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Muscle artifacts constitute one of the major problems in electroencephalogram (EEG) examinations, particularly for the diagnosis
of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use
the method dual adaptive filtering by optimal projection (DAFOP) to automatically remove artifacts while preserving true cerebral
signals. DAFOP is a two-stepmethod.Thefirst step consists in applying the common spatial pattern (CSP)method to two frequency
windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined
by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently
within various frequency windows.Thismethod was evaluated by two neurologists on a selection of 114 pages withmuscle artifacts,
from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison
was then conductedwith the canonical correlation analysis (CCA)method and conventional low-pass filtering at 30Hz.Thefiltering
rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be
significantly more efficient than CCA and 30Hz filters. The DAFOPmethod is fast and automatic and can be easily used in clinical
EEG recordings.

1. Introduction

Electroencephalograms (EEG) remain essential in neuro-
logical practice; their indications are even increasing, espe-
cially for long-term EEG. EEG are captured continuously,
sometimes during several days for hospitalized patient or for
outpatients, in order to record paroxysmal clinical manifes-
tations. EEG interpretation is difficult due to the low signal
quality, specifically due to the numerous muscle artifacts
interfering with the paroxysmal abnormalities detection or
with the seizure analysis. Filters distributed with commer-
cially available devices are insufficient. Either they do not

eliminate enough muscle signal or they alter dramatically
the cerebral signal. New automated filters are then required
to better eliminate muscle artifacts, without altering cerebral
signals.

Artifacts can have other origins including power source,
eye movement/blinking, electrode, galvanic sudation, chew-
ing, and heartbeat. This paper focuses on muscular con-
tractions, which are the most important sources of artifacts
under certain recording conditions. Muscle artifacts corre-
spond to the electromyographic (EMG) potentials generated
mainly by jaw and forehead muscles. For this reason, they
are generally more important on the temporal and frontal
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channels. The major part of the signal power occurs at high
frequencies(>13Hz) (Figure 1).

The challenge for neurologists is to analyze brain signals
masked by the artifacts in order to diagnose underlying
pathologies. Brain signals measured on the scalp surface can
be classified into four main frequency bands: Δ (0–4Hz),
𝜃 (4–8Hz), 𝛼 (8–13Hz), and 𝛽 (13–30Hz). Cortex may also
generate gamma rhythms (>30Hz), but these oscillations are
of very low amplitude and are not classically observed in scalp
EEG. In healthy awake adults, the EEG signal belongs mainly
to the 𝛼 band. In epileptic patients, particular rhythms can
be observed including spikes (fast waves belonging to the 𝛽
band, Figure 1), slow waves (0–8Hz), or spike waves (a spike
(>13Hz) followed by a slow wave (<4Hz)) (Figure 1). For a
sleeping adult, other wave forms are observed (delta rhythms,
K-complex, spindles, and vertex spikes). Muscular activity is
also present during sleep, but EMG artifacts are rarer and
rarely hamper the interpretation of EEG. It is still useful to
filter them for the sleep examination [3].

Although muscle artifacts are faster than EEG signals,
there is some overlap in the frequency domain, particularly
with pathological signals. Therefore, conventional digital
filters cannot be used to remove artifacts without distorting
the cerebral activity. An attractive solution is spatial filtering
based on regression methods (for review see [4]), principal
component analysis (PCA) [5], independent component
analysis (ICA) [6–9], or canonical correlation analysis (CCA)
[10, 11].

In this paper, dual adaptive filtering by optimal projection
(DAFOP) is proposed to filter muscle artifacts. The DAFOP
method was introduced in our previous work [1] to filter
electrode artifacts on EEG recordings. The adaptation to the
filtering of muscular artifacts requires a specific development
in order to optimize the method for preserving cerebral
signals, particularly those characterizing epilepsy. DAFOP
method is a frequency dual application of the standard AFOP
method, previously introduced by our team [12] which had
also been used to filtermuscle artifacts. DAFOP is designed to
improve the results of AFOP by better preserving EEG while
always highly reducing EMG artifacts. In addition, DAFOP
brings the following advantages.

(i) Subjects do not have to perform the prerecording of
twominutes at the beginning of each session to detect
the spatial localization of the artifacts.

(ii) The level of filtering adapt as a function of the number
and amplitude of artifacts. Thus, DAFOP does not
remove signals when there is no artifact.

(iii) DAFOP is not limited on the number of possible
artifact sources, contrary to AFOP which filters only
the artifact sources experienced during the training
period.

DAFOP combines spatial and frequency filtering. The
principle consists in comparing two frequency windows with
common spatial pattern (CSP) in order to identify brain
sources using an a priori defined frequency power distribu-
tion.The entire EEG is then independently rebuilt by applying
a regression method to various frequency windows. Because

the optimal choice of frequency windows is problematic, a
semiautomatic process is proposed to obtain the best settings.
DAFOP is then evaluated through visual analysis of clinical
EEGs and compared to two othermethods: BSS-CCA [11] and
a standard low-pass filter.

2. Methods

2.1. The DAFOP Method. Let X (dimensions (𝑛, 𝑇)) be the
signalmatrix where the 𝑛 rows represent the channels and the
𝑇 columns represent the time samples. The aim of DAFOP
is to construct a spatial filter which can be represented by a
filtering matrix F (𝑛, 𝑛). The filtered signal X (𝑛, 𝑇) will be
given by application of the filtering matrix (X = FX).

As in all methods of spatial filtering, F is defined to con-
serve as much as possible cerebral sources while eliminating
artifact sources. Before detailing the definition of F, a process
of frequency window decomposition is presented to expand
the possibilities of source separation.

2.1.1. Frequency Window Decomposition. Artifact and cere-
bral signals are not always activated together and some
may only belong to a specific frequency window. Since, in
practice, the number of artifact and cerebral sources is far
superior to the number of channels, attempting to filter
an artifact which is not actually present leads to a small
diminution in cerebral signal and trying to maintain a weak
cerebral signal leads to the maintaining of a small portion of
artifacts. In previous works [1, 12], we proposed applying a
spatial filter adapted to individual time-frequency windows
decomposing the signal. Thus, the spatial filters are only
optimized for sources within the concerned frequencies. A
frequency window Φ of multichannel signals corresponds to
each channel extracted from a period of time and filtered
within a frequency window Φ.

Signal decomposition consists in working within a tem-
poral sliding window (corresponding to the matrix X dis-
cussed below) and a set of disjoint frequency windows Ω =

{Φ} so that the sum of all frequency windows corresponds to
the original signal:

∑

Φ∈Ω

XΦ = X (1)

with XΦ corresponding to the extraction of the frequency
window Φ on X. Once this decomposition is defined, a
different spatial filter can be applied to each window. Each of
those spatial filters will be the result of aDAFOPprocess, with
specific optimization for the frequency window.The artifact-
free signals will then correspond to the sum of all windows
which are spatially filtered:

X = ∑

Φ∈Ω

FΦXΦ (2)
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Figure 1: Frequency decomposition of cerebral rhythms and muscle artifacts [1].

with FΦ being the specific filteringmatrix with a specific rank
𝑛
Φ

1
for the time-frequency windows XΦ.
The construction of FΦ is then divided into two steps:

(i) construction of WΦ
1
(𝑛
Φ

1
, 𝑛) a separation matrix of

cerebral sources,
(ii) construction of MΦ

1
(𝑛, 𝑛
Φ

1
) a mixing matrix of cere-

bral sources.

FΦ is then defined by

FΦ = MΦ
1
WΦ
1
, (3)

where WΦ
1
is defined by optimization of a frequency pattern

through common spatial pattern (CSP), whereas MΦ
1

is
defined by linear regression on a sliding frequency window.

2.1.2. Step 1: Estimation of WΦ
1
. This first step is common

to all frequency windows inside a temporal sliding window
X. It is assumed that, inside this time window, the spatial
distribution of artifacts is the same for all frequencies. In
practice, this may not be perfectly true but the effect seems
negligible compared to other hypotheses. Considering the
location of artifacts as constant is equivalent to considering
the separation of cerebral sources as constant [1]. The aim of
this first step is to estimate this separation by an optimization
of a specific frequency pattern.

A frequency pattern is defined by two frequency windows
Φcer andΦart which are chosen so that the power of a cerebral
source is maximal inΦcer and minimum inΦart, whereas the
power of an artifact source is minimal inΦcer and maximum
inΦart. For a separation row vector w, we define the variance
ratio 𝜌(w) as

𝜌 (w) =





wXΦcer



2





wXΦart



2
. (4)

The cerebral component separation WΦ
1

is chosen to
correspond to the vectorial subset maximizing this ratio.This
problem can be solved using the CSP method [1] by defining
WΦ
1

as the 𝑛
Φ

1
eigen vectors with greatest eigen values of

(XΦartXΦart𝑇)−1XΦcerXΦcer𝑇.

2.1.3. Step 2: Estimation of Cerebral Source Distribution MΦ
1
.

The second step of DAFOP consists in determining the
mixing subspace of cerebral sources using a linear regression
method on XΦ. Let us note CΦ = XΦXΦ𝑇/𝑇 being the
covariance matrix.

The aim of the regression is to find the mixing matrixMΦ
1

which minimizes the squared difference between the filtered
window and the original raw data windows:

MΦ
1
= argmin

M
∑

𝑖






XΦ
𝑖
−MWΦ

1
XΦ
𝑖







2

(5)

with XΦ
𝑖
corresponding to the 𝑖th time sample of XΦ. This

is a standard linear least squares problem and the solution is
obtained by [12]

MΦ
1
= CΦWΦ

1

𝑇

(WΦ
1
CΦWΦ

1

𝑇

)

−1

. (6)

The corresponding filtering matrix is thus

FΦ = MΦ
1
WΦ
1
= CΦWΦ

1

𝑇

(WΦ
1
CΦWΦ

1

𝑇

)

−1

WΦ
1
. (7)

2.2. BSS-CCA and Equivalence with DAFOP. BSS-CCA is
another method to filter muscular artifacts [2, 11, 13] and it
seems to be one of the most efficient methods. Then, it is
interesting to compare the results of thismethodwith those of
the proposed approach. In addition, except for a few details,
this method can be considered as a particular case of DAFOP.

The BSS-CCA algorithm aims to find the most auto-
correlated sources. For a discrete signal 𝑠(𝑘𝑡) (𝑡 being the
sampling period and 𝑘 = 1, . . . , 𝐾 the sample number),
the autocorrelation is defined as 𝑝

𝑠
= ∑

𝑘
𝑠(𝑘𝑡)𝑠((𝑘 −

1)𝑡). For a set of 𝑛 discrete signals (which corresponds to
the 𝑛 EEG channels) 𝑥

𝑖
(𝑖 = 1, . . . , 𝑛), it is noted that

X
𝑘

= (𝑥
1
(𝑘𝑇), . . . , 𝑥

𝑛
(𝑘𝑇))
𝑇 the 𝑘th time sample of the

multi-channel signals X. The problem of BSS-CCA consists
then in determining w = argmaxw,‖w‖=1∑𝑘 w

𝑇X
𝑘
X𝑇
𝑘−1

w.
According to [2], this is nearly equivalent to the problem
w = argmaxw

1
,‖w
1
‖=1

maxw
2
,‖w
2
‖=1

∑
𝑘
(w𝑇
1
X
𝑘
X𝑇
𝑘−1

w
2
). This last

problem can be solved by CCA thanks to the eigenvalue
decomposition of

Σ
−1

X
𝑘
X
𝑘

ΣX
𝑘
X
𝑘−1

Σ
−1

X
𝑘−1

X
𝑘−1

ΣX
𝑘−1

X
𝑘

= PDP−1 (8)
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with ΣX
𝑘
Y
𝑘

= ∑
𝑘
X
𝑘
Y𝑇
𝑘
/𝐾 corresponding to the cross-

covariance matrix, D being the diagonal matrix of eigen
values sorted by decreasing order, and P being the matrix of
eigen vectors.The first vectors of Pwill correspond to the less
autocorrelated sources and the last ones will correspond to
the most autocorrelated ones. De Clercq et al. have observed
that muscular artifacts correspond to these less autocorre-
lated components and the cerebral signal corresponds to
these most autocorrelated components (“[⋅ ⋅ ⋅ ] brain activity
produces structured signals having a high autocorrelation,
whereas muscle activity is less structured and encompasses
more properties related to temporally white noise.” [10]).

If we neglect border effects by considering X
0
= X
𝐾
, the

following three statements are equivalent:

(1) w = argmaxw,‖w‖=1∑𝑘 w
𝑇X
𝑘
X𝑇
𝑘−1

w;
(2) w is the eigen vector corresponding to the higher

eigen value of (Σ
−1

X
𝑘
X
𝑘

Σ
sym
X
𝑘
X
𝑘−1

)
2, with Σ

sym
X
𝑘
X
𝑘−1

=

(1/2)(ΣX
𝑘
X
𝑘−1

+ΣX
𝑘−1

X
𝑘

) (in practice, there is almost no
difference with (8) since the matrix ΣX

𝑘
X
𝑘−1

is nearly
symmetrical);

(3) w is the result of DAFOP with windows Φcer and
Φart corresponding to Fourier filters with Φcer(𝑓) =

√1 − cos(2𝜋𝑓𝑇), Φart(𝑓) = 1 − Φcer(𝑓) and without
frequency decomposition (i.e. XΦ = X). Figure 2
illustrates these two filters.

The equivalence between (1) and (3) comes from the fact
that, for any discrete signal 𝑥

𝑘
(𝑘 = 0, . . . , 𝐾) of sampling

period 𝑇 and periodic of period 𝐾𝑇,

𝐾

∑

𝑘=1

𝑥
𝑘−1

𝑥
𝑘
=

𝐾

∑

𝑘=1

𝑥
𝑘
𝑥
𝑘
−

𝐾

∑

𝑘=1

(𝑥 ∗ 𝜙)
2

𝑘
, (9)

where 𝜙 is the inverse Fourier transform of Φ(𝑓) =

√(1 − cos(2𝜋𝑓/𝑇) sampled at period 𝑇 and ∗ corresponds
to the convolutional product. The equivalence is obtained by
setting 𝑥

𝑘
= w𝑇X

𝑘
.

The BSS-CCA method is an efficient method to filter
muscle artifacts. However, it would be possible to use the fre-
quency decomposition in order to remove more components
from artifacted frequencies and to keep more components in
nonartifacted frequencies. In addition, it would be reasonable
to hypothesize that setting Φcer and Φart could be optimized.
This is the subject of the next section.

2.3. DAFOP to Filter Muscle Artifacts. In order to apply
DAFOP to muscle artifacts, it was necessary to define a set
of parameters, namely:

(i) frequency window decompositionΩ = {Φ};
(ii) the two frequency windowsΦcer and Φart;
(iii) the number of components to conserve within each

window 𝑛
Φ

1
.

Figure 3 sums up the global method of artifact filtering
and the various parameters which influence filtering.

0 10 20 30 40 50 60 70 80 90 100

(Hz)

Φcer
Φart

Figure 2: The two frequency windows used for DAFOP optimiza-
tion in order to have CCA equivalence. The windows take into
account the preprocessing of the recording proposed in [2] (i.e., high
pass at 0.3Hz, low pass at 35Hz, and notch filter at 50Hz).

To set these parameters, a training dataset of 12 clinical
EEG recordings of different patients was selected. Recordings
were performed at the Hospital Group GHICL (Groupe
Hospitalier de l’Institut Catholique de Lille) and the Hospital
Center of Lille, France, using Nihon Kodhen, Nicolet, and
Micromed devices. The electrodes were positioned accord-
ing to the 10/20 system with 19 electrodes. Preprocessing
consisted of a common mean reference, a high-pass filter
at 0.5Hz, a low-pass filter at 70Hz, and a notch filter at
48–52Hz (power line frequency). These filters were 6-order
Butterworth (12 for the notch) applied with a forward-
backward process to prevent phase shifting. Recordings
included, among other signals, some epilepsy seizures, and
pathological rhythms (spikes, spike waves, etc.). Several trials
were run on this dataset to adjust the various parameters.The
setting was done either subjectively or by optimization, in
order to best removemuscle artifacts without erasing cerebral
rhythms. The next paragraphs explain these choices.

2.3.1. The Frequency Decomposition. Frequency decompo-
sition Ω = {Φ} was empirically established to the fol-
lowing windows: 0–8Hz, 8–13Hz, 13–20Hz, 20–40Hz, and
40–70Hz. The ratio of cerebral rhythms/muscular artifacts
within each of these frequency windows was almost constant
but different between windows.

No muscle artifacts are present in the frequency band 0–
8Hz. Consequently, it is not necessary to remove components
and the signals can remain unchanged. For the other bands,
the artifact ratio increased with frequency (Figure 1). Thus, it
is preferable to increase the number of removed components
on higher frequency bands (see Section 2.3.3).
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Regression (7)

Frequency windows 
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Covariance matrices

CSP

Defining cerebral
 sources separation

Figure 3: Steps of the DAFOP method to filter muscle artifacts.

2.3.2. Choice of Windows Φ
𝑐𝑒𝑟

and Φ
𝑎𝑟𝑡

(a) General Idea. The first step of DAFOP determines the
spatial distribution of artifact sources by comparing two
frequency windows. These two frequency windows Φcer
and Φart are represented by convolutional filters of indicial
response 𝜙cer(𝑡) and 𝜙art(𝑡). These two filters must be defined
so thatXΦcer carriesmore cerebral signal whereasXΦart carries
more artifacts.

As shown in Figure 1, muscle artifacts account for amajor
portion of power at high frequencies, with the power decreas-
ing down until 8Hz. For cerebral sources, this depends on the
signal.The constants correspond to a major persistent part of
the power on the alpha band and the lower frequencies and a
minor (or null) part of the power at high frequencies.

The signals within the frequency band 0 to 8Hz are not
changed at all since there are no muscle artifacts in this band.
Consequently, cerebral sources carrying theta anddeltawaves
are not needed.

Taking into account these observations, an initial empiri-
cal choice could beXΦcer corresponding to the band (8–13Hz)
(alpha) and XΦart corresponding to the band [30–70Hz].
However, our trials indicate that this choice would still
be suboptimal. Thus, we propose a method to find an
optimization of windowsΦcer and Φart.

(b) Construction of Training Signals from Collected Data.
Two monochannel signals 𝑠cer and 𝑠art were constructed.
These signals were extracted for certain periods and certain
channels from a training dataset of recordings.

𝑠cer was made out to be the cleanest possible cerebral
signal. It corresponded to a concatenation of various rhythms
covering as much as possible the variety of possible waves in
the frequency bands >8Hz. It is composed of the following
rhythms: 𝛼, 𝜇, 𝛽, fast ripples, spikes, spike waves, polyspikes,
and vertex waves.

𝑠art was made out to be the cleanest possible muscle arti-
fact. It corresponded to a concatenation ofmuscle artifacts on
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channels and periods where cerebral signals were negligible
compared to artifact signals.

The selected periods last about 20 s by signal. In order
to represent the wide variety of possible cerebral signals and
muscular artifacts, approximately 100 periods were included
in the selection for each signal. At the end, two signals of
approximately 30min duration each were obtained. Figure 4
shows the Fourier transformmodule and confirms that there
is not a clear frequency limit which separates cerebral signals
from muscle artifacts. Consequently, any frequency filter
could eliminate all artifacts while preserving all cerebral
signal.

The two signals are then preprocessed using a high-pass
filter with a cutoff at 8Hz so signals (artifact and cerebral)
below these bands would not interfere with the filter settings.
Indeed, most muscle artifacts are associated with electrode
artifacts since the muscle contraction drives a facial move-
ment. Nevertheless, the electrode artifact distribution is not
directly linked to the electromyographic artifact distribution.
It is therefore important to ignore the electrode artifact when
determining muscle artifact distributions.

(c) Convolutive Filter Optimization. Using the two previously
defined signals 𝑠cer and 𝑠art, we look for an optimization of the
frequencywindowsΦcer andΦart.Wenote the inverse Fourier
transform 𝜙cer and 𝜙art, corresponding to convolutional
filters. Optimal filters are then defined so that the power of 𝑠cer
convolved by the filter 𝜙cer is maximum whereas the power
of 𝑠cer convolved by 𝜙art is minimum. Inversely, the power of
𝑠art convolved by 𝜙cer is minimum whereas the power of 𝑠art
convolved by 𝜙art is maximum:

𝜙cer = argmax
𝜙





𝜙 ∗ 𝑠cer










𝜙 ∗ 𝑠art






,

𝜙art = argmin
𝜙





𝜙 ∗ 𝑠cer










𝜙 ∗ 𝑠art






(10)

which can also be written as

⃗𝜙cer = argmax
⃗𝜙







⃗𝜙
𝑇Scer













⃗𝜙
𝑇Sart







,

⃗𝜙art = argmin
⃗𝜙







⃗𝜙
𝑇Scer













⃗𝜙
𝑇Sart







(11)

with ⃗𝜙 designating the column vector formed by the time
samples of 𝜙 and S

𝑖
designating the signal matrix defined by

S
𝑖𝑗,𝑘

= 𝑠
𝑖
((𝑘 + 𝑗 − 1)𝑇

𝑠
) (𝑇
𝑠
being sampling period).

(d) Resolution. The common spatial pattern method which
consists of computing the two covariance matrices CScer =

ScerS𝑇cer andCSart = SartS𝑇art was used.Thereby, ⃗𝜙cer was defined
as the eigen vector of the highest eigen value of C−1SartCScer and
⃗𝜙art as the eigen vector of the lowest eigen value.
Due to frequency preprocessing of 𝑠cer and 𝑠art, the rank-

ings of CScer and CSart are not complete (many eigen values
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Figure 4: Smoothed Fourier transformmodule for the two training
signals.
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Figure 5: Frequency windows of DAFOP filtering obtained by FIR
optimization.

are close null). This can lead to 𝜙cer and 𝜙art corresponding
to frequencies with almost no signal which will be irrelevant
and unstable. Consequently, a principal component analysis
(PCA) was performed prior to CSP to reduce the research of
components only on relevant frequencies. This corresponds
to the principle of dimension reduction generally used in
blind source separation [14].

(e) Resulting Filters. Figure 5 illustrates the Fourier transform
of the two windows through this optimization. The two
windows are almost Dirac; Φcer at 13Hz and Φart at 60Hz.
After various trials on the training dataset, it seemed that this
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setting was indeed the best to separatemuscle artifact sources
from cerebral sources.

2.3.3. Number of Conserved Components. The last parameter
to set is the number of conserved components 𝑛

Φ

1
as a

function of the time frequency windows XΦ. This number
can be set to the number of components of variance ratio
𝜌 (4) greater than a threshold 𝑡

Φ. If there is no artifact in a
current period, the ratio of all components would be high and
no components would be removed. If there aremany artifacts
in the current period, the ratio of some components would be
low and several components would be removed.

Furthermore, since there are more artifacts at high
frequencies, the number of removed components should
increase with frequency. This is why the threshold 𝑡Φ will be
higher for high frequency windows. In contrast, concerning
the frequency window 0.5–8Hz, there are nomuscle artifacts
and no components are removed. The threshold 𝑡0.5–8Hz can
then be set to 0.

Ideally, a component should be removed when it contains
more than a certain percentage of artifacts (around 70% for
our objective). Unfortunately, the artifact ratio is unknown
but it could be estimated in function of 𝜌 and the frequency
window Φ. Consequently, we have set empirically 𝑡 by
observing components on the various frequency windows
associated with their 𝜌 ratio. This parameter is not very
sensitive and important threshold variation is necessary to
observe significant differences. A greater value would imply
removing more artifacts but removing also more cerebral
signals. In new studies, we expect to define various sets of
parameters in order to allow EEG readers to adapt the level
of filtering on the application.

2.4. Method for Evaluation on Clinical Recordings. An eval-
uation by an expert neurologist was conducted in order to
compare the results with other methods described in the
literature and to evaluate the results in using this method in
routine clinical practice.

2.4.1. Data Collection. Clinical recordings of 20 epileptic
patients with pertinent cerebral rhythms were selected.These
recordings were different from those of the training dataset
but were acquired under the same conditions. They lasted
from 20 minutes (short duration recordings) to 4 days (long
duration recordings). Firstly, 114 relevant pages were selected
among the 20 recordings without viewing the filtered result.
One page corresponded to a 20 s epoch of EEG with the 19
channels according to the 10/20 system. The selection was
done with respect to various levels of artifact power and
for a wide variety of cerebral signals. Coauthor neurologists
selected EEG pages from their own patients. Selected pages
were anonymized. As such, no specific assessment was
necessary.

The three following filters were then compared:

(i) a standard 1-order low-pass filter at 30Hz common to
many EEG device software applications,

(ii) a filter achieved with BSS-CCA [10, 13],

(iii) a DAFOP filter with the above optimized parameters.

For this study, we used a previously published program
(http://www.neurology-kuleuven.be/?id=210) distributed by
the authors of BSS-CCA. Concerning the number of compo-
nents to remove or to conserve, De Clercq et al. proposed a
manual selection by specialists [10, 11]. However, we found
important to compare only entirely automated methods. De
Clercq et al. have suggested that thresholding the autocorre-
lation index might be sufficient to remove muscle artifacts
automatically within a large subject group. After several trials
on our training dataset of 12 recordings, we found that setting
a square autocorrelation threshold at 0.88 gives almost the
same results as the expert selection.

2.4.2. Evaluation Methods. Two expert neurologists com-
pared the filtered signals of these EEG pages. For each page,
the filtering results of the three methods were presented
at random, so experts performed a blinded analysis, thus
reducing subjectivity.

Each expert analyzed one half of the dataset. For each
page, the raw recording was first interpreted. The experts
evaluated the presence of cerebral activitieswith the following
categories (spikes, spike waves, alpha, pathological rhythmic
discharges, spindles, and vertex sharp waves). In addition,
they examined the original amount of muscle artifacts and
scored it from 0 to 4 (0 = no artifact; 4 = very high level of
artifacts).

Thereafter, the experts analyzed the results of each
filtering method. They scored the proportion of removed
muscle artifacts from 0 to 4 for (0 = no amplitude reduction
(<10%); 1 = 10–35%; 2 = 35–65%; 3 = 65–90%; 4 = complete
elimination (>90%)) and the proportion of reduced cerebral
activities from 0 to 4 (0 = unchanged activities (<10%); 1 =
10–35%; 2 = 35–65%; 3 = 65–90%; 4 = no identifiable
activities (>90%)). The average ratio estimation is calculated
by considering the middle of the bins of each score:

Avg =
5𝑛
0
+ 22.5𝑛

1
+ 50𝑛

2
+ 77.5𝑛

3
+ 95𝑛

4

100 (𝑛
0
+ 𝑛
1
+ 𝑛
2
+ 𝑛
3
+ 𝑛
4
)

(12)

with 𝑛
𝑖
being the number of signals onwhich the experts have

assigned a mark 𝑖. Concerning electromyographic artifact
elimination, it is more important to filter artifacts when
they are at a high level since they prevent interpretation.
Consequently, the electromyographic artifact elimination
estimator is weighted by the level of artifacts given by the
expert on the raw recording, and thus a closer estimation of
the global amount of removed artifacts was obtained.

Finally, experts have balanced all criteria to determine
for each page the most efficient method. Balancing takes
into account the muscle artifact elimination, the proportion
of reduced cerebral activities, and the artifact addition or
modification. Since the signal belonging to the frequency
band 0–8Hz was not modified, the slow waves were not
reduced. Consequently, the reduction was not subject to
evaluation. However, experts could consider a given page to
be better if the slow waves were more visible after filtering.
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Statistical sign tests were done to compare CCA and
DAFOP for each parameter and for all balanced criteria
comparison. The 𝑃 value for significance was fixed at 5%.

3. Results

Table 1 displays the estimation of average ratios of arti-
fact/cerebral signal elimination and Figure 6 displays the
distribution of the scores given by the two experts for each
type of cerebral signals.

Regarding preservation of cerebral activity, the 30Hz
filter had the best performance (elimination of 5.1% of
cerebral activity), followed by DAFOP (6.45%) and lastly by
CCA (10.58%). For CCA, these differences were pronounced
for alpha rhythms, epileptic rhythmic discharges, and spike
waves. Figure 6 shows that the signals were never completely
removed by any of the methods. There were only 5% and 1%
of signals showing, respectively, a moderate (score 2) and an
important reduction (score 3) of cerebral activities for the
CCA method and none for the others. For the other signals,
with DAFOP and CCA, the reduction score was 0 for the
majority and 1 for a small proportion.

Concerning elimination of electromyographic artifacts,
DAFOP performed the best (84.29% elimination), then CCA
(82.28%), and lastly the 30Hz filter (55.51%) which is clearly
less efficient than the first two methods. However, in the
four cases analyzed with DAFOP and the case analyzed with
CCA (none for 30Hz filter), an added or transformed artifact
could have been interpreted as a pathological signal, if the
filtered EEG was analyzed alone. Moreover, on 10% of pages
forDAFOPand 3% forCCA, themuscle artifact residue could
be confounded with alpha rhythm.

As on the original assumption, the experts did not notice
any significant differences on the delta and theta rhythms, in
the 23 concerned pages.

Figure 7 presents the amount of removed artifact as a
function of artifact amplitude. The 30Hz filter worked least
well (43% of elimination of artifacts at level 4) when an
important artifact was present, whereas DAFOP and CCA
filters performed constantly higher (83% and 80%) even in
the presence of an important amount of artifacts (level 4).
DAFOP andCCA in few cases (3 pages forDAFOP and 1 page
for CCA) were unable to efficiently filter (elimination 1 or 2)
when artifact level was low (level 1).Themean ratio of artifact
removal was 80% for these cases which strongly suggests that
these types of cases are less common.

Table 2 shows the results of the statistical comparison
between DAFOP and CCA. A sign test was applied in order
to determine the significance of the differences between the
methods.

The statistical analysis shows that DAFOP was globally
more efficient concerning both electromyographic artifact
(𝑃 ≤ 0.026) elimination and conservation of cerebral signals
(𝑃 ≤ 0.00019). According to blind expert analysis and
taking into account all parameters,DAFOPwas globallymore
efficient than CCA (𝑃 ≤ 0.00575) in our tests.

An example of the results obtained with the three
methods is given in Figures 8, 9, 10 and 11 as well as the

corresponding neurologist evaluation. An important muscle
artifact can be observed on the frontal area between 418 and
427 seconds (Figure 8).This artifact was judged as completely
eliminated (score = 4) with the DAFOP method (Figure 9),
highly reduced (score = 3) with the CCA method since
there remains a small muscular activity on Fp1 and Fp2
(Figure 10), and moderately reduced (score = 2) with the
30Hz filter (Figure 11). No reduction was observed with any
of the methods for both spikes (channels T3, T5, and F7) and
alpha rhythm. The expert judged that DAFOP allowed to get
the best result in this example. It can further be noticed that
there were ocular artifacts on seconds 418 and 422 but these
artifacts are outside the scope of this evaluation.

4. Discussion

4.1. Performance Comparison between Filtering Methods.
DAFOP and CCA both gave promising results for the elimi-
nation of electromyographic artifacts on EEG recordings and
both offer a high selectivity concerning the conservation of
normal and pathological cerebral signals. On average, the
filtering rate was 84.3% and 82.3%, respectively, for muscle
artifacts whereas for cerebral signals it was 5.7% for DAFOP
and 11.3% for CCA (Table 1). In addition, bothmethods never
completely removed the cerebral signals (Figure 6). Only 3%
of the alpha rhythms showed important reductions (>65%)
with CCA and none with DAFOP.

For the three methods, the reduction scored by neurolo-
gist always corresponded to an amplitude reduction of signals
and never to a signal deformation.However, it can be noticed,
however, that for the 30Hz filter and the DAFOP filter the
high frequencies can be a bit more reduced than the low
frequencies. Consequently a spike wave will have his spike
slightly more reduced than the wave. Nevertheless, this effect
was very low and it would be difficult to quantify it visually.

DAFOP transformed, in some less frequent cases, arti-
facts into signals which could be misinterpreted as cerebral
signals by inexperienced readers. Artifact transformation
also arises with CCA but to a lesser extent. Although
the DAFOP filter could be placed at a stronger setting to
remove those signal addition/transformation, our priority
was to optimize conservation of cerebral signals. Taking into
account that both unfiltered and filtered signals are analyzed
by physicians, signal addition does not represent a real life
limitation and as such the proposed settings are optimized
with these results in mind.

Regarding electromyographic elimination, the efficiency
of both DAFOP and CCA is almost independent of the
amount of artifacts (Figure 7). However, in some rare cases
where artifacts are low, they may rest almost unfiltered. In
any case, in these situations interpretation is not hindered by
artifacts.This situation raises more concern with the DAFOP
method but can also occur with CCA.

The 30Hz low-pass filter is a conventional filter used in
clinical practice but is inefficient in the presence of important
artifacts (Figures 7 and 11) but none the less conserves
the cerebral signals. Theoretically, there is always a slight
reduction, but not enough to change the expert’s visual
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Figure 6: Amount of removed cerebral signals per 20 s page (0: no difference (<10%); 1: (10–35%); 2: (35–65%); 3: (>65–90%); 4: no longer
identifiable (>90%). For example, the table can be read as follows: among the 71 pages with an alpha rhythm, the experts noticed no significant
difference in the alpha signals on 96% of pages.
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Figure 8: Example of Raw EEG signal with important muscle artifact (level 3/4), including 𝛼 rhythm and spikes (F7, T3, T5).

evaluation.Despite the advantages of thismethod, the experts
judged that the 30Hz filter rarely gave the best results (only
three pages out of 114 examined, the three pages harboring
few artifacts.)

Statistical comparison between DAFOP and CCA
demonstrates that DAFOP method is better in conserving
cerebral rhythms, particularly alpha rhythms and spike
waves. DAFOP has also better achievement in electromyo-
gram artifact elimination. Consequently even if the threshold
of CCA would be changed, DAFOP will have a better
selectivity. Finally, the general comparison ofmethods proves
that even if there can be artifact addition/modification,
DAFOP overall gives better results than CCA.

Concerning the method functioning, DAFOP and CCA
are both based on the separation of components which
optimize frequency pattern and this seems to be an efficient
criterion. However, the CCA frequency patterns are not

directly optimized for the problem but result from method-
ological simplification which could explain partially the bet-
ter results of DAFOP. The other explanation for the DAFOP
superiority is frequency decomposition which increases the
possibility of source separation. Using CCA with this fre-
quency decomposition should give also good results.

4.2. Comparison with Other Methods Referenced in the Lit-
erature. It would be interesting to compare the DAFOP
method with other methods referenced in the literature like
standard AFOP [12], ICA [15], higher order, and wavelet
filter [16]. However, we can already make an assessment on
performance and limitations of these methods but ideally a
blind comparison by third persons should be done to validate
them.

In relation to standardAFOP, according to the parameters
and the results in previous studies [1] and to our trials,
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Figure 9: Filtering result with DAFOP method.
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Figure 10: Filtering result with CCA method.

Table 1: Estimation of average ratios of artifact/cerebral signal elimination.

DAFOP CCA 30Hz Studied pages/signals
Estimation of the average ratio of cerebral signal elimination

Alpha rhythm 5.74% 11.30% 5.25% 71
Epileptic rhythmic discharge 8.50% 14.50% 5.00% 15
Spike waves 5.51% 11.47% 5.00% 34
Spikes 7.50% 7.70% 5.00% 49
Spindles/vertex spikes 5.00% 5.00% 5.00% 6/3

Global 6.45% 10.58% 5.10% 169
Estimation of the average ratio of electromyographic artifact elimination 84.29% 82.28% 55.51% 108
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Figure 11: Filtering result with a 30Hz filtering.

AFOP would have approximately the same level of artifact
removing from DAFOP (86% for AFOP against 84% for
DAFOP). Nevertheless, AFOP removes more cerebral signals
(the average reduction of spikes was judged 18.8% for AFOP
against 7.5% with DAFOP with similar evaluation methods).
However, these observations have to be confirmed by a blind
analysis.The separation criterion of AFOP is based on spatial
localization of component whereas DAFOP is based on a
frequency pattern. Then, it could be envisaged to combine
both methods to improve their performances.

In regard to ICA, we have previously done a comparison
between standard AFOP and manual ICA [1] (Infomax
method [17]). Standard AFOP was judged to better remove
EMG artifacts in almost all cases (in 49 cases, only 2 pages
were in favor of ICA while 40 were in favor of AFOP).
ICA seemed to have more difficulties to separate EMG from
cerebral signals. However, this study included the filtering of
other types of artifacts which interfere with efficiency. There
can also be other ICA methods like AMUSE [15] which may
be more efficient than infomax to filter muscle artifacts.

Most of the time only first order filters are implemented
in EEG reading devices and this is why we decided to com-
pare with this. Higher order filter would probably be more
efficient. However, due to the frequency distribution overlap
between muscular artifacts and spikes (Figure 1) it would
never be possible to eliminate artifacts while well preserving
the interesting signal. Finally, some researchers work also on
wavelet filters [16]. As far as we know, those filters have never
been tested in presence of pathological signals and it can
be supposed that the same kind of limitations may appear.
However, wavelet can be combined with spatial filter with
process similar to the frequency decomposition [18].

4.3. Evaluation Method. There are very few papers which
demonstrate statistically that a filtering method is better
than another [19]. Taking into account the wide variety of

pathological signals and artifacts, it seems to us that this kind
of evaluation is a necessity and too many papers focus only
on a limited amount of pages.

The main potential bias of this study is that two experts
do not represent the large variety of neurologist experts,
and their opinions can be different from the reality. In
addition, each of them only analyzed half of the database.
However, since the significance is reached it will not change
the conclusion and it will not remove the bias that there is
only two experts. Nevertheless, it would be interesting to
perform an interobservator comparison and verify the expert
concordance. Such study has been realized in [20] including
also ocular and electrode artifacts filtering.

Future studies should be done to complete these results
by a qualitative and objective comparison on a synthetic
signal, where the true cerebral signal is known. Some authors
[3, 19] have proposed to select unartifacted periods and
to add muscle artifact signals generated by the mixing of
a few artifact sources. Those artifact source signals can
be obtained by ICA on other periods or on other body
muscles. Unfortunately, a realistic synthetic signal is difficult
to construct and there can be two types of bias for the real
performance estimation.

(i) It would not be possible to have a perfect unartifacted
signal and a perfect muscle artifact source.

(ii) Considering the artifact as a mixing of limited num-
ber of sources is not realistic for an important artifact.
This model would ease the problem and particularly
it would render the frequency decomposition process
almost useless.

Despite these two problems, it would be interesting to verify
that the conclusions are the same with such model.

Finally, this evaluation method mainly concerns visual
examination of EEG, but it can be supposed that if the
method is applied as preprocessing for other applications like
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source localization, anticipated detection of epilepsy seizures,
brain computer interfaces, the optimal parameters, and the
evaluation could be different.

4.4. Practical Aspects. From a practical point of view, all three
methods are entirely automated. A turn of a switch moves
from raw recording to filtered recording. It is not the case
of methods like ICA [15] which requires manual selection
of components or standard AFOP which requires that the
patient carries out a specific protocol at the beginning of
recording.

Themethods can be applied to any EEG recording and do
not require additional electrodes like regressionmethods [4].

In addition, all three methods have a very short compu-
tation time (<0.5 s for 20 s of signal on a dual core 2GHz
processor whereas ICA methods can take 10 s).

An advantage for DAFOP and to a lesser extent for CCA
is that methods are stable if there is a disconnected or a
missconnected electrode; that is, this electrode artifact will
not be removed but the other channels will be still well filtered
and the artifact will not be propagated on other channels.
This is due to the fact that those kinds of signals are always
uncorrelated to other channels on the concerned frequencies
and the frequency pattern is very different of a muscular
artifact. Sometimes, a power line artifact residue or another
high frequency intrinsic instrument noise appears on an EEG
channel. Even if the frequency pattern does not perfectly
match, the power ratio 𝜌 (4) is low enough to erase the
corresponding component on the high frequency bands. The
artifact is then removed.

Those advantages are particularly important on the con-
text of standard EEG examinationwhere recording have to be
quickly analyzed.

5. Conclusion

This paper describes the use of the DAFOP method to filter
muscle artifacts on EEG recordings and discusses optimiza-
tion of the method. DAFOP was evaluated on clinical EEG
recordings by two neurologists and compared with BSS-
CCA and the 30Hz low-pass filter. DAFOP was particularly
efficient for artifact removal (84% on average) while offering
very good conservation of cerebral signals (6.4% reduction on
average), particularly pathological signals. Comparison with
the 30Hz filter commonly used in routine practice showed
that the latter is far less efficient than DAFOP and BSS-CCA
in enhancing EEG readability. In comparison with BSS-CCA,
DAFOP was judged globally to be more efficient.

In addition to improving EEG readability, this method
overcomes three drawbacks commonly reported in the liter-
ature [15].

(i) It does not require manual intervention.
(ii) It has a low computational time enabling a neurologist

to visualize for each second, 1min of filtered EEG
without previously processing the data.

(iii) It works on any clinical EEG recording device without
modifying current practice (no additional electrodes

needed [21] for artifact recording and no additional
protocol for individual patients [12]).

The method can also be combined with other methods
to filter all types of artifacts. For example, DAFOP can be
combined with AFOP [1] to filter electrode, ocular, and
chewing artifacts and it can be combined with [22] to filter
heartbeat artifacts. Due to their similarity in methodology,
it is possible to combine them on more optimal way than
the cascade filters, by simply adding the various covariance
matrices. It can be noticed that muscle artifact filtering seems
more efficient than the filtering of ocular and electrode
artifacts with the similar methods [1].

This paper presents the using of DAFOP on the clinical
context of EEG examination. Thus the method is param-
eterized and evaluated on this context. There would be
many other applications of this filtering which probably
require some small adjustments. For example, if the aim is
to study the Fourier transform of EEG signal, the frequency
decomposition step would add discontinuity on the gain
multiplier.The Fourier transform of cerebral signal is already
very discontinue and fortunately the discontinuity cannot be
seen unless we observe the mean of several EEG spectra.
The method should also be set and tested on other devices
like magnetoencephalogram (MEG) and on EEG with more
electrodes. Some adjustments should also be done for record-
ing on countries with 60Hz power line frequency. Finally, it
would also be interesting to apply this method as preprocess-
ing for other applications such as source localization, brain
computer interfaces, and anticipated detection of epilepsy
seizure [23].

For now, the possibility of implementing this method on
clinical EEG devices is being studied.
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