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We investigate the motion of an impurity particle injected with finite velocity into an interacting
one-dimensional quantum gas. Using large-scale numerical simulations based on matrix product
states, we observe and quantitatively analyze long-lived oscillations of the impurity momentum
around a non-zero saturation value, called quantum flutter. We show that the quantum flutter
frequency is equal to the energy difference between two branches of collective excitations of the
model. We propose an explanation of the finite saturation momentum of the impurity based on the
properties of the edge of the excitation spectrum. Our results indicate that quantum flutter exists
away from integrability, and provide parameter regions in which it could be observed in experiments
with ultracold atoms using currently available technology.

PACS numbers: 67.85.-d, 05.60.Gg 71.10.Pm, 03.75.Kk

Experiments with ultracold atomic systems have re-
cently realized different incarnations of quantum impu-
rity problems in which a one-dimensional (1D) gas of
particles prepared in a particular state (background gas)
interacts with a single, distinguishable particle (impu-
rity) [1–6]. The background gas exhibits properties that
are special to 1D quantum many-body systems [7–10].
Investigations of mobile impurities have contributed to
the understanding of various phenomena in those sys-
tems, including the excitation spectrum and effective
mass [11–14], orthogonality catastrophe [15, 16], loga-
rithmic diffusion of Green’s functions [17, 18], persistence
of threshold singularity in spectral functions [19, 20], its
momentum-dependent power-law scaling [17, 21–25], and
response to external confinement [26, 27] and to external
driving [28–33].

In a recent theoretical work [34], a phenomenon called
quantum flutter was reported for an impurity injected
with finite momentum Q into a gas of free fermions or
a gas of Tonks-Girardeau bosons. It was found that the
impurity sheds only a part of its momentum to the back-
ground gas, and forms a correlated state that no longer
decays in time. Furthermore, if Q is of the order of or
larger than the Fermi momentum kF, the momentum of
the impurity undergoes long-lived oscillations. Quantum
flutter was demonstrated by examining the full quantum-
mechanical evolution of the impurity state, obtained from
the exact Bethe Ansatz solution, which exploits the inte-
grability of the model. Integrability implies the existence
of an extensive number of mutually commuting integrals
of motion, which strongly constrain the dynamics of a
system [7, 35, 36]. This raises the general question to
what extent qualitative results obtained for a particu-
lar integrable model are universal. As a general rule,
the low-energy dynamics of 1D gapless quantum sys-

FIG. 1. (Color online) Schematic illustration of the system.
An impurity atom (large blue sphere) moves with momentum
〈P↓(t)〉 through a background gas of interacting bosonic atoms
(small red spheres). The shaded area illustrates an equipoten-
tial surface confining the atomic motion to one dimension. Ini-
tially the background gas is prepared in its ground state, and
the impurity is injected as a plane wave with finite momen-
tum 〈P↓(0)〉 = Q. The background particles interact with the
impurity and with each other through a repulsive δ-function
potential of strengths γ and γbg, respectively.

tems does not differ for integrable and non-integrable sys-
tems [8, 9]. However, emerging from the time evolution
of a far-from-equilibrium initial state, quantum flutter
may be viewed as a particular case of quench dynamics
in a 1D many-body quantum system. Equilibration af-
ter a quench could be model-specific and could reveal a
vast amount of integrability-specific phenomena [37–39].
Whether quantum flutter is an integrability and model-
specific phenomenon is an open problem, whose analysis
is especially desirable in view of potential experiments
envisioned along this direction.

In this Letter, we report numerical evidence of quan-
tum flutter in the dynamics of an impurity with arbi-
trary mass injected into a 1D quantum gas of interact-
ing bosons, see Fig. 1. The model we use is integrable
or non-integrable depending on the choice of parame-
ters. We extract the quantum flutter frequency ωf and
the saturated impurity momentum 〈P↓(∞)〉 from numer-
ical simulations, for values of impurity mass and interac-
tion strength which are accessible in current experiments
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with ultracold gases. We propose an explanation of why
〈P↓(∞)〉 is non-zero, based on the properties of the model
at the edge of the excitation spectrum. Moreover, for the
integrable case we show that ωf is related to the energy
difference between two branches of collective excitations
of the system.

Model and numerical method.—The Hamiltonian of
the system schematically illustrated in Fig. 1 is

H = Hbg +
P 2
↓

2m↓
+ g

N∑
i=1

δ(xi − x↓) (1)

where

Hbg =

N∑
i=1

P 2
i

2m↑
+ gbg

∑
1≤i<j≤N

δ(xi − xj). (2)

Here xi (Pi,m↑) is the coordinate (momentum, mass) of
the ith background particle, i = 1, . . . , N, and x↓(P↓,m↓)
is that of the impurity. Throughout this Letter we set
h̄ = 1. We are interested in the limit of large particle
number, N → ∞, and system size, L → ∞, at a fixed
background gas density, ρ↑ = N/L. Momenta and time
are measured in units of Fermi momentum kF and Fermi
time tF, respectively:

kF = πρ↑, tF =
2m↑
k2F

. (3)

The dimensionless strength of the impurity-background
repulsion is γ = m↑g/ρ↑, and background-background
repulsion is γbg = m↑gbg/ρ↑.

The impurity is injected into the background gas in a
plane wave with momentum Q at time t = 0, so that the
initial state of the system is

|inQ〉 = c†Q↓|bg〉, (4)

where |bg〉 denotes the ground state of the background
gas (2). The initial state (4) evolves in time to |inQ(t)〉 =
e−itH |inQ〉, where H is the Hamiltonian (1). The total

momentum of the system, P↑+P↓, where P↑ =
∑N

i=1 Pi,
is conserved. We are interested in the time evolution of
the impurity momentum

〈P↓(t)〉 = 〈inQ(t)|P↓|inQ(t)〉. (5)

Exemplary plots for integrable and non-integrable cases
are shown in Fig. 2. They share the following character-
istic of quantum flutter: after a rapid drop pronounced
slowly decaying oscillations develop, which saturate at a
non-zero value of the momentum.

We perform large-scale numerical simulations based
on matrix product states (MPS). To this end, we finely
discretize the Hamiltonian (1) and calculate the ini-
tial state |inQ〉 with the density matrix renormaliza-
tion group [40, 41]. The time evolution of the model
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FIG. 2. (Color online) Impurity momentum 〈P↓(t)〉 as a func-
tion of time. Red solid curve: γbg = ∞, the integrable Tonks-
Girardeau model studied in Ref. [34]. Blue dashed curve:
γbg = 12, the integrable bosonic Yang-Gaudin model. Black
dotted curve: γbg = 4, a non-integrable case. The initial mo-
mentum is Q = 1.16kF and the impurity-background coupling
strength is γ = 12 for all curves. The masses of the impurity
and the background particles are equal, m↓ = m↑. All curves
exhibit a rapid drop at short times followed by pronounced
slowly decaying oscillations around a finite saturation value
of momentum. We call the frequency of these oscillations the
quantum flutter frequency ωf.

is then obtained using time-evolving block decimation
(TEBD) [42, 43]. We push TEBD to its limits to perform
high-accuracy simulations. Specifically, the presented re-
sults are obtained for systems with 400 or 600 sites with
N = 40 or N = 60 particles and MPS bond dimension
M = 800 or M = 600, respectively. We verified that all
of the results are representative for the continuum and do
not depend on the number of sites, number of particles,
or the MPS bond dimension.

Flutter frequency for integrable cases.—To elucidate
the origin of long-lived oscillations in 〈P↓(t)〉 we com-
pare their periods for two integrable cases of model (1):
Case (a) is the limit of infinite repulsion between back-
ground particles, γbg =∞ (known as a Tonks-Girardeau
gas [44, 45]). It is this integrable case which has been
used to reveal the quantum flutter phenomenon through
Bethe Ansatz and form-factor resummations in Ref. [34].
Case (b) is a particular case of the bosonic Yang-Gaudin
model, γbg = γ [36, 46, 47]. The data for the oscillation
frequency ωf is shown in Fig. 3. In case (a) we com-
pare ωf obtained from TEBD simulations with the one
from Bethe Ansatz calculations of Ref. [34] and find good
agreement, which is a strong justification of the conver-
gence of the TEBD simulations [48]. In case (b) only data
from TEBD is available so far. Our simulations demon-
strate that oscillations in 〈P↓(t)〉 develop when Q is of
the order of or larger than kF, their amplitude increases
with Q, and the frequency is independent of Q.
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FIG. 3. (Color online) Quantum flutter frequency for the in-
tegrable cases of model (1). Red circles: γbg = ∞, TEBD
simulations. Black diamonds: γbg = ∞, Bethe Ansatz data
from Ref. [34]. Blue boxes: γbg = γ, TEBD simulations. Each
data point and its error bar is obtained by taking twice the
distance in time between all neighboring extrema of 〈P↓(t)〉
(exemplary curves of which are shown in Fig. 2), converting
them into frequencies, and calculating their mean and stan-
dard deviation. Solid (dashed) curve is the plasmon-magnon
energy difference ωpm for γbg = ∞ (γbg = γ) at momentum
kF, obtained from Bethe Ansatz.

Our interpretation of quantum flutter exploits the
structure of the many-body excitation spectra of model
(1), which we show in Fig. 4. The plasmon spec-
trum is the lowest energy excitation of the background
gas (2) and follows from the Bethe Ansatz solution [49].
The magnon spectrum is the lowest energy excitation
of model (1) [50]. For γbg = ∞ it has been found in
Ref. [11], and for γbg = γ it is given explicitly in e.g.
Refs. [13, 25]. For non-integrable cases the magnon spec-
trum is not yet known, however, techniques proposed in
Refs. [51, 52] may be used to evaluate it. The plasmon-
magnon energy difference at the Fermi momentum

ωpm = Ep(kF)− Em(kF) (6)

is shown in Fig. 3. We find that

ωf = ωpm (7)

within numerical accuracy. This striking observation has
the following intuitive explanation. Provided the impu-
rity is injected in the system with momentum Q ∼ kF, it
forms, after a few single-particle collisions, a many-body
correlated state with the background gas, which consists
of a superposition of plasmon and magnon excitations at
kF with nearly zero group velocity. The energies of the
plasmon and the magnon relative to the zero-momentum
ground state energy of model (1) are Ep(kF) and Em(kF),
respectively. It is precisely the evolution of that corre-
lated state which determines the frequency of quantum

0 1 2
0.0

0.5

1.0

0 1 2
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FIG. 4. Excitation spectrum. Plasmons are the lowest energy
excitations of the background gas (2). The plasmon disper-
sion Ep(k) is shown with dotted lines. Magnons are the lowest
energy excitations of model (1), i.e., background gas plus im-
purity. The magnon dispersion Em(k) is shown with solid
lines. Two integrable cases are illustrated: (a) γbg = ∞ and
(b) γbg = γ. The curves are obtained from Bethe Ansatz.

flutter. If Q > kF any momentum in excess of kF is car-
ried away through an additionally emitted wave packet.
If Q < kF the aforementioned state cannot form, and the
oscillations should not develop, which agrees with our
numerical observation.

Flutter frequency for non-integrable cases.—We inves-
tigate 〈P↓(t)〉 when model (1) deviates from integrability
in two different ways: first, γbg is changed while keeping γ
constant and second, the mass of the impurity is changed
relatively to the mass of the background particles. We
find that quantum flutter persists in both cases. The
flutter frequency ωf decreases continuously with decreas-
ing γbg, Fig. 5(a). Note that the non-integrable point
γbg = 20, which lies between the two integrable points
γbg =∞, red diamond, and γbg = γ, blue circle, also fol-
lows that trend. One observes ωf > Ep(kF) for γbg = 4
and 5, which would imply that Em(kF) < 0 if one as-
sumes that Eq. (7) is valid. However, for these back-
ground interaction strengths we can only observe very
few oscillations in 〈P↓(t)〉 with high enough precision and
ωf could contain a large systematic error. In the mass-
imbalanced case, we find a minimum in the flutter fre-
quency as a function of the mass ratio m↓/m↑, Fig. 5 (b).
The smallest flutter frequency is obtained for impurities
that are slightly heavier than the background gas parti-
cles. Only very few oscillations in 〈P↓(t)〉 are accessible
for m↓/m↑ = 0.5, which leads to the large uncertainty of
this data point.

Saturated momentum.—We now analyze 〈P↓(t)〉 in the
infinite time limit. Bethe Ansatz calculations of Ref. [34]
and TEBD simulations reported in this Letter indicate
that the amplitude of the oscillations in the impurity mo-
mentum slowly decays with increasing time. The mo-
mentum itself saturates at some non-zero value 〈P↓(∞)〉
at infinite time, see Figs. 5(c) and 5(d). The physical
intuition behind the finite value of 〈P↓(∞)〉 can be ob-
tained when interpreting the time evolution of the impu-
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FIG. 5. (Color online) Quantum flutter for the non-integrable
cases of model (1). Top panels: flutter frequency ωf . Data is
obtained from TEBD simulations and error bars are obtained
the same way as for Fig. 3. The dashed line shows the plasmon
energy at the Fermi momentum, Ep(kF). (a) ωf as a function
of 1/γbg for m↓ = m↑ and γ = 12. (b) ωf as a function of
m↓/m↑ for γbg = ∞, γ = 12, and Q = 1.16kF. The quantum
flutter frequency for the integrable Tonks-Girardeau model is
indicated by the red diamond and for the integrable Yang-
Gaudin model by the blue circle. Bottom panels: saturated
momentum 〈P↓(∞)〉. Data used for panels (c) and (d) are
the same as for (a) and (b). Error bars indicate the standard
deviation of 〈P↓(t)〉 after the transient decay, t > 15tF.

rity as a sequence of collision events. These events create
excitations in the background gas which carry away en-
ergy and momentum of the impurity until it reaches a
minimal energy state at some residual momentum, i.e.,
a finite momentum magnon state, indicated by the solid
line in Fig. 4. A consistency check of this proposed expla-
nation is that the saturation momentum should be less
than the maximum possible impurity momentum carried
by a magnon state of finite momentum. To this end, we
examine the impurity momentum in the magnon state
|gsq〉 of model (1) with total momentum q. We trans-
form Hamiltonian (1) to the mobile impurity reference

frame [34] and get Hq = Hbg +
(q−P↑)

2

2m↓
+ g

∑N
i=1 δ(xi),

where Hq = eiP↑x↓He−iP↑x↓ . Writing the magnon energy
of the model, Em(q) = 〈gsq|H|gsq〉, in the mobile impu-
rity reference frame and applying the Hellmann-Feynman
theorem we find

〈gsq|P↓|gsq〉 = m↓vm(q), (8)

where

vm(q) =
∂Em(k)

∂k

∣∣∣∣
k=q

(9)

is the group velocity of the magnon with momentum q.
Equation (8) shows that the impurity velocity (its mo-
mentum divided by its mass) in the magnon state with
momentum q is equal to the magnon velocity at the same
momentum, vm(q), which is defined solely by the disper-
sion of the model.

The velocity vm(q) is an odd and 2kF-periodic function
of q with a maximum vmax = maxq vm(q) at some q. We
calculated vmax for the integrable cases of model (1), and
found vmax ≤ kF/m↓ and that it vanishes as γ → ∞
or γbg → 0. Comparing it with the estimate of 〈P↓(∞)〉
from our TEBD simulations we find numerical evidence
that

〈P↓(∞)〉 < m↓vmax. (10)

For which initial momenta Q, couplings γ and γbg, and
mass ratio m↓/m↑ Eq. (10) is valid, is an important open
question. Answering it would clarify the physical intu-
ition that in the infinite time limit the impurity velocity
is determined by the properties of the model near the
edge of the excitation spectrum, as is known for various
other dynamical quantities [17, 18, 23–25].

Summary.—Our analysis shows strong evidence for the
existence of quantum flutter away from integrability. The
complexity of the TEBD simulations, however, can grow
when deviating from the integrable points in parameter
space [53], which reduces the maximum time the sim-
ulation is reliable for. Furthermore, close to integrable
points the dynamics may resemble the integrable one
for a long period of time, a phenomenon first encoun-
tered in the Fermi-Pasta-Ulam problem [54]. Quanti-
fying closeness to integrability in our model requires a
separate study which may help in the understanding of
effective field theories, as the one suggested for a different
setup in Refs. [29, 32, 33]. Our simulations are ideally
suited to model real experimental conditions. For exam-
ple, the setup [55] consists of about 25 cesium atoms con-
fined in 1D parabolic traps with longitudinal frequency
∼ 2π × 15Hz and highly tunable interaction γbg. We
checked that in this case for strong interactions about
5 oscillation periods of 〈P↓(t)〉 should be observable on
experimentally accessible time scales.
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as well as the Swiss National Science Foundation Project
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