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Microscopic theory of resonant soft x-ray scattering in systems with charge order

David Benjamin, Dmitry Abanin, and Eugene Demler
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

Peter Abbamonte
Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA

(Dated: September 5, 2012)

We present a microscopic theory of resonant soft x-ray scattering (RSXS) that accounts for the
delocalized character of valence electrons. Unlike past approaches defined in terms of form factors for
atoms or clusters, we develop a functional determinant method that allows us to treat realistic band
structures. This method builds upon earlier theoretical work in mesoscopic physics and accounts
for both excitonic effects as well as the orthogonality catastrophe arising from interaction between
the core hole and the valence band electrons. Comparing to RSXS measurements from stripe-
ordered La1.875Ba0.125CuO4, we show that the two-peak structure observed near the O K edge
can be understood as arising from dynamic nesting within the canonical cuprate band structure.
Our results provide evidence for reasonably well-defined, high-energy quasiparticles in cuprates, and
establishes RSXS as a bulk-sensitive probe of the electron quasiparticles.

PACS numbers: 78.70.Ck, 61.05.cp, 74.72.Gh, 71.45.Lr

Introduction.– Resonant soft x-ray scattering (RSXS)
is a powerful technique for exploring strongly-correlated
quantum materials [1–3]. While neutron and non-
resonant x-ray scattering cross sections are dominated
by the contributions of nuclei and core electrons, RSXS
couples selectively to valence electrons and provides an
enormously enhanced sensitivity [58] to many-body cor-
relations [1–16]. Further promise of RSXS comes from its
ability to study a wide class of materials, including those
available only in small samples and those with buried in-
terfaces [12–14]. RSXS has recently been used to observe
orbital order in manganites [2, 4, 5] and ruthenates [7],
hole crystallization in spin ladders [6], and charge order in
cuprates [3, 9, 15], nickelates [8], and manganites [10, 11].

Although qualitative interpretation of RSXS data
has already provided valuable insight into a variety of
strongly correlated materials, a complete quantitative
understanding of these experiments is still lacking. Up to
now, most efforts to interpret resonant x-ray diffraction
(RXD) experiments have adapted the use of atomic form
factors from x-ray crystallography [1, 3, 9, 10]. The form
factor concept assumes optical locality, which is valid for
ordinary x-ray diffraction, but breaks down in the reso-
nant case if valence states are delocalized. Some authors
have attempted to account for this nonlocality by defin-
ing the form factor in terms of a cluster, rather than a
single atom [4, 8]. But even this approach should break
down if valence states are propagating quasiparticles. Re-
cent work of Abbamonte et al. [17] showed that neglect-
ing the finite lifetime of core holes and interaction of va-
lence electrons with core holes allows one to relate RSXS
spectra to the local electron Green’s function measured
in STM. However, these neglected effects are expected
to play an important role and it is not clear how accu-
rately such a simplified analysis can explain RSXS spec-

tra in real materials. An approach based on the Bethe-
Salpeter equation [18] captures excitonic effects of the
core hole but ignores the full many-body character of the
core hole-Fermi sea interaction, including the orthogo-
nality catastrophe. The state of affairs in RSXS should
be contrasted to the more established probes of valence
electrons, ARPES [19–21] and STM [22–27], where it is
often possible to read off spectral functions directly from
measurements, facilitating the comparison of theoretical
models with experimental results.

In this paper we present the first microscopic model of
elastic RSXS in systems with charge order in the valence
band, such as striped high-Tc cuprates [23, 28–34]. We
develop a theoretical approach that allows us to analyze
RSXS spectra in the case of itinerant valence electrons
and include realistic bandstructures. Our formalism ac-
counts for excitonic effects and the orthogonality catas-
trophe arising from the interaction of valence electrons
with core holes (within the approximation of noninter-
acting valence electrons our analysis is exact) as well as
the finite lifetime of core holes. We show that the two-
peak spectrum observed in experiments at the O K edge
of La1.875Ba0.125CuO4 [3, 9] can be explained by dynam-
ical nesting of the “standard” band structure of cuprates
(see Figs. 1 and 2). We find that interaction of valence
electrons with the core hole changes the spectrum signif-
icantly. For a physically reasonable core hole potential
we obtain quantitative agreement with the experimental
data on underdoped La1.875Ba0.125CuO4 (LBCO) near
the 1/8-anomaly [3] (similar spectra were observed for
La1.8−xEu0.2SrxCuO4(LESCO) in [9]). Our results sug-
gest that RSXS at the O K edge can be directly connected
to the known band structure, providing a new, bulk-
sensitive probe of electron quasiparticles that is comple-
mentary to ARPES and STM techniques.
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FIG. 1: Calculated RSXS spectrum for period-4 charge order
for the canonical cuprate band-structure (parameters given
below Eq. (8)) and core hole potential U0 = −250 meV.
Horizontal axis shows shifted energy ω′ of scattered photons,
where ω′ = 0 is the energy required to excite a core electron
to Ef in the absence of a core hole potential, vertical axis is
intensity of elastic scattering (arbitrary units). Squares give
experimental data for LBCO from Ref. [3]. Note that the
position of the first peak is not Ef . It is determined by both
the dynamic nesting and the core hole potential [60].

FIG. 2: Dynamic nesting in the cuprate band structure.
Nested segments of the E = Ef + 0.12 eV and E = Ef + 1.49
eV contours are shown in blue and red. The Fermi surface
is shown in black. The lines kx = −3π/4,−π/4, π, 4, 3π/4
(dashed) are a visual guide.

Theoretical formalism for elastic RSXS.– Following
Ref. [17] we consider an effective single band model de-
scribing resonant absorption and emission of photons

Hint =
∑

j,k,λ

V (k, λ)
(
d†jcjak,λe

ik·r + h.c.
)

(1)

Here cj and dj are annihilation operators of electrons
on site j in the core orbital and valence band respec-
tively, ak,λ annihilates a photon with momentum k and
polarization ε̂k,λ, and V (k, λ) are matrix elements whose
precise form is not important to us. Resonant scattering

is a second order process in Hint

I(ω) =
∑

f

∣∣∣∣∣
∑

n

〈f |Hint|n〉〈n|Hint|i〉
ENi − ẼN+1

n + ω + iΓ/2

∣∣∣∣∣

2

(2)

Here |i〉 is the initial state of the system with N electrons
in the valence band, no core holes, and one incoming
photon with momentum ki; |n〉 is the intermediate state
with one core hole and one extra electron in the valence
band, and no photons; |f〉 is the final state with the
core levels filled again, N electrons in the valence band
and one outgoing photon with momentum kf . We also

introduced ENi and ẼN+1
n to denote energies of the initial

and intermediate electron states respectively. Note that
the latter includes the potential of the core hole. Γ is
the decay rate of the core hole, including radiative and
non-radiative processes. We focus on elastic scattering
by ordering wavevector Q where we can take |f〉 = |i〉
and kf = ki + Q.

Because the core hole is immobile it must be re-filled
on the same site j on which it is created and it may be
subsumed into a static potential that acts on the valence
electrons of the intermediate state. The core hole con-
tributes the trivial matrix element 〈1|c†j |0〉〈0|cj |1〉 = 1.
Therefore, Eq. (2) takes the following form:

I(ω,Q) ∝

∣∣∣∣∣∣
∑

j,n,σ

e−iQ·rj
〈i|djσ|n〉〈n|d†jσ|i〉

Ei − ẼN+1
n + ω + iΓ/2

∣∣∣∣∣∣

2

(3)

=

∣∣∣∣∣∣
∑

jσ

e−iQ·rj
∫ ∞

0

e−(iω+Γ/2)tSjσ(t)dt

∣∣∣∣∣∣

2

, (4)

where Sjσ(t) = 〈i|djσe−iH1(j)td†jσe
−iH0t|i〉 and H0,1 is

the Hamiltonian of the valence electrons with and with-
out the core hole potential. Here the matrix elements
refer to the valence electron Fock space. When the core
hole potential is zero, H1(j) = H0 and Sjσ(t) reduces
essentially to the retarded Green’s function[17]. If we
measure photon frequencies relative to the difference be-
tween the chemical potential of the valence band µ and
the energy of the core state electron ξc, ω

′ = ω−(µ−ξc),
we can set Ei = 0 so that H0|i〉 = 0. The intermediate
states |n〉 are eigenstates of

H1(j) = H0 + U(r− rj), (5)

where U is the potential due to the core hole at site j and
H0 is given in the grand canonical ensemble. Equation
(4) also applies to thermal ensemble at temperature T =
1/β, provided that we use

Sjσ(t) =
TrF

[
djσe

−iH1(j)td†jσe
−βH0

]

TrF [e−βH0 ]
. (6)
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The subscript F on the trace denotes that it is taken with
respect to Fock space.

Eqs. (4 - 6) are very general and apply for an arbitrary
interacting valence band Hamiltonian H0. While Eq. (6)
was formulated for the single band case, it can be general-
ized to the multi orbital case by adding orbital indices to
electron operators and restoring orbital-dependent ma-
trix elements for absorption and emission. In the re-
mainder of this paper we will limit our discussion to the
model of non-interacting electrons. This simplifying as-
sumption is justified as long as the lifetime of electron
states in the valence band is longer than the lifetime Γ−1

of the core hole (see also discussion below).

The trace in Eq. (6) is reminiscent of the orthogonal-
ity catastrophe of x-ray absorption [35, 36] and the Fermi
edge singularity of mesoscopic transport [37, 38]. It ex-
presses the many-body overlap of the initial Fermi sea
with the perturbed Fermi sea that time evolves under
H1 and the single-particle dynamics of the extra electron
injected into the valence band at site j. It can be reduced
to a product of determinants and inverse matrix elements
of operators in single-particle Hilbert space [39, 40]. As
an example, by appealing to a basis in which H0 is diago-
nal, H0|φα〉 = ξα|φα〉, the trace TrF,σ

[
e−βH0

]
factors as∏

α

∑
nα=0,1 e

−βnαξα =
∏
α(1 + e−βξα). This in turn is

the product of eigenvalues of the single-particle operator
1+e−βH0 , hence it equals det(1+e−βH0). Here H0,1 refer
to single particle operators for a single spin component of
electrons. What permits further progress is that by the
Baker-Campbell-Haussdorff Lemma e−iH1te−βH0 can be
written as eW where W is quadratic, and hence the re-
maining traces can be evaluated in the same spirit [40].
We obtain [59]

Sj(t) = det
(

(1− N̂) + Ûj(t)N̂
)2
(

N̂

1− N̂
+ Û−1

j (t)

)−1

jj

,

(7)
where N̂ ≡ (1 + exp(βĤ0))−1 is the occupation number

operator and Ûj(t) ≡ e−iĤ1(j)t is the intermediate state
time evolution operator. The determinantal factor corre-
sponds to the many-particle dynamics of the Fermi sea.
It is squared because the orthogonality catastrophe oc-
curs for each of the two spin species regardless of the spin
of the photo-excited electron [59]. One can interpret it
as follows: the argument is an operator that time-evolves
only those states that are initially occupied, and taking
the determinant computes an overlap of Slater states.
The matrix element part corresponds to single-particle
dynamics of the intermediate photoelectron. It is a lo-
cal Green’s function for propagation of a single electron
from site j to site j, modified by the Pauli-blocking term
N/(1−N). For period-p order, one needs to sum over p
inequivalent sites j. The determinant can be evaluated
efficiently for a finite system, converging by a system size
of 25× 25. Eqs. (4) and (7) constitute a convenient for-

mula for calculating RSXS spectra in the approximation
of noninteracting electrons. They treat exactly the inter-
action of electrons with the core hole and finite lifetime
of the core hole.
RSXS of cuprates.– We apply Eqs. (4) and (7) to

charge order in an effective one-band model of the
cuprates

H0 =
∑

k

ξkd
†
kdk + V

∑

k

(
d†k+Qdk + d†kdk+Q

)
. (8)

Eq. (8) is a mean-field phenomenological description of
charge ordering [30, 32, 41–46] that applies regardless
of its microscopic origin. Possible mechanisms include
electron-electron interactions, in which case charge order
is often called stripes [34, 47], and nesting of the Fermi
surface and electron-phonon interactions [48–50].

We use the tight-binding dispersion ξk =
−∑r e

ik·rtr − µ and parameters t(1,0) = 340, t(1,1) =
−32, t(2,0) = 25, t(2,1) = 31 meV characteristic of
LBCO [51]. For simplicity we ignore kz dispersion,
which would at most smear energy peaks by an amount
tz . 50 meV [51]. Fig. 1 presents an RSXS spectrum for
a contact core hole potential U(r − rj) = U0δr,rj . We
have also calculated spectra using Yukawa potentials of
various ranges and found similar results [59] . We have
chosen a realistic core hole lifetime Γ = 250 meV.
Two peak structure. Fig. 1 shows the calculated in-

tensity of RSXS as a function of initial photon energy.
The two peak structure of the spectrum agrees well with
experimental findings [3, 9]. A simple physical argument
shows that the two peak structure is a robust feature
of the cuprate band structure. Consider the simplifying
limit of zero core hole potential. In this case the inter-
mediate eigenstates are obtained by adding an electron
in some eigenstate |φ〉 of H0 to the Fermi sea, and the
energy domain expression Eq. (3) reduces to

I(ω,Q) ∝

∣∣∣∣∣∣
∑

j,φ

e−iQ·Rj
(1− nF (Eφ)) |〈φ|j〉|2
Ei − Eφ + ω + iΓ/2

∣∣∣∣∣∣

2

. (9)

Unoccupied states φ contribute strongly when their en-
ergy is in resonance and the Fourier transform of their
density at wavevector Q is large. In the presence of a
CDW potential, Bloch states |k〉 and |k + Q〉 hybridize
to form eigenstates with non-trivial density. This oc-
curs most readily when ξk, ξk+Q are nearly degenerate.
The RSXS intensity at energy E comes from points on
the surface of constant energy E that are separated by
wavevector Q [42]. Usually these are isolated pairs of
points, but at certain energies the surfaces are nested
so that sections separated by Q move in parallel (see
Fig. 2). At these energies there is a large density of
hybridized states. This is the phenomenon of dynamic
nesting. While Fermi surface nesting, which is just dy-
namic nesting at E = Ef , is uncommon, dynamic nesting
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is a generic consequence of symmetry. Consider the two-
dimensional cuprate Brillouin zone and period-4 CDW
wavevector Q = (π/2, 0). Any Bloch state |k〉 on the
lines kx = −π/4 and kx = 3π/4 is degenerate with
|k + Q〉. Constant energy contours with segments tan-
gent to the line kx = −π/4 (−3π/4) also have segments
tangent to kx = π/4 (3π/4); these symmetry-equivalent
segments are dynamically nested. Fermi surface nesting
is not generic because there is no particular reason why
the contour E = Ef should be tangent to the lines (or,
in three dimensions, a plane). Dynamic nesting, on the
other hand, occurs when some energy contour is tangent
to the lines. For our choice of LBCO hopping strengths
the energy contours exhibiting dynamic nesting corre-
spond to energies 0.1 eV and 1.5 eV above the Fermi
level– which are separated by nearly the same amount as
RSXS peaks. The small discrepancy is due to the ten-
dency of the core hole potential to widen the distance
between peaks and vanishes when we set U0 = 0 [59] .

A simplified model neglecting the core hole potential
explains the spectrum and its two peaks qualitatively but
does not give the correct relative weights of the two peaks
[59]. Including the core hole potential yields quantita-
tive agreement with experiments. The core hole poten-
tial has a weak effect on the energy separation between
the two peaks but dramatically decreases the intensity of
the high-energy peak [59]. A core hole potential strength
U0 = −250 meV, which is reasonable for a screened core
hole interacting with valence electrons, reproduces the
experimental ratios of peak intensities. A non-physical
repulsive core hole decreases the intensity of the low-
energy peak. The discussion of Ref. [17] connecting the
RSXS spectrum to the electron spectral function thus
remains largely accurate in the presence of a weak core
hole potential. However, strong core hole potentials yield
spectra with qualitative features, such as a lack of a high-
energy peak, that give misleading conclusions in analyses
based only on the spectral function. For example, we at-
tribute the absence of a second peak in RSXS at the Cu
L3/2 edge [3] to a strong Cu core hole potential. The
spectrum is robust to changes in the core hole lifetime
Γ, which broadens the peaks, and the CDW strength V ,
which scales the overall intensity. Small changes in the
hopping strengths have little effect; multiplying them by
a uniform factor affects the distance between peaks.

Our calculations provide the first quantitative expla-
nation for the two peak structure observed in LBCO and
LESCO [3, 9]. An earlier interpretation of the two peaks
as arising from the lower and upper Hubbard bands, the
so-called “spatially-modulated Mottness”, was not sup-
ported by quantitative analysis. Moreover, a separation
of ∼ 1.9 eV between peaks is found in x-ray absorption
spectroscopy (XAS) of LBCO and LSCO [3, 52]. Accord-
ing to the lower/upper Hubbard band interpretation, in
which between peaks there is a gap, the separation be-
tween peaks in RSXS must be at least as large as the sep-

aration in XAS. Thus we think that dynamical nesting
of the band structure provides a more natural interpre-
tation of the two peak structure observed in LBCO and
LESCO.

Discussion.– We now comment on the specific values of
the band structure that we used in our analysis. Ab-initio
LDA calculations on LSCO give t(1,0) = 430, t(1,1) =
−40, t(2,0) = 30, t(2,1) = 35 meV [51] while fitting of the
ARPES spectra gives t(1,0) = 250, t(1,1) = −25, t(2,0) =
20, t(2,1) = 28 [51]. The ratios among tight-binding pa-
rameters are nearly identical for both cases, so the band
structure is well-known up to an overall truncation factor.
The two peak character of the RSXS spectra appears for
both band structures with nearly the same relative in-
tensities of the two peaks. We find that taking either
the LDA or ARPES dispersions gives peaks separated
by 1.7 and 1.3 eV. We obtain the best fit to RSXS data
by choosing parameters halfway between the two. We
point out that it is not so surprising that band struc-
ture obtained from the ARPES data does not provide
the best agreement with the RSXS spectra. ARPES
data only exist within 200 meV of the Fermi surface [53],
where the renormalization effect due to interactions is
strongest, while we are interested in features at much
higher energy. Additionally, it has been suggested that
ARPES tends to underestimate electron dispersion rel-
ative to x-ray experiments [51, 54]. Another important
issue is our approximation of non-interacting electrons.
The key quantity entering our analysis is a generalized
propagator (6). The effect of many-body correlations
is to introduce decay of an electron into other excita-
tions, but as far as the Green’s function is concerned this
simply contributes an imaginary part to the electron’s
self-energy (we assume that the effective one-band model
we use has already incorporated renormalization via the
real part of self-energies). Furthermore, if the decay of
the electron is slow compared to the decay of the core
hole, any broadening introduced by electron interactions
will be hidden within the width Γ. Conversely, if the
electron decays very rapidly, RSXS peaks will be broad-
ened into oblivion. Therefore, the presence of peaks in
an RSXS spectrum puts an upper bound on the imag-
inary self-energy and implies that excitations resemble
well-defined quasiparticles. We note that recent DMFT
calculations [60] have found long-lived electron quasipar-
ticles in the Hubbard model well above the Fermi energy,
in contrast to short-lived hole-like excitations. RSXS,
which probes high-energy electron excitations, comple-
ments ARPES, which probes hole-like excitations, and
magnetic oscillation experiments [55–57], which probes
only excitations near the Fermi energy.

Outlook.–The predictions of our model can be checked
in future experiments. For example, recent work on
charge order in underdoped YBCO [15], which was per-
formed at energies corresponding to Cu L edges, could be
repeated at the O K edge. We expect, as in LBCO, two
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peaks at energies determined by band structure. Also,
systems with checkerboard charge order, with coexist-
ing Fourier components Qx and Qy, will exhibit a har-
monic at Qx + Qy. If the latter harmonic is sufficiently
strong, an RSXS signal will appear at this wavevector.
One can see that this ordering wavevector also has dy-
namic nesting at two energies, so we expect to find a two
peak spectrum[61].

Summary.– We have developed a microscopic model of
RSXS that takes into account the itinerant character of
valence electrons and excitonic effects. We showed that
a simple physical picture of dynamical nesting found in
the canonical band structure of cuprates gives rise to a
two peak structure, while the core hole potential is nec-
essary for quantitative agreement with the data. Our
analysis shows that even at high energies electronic exci-
tations behave like sufficiently well-defined quasiparticles
described by the canonical band structure.
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CORE HOLE MATRIX ELEMENTS

Here we use the method of Klich to compute expressions of the form

A =
TrF

[
dj,σe

−iH1td†j,σe
−βH0

]

TrF [e−βH0 ]
, (1)

where H0,1 are quadratic Hamiltonians and dj annihilates the single-particle Wannier orbital

|j〉. We write TrF and TrH for traces with respect to many-particle Fock space and single-

particle Hilbert space, respectively.We split them into commuting parts that act on electrons

of spins σ and σ̄: H0(1) = H0(1),σ + H0(1),σ̄. Then the traces factorize into different spin

sectors:

A =
TrF

[
dj,σe

−iH1,σtd†j,σe
−βH0,σ

]

TrF [e−βH0,σ ]

TrF
[
e−iH1,σ̄te−βH0,σ̄

]

TrF [e−βH0,σ̄ ]
, (2)

Each trace is spin-independent, so let us introduce

X0 =− βH0,σ = −βH0,σ̄ (3)

X1 =− itH1,σ = −itH1,σ̄, (4)

where equality is up to isomorphism of spin-σ and spin-σ̄ subspaces. That is, X0,1 act on

the Fock space of a spinless conduction band. Equation (2) then reads

A =
TrF

[
dje

X1d†je
X0

]

TrF [eX0 ]

TrF
[
eX1eX0

]

TrF [eX0 ]
, (5)

Define X2 such that exp(X1) exp(X0) ≡ exp(X2). By the Baker-Campbell-Haussdorff

Lemma, X2 is quadratic. Label the eigenstates of Xi as follows:

Xi|α, i〉 = ωα,i|α, i〉, Xi =
∑

ωα,id
†
α,idα,i =

∑
ωα,inα,i (6)

Change of basis is done with dj =
∑

α 〈j|α, i〉dα,i etc, and the useful corollary

∑

α

|α, i〉dα,i =
∑

α

|α, i〉〈α, i|
(∑

β

|β, j〉dβ,j
)

=
∑

β

|β, j〉dβ,j. (7)

The denominator traces in Equation 5 are the simplest to evaluate and are a useful warm-

up for the numerator traces. The first step in the basis {|α, 0〉} in which X0 is diagonal and

the many-body trace factorizes in terms of traces over the occupation numbers nα,0 = 0, 1

of eigenstates:

TrF
[
eX0
]

= TrF
[
e
∑
α ωα,0nα,0

]
=
∏

α

∑

nα,0=0,1

e
∑
α ωα,0nα,0 =

∏

α

(1 + eωα,0). (8)

2



Next we use the fact that (1 + eωα,0) are the eigenvalues of the single-particle operator

1 + exp(X0,sp), where X0,sp is the projection of X0 into Hilbert space. (We define X1,sp and

X2,sp analogously). Furthermore, the product of an operator’s eigenvalues is its determinant,

so we have

TrF
[
eX0
]

=
∏

α

(1 + eωα,0) = det
(
1 + eX0,sp

)
. (9)

Of the two distinct numerators in Equation (5) the simpler one, which has no injected

electron, follows almost immediately fromEquation (9):

TrF
[
eX1eX0

]
= TrF

[
eX2
]

= det
(
1 + eX2,sp

)
= det

(
1 + eX1,speX0,sp

)
(10)

Note that we never have to go through the exercise in commutator algebra to obtain X2

explicitly. All we needed was that it is quadratic.

To calculate the last and most difficult trace, we again want to write it as a product of

traces over occupation numbers 0 and 1. This means that we wish to put the d and d† next

to one another to form a number operator n. We use the cyclic property of the trace to put

dj to the right of d†j and switch to a basis in which X0 is diagonal: :

TrF

[
dje

X1d†je
X0

]
= TrF

[
eX1d†je

X0dj

]
=
∑

α,α′

〈j|α, 0〉TrF

[
eX1d†α′,0e

X0dα,0

]
〈α′, 0|j〉. (11)

In this basis we may exploit the commutator d†α,0e
X0 = eX0d†α,0e

−ωα,0 to get

TrF

[
dje

X1d†je
X0

]
=
∑

α,α′

〈j|α, 0〉TrF

[
eX1eX0d†α′,0dα,0

]
e−ωα′,0〈α′, 0|j〉 (12)

Next we wish to combine eX1 and eX0 as eX2 and use Equation (7) with i = 0, j = 2 to

switch to the eigenbasis of X2. We first need to remove the factor e−ωα′,0 via

e−ωα′,0〈α′, 0| = 〈α′, 0|e−X0,sp . (13)

By Equations (7) and (13), Equation (12) becomes

TrF

[
dje

X1d†je
X0

]
=
∑

β,β′

〈j|β, 2〉TrF

[
eX2d†β′,2dβ,2

]
〈β′, 2|e−X0,sp|j〉

=
∑

β

〈j|β, 2〉TrF
[
e
∑
ωγ,2nγ,2nβ,2

]
〈β, 2|e−X0,sp |j〉. (14)

We used the fact that β 6= β′ is purely off-diagonal and has vanishing trace. We evaluate

the trace in Equation (14) the same way as Equation (8), with the slight complication that

3



we must distinguish the case γ = β and γ 6= β:

TrF
[
e
∑
ωγ,2nγ,2nβ,2

]
=

∑

nβ,2=0,1

eωβ,2nβ,2nβ,2
∏

γ 6=β

∑

nγ,2=0,1

eωγ,2nγ,2

=eωβ,2
∏

γ 6=β
(1 + eωγ,2) =

eωβ,2

1 + eωβ,2

∏

γ

(1 + eωγ,2)

=
eωβ,2

1 + eωβ,2
det
(
1 + eX2,sp

)
. (15)

When we substitute Equation (15) back into Equation (14), we again use the trick of re-

placing a scalar by an operator,

eωβ,2

1 + eωβ,2
〈β, 2| = 〈β, 2| eX2,sp

1 + eX2,sp
, (16)

to obtain

TrF

[
dje

X1d†je
X0

]
= det

(
1 + eX2,sp

)∑

β

〈j|β, 2〉〈β, 2| eX2,sp

1 + eX2,sp
e−X0,sp |j〉

= det
(
1 + eX2,sp

)
〈j| eX2,sp

1 + eX2,sp
e−X0,sp|j〉 (17)

Combining Equations (9), (10), and (17), we have

A =
det2

(
1 + eX1,speX0,sp

)

det2 (1 + eX0,sp)
〈j|e

X1,speX0,spe−X0,sp

1 + eX1,speX0,sp
|j〉

= det

(
1 + eX1,speX0,sp

1 + eX0,sp

)2

〈j| eX1,sp

1 + eX1,speX0,sp
|j〉 (18)

Now define N ≡ eX0,sp/(1 + eX0,sp), eX0,sp = N/(1 − N), the meaning of which is clear

when X0 = −βH0. Substituting N for eX0,sp , we obtain

A = det
(
(1−N) + eX1,spN

)2
(

N

1−N + e−X1,sp

)−1

jj

= det
(
(1−N) + e−itH1,spN

)2
(

N

1−N + eitH1,sp

)−1

jj

. (19)

We have reduced the expression to one involving operations on matrices in single-particle

Hilbert space.

EFFECT OF CORE HOLE IN RSXS SPECTRA

In Figure (1) we show the effect of varying core hole strengths on the RSXS spectrum.

The essential features to note are (i) flattening of the high energy peak and growth of the low

4



energy peak, and (ii) slight increase in peak separation, as core hole strength is increased.

By U0 = −0.75 eV, the upper peak is almost invisible.

The peak energies themselves depend on U0 in that an attractive potential tends to lower

all energies. However, the separation between peaks depends only weakly on U0. Zero energy,

i.e. the Fermi energy Ef , is not at the first maximum. The location of this maximum is

determined by dynamic nesting, which occurs at some energy above Ef , and the excitonic

effect, which lowers energies of transient states. Thus in principle the first peak could be at

positive or negative energy.

FIG. 1: RSXS spectra of LBCO at different core hole strengths. ω′ is defined as in Figure (1) of

the main text.

CORE HOLE YUKAWA POTENTIALS

Figure (2) shows the calculated RSXS spectra for parameters identical to those in the

main text but Yukawa core hole potentials of the form

U(r) = U0





1 (r = 0)

e−r/r0
r

(r 6= 0
, (20)
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where r0 is the range of the potential. The effect is quite similar to that obtained by increas-

ing U0 in the case of a contact potential, which is sensible – a potential well can become

bigger by growing deeper or wider. The high energy peak becomes less pronounced and

both peaks move to lower energies. For the Yukawa case, unlike for contact potentials, the

separation between peaks decreases slightly as the range increases. This is not profound

– it merely reflects the fact that different potentials yield different excitonic effects. Inci-

dentally, we note that it is possible that LDA-derived tight-binding parameters are quite

accurate and that excitonic effects of a Yukawa potential reduce the separation of peaks to

the experimentally-observed value.

FIG. 2: RSXS spectra of LBCO at different Yukawa potential ranges for fixed core hole potential

depth U0 = −0.25 eV. ω′ is defined as in Figure (1) of the main text.

LDA- VS. ARPES-DERIVED BAND STRUCTURE

Figure (3) shows RSXS spectra using the same parameters as in the main text except

for replacing hopping strengths with those obtained from LDA and ARPES. The spectra

are qualitatively the same but with different peak separations. The experimentally-observed

peak separation is less than that of LDA and more than that of ARPES.
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FIG. 3: RSXS spectra of LBCO at different for LDA and ARPES tight-binding parameters. ω′ is

defined as in Figure (1) of the main text.

SLIGHTLY-INELASTIC SCATTERING

We assumed purely elastic scattering in which |f〉 = |i〉. However, resolutions of both

energy and momentum are finite and, assuming T = 0 for simplicity, a final state containing

electron-hole pairs of very small total energy and momenta could correspond to apparently-

elastic scattering. We can give two simple reasons why this does not affect the validity of

setting |f〉 = |i〉. Firstly, the rate of producing any given electron-hole pair, for example by

scattering of Fermi sea electrons by the core hole potential, is independent of the transient

state of the photoelectron. Thus the creation of low-energy and low-momentum excitations

in the final state will increase the measured elastic intensity uniformly by an |n〉-independent

factor. Secondly, matrix elements to produce a particle of momentum q vary slowly as a

function of q, hence slightly-inelastic processes do not exhibit a peak in momentum transfer.

They contribute a constant incoherent background which is easily isolated from the diffrac-

tion peak. In practice, this is done by measuring RSXS spectra over a range of momentum

transfer that crosses the ordering wavevector Q.
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