** 
(0.08) 

-0.34*** 
(0.09) 

TEACHER3xVISIT γ16 
  

-0.34*** 
(0.08) 

-0.34*** 
(0.08) 

-0.33*** 
(0.08) 

TEACHER4xVISIT γ17 
  

-0.55*** 
(0.10) 

-0.55*** 
(0.10) 

-0.53*** 
(0.10) 

Variance Components      
Level1 Residual σε2 0.1609*** 0.1430*** 0.1428*** 0.1445*** 

Level 2 Initial σ0
2 -0.01616 -

0.02980** -0.02975** -
0.03090**
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* * 

Level 2 Rate of Change σ1
2 0.02960*** 0.02366**

* 
0.02368**

* 
0.02436**

* 

Goodness of fit  
     

-2LL  447.9 348.9 348.6 351.7 
AIC  457.9 382.9 386.6 381.7 
BIC  472.7 433.3 442.9 426.1 
† Centered on the 
sample mean 

 
    

~p<.1; *p<.05; **p<.01; 
***p<.001      
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Chapter 5: Discussion 

 My intent in this study was to explore trends in the average levels of physical 

salience of data selected by students over time in the EcoMUVE pond scenario, and to 

examine what, if any, effect their pre-intervention tendency to offer explanations 

containing complex causal components had on those trends. In this section, I describe the 

overall trends in physical salience of data, unpack the non-relationship between prior 

causal complexity of causal explanation and trends in the physical salience of data 

collected, as well as highlight additional key findings of interest. I conclude by outlining 

limitations of the study. 

Overall Trends 

 Recall that I framed my research questions and related hypotheses in terms of 

clear expectations of patterns of data collection behaviors. Specifically, I anticipated that 

the average level of physical salience of data collected by students in the EcoMUVE 

would decline from visits two through four and that the number of low salience data 

points collected by each student would decrease over time, thus resulting in an increase in 

the proportion of low physical salience data points collected. In fact, two of those three 

trends were exactly the opposite in my sample and fitted models. I highlight the observed 

trends, de-transformed (in their original units) in Panels A-C of Figure 8. Considering a 

prototypical student (with sample-average prior content knowledge) chosen at random 

over Visits 2-4 in the EcoMUVE pond: Panel A shows the trend in average physical 

salience level; Panel B shows the trend in number of low physical salience data points 

collected; and Panel C shows the trend in the proportion of data collected that was rated 

as having low physical salience.  
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Figure 9. Panel of plots showing the fitted trend of collection of low physical salience 
data by a randomly chosen prototypical student (prior content knowledge at sample 

mean) in terms of: A) average salience level of data points, B) number of low physical 
salience data points, C) proportion of low physical salience data points.  

 

 Observing Figure 9, note that the trend in the absolute number of low physical 

salience data points collected by a prototypical student chosen at random declines, as 

expected based on prior research in student data collection behaviors in MUVEs 

(Ketelhut, 2007, Grotzer et al, 2013). My assumption that students would collect less 

physically salient data over time runs completely counter to the modeled pattern in Panel 

A, however. The positive trend in average salience, together with the reduction in number 

of low physical salience data collected over time, leads directly to the scenario in Panel 

C, in which the proportion of low physical salience data collected by a prototypical 

student chosen at random drops from over 0.90 to nearly 0 by visit 4.  

 There are a couple of possible reasons that the average salience level of data 

collected by students actually increased over time. Firstly, the student’s avatar is initially 

placed next to the pond during each visit to the EcoMUVE; this is also truewhenever she 
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changes dates using the calendar tool or exits the submarine tool  used to view 

microscopic organisms in the pond. This might act to initially concentrate their data 

collection in areas spatially local to the pond. Such areas have a higher concentration of 

opportunities to collect less-salient data, as defined by the rubric in this study.  Research 

is currently underway to explore trends in data collections patterns in relation to distance 

from the pond in the EcoMUVE, and should give further context to the data collection 

patterns observed in this study.  

 Secondly, the EcoMUVE pond curriculum itself gave instruction on how to use 

some of the sampling tools early in the lesson sequence. If students were following the 

lesson plan closely (Appendix A), there would be a higher probability that they would 

use these tools on the first couple of days they were in the virtual world, resulting in 

lower average physical salience on that day. Future research tracking student data 

collection in the EcoMUVE should broaden the scope to more days, while controlling for 

the types of offline conversations that forced me to look at the three day window used in 

this study.  

Tendency to Offer Explanations Containing Complex Causal Components  

I hypothesized that students with higher pre-intervention use of explanations with 

complex causal relationships would show more focused attentional selection of data in 

three ways: they would collect data with lower average physical salience scores than their 

peers with lower understanding, initially and over time; they would initially collect more 

and reduce the number of low salience data points collected less rapidly over time; and 

they would initially collect more and increase the proportion of low physical salience 

data points collected more rapidly over time. Student prior complex causal explanations, 
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as measured, had none of these effects on the data collection behaviors of interest. Why 

might this be?  

 As discussed in relation to the overall data collection trends, one reason may be 

that the curriculum was more prescriptive than envisioned. Students are given free time to 

collect data as they see fit as they learn to use the tools in the EcoMUVE over the first 

few days of the curriculum. However, teachers may operationalize this section of the unit 

in a more stringent manner, directing students to collect certain types of data or use the 

tools in a prescribed way for longer than intended by EcoMUVEs designers.  

Alternatively, the students themselves may have interpreted the curriculum to be 

more prescriptive, and may have focused their data collection behaviors accordingly. It 

may also be that the design of the EcoMUVE itself, as discussed above, biased students 

towards collecting certain types of data over time. Any, or all, of these scenarios would 

result in a possible severing of the correlation between prior causal explanations and 

salience-related data collection behaviors.  One interesting strand of research currently 

underway will overlay the analytical methods from this paper with observational data 

from student interactions with the EcoMUVE, each other, and their teacher. This mixed-

methods approach should provide some of the context required to better understand the 

possible relationship between complex causal explanations and attentional focus based on 

data salience.  

 Another possibility is that the connection between the tendency to offer 

explanations containing complex causal components and the physical salience of data 

collected by students is sensitive to the operationalization of the question predictor. 

Recall that the frequency data gathered from the Causal Dynamics Assessment (CDA) 
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was used to create a measure based on the proportion of complex causal responses to 

total responses. This choice of measure was based on construction of similar measures in 

a previous study of pre-post student response patterns on the CDA (Grotzer et al, 2013), 

and due to the favorable distributional properties of the resulting measure. Was this truly 

the best way to capture tendency to detect complex causal relationships in the current 

study, however? For example, exploratory analyses with a measure of complex causal 

understanding framed as a ratio of complex to simple responses resulted in a marginal 

(p<.10) effect of complex causal understanding on average salience and proportion of 

low physical salience data collected. Similar models using raw count data as the predictor 

were similar in magnitude and direction, though not significant. Further research should 

be conducted on the construction and validation of measures specifically intended to 

measure causal understanding as a top-down salience component before definitive 

inferences are made regarding the connection between causal understanding and 

attentional focus of data based on physical salience properties.  

Content Knowledge 

 In contrast to the pre-intervention tendency to offer explanations containing 

complex causal components, prior content knowledge was related to the initial value of 

average data salience and the initial value and rate of change of the proportion of low 

salience data collected over time. This is in line with Ketelhut’s (2007) study of student 

data collection behaviors in the River City MUVE. Having higher prior content 

knowledge might indicate that the student is aware of specific types and locations of 

critical factors in the virtual environment itself (such as the presence of bacteria in water). 

This would account for why a student chosen at random with higher prior knowledge 
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initially collects data with lower physical salience compared to peers with lower content 

knowledge, on average in the population, and continues to do so throughout the course of 

the unit, even as the average salience levels of collected data rise over time. As 

previously mentioned, a mixed-methods research study triangulating student 

understanding through the quantitative methods here, as well as qualitative observational 

and interview protocols, would make this link more explicit.  

Teacher 

 Perhaps one of the most intriguing findings from this study was the degree of 

heterogeneity between the fitted trends of prototypical students of different teachers 

across all three outcomes. Revisiting Figures 4, 6, and 8, Note that the trends exhibited by 

prototypical students of teachers 1 through 4 are generally of the same magnitude and 

direction, even if the starting points vary substantially. A prototypical student in teacher 

5’s classroom, on the other hand, initially starts out similar to students in teacher 2’s 

classroom, but exhibits a trend that runs completely counter to students of the rest of the 

teachers. This extreme variability leads to a critical question: how much of this variance 

is due to the actions of each teacher, rather than mental models inherent to their particular 

students? 

 One way to potentially explore this question would be to compare key pre-

intervention student and teacher-generated variables between students in the classes of 

teachers 2 and 5, to look for similarities and differences. An ANOVA with follow-up 

Tukey’s Honest Difference analysis found no statistically significant difference between 

students of teachers 2 and 5 on their pre-intervention content knowledge or causal 

understanding. Nor were there any differences in how well their teachers expected them 
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to do, or their teachers’ estimates of pre-intervention reading level. It should also be 

noted that both teachers were reported by Metcalf et al. (2013) to have implemented the 

EcoMUVE curriculum to the same relatively high degree of fidelity (that is to say, they 

were both observed by researchers to have followed the teacher guide reasonably well.) 

As such, researchers conducting future quantitative studies of the effect of the EcoMUVE 

(or any other MUVE) on changes in student behavior, attitude, or understanding should 

take care to collect as much information as possible about the students and teachers under 

observation, and take care to collect as much supplemental qualitative data as possible 

(such as audio and video recording during implementation) to give deeper context to 

observed differences between students grouped by teacher (or team, class period, school, 

or other meaningful grouping). Recent qualitative exploration (Courter et al, 2014) of 

student movement over time in the EcoMUVE pond scenario is an exemplar of the level 

of overlapping data required for this fuller contextual understanding. 

Limitations 

 My study, though rigorous, has multiple limitations. Chief amongst them is the 

strong assumption that student behaviors in the EcoMUVE represent authentic data 

collection events in the virtual world in the service of developing an understanding of the 

complex causal chain of events that resulted in the fish die off. When students used 

various data collection tools, such as the camera, they were given the option to save the 

data, or cancel the data collection event. I took care to only include in my analyses data 

that were purposefully saved. However, that does not account for the fact that students 

can notice changing aspects of the world, such as the color of the pond water, that does 

not generate usable data for this study. As such, my results may be biased downward, 
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since only a sampling the possible variance in physical salience of data collected is 

represented here. Future replications of this study that identify and quantify further facets 

of physical salience in the EcoMUVE would be useful in addressing the questions raised 

by this study.  

 An additional limitation is the possible lack of validity of my novel outcome 

variables. It could be argued that my physical salience construct lacks evidence of 

construct validity, thus calling into question the inferences made in this study. While it is 

true that no separate validation study has been conducted, I endeavored to bolster the 

validity of inferences based on the outcomes of this exploratory study in two ways. 

Firstly, I took care to operationalize the concept of physical (or bottom-up) salience as 

closely as possible with past research in the field of engineering psychology (e.g., 

Wickens et al, 2003; Wickens, et al, 2009), in which instruments on airplane display and 

control panels were assigned different salience values based on their visibility, location, 

and importance for a given routine. Further, I applied Clarke’s (2009) rubric of data 

salience in MUVEs as close to verbatim as possible, making some changes to account for 

differences between the EcoMUVE and River City virtual environments. Finally, the 

EcoMUVE was designed with the visibility of certain types of data in mind, and I 

followed this design schema during the coding process. That being said, I strongly 

recommend further studies to validate the bottom-up and top-down constructs of data 

salience in MUVEs further.  
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Chapter 6: Final Thoughts 

 I undertook this exploratory study to shed light on the relationship between 

student pre-intervention tendency to use complex causal explanations and the attentional 

selection of data based on the physical salience properties of said data. In the process, I 

generated further questions and developed key methodological insights relating to the 

study of student behavior and learning in MUVEs. As in past research (e.g., Ketelhut, 

2007; Clarke, 2009) I was able to leverage the longitudinal nature of data generated by 

student use of the MUVE to model patterns of their behaviors and draw inferences 

accordingly. I found that pre-intervention tendency to use complex causal explanations, 

as measured here, does not directly relate to changes in the attentional selection of data in 

the EcoMUVE, likely due to the prescriptive nature of the EcoMUVE Pond curriculum 

used for the study. This is important, since activation and use of that knowledge should 

be a critical component of determining what types of data students select. Adjustments to 

the curriculum, perhaps allowing for more open-ended exploration of the world, might 

allow for this. 

 Just as importantly, however, this study has made salient (no pun intended) two 

factors that should simultaneously guide future MUVE-related research and provide a 

lens through which to evaluate the findings of past work. Though I believe that purely 

quantitative explorations such as this provide critical insights and help to identify trends, 

throughout the discussion of the findings and limitations of the current study I repeatedly 

highlight the need for additional types of data to triangulate and fully understand the 

linkages between the observed behaviors and latent traits. I echo Dukas’ (2009) 

suggestion that single types of MUVE-based data, no matter how multi-dimensional, are 
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often insufficient to make such inferences. I thus strongly encourage future research of 

MUVEs and other complex technology-enhanced curricula (such as Augmented Reality-

based units) utilize mixed methodologies such as in Bressler & Bodzin (2013) and 

Bressler (2014).  

 In addition to the forward-looking need for more mixed-methods research, my 

findings also provide a critical lens through which to view current and past quantitative 

studies seeking to infer latent student traits from complex behavioral data. In particular, 

the degree of heterogeneity in initial value and rates of change of the physical salience of 

data collected over time in the EcoMUVE would make it very difficult to make 

generalizable inferences using automatic data-mining routines (detectors) designed to 

recognize patterns of behaviors as indicators of important constructs such as boredom or 

engagement (e.g., Baker et al., 2008). Even in study such as this, where a relatively small 

number of teachers are clustered into two very similar schools in the same district, the 

degree of between-teacher variability in trends would make it nearly impossible to 

generalize the use of a detector trained in one teacher’s class to assess students of another 

teacher. This is especially true if the teacher’s students’ behaviors deviated wildly from 

those of other teachers’ over time, such as teacher 5’s students in the current study. As 

such, the common assumption that detectors, and the inferences drawn from their use, are 

generalizable within schools or districts with similar socio-economic profiles is suspect 

and should be tested and validated with further research. 

 Ultimately, this study highlights the need for continued research in complex 

technology-supported learning environments such as MUVEs and Individual Virtual 

Environments (IVEs). Both MUVEs and IVEs demonstrate great potential as powerful 
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spaces for learning and assessment (Nelson, Ketelhut, & Schifter, 2010). But this power 

comes with a responsibility to bring to bear as many complementary analytical 

techniques as possible when exploring their potential as transformative pedagogical tools.            
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Appendix A: The EcoMUVE Pond Unit 

The EcoMUVE Pond Unit 

 The EcoMUVE Pond unit is a multi-day middle school curriculum designed by 

Drs. Tina Grotzer and Chris Dede at the Harvard Graduate School of Education. The 

purpose of the unit is to concurrently teach students aspects of ecosystems science and 

complex causal understanding via interactions within a Multi-User Virtual Environment 

(MUVE). In order to solve a mystery (the death of the large fish in a pond), students 

work together in teams of four and take on the roles of various types of experts in order to 

navigate and collect data in the virtual world. While in the virtual world, the students, 

through their virtual embodiments known as avatars, interact with virtual agents (Figure 

A1), various types of virtual flora and fauna (Figure A2), and each other. 

The Virtual Ecosystem 

 The ecosystem in the EcoMUVE Pond unit centers on a small pond flanked by a 

golf course and housing development (Figure A3). The pond is populated by numerous 

macroscopic and microscopic species of plants and animals. The area immediately 

surrounding the pond also contains numerous plants and animals. Over time, students are 

meant to notice shifts in the populations of the large-scale flora and fauna, as well as 

varying levels of microscopic biotic and abiotic factors.  

 In addition to the changing populations of animals and plants, students will also 

encounter various virtual agents, or non-player-characters (NPCs). These NPCs give 

students information of varying degrees of quality and helpfulness. The students must use 

judge the validity of the given testimony and weigh it against other data that they have 

collected in order to fully understand the fish die-off event.  
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Tool Use and Data Collection 

 In order to collect the necessary data, students use scientific tools across various 

points of time in the virtual world. For example, students are able to measure the turbidity 

of the water in the pond (Figure A4) or move back and forth through time using a 

calendar tool (Figure A5). The data that students collect are then stored in a table (Figure 

A6) that can be shared with their teammates in order to develop plots to assess trends 

over time (Figure A7).  

 Each student experiences the EcoMUVE pond unit slightly differently. Some 

students meticulously collect all of the possible data on each given calendar day within 

the world, while others strictly follow the suggested data collection points associated with 

their chosen role. At the end of the unit, the teams come together as a class again and 

share their causal hypothesis, supported with evidence, via a concept map.  

Daily Schedule 

 In addition to exploring and collecting data in the virtual world, students work 

together during class-based activities as well. These activities support student learning of 

key content within the EcoMUVE, and are interspersed throughout the two-week 

curriculum. What follows is the ten-day schedule that teachers in the current study were 

asked to follow while using the EcoMUVE pond curriculum with their students.  

Day 0. Pre-intervention surveys of student complex causal framing, content knowledge, 

and science attitudes were administered. Teachers completed surveys of student reading 

level and their expectation that student would succeed at solving the scientific mystery 

within EcoMUVE. 
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Day 1. Students are introduced to the EcoMUVE Pond. They are allowed to explore the 

virtual world, and are asked to take pictures of as many organisms as possible. 

Day 2. Students are introduced to the data collection tools in the EcoMUVE and are 

asked to explore the virtual world across different calendar days, making observations as 

they do. Student attention is direction toward the fish die-off on July 28th. The students 

are tasked with finding out why the fish died.  

Day 3. Students are split into multiple groups within their classroom and travel to 

different stations to learn about different water measurement tools.  

Day 4. Students form teams of four and discuss ideas about what caused the fish to die. 

Each student takes on a role (microscopic specialist, private investigator, water chemist, 

meteorologist) and returns to the EcoMUVE to collect more data.  

• The microscopic specialist collects data using the submarine tool over time 
• The private investigator talks to virtual residents in the EcoMUVE Pond unit over 

time 
• The water chemist uses the appropriate tools to take measurements in the pond 

(e.g., turbidity and pH) over time 
• The meteorologist gathers information about the weather each day in the 

EcoMUVE Pond 

Day 5. Students continue to collect data. They are encouraged to coordinate efforts via 

the online chat function and share data within their team.  

Day 6. Students are presented a case study about an ecosystem collapse scenario, and are 

asked to work within their teams to build concept maps to explain what is happening 

within the EcoMUVE that might result in the fish die-off. 

Day 7. Misconceptions from team concept maps are addressed, the importance of 

evidence, data, and graphs is discussed, and students are allowed to collect more data 
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within the EcoMUVE. Students are asked to revise their concept maps highlighting the 

reasons for proposed connections and data sources that support them.  

Day 8. Students finish data collection within the EcoMUVE and prepare a presentation 

outlining their hypothesis about the cause(s) of the fish die-off event. 

Day 9. Each team presents their explanation and supporting evidence. As a class, students 

evaluate which evidence was most important and discuss why the actual cause was so 

difficult to determine. Students are asked to reflect on other examples of complex causal 

patterns such as those found in the EcoMUVE. 

Day 10. Students complete the post-intervention assessments of causal framing, content 

knowledge, and attitude.  

 

 
Figure A1. Ranger Susan, a virtual agent in the EcoMUVE Pond unit. 
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Figure A2. A predacious diving beetle as seen from the submarine tool in the EcoMUVE 

Pond unit. 
 
 

 
Figure A3. The EcoMUVE Pond with tools displayed at the bottom of the screen. 
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Figure A4. Result of a turbidity reading in the EcoMUVE Pond unit. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure A5. The EcoMUVE calendar tool. 

 



73	  
	  

 

 
Figure A6. The EcoMUVE Pond data table. 

 
 
 
 
 
 
 
 

 
Figure A7. Change in dissolved oxygen over time within the EcoMUVE Pond unit. 
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Appendix B: Physical Salience Scoring Rubric 
 

 1 2 3 4 
Location Deep under 

water 
(requires 

submarine 
tool) 

Spatially 
distant (e.g., 

near golf 
course or 
housing 

development) 

Near the 
pond, but 

more than a 
few steps 

away (e.g., 
near the drain 

pipe) 

Spatially local 
(within a few 
steps of the 

pond) 

Visibility Not visible 
without a data 
collection tool 

(e.g., pH 
reading). 

Under water 
(macroscopic) 
or hidden by 
fauna (e.g., 

fox) 

Clearly 
visible up 
close (e.g., 
fertilizer 

bags) 

Clearly 
visible at a 

distance (e.g., 
ducks 

swimming on 
the pond) 

 

 Data points were rated along these the dimensions of location and visibility, with 

those scores then summed and averaged to yield the physical salience score for each 

possible unit of datum that students could collect. Some measurements, such as water 

quality measurements and weather measurements, were not given location scores due to 

that facet not contributing to their physical salience.  
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