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Sensitivity of School-Performance Ratings to Scaling Decisions 

Abstract 

 Policymakers usually leave decisions about scaling the scores used for accountability to 

their appointed technical advisory committees and the testing contractors. However, scaling 

decisions can have an appreciable impact on school ratings (Briggs & Weeks, 2009). Using 

middle-school data from New York State, we examined the consistency of school ratings based 

on two scaling approaches that differed in scaling decisions that are important in high-stakes 

testing contexts. We found that, depending on subject, grade, and year, a switch in scaling 

approach led to (1) average absolute shifts in ranks of between 50 and 132 positions (median = 

69), which are appreciable shifts for a listing of 1,243 schools; and (2) between 7% and 45% 

(average = 20%) of schools experiencing shifts in assigned performance bands, depending on the 

classification scheme. Further, the effect of scaling approach was larger when the raw-score 

distribution has more severe ceiling effect, and in these cases, it was driven primarily by the 

difference in the location of the highest obtainable scale score from the two scaling approaches. 
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Sensitivity of School-Performance Ratings to Scaling Decisions 

Introduction 

 Policymakers who commission standardized tests usually leave the choice of the scaling 

approach used to generate the scores to their appointed technical advisory committee and the 

testing contractor (National Research Council, 2010). Given the heavy reliance on the resulting 

scores for inferences about educators’ relative performance, we argue that it is important to 

examine the robustness of such inferences to reasonable alternative scaling decisions because 

such decisions are typically substantively unrelated to the target inferences. 

 Past studies have investigated the differences in the scale scores obtained from different 

ability estimators (e.g., Kim & Nicewander, 1993).  But these studies did not examine the impact 

of such differences in the resultant scale scores on school-performance ratings. 

 A few recent studies have investigated the sensitivity of teacher or school value-added 

measures to the psychometric properties of the underlying scale. But these studies tended to 

focus on issues related to the violations of interval-scale or vertical-scale properties (Ballou, 

2009; Briggs & Betebenner, 2009; Martineau, 2006), rather than to reasonable alternative scaling 

decisions made during the scaling process.  

 One notable exception is a study by Briggs and Weeks (2009), who examined the 

sensitivity of schools’ value-added estimates to decisions about the scaling model, linking 

method, and the estimation method when creating a vertical scale. The resulting estimates were 

strongly linearly inter-related (Pearson correlations between .79 and .99) but nonetheless often 

resulted in appreciably different classifications of schools into three broad performance bands. 

 This study, like that of Briggs and Weeks (2009), focuses on the impact of scaling 

decisions, but it addresses two issues that commonly arise in practice in high-stakes testing: 
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(1) right-censoring of the raw-score distribution (i.e., a ceiling effect); and (2) the use of methods 

that create a 1-to-1 mapping between raw and scale scores.  

 Ceiling effects are frequently observed in high-stakes testing programs (Ho & Yu, 2012). 

They arise because of the initial easiness of the test, the typically rapid rise in scores (often a 

result of score inflation), or both. For example, Koedel and Betts (2010) reported that, in 2006, 

the high-school exit examinations in 26 states were “pitched at a middle school or lower high 

school level” (p. 55). Similarly, many researchers have documented performance gains on high-

stakes state tests that far outpaced the gains on a lower-stakes test (e.g., NAEP) over the same 

time period, suggesting the presence of score inflation (e.g., Fuller, Gesicki, Kang, & Wright, 

2006; Jacob, 2007). These rapid gains substantially exacerbate ceiling effects. 

 Ceiling effects on the raw-score distribution lead to unavoidable uncertainties in scaling 

raw scores near the ceiling. This uncertainty is exacerbated when the choice of a scaling method 

requires setting the lowest and highest obtainable scale score (LOSS and HOSS) a priori. While 

the transformation of raw scores into scale scores by IRT methods mitigates the ceiling effects 

by stretching out the upper tail of the distribution, different scaling methods are likely to stretch 

the tail by varying amounts, and it is unclear which amount is the most reasonable. 

 To avoid confusion and to enable practitioners to convert between raw scores and scale 

scores, a majority of states adopt methods that produce a 1-to-1 mapping between raw and scale 

scores. Many use Rasch scoring, which directly produces such a mapping because raw scores are 

a sufficient statistic for the Rasch ability estimates. However, some states that use IRT pattern 
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scaling nonetheless also report scores, commonly called summed scores, with a 1-to-1 mapping 

to raw scores. In these cases, an extra step is required to convert the � scale to summed scores. 1 

 In this study, we used data from the New York State testing program to investigate 

whether the process of obtaining summed scores coupled with pattern scaling is of practical 

importance to schools’ ratings, and we explored the interaction of this impact with the severity of 

the ceiling effects on the raw-score distributions. We examined the consistency of school ratings 

based on two different scaling approaches. One approach, used operationally by the state, 

employed maximum-likelihood estimation and therefore set the LOSS and HOSS a priori. 

Summed scores were then created by inverting the test-characteristic curve obtained from pattern 

scaling (see later). This resulted in large differences in summed scores at both ends of the 

distribution between students whose raw scores differed by only a single raw-score point. The 

second approach produced scale scores that had neither a 1-to-1 mapping nor large gaps between 

scale scores at the extremes.  

 Besides focusing on scaling decisions that are particularly important in high-stakes 

testing contexts, our study also differed from the study by Briggs and Weeks (2009) in three 

other respects. First, instead of the multivariate “layered model” for value-added measures that 

the authors employed, we used covariate-adjustment measures.
2
 Second, instead of reading 

                                                 
1 Of the 36 states for which we found the relevant technical information spanning school years 2006-07 to 2010-11, 

30 reported scales with a 1-to-1 mapping to raw scores. Of these, 18 used the Rasch model, while the others used 

pattern scaling coupled with a process of obtaining a 1-to-1 mapping to raw scores.  Details are in Appendix A of 

the supplementary materials available at http://nrs.harvard.edu/urn-3:HUL.InstRepos:13360004. 

2 We conducted similar analyses using difference-score measures, that is, using the difference between current- and 

prior-year scores as the dependent variable. The results were largely similar and are available upon request. 
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achievement, we used both English language arts (ELA) and mathematics. Finally, in addition to 

the school-classification scheme that they used, which we report in detail below, we also used 

two other classification schemes, chosen because they have been used by other researchers or in 

existing school-accountability systems.  

 In these analyses, we addressed three specific research questions: 

RQ1.  How do the two scales differ in addressing the ceiling effects on the raw-score 

distributions? 

RQ2.  How consistent are schools’ performance ratings in a specific subject, grade, and 

year, when we use scores from the two different scales to derive the school-

performance estimates? 

RQ3. What is the relative importance of the various differences in scaling decisions 

made while creating the two scales in contributing to the inconsistency in schools’ 

ratings? 

 

Methodology 

Data  

 The NYS dataset that we used contained student-level ELA and mathematics 

performance and student demographics, for all students participating in the NYS accountability-

testing program in grades 7 or 8 in school years ending Spring 2009 and 2010. Performance data 

included both item responses and scale scores provided by NYS’s testing contractor and used 

operationally in NYS (henceforth, the “TC scale”). This scale was set to a fixed mean and 

standard deviation in every grade and subject in the first year of the program, and the data in the 

subsequent years were linked back to this initial scale. NYS uses this scale to implement its 
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accountability system. We rescaled the performance data to create a second set of scale scores 

(henceforth, the “Alt scale”) solely for research purposes.3 In every grade and subject, this scale 

was initially approximately mean zero and standard deviation one in the first year for which we 

had data, and was linked across years using the same linking constants as those used to create the 

TC scale.  

The Two Scaling Approaches 

 Both the TC and Alt scales were derived from three-parameter logistic IRT models for 

the multiple-choice items. This is a pattern-scoring IRT model that specifies the probability of 

getting an item correct as a logistic function of the test-taker’s proficiency (i.e., the latent ability, 

θ ), and three parameters describing the difficulty, discrimination, and pseudo-guessing rate of 

the item. Further, the same linking constants were used to link each of the two scales over time.  

 However, the two approaches differed in (1) the model used for constructed-response 

items; (2) the approach used to estimate the item parameters (i.e., item calibration); and (3) the 

approach used to obtain students’ scale scores. The third is the most important difference.  

 For the constructed-response items, NYS’s testing contractor used a two-parameter 

generalized partial-credit (GPC) model, while we used a graded-response model, selected for 

reasons unrelated to this paper. The GPC model estimates the probability of a response falling 

into any single score category. The graded-response model estimates the probability of scoring at 

a given step or higher; probabilities for individual steps can then be obtained by subtraction. 

However, past research has shown that the two types of models produce very similar scores 

(Maydeu-Olivares, Drasgow, & Mead, 1994; Thissen, Nelson, Rosa, & McLeod, 2001).  

                                                 
3 We used IRTPro, developed by Li Cai, David Thissen and Stephen du Toit, to derive the Alt and Alt1-1 (see later) 

scale scores. 
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 Secondly, the two scales differed in their item-calibration approaches. NYS’s testing 

contractor used marginal maximum-likelihood estimation, while we used a Bayesian approach 

that allows the specification of a prior distribution for each of the item parameters.  However, 

perhaps because of the large amount of data, we found that priors for the item discrimination and 

item difficulty (a- and b-parameters) had no appreciable effect, so we did not specify them, 

effectively setting uniform priors for those parameters. We only specified a Beta(6,16) prior 

distribution for the c-parameter. We would therefore expect this difference between the two 

scales to play a minor role in driving any observed scaling-approach effect on schools’ ratings, 

and across all combinations of grade, subject, and year used in the study, the median correlation 

between estimates of the a- and b-parameters obtained for multiple-choice items for the two 

scales were both .97.4  

 Finally, the two scales differed in two aspects of the methods used to create students’ 

scale scores.  First, maximum likelihood methods were used to derive the TC scale scores, while 

we used expected a posteriori (EAP) estimation to derive the Alt scale scores. Second, the TC 

scale scores are not simple linear transformations of �. Rather, being summed scores, they are 

discrete estimates of �. In contrast, the Alt scale scores are simple linear transformations of �. 

 Because the TC scale scores were estimated using maximum-likelihood methods, � is 

undefined for students whose raw scores are either zero or perfect, and the latter are numerous 

when raw scores show a ceiling effect.  Scale scores for these students—the LOSS and HOSS—

therefore must be set arbitrarily (CTB/McGraw-Hill, 2006). In addition, LOSS was also assigned 

                                                 
4 Although the corresponding correlations between estimates of the c-parameter were lower (median = .46), these 

are likely to be attenuated due to the greater uncertainty associated with estimations of the c-parameter, compared to 

the a- or b-parameters, in general, as documented by past research (Han, 2012; McKinley & Reckase, 1980). 
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to students scoring below chance. The LOSS and HOSS were kept constant across years. In 

contrast, Bayesian approaches, such as that used to obtain our Alt scale scores, estimate � 

directly for zero and perfect scorers. 

 The TC summed scores were obtained by inverting the test characteristic curve (TCC).  

This process begins with estimation of the item characteristics curves (ICCs) that show the 

estimated performance on each item as a function of � (for binary items, the probability of a 

correct response).  The TCC is the sum of the ICCs across all items. This provides at any value 

of � the “number right true score” (NRTS)—the expected raw score for students with that value 

of � (Lord, 1980).  However, the NRTS, unlike a raw score, is not limited to integer values. 

 The approach used to obtain the TC summed scores works backwards from the NRTS.  

Each observed (integer) raw score is mapped to the TCC. The value of � that would produce an 

NRTS equal to that raw score is then assigned to all students with that observed raw score. This 

produces a set of summed scores that maps 1-to-1 with the observed raw scores. Finally, this 

discretized, estimated � distribution is linearly transformed to the reporting scale. Students with 

perfect scores were assigned HOSS; those with zero scores or scores below chance were 

assigned LOSS.  

 In contrast, we used EAP estimation to obtain the Alt scale scores, setting priors for the 

ability distribution. We did not create summed scores for our primary Alt scale.  However, to test 

the impact of discretizing the whole scale with 1-1 mapping to the observed raw scores, we also 

created summed scores using the EAP estimation method described by Thissen and Orlando 

(2001, pp. 119-121). This scale, which we label Alt1-1, is identical to the Alt scale except for the 

reduction to summed scores. 
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 The resulting TC and Alt scale scores differ in two respects. First, while the TC scale 

scores have a 1-to-1 mapping to the raw scores for all students, the Alt scale scores have a 1-to-1 

mapping only for zero or perfect raw scores. (This mapping occurs because all students with zero 

or perfect scores had the same response patterns, either all answers incorrect or all answers 

correct.)  Second, the two sets of scale scores differed in the amount of stretching in the two tails 

of the distributions.  This difference is in addition to the shrinkage inherent in Bayesian estimates 

such as the Alt scale; it is a non-uniform difference that becomes progressively more extreme as 

scores deviate further from the mean.  Specifically, for the TC scale scores, the inversion of the 

TCC and the adoption of LOSS and HOSS resulted in increasing distances between the scale 

scores corresponding to two adjacent raw scores. This was true at both ends of the distribution 

but was more evident at the upper end because of the ceiling effect on raw scores.  The Alt scale 

scores do not show such increasing or large gaps between two adjacent scale scores at either end 

of the distribution.  In Figure 1, we illustrate these differences, using the 2009 ELA results of 

grade-7 students.  The increasing and large gaps at both ends on the TC scale-score distribution 

in the sample—and their absence in the corresponding Alt scale-score distribution—are evident 

from both the histograms for the two sets of standardized scale scores (top panel) and the scatter 

plot of the standardized Alt scale scores versus the standardized TC scale scores (bottom panel). 

~~~~~ INSERT FIGURE 1 ABOUT HERE ~~~~~ 

Measures  

In Appendix A, we display the principal variables that we used. 

 Outcome variables. The outcome variables were TC and Alt scale scores in ELA and 

mathematics on the state tests in the target year (Y = 2009 or 2010), separately for each subject. 

We denote each of these by SCORE(Y ). 
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 Control predictors. The covariate adjustment models included various combinations of 

the following: 

 Achievement in Previous Year. TC and Alt scale scores in the same subject in the year 

before the target year. We denote this by SCORE(Y −1) .  

 Prior Achievement in Milestone Grade (G5). In some models, we included students’ 

achievement in ELA and mathematics when they were in grade 5, which is typically the final 

grade prior to a student’s entry to middle school. These covariates were on the same scale as the 

outcome variable in the model. We denote these covariates collectively by the vector PA. 

Following the approach taken by Lockwood, McCaffrey, Hamilton, Stecher, Le, and Martinez 

(2007), PA, unlike SCORE(Y −1) , included scores in both ELA and mathematics. PA served as 

a proxy measure of students’ academic achievement at the end of elementary school.  

 Because the performance measures are on different scales, we standardized each of them 

with reference to the performance of a selected anchor cohort of students, separately for each 

combination of scale, subject, grade, and year. We used the 2006 grade-5 cohort as the anchor 

cohort, 2006 being the earliest year that we have access to in the NYS database, and grade 5 

being the earliest grade whose data we used in the study. For example, a grade-7 student with a 

standardized TC scale score of 1 unit on the mathematics test in 2009 is 1 SD above the average 

score on the TC scale of the 2006 grade-5 cohort when the latter took the grade-7 mathematics 

state-test in 2008.  This is akin to using a norming sample in the creation of a scale with 

normative interpretations (Kolen, 2006). 

 Student Background. Three sets of dichotomously coded covariates recorded selected 

student-background characteristics: (1) gender, family-income status, immigrant status, and 

several race/ethnicity categories; (2) limited-English-proficient (LEP), and disability statuses; 
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and (3) whether the student had received testing accommodations while taking the state tests. We 

denote these covariates collectively by the vector B. 

 School-level Aggregate Variables. We also derived aggregate school-level measures by 

averaging the corresponding student-level variables within each school. We denote these 

collectively by the vector S. 

Construction of Analytic Sample 

 The total sample comprised 765,843 7
th

 and 8
th

 graders in 2009 and 2010 in 1,451 

schools, roughly evenly distributed between the two grades and the two years. We constructed 

our analytic sample by first eliminating students with missing values for any variables needed to 

compute the school-performance estimates. Then we retained only schools that contained 

students in both grades who satisfied the student-level inclusion criteria for both subjects in both 

target years. This created a common set of schools for computing the school-performance 

estimates for all subjects, grades, and years. This is essential because normative school-

performance measures depend on the particular schools included in the estimation sample. 

 The resulting analytic sample comprised 661,504 7
th

 and 8
th

 graders in 2009 and 2010 in 

1,243 schools. This represents attrition rates of 14% at both the student and school levels. 

Nonetheless, the analytic sample is comparable to the total sample with regard to all student-

background variables, at both the student and school levels.5  For example, in terms of 

race/ethnicity, the total (analytic) sample comprised 54% (56%) White, 18% (17%) African-

American, 20% (18%) Hispanic, and 8% (9%) Asian or others. Similarly, 48% (46%) of the 

students in the total (analytic) sample were from low-income families. But students in the 

                                                 
5 Details, including school-level descriptive statistics, are available Appendix B of the supplementary materials 

available at http://nrs.harvard.edu/urn-3:HUL.InstRepos:13360004.  
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analytic sample were slightly higher performing on average than those in the corresponding total 

sample, with difference in average scores ranging from .01 SD to .06 SD (average = .04 SD) 

across all performance measures. 

Evaluating Ceiling Effects  

  The differences between the two scales in the upper tail of the distribution are of 

particular importance because of ceiling effects on the raw-score distributions. We quantified the 

severity of the ceiling effects three ways: the magnitudes of negative skewness (following 

Koedel and Betts, 2010), more positive kurtosis, and the distance from the median to the 

maximum standardized scores on the two sets of scale scores.  

Creating School-Performance Measures 

 We defined a set of school-performance measures using covariate-adjustment models, 

with prior achievement as one of the covariates. We fitted six types of models defined by the 

control predictors included (Table 1).  We focus here on the model that included all control 

predictors (CA6), but we used models that omitted one or more predictors to serve as sensitivity 

checks on model dependence. 

~~~~~ INSERT TABLE 1 ABOUT HERE ~~~~~ 

 For each combination of scale, subject, grade, year, and set of covariates, we generated 

the school-performance estimates by fitting this 2-level random-intercepts multilevel model:  

 

for student i in school s, where β ′, π′, and γ′ represent the vectors of coefficients for the student 

background variables, prior achievement variables, and school-level aggregate variables 
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respectively. All variables are grand-mean-centered.
6
 For each combination of scale, subject, 

grade, year, and set of covariates: 

• ε
is

, the residual error term for student i in school s, is assumed to be independent and 

normally distributed with mean zero and variance σε
2
, for all i and s. 

• ψ
s

, the estimate of the performance of school s, is the empirical Bayes residual, i.e., the 

shrunken deviation of the school’s mean performance from its performance predicted by the 

model specified in equation (1) (Raudenbush & Bryk, 2002). We assumed these school-

performance estimates to be independent of ε
is

 for all i, and s, and that they were drawn 

from a normal distribution with mean zero and variance σψ
2

.  

Estimating the Impact on Schools’ Performance Ratings 

 We estimated the impact of the choice of scaling approach on two common uses of 

school-performance measures: (1) to create rank-ordered lists of schools; and (2) to classify 

schools into broad performance bands.  

 Impact on Schools’ Ranks. We used two indices to quantify the impact of the choice of 

scaling approach on schools’ ranks. First, we computed the Spearman’s rho (rank correlations) 

between school-performance estimates obtained from the two scales: 

(2) r
s

= Corr Rank(ψ̂
s

|
TC scale

),Rank(ψ̂
s

|
Alt scale

)( )  

                                                 
6 Following the argument by Thum and Bryk (1997), we fitted only multilevel models with fixed coefficients for all 

predictors because we were only interested in a school’s performance averaged over all its students. 
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where Rank(ψ̂
s

|
TC scale

) and Rank(ψ̂
s

|
Alt scale

)  denote school ranks on the school-performance 

estimates derived from the TC scale scores and Alt scale scores respectively. Secondly, we 

computed the mean absolute difference between the two ranked variables: 

(3) MAD =
1

N
Rank ψ̂

s
|
TC scale( ) − Rank ψ̂

s
|
Alt scale( )

s=1

N

∑  

This index represents the average shift in school ranks in either direction when one set of scale 

scores derived from one scaling approach was replaced with the other.  

 Impact on Schools’ Assignment to Performance Bands. The impact of scaling 

approach on the assignment of schools to performance bands will depend on the classification 

scheme employed. In general, the proportion of schools changing classifications will be lower if 

there are fewer cut scores, if the cuts are in parts of the distribution with low density, or if the 

marginal distributions are substantially non-uniform. Therefore, specific classification schemes 

served only as illustrations of possible impact. We examined three schemes, selected for their 

uses in past research or school-accountability systems, but focused on two of them here. In 

Scheme 1, we classified schools with school-performance estimates that are at least one posterior 

SD (i.e., the SD of the distribution of empirical Bayes residuals obtained from equation [1]) 

below the average as “below average”; those with estimates that are at least one posterior SD 

above the average as “above average”; and all other schools as “average”. This scheme was used 

by Briggs and Weeks (2009) and has been used frequently in effective-schools research to 

identify “outlier” schools (Crone, Lang, & Teddlie, 1995). Quantiles are often used in 

teacher/school value-added studies to illustrate the amount of classification inconsistency 
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associated with a correlation between alternative value-added measures (e.g., Ballou, 2009; 

Corcoran et al., 2011; Papay, 2011). For Scheme 2, we used quintiles. 7 

 We computed the average percentage agreement between the TC and Alt scale scores for 

both schemes, separately for each combination of subject, grade, year, and model specification.  

We compared these percentages to the percentage of chance agreement (that is, the agreement 

rate expected with random assignment of schools to the performance bands), which is a function 

of the number of cut scores and the marginal distributions.  

Investigating the Relative Importance of Different Scaling Decisions 

 We investigated the relative importance of three aspects of the scaling methods: (1) the 

reduction of the scale to summed scores; (2) inverting the TCC; and (3) setting the LOSS and 

HOSS a priori. 

 We evaluated the effects of reduction to summed scores by comparing the impact of the 

Alt and Alt-1 scores. Because the Alt1-1 scale is identical to the Alt scale except for the 

reduction to summed scores, if the effects of substituting the Alt1-1 scale scores for the TC scale 

scores are very similar to the effects of substituting with the Alt scale scores, then the scaling-

approach effects must be attributable to some combination of the second and third factors. 

                                                 
7 In addition, unequal proportion, asymmetric classification schemes are sometimes used in practice. For Scheme 3, 

we adapted the system used in in New York City’s Progress Report for schools (New York City [NYC] Department 

of Education, 2011a, 2011b). For the 2010-11 school year, NYC’s elementary and middle schools were assigned 

letter grades according to the following percentile ranks: “A”–top 25%; “B”–next 35%; “C”–next 30%; “D”—next 

7%; “F”—bottom 3% (NYC Department of Education, 2011b). The results based on Scheme 3, which are largely 

consistent with those of Scheme 2, are available in Appendix C of the supplementary materials available at 

http://nrs.harvard.edu/urn-3:HUL.InstRepos:13360004.  
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 To distinguish the effects of the second and third factors—inverting the TCC, versus 

setting LOSS and HOSS arbitrarily—we replicated our earlier analyses while excluding students 

with arbitrarily set scores. Very few students were assigned the LOSS as the TC scale score: less 

than 0.2% from each combination of grade, subject, and year.  Therefore, we focused on the 

effect of the HOSS on the two sets of scale scores, re-computing the effects of switching 

between the TC and Alt1-1 scales, using a restricted sample that excluded all students with 

perfect scores.  The resulting effects reflect the contributions of other differences between the TC 

and Alt1-1 scales, net of the contribution of the difference in the HOSS.  

Results 

Severity of Ceiling Effects 

The raw-score distributions of the results for the grades and years that we used in the 

study showed severe but varying ceiling effects. Skewness ranged from – 1.33 to – 0.53 (median 

= – 1.02) across subjects, grades, and years (column labeled “Raw” in Table 2). In general, 

ceiling effects were more severe in ELA (skewness from – 1.33 to – 1.05) than in mathematics  

(– 0.98 to – 0.53). 

~~~~~ INSERT TABLE 2 ABOUT HERE ~~~~~ 

These ceiling effects are comparable in severity to those observed for high-stakes tests in 

other states. For example, in their review of state-level scale score distributions from 17 states in 

2010, Ho and Yu (2012) reported states with median skewness ranging from – 0.64 to – 0.87 

(minimum = – 1.81) across grades 3-8 in reading and mathematics. 

Differences Between the Two Scaling Approaches in Addressing Ceiling Effects 

Both sets of scale scores lessen the ceiling effects by stretching out the upper tails of the 

raw-score distributions, but in most instances, the transformation imposed by the scaling 
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approach for the TC scale was considerably greater.  This can be seen in two ways. First, the 

distributions of the Alt scale scores remained negatively skewed, with a median skewness of – 

0.36 in ELA and – 0.28 in mathematics (panel I in Table 2).  In contrast, in many instances, the 

skewness of the TC scale-score distribution was positive, with a median skewness of +1.94 in 

ELA and +0.13 in mathematics. Secondly, the distance between the median and the maximum 

TC scale scores was larger than that for the Alt scale scores (Table 3).  For example, for grade-7 

ELA in 2009, the distance between the median and the maximum TC scale scores was 4.19 SD 

while that for the Alt scale scores was 1.41 SD. 

~~~~~ INSERT TABLE 3 ABOUT HERE ~~~~~ 

 For each combination of grade and year, the difference between the two scaling 

approaches in the upper-tail stretching is also consistently larger for ELA than that for 

mathematics (Table 3).  In ELA, the differences between the two sets of scale scores in the 

distance from the median to the maximum scores on each set ranged from 2.45 SD to 3.13 SD. 

The corresponding differences in mathematics ranged from 0.99 SD to 1.55 SD.  These results 

are consistent with the view that the two scaling approaches differ more in their stretching of the 

upper tail when the ceiling effects are more severe, as the ceiling effects were generally more 

severe in ELA.  

The scaling approach for the TC scale scores also stretched the lower tails of the raw-

score distributions more than that for the Alt scale scores. As a result, combining the effects of 

stretching at both ends of the distributions, the TC scale-score distributions have much larger 

kurtosis than the corresponding Alt scale-score distributions, the latter being—as expected—

closer to a standard normal distribution. This applies to all combinations of subject, grade, and 

year. The median kurtosis for the TC scale scores was 10.68 in ELA and 5.81) in mathematics 
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(panel II in Table 2). In contrast, those for the Alt scale scores were smaller—medians of 3.07 in 

ELA and 2.89 in mathematics—and were close to that for a standard normal distribution 

(kurtosis = 3.00). 

The above differences between the two scaling approaches do not appear to be driven 

simply by the fact that the TC scale scores are summed scores with a 1-1 mapping to the 

observed raw scores but the Alt scale scores are not.  This is because, the skewness and kurtosis 

of the Alt1-1 scale scores—which are simply the summed-score version of the Alt scale scores—

are comparable to those of the corresponding Alt scale scores rather than those of the TC scale 

scores (Table 2). 

Estimated Impact on Schools’ Performance Ratings 

In this and the next two sections, we report our findings based on the model that included 

all control predictors (i.e., CA6). In a later section, we show that these findings are largely 

independent of the choice of model. 

 Impact on Schools’ Ranks. Schools’ ranks differed modestly between the two sets of 

scale scores. Across all combinations of grade, subject, and year, the Spearman’s rho between 

school-performance estimates derived from the two sets of scale scores ranged from .89 to .98 

(median = .97) (Table 4).  Although these correlations are very high by usual conventions, they 

correspond to appreciable shifts in ranks. The average shift in ranks in either direction ranged 

from 132 to 50 rank positions (median = 69) on a listing of 1,243 schools.8 That there were 

substantial shifts in ranks in some instances is also evident from the scatterplots of schools’ ranks 

                                                 
8 Other distributional statistics of the differences in school ranks (minimum, quartiles and maximum) are available 

in Appendix D of the supplementary materials available at http://nrs.harvard.edu/urn-3:HUL.InstRepos:13360004. 
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based on the TC scale scores against their ranks based on the Alt scale scores, shown for the 

cases with the minimum and maximum Spearman’s rho in Figure 2. 

~~~~~ INSERT TABLE 4 ABOUT HERE ~~~~~ 

 For each grade and year, the scaling-approach effects tended to be larger for ELA than 

for mathematics (Table 4).  For example, at grade 7 in 2009, the Spearman’s rho for ELA was 

.93, corresponding to average shift in ranks in either direction of 104 rank positions, while that 

for mathematics was.97 (61 rank positions).  

~~~~~ INSERT FIGURE 2 ABOUT HERE ~~~~~ 

 Impact on Classification of Schools in Broad Performance Bands. The scaling 

approach used affects schools’ assigned performance bands, and as expected, the size of the 

impact depends on both the number and locations of the cut-scores. In Table 5, we display the 

observed percentages agreement between schools’ assigned performance bands based on the two 

sets of scale scores, by grade, year, subject, and classification scheme, with chance agreement 

rates in parentheses and Cohen’s kappa in italics. 

~~~~~ INSERT TABLE 5 ABOUT HERE ~~~~~ 

 For performance bands defined by cut scores at ±1 posterior standard deviation (Scheme 

1), the observed percentage agreement in classification was generally high, averaging 89% 

across grades, years, and subjects. However, chance agreement rates were also high, so Cohen’s 

kappa ranged from moderate (.58) to high (.87), with a median of .65 for ELA and .85 for 

mathematics.  

 All other things being equal, the larger the number of cut scores, the higher the 

proportion of instances in which schools change classifications, and as expected, we found that 

the effect of switching from one scaling approach to another was larger with Scheme 2 
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(quintiles) than with Scheme 1. The average observed percentage agreement for Scheme 2 was 

72%, with median Cohen’s kappa of .56 for ELA and .74 for mathematics. 

The Impact of the Severity of Ceiling Effects 

 The effect of switching from one scaling approach to another was substantially larger in 

cases where the ceiling effect on the raw-score distribution was more severe. For example, in the 

three cases where the raw-score distribution was the most negatively skewed—namely, grade-7 

ELA in 2009 and 2010, and grade-8 ELA in 2010, with skewness ranging from – 1.33 to – 

1.26—the average shift in ranks in either direction ranged from 103 to 132 rank positions.  These 

are considerably larger than the corresponding average shift in ranks in either direction, ranging 

from 55 to 62 rank positions, observed for the three cases with the least negatively skewed raw-

score distributions—namely, grade-7 mathematics in 2009 and 2010, and grade-8 mathematics in 

2010, with skewness ranging from – 0.83 to – 0.53. 

Relative Importance of Different Scaling Decisions to the Scaling-Approach Effect 

 As expected, the use of summed scores—that is, a 1-to-1 mapping between scale scores 

and raw scores—did not contribute substantially to the scaling-approach effects on schools’ 

ratings. Switching between the TC scale scores and the Alt1-1 scale scores—the 1-to-1 version 

of the Alt scale scores—had virtually the same effect as switching between the TC scale scores 

and the Alt scale scores. This applies to both school ranks and performance bands, and to 

different combinations of grade, subject, and year (Table 6 with Tables 4 and 5). The only 

exception was for grade-7 mathematics in 2010. Although the Spearman’s rho for the TC versus 

Alt1-1 scale scores (.99) was very close to that for the TC versus Alt scale scores (.98), for 

reasons that are unclear, the difference in average shift in ranks between the two sets of results 

(20 rank positions) was slightly larger than that observed for the other combinations of grade, 
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subject, and year (between 0 and 11 rank positions). Nonetheless, even in this case, the 

difference can be considered small on a rank list of 1,243 schools. 

~~~~~ INSERT TABLE 6 ABOUT HERE ~~~~~  

As noted, the effect of switching from one scaling approach to the other was larger when 

the ceiling effect was more severe, and in those cases, the difference in the location of the HOSS 

between the two scaling approaches was a key driver of the scale-approach effects. Specifically, 

in the three cases where the raw-score distribution was the most negatively skewed among those 

included in the study—namely, grade-7 ELA in 2009 and 2010, and grade-8 ELA in 2010—the 

exclusion of the perfect scorers led to considerably more consistent school-performance 

estimates between the TC scale scores and the Alt1-1 scale scores than those obtained in the full 

analytic sample (compare panels I and II in Table 6). For example, for grade-7 ELA in 2009, the 

average shift in ranks in either direction was 98 and 48 rank positions in the full analytic sample 

and the restricted sample respectively.  

In contrast, in cases where the raw-score distribution was less negatively skewed (e.g., 

grade-7 mathematics in 2009 and 2010, and grade-8 mathematics in 2010), using the restricted 

sample did not lead to substantial reduction in the effects. This could be due to (1) the already 

very small scaling-approach effects in the full analytic sample in these cases, which might create 

a floor effect on the scaling-approach effects; or (2) the relatively small number of perfect 

scorers in these cases; or both.   

Sensitivity of Results to Choice of Model 

 The estimated scaling-approach effects on both schools’ ranks and performance bands 

were largely independent of the type of covariates included in the model. There is limited 

variation in Spearman’s rho among the six models (Table 4): the range across models was only 
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from .01 to .06 (median = .01), depending on grade, subject, and year. The corresponding range 

of the average shift in ranks in either direction was between 6 and 43 rank positions (median = 

10), with larger variation observed for ELA (between 11 and 43 rank positions) than for 

mathematics (between 6 and 9 rank positions). Similarly, there is also minimal variation among 

the six models in percentage agreement in schools’ assignment to performance bands (Table 5): 

the range across models was between 1% and 12% (median = 4%), depending on grade, subject, 

year, and classification schemes. 

 Similarly, the other results—(1) the scaling-approach effects were larger where the 

ceiling effects on the raw-score distributions were more severe; (2) the use of summed scores per 

se contributed little to the scaling-approach effects; and (3) the difference in the location of the 

HOSS between the two sets of scale scores was the key driver of the scaling-approach effects in 

cases with severe ceiling effects on the raw-score distributions—all hold for each of the other 

models. Details are available upon request. 

Discussion 

 In this study, we found that the choice between two scaling methods—a commonly used 

method for creating summed scores, and an alternative Bayesian approach—affected schools’ 

performance ratings modestly. Scaling affected both schools’ ranks and their assignment to 

broad performance bands. These effects were larger when the underlying raw score distribution 

had more severe ceiling effects, and in such cases, the inconsistency in schools’ ratings was 

primarily driven by the difference in the location of the HOSS on the two sets of scale scores. 

 Although the effects are modest in size, they are large enough to be important when there 

are high stakes attached to school ratings. As both approaches we used are conventional and 

reasonable alternatives, and because the choice between them is substantively unrelated to the 
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inference, these inconsistencies pose a threat to the validity of school ratings. Ceiling effects, 

which drive some of the inconsistency we found, are very common in current high-stakes testing 

programs, and methods similar to those used to derive the TC scale scores, are used in several 

states. Moreover, policymakers, educators, or the public typically do not understand the 

methodological choices involved, and the inconsistencies inherent in the choices among scaling 

options are generally not revealed to them. 

 While we contrasted only two approaches, other research suggests that the problem may 

be more general. For example, Kim and Nicewander (1993) demonstrated that a maximum-

likelihood estimator without 1-to-1 mapping to raw scores, a weighted-likelihood estimator, a 

Bayesian-modal estimator, and an EAP estimator perform comparably in the middle ability 

ranges but differ at the ends of the ability spectrum. Insofar as high- and low-ability students are 

distributed unevenly among schools, choosing a different score estimator among this list could 

affect schools’ ratings. These differences would be particularly pertinent in the context of high-

stakes testing in view of the impact of ceiling effects. 

 Policymakers and test designers can take steps to reduce the uncertainty that we found. 

Score distributions should be monitored for ceiling effects, and when severe ceiling effects are 

detected, more difficult items should be added to subsequent tests. Our results show that while 

the adoption of a 1-to-1 mapping per se does not matter substantially, the method of obtaining 

such a mapping does, and is in fact the primary driver of the impact that we found. In particular, 

if testing contractors use methods that set the LOSS or HOSS a priori, the effects of these on the 

distribution of the scale scores should be carefully monitored, and HOSS and LOSS values 

distant from the rest of the distribution should be avoided if possible.  This is particularly 

important in the presence of ceiling effects on the raw-score distributions. 
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However, even if steps are taken to lessen the inconsistencies found here, test-based 

school ratings may remain sensitive to reasonable alternative choices about the construction and 

scaling of the test. The risks of substantial inconsistencies are greatest when some schools have 

disproportionately large proportions of students with extreme scores. The best way to address 

these threats to validity may lie outside of testing—for example, using additional data, along 

with scores, to evaluate schools’ performance. 
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Appendix A. Name, definition and coding of the principal variables 

SN Variable Description 

I. Outcome Variables (Student level) 

1.       TC_MATH(Y) Mathematics scale score provided by testing company 

2.       TC_ELA(Y) English Language Arts scale score provided by testing company 

3.       Alt_MATH(Y) Mathematics scale score created by The Harvard Education Accountability 

Project 

4.       Alt_ELA(Y) English Language Arts scale score created by The Harvard Education 

Accountability Project 

II. Previous Year’s Achievement Variables (Student level) 

5.       TC_MATH(Y-1) Mathematics scale score on NYS mathematics test in immediate previous 

grade from grade in target year provided by testing company 

6.       TC_ELA(Y-1) English Language Arts scale score on NYS mathematics test in immediate 

previous grade from grade in target year provided by testing company 

7.       Alt_MATH(Y-1) Mathematics scale score on NYS mathematics test in immediate previous 

grade from grade in target year created by The Harvard Education 

Accountability Project 

8.       Alt_ELA(Y-1) English Language Arts scale score on NYS mathematics test in immediate 

previous grade from grade in target year created by The Harvard Education 

Accountability Project 

III. Milestone Grade’s Achievement Variables (Student level) 

9.       TC_MATH(PA) Mathematics scale score on NYS mathematics test in grade 5 provided by 

testing company 

10.     TC_ELA(PA) English Language Arts scale score on NYS mathematics test in grade 5 

provided by testing company 

11.     Alt_MATH(PA) Mathematics scale score on NYS mathematics test in grade 5 created by The 

Harvard Education Accountability Project 

12.     Alt_ELA(PA) English Language Arts scale score on NYS mathematics test in grade 5 created 

by The Harvard Education Accountability Project 

IV. Background Variables (Student level) 

13.     SCHOOLID School student belongs to at point of taking state test 

14.     GRADE Grade level of state test taken in target year 

15.     FEMALE Binary variable coding for student’s gender 

16.     Race/Ethnicity A set of binary variables coding for student’s race/ethnicity 

17.     LOW_INC Binary variable coding for student’s family income status 

18.     IMMIGRANT Binary variable coding for student’s immigrant status 

19.     LEP Binary variable coding for Limited-English-Proficiency status 

20.     DISABLED Binary variable coding for disability status 

21. ACCOMMOD Binary variable coding for whether student received accommodations for the 

state test 
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Table 1  

Classification and model specification of school-performance measures, by type of covariates 

Type of Covariates Model 

1. None CA1 

2. Student-level background only CA2 

3. Student- and school-level background CA3 

4. Student-level prior achievement in milestone grade only CA4 

5. Student-level prior achievement in milestone grade and background CA5 

6. Student- and school-level prior achievement in milestone grade and background CA6 
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Table 2  

Skewness and kurtosis of raw-score distributions and three scale-score distributions in the 

analytic sample, by subject, grade, and year 

Year 

ELA Math 

Raw 

TC 

Scale 

Alt 

Scale 

Alt1-1 

Scale Raw 

TC 

Scale 

Alt 

Scale 

Alt1-1 

Scale 

I. Skewness  

A. Grade 7  

2009 – 1.33 1.87 – 0.44 – 0.45 – 0.74 0.71 – 0.28 – 0.29 

2010 – 1.28 2.23 – 0.36 – 0.38 – 0.53 – 0.19 – 0.21 – 0.19 

B. Grade 8  

2009 – 1.05 1.16 – 0.30 – 0.33 – 0.98 – 0.03 – 0.38 – 0.39 

2010 – 1.26 2.01 – 0.35 – 0.42 – 0.83 0.28 – 0.27 – 0.28 

II. Kurtosis  

A. Grade 7  

2009 4.86 11.62 3.10 3.07 2.84 6.56 2.86 2.83 

2010 4.67 10.56 2.87 2.87 2.69 6.81 2.92 2.84 

B. Grade 8  

2009 4.14 8.49 3.04 3.02 3.22 5.05 3.01 2.97 

2010 4.95 10.80 3.11 3.25 2.88 5.03 2.84 2.82 
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Table 3 

Distance from the median standardized score to the maximum standardized score for the two set 

of scale scores in the analytic sample, by grade, year, and subject 

 ELA  Mathematics 

Year 

TC 

scale Alt scale 

Difference 

(TC – Alt)  

TC 

scale Alt scale 

Difference 

(TC – Alt) 

A. Grade 7 

2009 4.19 1.41 2.78  3.18 1.63 1.55 

2010 4.33 1.20 3.13  3.21 1.97 1.24 

B. Grade 8 

2009 4.33 1.88 2.45  2.94 1.95 0.99 

2010 4.46 1.45 3.01  2.94 1.80 1.14 
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Table 4  

Spearman’s rho between school-performance estimates derived from the TC and Alt scale scores 

(mean absolute difference in ranks in parentheses), by grade, year, and subject 

 Model CA6  Median for Models CA1 to CA5 

Grade/Year ELA Mathematics  ELA Mathematics 

A. Grade 7      

2009 .93 (104) .97  (61)  .93   (98) .98  (57) 

2010 .89 (132) .98  (56)  .90 (119) .98  (52) 

B. Grade 8      

2009 .96   (77) .98  (50)  .96   (72) .98  (56) 

2010 .92 (104) .98  (55)  .94   (93) .98  (56) 
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Table 5  

Observed percentage agreement between school-performance estimates derived from the TC and 

Alt scale scores (chance agreement rates in parentheses, Cohen’s kappa in italics), by grade, 

year, subject, and classification scheme 

Grade 

/Year 

Model CA6  Median for  

Models CA1 to CA5 

ELA  Mathematics  ELA Mathematics 

Scheme 1 Scheme 2  Scheme 1 Scheme 2  Scheme 1 Scheme 1 

A. Grade 7    

2009 84 (56) 64 (20)  91 (51) 78 (20)  86 (56) 90 (51) 

 .63 .55  .83 .73  .69 .80 

2010 81 (55) 55 (20)  93 (53) 80 (20)  85 (55) 93 (52) 

 .58 .43  .86 .75  .64 .86 

B. Grade 8    

2009 89 (54) 71 (20)  93 (52) 81 (20)  90 (54) 92 (52) 

 .75 .64  .87 .77  .78 .84 

2010 85 (55) 65 (20)  92 (53) 79 (20)  87 (55) 92 (53) 

 .67 .56  .84 .72  .72 .83 
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Table 6  

Estimated scaling-approach effects due to a switch in the TC scale scores and Alt1-1 scale 

scores, using model CA6, by grade, year, and subject 

 Spearman’s Rank 

Correlation  

(Mean Absolute Difference 

in Ranks) 

 Percentage Agreement for 

Scheme 1 

 

Grade / Year ELA Mathematics  ELA Mathematics 

(I) Full Analytic Sample 

A. Grade 7      

2009 .94   (98) .98  (54)  85 92 

2010 .89 (132) .99  (36)  81 96 

B. Grade 8      

2009 .96   (72) .99  (41)  89 95 

2010 .93 (101) .99  (44)  85 94 

(II) Restricted Sample Excluding Perfect Scorers 

A. Grade 7      

2009 .98   (48) .99  (37)  93 95 

2010 .98   (47) .99  (32)  94 97 

B. Grade 8      

2009 .98   (52) .99  (38)  93 95 

2010 .98   (53) .99  (36)  92 95 
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Figure 1  

Comparisons of sample distributions of standardized TC and Alt scale scores for 2009 grade-7 

ELA  

Sample Histogram 

 
 

Scatterplot (5% random sample) 

 
 

Note. The dashed line on the scatter-plot on the bottom panel is the identity line, i.e., standardized Alt scale score = 

standardized TC scale score. 
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Figure 2  

Scatterplots of schools’ ranks on the TC and Alt scale scores, for the minimum and maximum 

Spearman’s rho (model CA6) 

Minimum 
Grade 7 2010 ELA (correlation = .89; MAD = 132) 

 
 

Maximum 
Grade 8 2009 Mathematics (correlation = .98; MAD = 50) 

 
Note. The dashed line on each scatter-plot is the identity line, i.e., rank on TC scale = rank on Alt scale.
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Supplementary Materials 

Appendix A: Scoring Methods Adopted by 36 States 

State 

Year of 

Technical 

Report 

1-to-1 Mapping  

Between Raw Scores and 

Scale scores Not 1-to-1 

Mapping Source Rasch Non-Rasch 

Alaska 2011 �   http://www.eed.state.ak.us/tls/assessm

ent/techreports.html 

Arizona 2011 �   http://www.azed.gov/standards-

development-

assessment/files/2011/12/aims_tech_r

eport_2011_final.pdf  

California 2011 �   http://www.cde.ca.gov/ta/tg/sr/docum

ents/csttechrpt2010.pdf  

Colorado 2011   � http://www.cde.state.co.us/cdeassess/p

ublications.html  

Delaware 2008 �   http://www.doe.k12.de.us/aab/files/tec

h_report_2008.pdf#DSTP Technical 

Report 2008  

District of 

Columbia 

2011  �  http://osse.dc.gov/sites/default/files/dc

/sites/osse/publication/attachments/DC

_CAS_2011_technical_report_v6%20

for%20OSSE%2006-30-11.pdf  

Florida 2006   � http://fcat.fldoe.org/pdf/fc06tech.pdf  

Idaho 2011 �   http://www.sde.idaho.gov/site/assessm

ent/ISAT/docs/technicalReports/ISAT

%20Spring%202011%20Technical%2

0Report_Final.pdf  

Illinois 2011  �  http://www.isbe.net/assessment/htmls/

isat_general_info.htm#tech  

Indiana 2011   � http://www.doe.in.gov/sites/default/fil

es/assessment/gti.pdf  

Maine* 2011  �  http://www.maine.gov/education/mea/

1011materials/techincal_report.pdf  

Maryland 2007 �   http://www.marylandpublicschools.or

g/MSDE/divisions/planningresultstest/

2007+MSA+Reading+Technical+Rep

ort  

Massachusetts 2010  �  http://www.doe.mass.edu/mcas/tech/?

section=techreports  

Michigan 2011 �   http://www.michigan.gov/documents/

mde/MEAP_FALL_2011_Guide_to_

Reports_377049_7.pdf  

Missouri 2010   � http://dese.mo.gov/divimprove/assess/

tech/  

Montana 2011 �   http://www.opi.mt.gov/PDF/Assessme

nt/CRT/10-11Montana-CRT-Tech-

Report.pdf  

Nebraska 2011 �   http://www.education.ne.gov/assessm

ent/pdfs/Final_NeSA_2011_Technical

_Report.pdf  

Continue on next page... 
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...continued from previous page 

State 

Year of 

Technical 

Report 

1-to-1 Mapping  

Between Raw Scores and 

Scale scores Not 1-to-1 

Mapping Source Rasch Non-Rasch 

New 

Hampshire* 

2011  �  http://www.education.nh.gov/instructi

on/assessment/necap/documents/techr

pt_july2011.pdf  

New Jersey 2010 �   http://www.state.nj.us/education/asses

sment/es/njask_tech_report09.pdf  

New Mexico 2011  �  http://ped.state.nm.us/AssessmentAcc

ountability/AssessmentEvaluation/dl1

1/2010_11_NM_SBA_Tech_Report.p

df  

New York 2011  �  http://www.p12.nysed.gov/apda/report

s/  

North Carolina 2009  �  http://www.ncpublicschools.org/accou

ntability/testing/technicalnotes 

North Dakota 2011  �  http://www.dpi.state.nd.us/testing/asse

ss/10final.pdf  

Ohio 2011 �   http://www.education.ohio.gov/GD/Te

mplates/Pages/ODE/ODEDetail.aspx?

page=3&TopicRelationID=1143&Con

tentID=9479&Content=117721  

Oklahoma 2009  �  http://www.ok.gov/sde/sites/ok.gov.sd

e/files/2009Gr3_8.pdf  

Oregon 2008 �   http://www.ode.state.or.us/search/page

/?=1305  

Pennsylvania 2011 �   http://www.portal.state.pa.us/portal/se

rver.pt/community/technical_analysis/

7447  

Rhode Island* 2011  �  http://www.ride.ri.gov/Assessment/D

OCS/NECAP/Tech_Manual/Archive/

2010-11_NECAP_Math-Reading-

Writing_Technical_Report_with_App

endices.pdf  

South Carolina 2010 �   http://ed.sc.gov/agency/ac/Assessment

/AssessmentTechnicalReports.cfm  

Texas 2010 �   http://www.tea.state.tx.us/student.asse

ssment/techdigest/  

Vermont* 2011  �  http://www.ride.ri.gov/Assessment/D

OCS/NECAP/Tech_Manual/Archive/

2010-11_NECAP_Math-Reading-

Writing_Technical_Report_with_App

endices.pdf  

Virginia 2009 �   http://www.doe.virginia.gov/testing/te

st_administration/technical_reports/sol

_technical_report_2008-

09_administration_cycle.pdf  

Washington 2010 �   http://www.k12.wa.us/assessment/pub

docs/WCAP_2010SpringAdmin_Tech

Report.pdf  

Continue on next page... 
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...continued from previous page 

State 

Year of 

Technical 

Report 

1-to-1 Mapping  

Between Raw Scores and 

Scale scores Not 1-to-1 

Mapping Source Rasch Non-Rasch 

West Virginia 2008   � http://wvde.state.wv.us/oaa/pdf/WEST

EST%202008%20Supplemental%20R

eport%20_3_.pdf  

Wisconsin 2010   � http://dpi.wi.gov/oea/pdf/td-2010-

techman.pdf 

Wyoming 2011 �   http://www.edu.wyoming.gov/Librarie

s/Assessments/PAWS_2010-

2011_Technical_Manual_gwg_draft.s

flb.ashx 

 Total 18 12 6  

*Information for these four states is for the “New England Common Assessment Program” that 

the states collaborated to develop and use for students in grades 3 to 8 and 11 to meet the No 

Child Left Behind requirements. 
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Appendix B. Descriptive Statistics of the Total and Analytic Sample 

Table 1 

Student-level descriptive statistics of total and analytic samples  

Variables Total Sample Analytic Sample 

No. of schools (N) 1,451 1,243 

No. of students (n) 765,843 661,504 

Grade    

% Grade 7 49 51 

% Grade 8 51 49 

Year   

% 2009 50 50 

% 2010 50 50 

 Mean SD Mean SD 

I. Outcome Variables 

TC_MATH(Y) 0.09 0.91 0.14 0.88 

TC_ELA(Y) 0.09 1.01 0.14 1.00 

Alt_MATH(Y) 0.13 0.90 0.18 0.87 

Alt_ELA(Y) 0.11 0.84 0.17 0.80 

II. Previous Year’s Achievement Variables 

TC_MATH(Y-1) 0.19 0.90 0.25 0.88 

TC_ELA(Y-1) 0.11 0.90 0.16 0.88 

Alt_MATH(Y-1) 0.23 0.90 0.29 0.87 

Alt_ELA(Y-1) 0.10 0.80 0.16 0.76 

Continue on next page... 
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Table 1 (continued) 

Student-level descriptive statistics of total and analytic samples  

Variables Total Sample Analytic Sample 

 Mean SD Mean SD 

III. Milestone Grade’s Achievement Variables 

TC_MATH(PA) 0.24 0.93 0.27 0.92 

TC_ELA(PA) 0.10 0.88 0.12 0.87 

Alt_MATH(PA) 0.25 0.92 0.28 0.91 

Alt_ELA(PA) 0.03 0.86 0.04 0.85 

IV. Background Variables 

FEMALE 0.49 - 0.50 - 

Race/Ethnicity     

WHITE 0.54 - 0.56 - 

BLACK 0.18 - 0.17 - 

HISPANIC 0.20 - 0.18 - 

ASIAN 0.07 - 0.07 - 

INDIAN 0.00 - 0.00 - 

PACISLDER 0.00 - 0.00 - 

MULTIRACIAL 0.00 - 0.00 - 

LOW_INC 0.48 - 0.46 - 

IMMIGRANT 0.02 - 0.01 - 

LEP 0.04 - 0.03 - 

DISABLED 0.14 - 0.13 - 

ACCOMMOD 0.18 - 0.16 - 
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Table 2  

School-level descriptive statistics of total and analytic samples  

Variables Total Sample Analytic Sample 

 Mean SD Mean SD 

I. Outcome Variables 

SCHM_TC_MATH(Y) 0.08 0.42 0.14 0.40 

SCHM_TC_ELA(Y) 0.08 0.39 0.14 0.37 

SCHM_Alt_MATH(Y) 0.12 0.44 0.18 0.41 

SCHM_Alt_ELA(Y) 0.11 0.37 0.17 0.34 

II. Previous Year’s Achievement Variables 

SCHM_TC_MATH(Y-1) 0.18 0.40 0.25 0.37 

SCHM_TC_ELA(Y-1) 0.10 0.35 0.16 0.33 

SCHM_Alt_MATH(Y-1) 0.22 0.42 0.29 0.39 

SCHM_Alt_ELA(Y-1) 0.10 0.34 0.16 0.31 

III. Milestone Grade’s Achievement Variables 

SCHM_TC_MATH(PA) 0.23 0.40 0.27 0.38 

SCHM_TC_ELA(PA) 0.09 0.35 0.12 0.34 

SCHM_Alt_MATH(PA) 0.23 0.40 0.28 0.39 

SCHM_Alt_ELA(PA) 0.01 0.37 0.04 0.36 

Continue on next page... 
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Table 2 (continued) 

School-level descriptive statistics of total and analytic samples  

Variables Total Sample Analytic Sample 

 Mean SD Mean SD 

IV. Background Variables 

SCHM_FEMALE 0.49 0.04 0.50 0.04 

Race/Ethnicity     

SCHM_WHITE 0.54 0.38 0.56 0.38 

SCHM_BLACK 0.18 0.24 0.17 0.24 

SCHM_HISPANIC 0.20 0.24 0.18 0.23 

SCHM_ASIAN 0.07 0.12 0.07 0.12 

SCHM_INDIAN 0.00 0.02 0.00 0.02 

SCHM_PACISLDER 0.00 0.00 0.00 0.00 

SCHM_MULTIRACIAL 0.00 0.01 0.00 0.00 

SCHM_LOW_INC 0.48 0.34 0.46 0.34 

SCHM_IMMIGRANT 0.02 0.04 0.01 0.03 

SCHM_LEP 0.04 0.07 0.03 0.05 

SCHM_DISABLED 0.14 0.05 0.13 0.05 

SCHM_ACCOMMOD 0.18 0.08 0.16 0.07 
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Appendix C. Results for Classification Scheme 3 (Unequal Proportion, Asymmetric)  

Table 1 

Observed percentage agreement between school-performance estimates derived from the TC and 

Alt scale scores, model CA6, for classification Scheme 3 (chance agreement rates in parentheses, 

Cohen’s kappa in italics), by grade, year, and subject 

Grade / Year ELA Mathematics 

A. Grade 7   

2009 72 (28) 82 (28) 

 .62 .74 

2010 62 (28) 86 (28) 

 .48 .80 

B. Grade 8   

2009 79 (28) 86 (28) 

 .70 .80 

2010 71 (28) 86 (28) 

 .61 .79 
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Appendix D. Differences in School Ranks based on the TC and Alt Scale Scores  

Table 1 

Distribution of difference in rank between school-performance estimates derived from the TC 

and Alt scale scores, using model CA6, by grade, year, and subject 

Grade/Year Mean Min 25
th

 

Percentile 

50
th

 

Percentile 

75
th

 

Percentile 

Max 

I. ELA 

A. Grade 7       

2009 0 - 447 - 87 - 1 73 585 

2010 0 - 586 - 106 - 6 107 535 

B. Grade 8       

2009 0 - 366 - 58 - 4 56 550 

2010 0 - 558 - 80 - 4 73 576 

II. Mathematics 

A. Grade 7       

2009 0 - 317 - 48 - 1 46 409 

2010 0 - 384 - 41 1 41 275 

B. Grade 8       

2009 0 - 348 - 39 - 1 34 330 

2010 0 - 294 - 44 0 43 295 

 

 

 


