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Abstract

Objectives: There is a need for better, noninvasive quantitative biomarkers for assessing the rate of progression and
possible response to therapy in spinal muscular atrophy (SMA). In this study, we compared three electrophysiological
measures: compound muscle action potential (CMAP) amplitude, motor unit number estimate (MUNE), and electrical
impedance myography (EIM) 50 kHz phase values in a mild mouse model of spinal muscular atrophy, the Smn1c/c mouse.

Methods: Smn1c/c mice (N= 11) and wild type (WT) animals (2/2, N = 13) were measured on average triweekly until
approximately 1 year of age. Measurements included CMAP, EIM, and MUNE of the gastrocnemius muscle as well as weight
and front paw grip strength. At the time of sacrifice at one year, additional analyses were performed on the animals
including serum survival motor neuron (SMN) protein levels and muscle fiber size.

Results: Both EIM 50 kHz phase and CMAP showed strong differences between WT and SMA animals (repeated measures 2-
way ANOVA, P,0.0001 for both) whereas MUNE did not. Both body weight and EIM showed differences in the trajectory
over time (p,0.001 and p= 0.005, respectively). At the time of sacrifice at one year, EIM values correlated to motor neuron
counts in the spinal cord and SMN levels across both groups of animals (r = 0.41, p = 0.047 and r = 0.57, p = 0.003,
respectively), while CMAP did not. Motor neuron number in Smn1c/c mice was not significantly reduced compared to WT
animals.

Conclusions: EIM appears sensitive to muscle status in this mild animal model of SMA. The lack of a reduction in MUNE or
motor neuron number but reduced EIM and CMAP values support that much of the pathology in these animals is distal to
the cell body, likely at the neuromuscular junction or the muscle itself.
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Introduction

A variety of mouse models of spinal muscular atrophy (SMA)

have been developed over the past decade [1]. These include

animals with relatively severe phenotypes, such as the survival

motor neuron negative (Smn2/2), Smn2+/+, and SMND7 models

[2–4], all of which die within the first 3 weeks of life, to relatively

long lived models, including the Smn1c/c mouse, which develops

only subtle motor deficits [5]. The impetus underlying the

development of these various models is based on an effort to

recapitulate the marked varying human disease severities, with the

SMND7 model mimicking Type 1 SMA and Smn1c/c mimicking

SMA Type 3. While each of these disease models has its unique

features, nearly all of the longer-lived models develop some

element of digital, ear, and tail necrosis [5].

A major purpose of these models is to evaluate potential

therapies. Beyond measuring survival, which is effective in the

study of more severe models [6,7], biomarkers are needed to

evaluate more subtle therapeutic effects, such as disease stabiliza-

tion or slowing of progression. A variety of such biomarkers have

been explored in both animals and humans, including serological

biomarkers measures such as SMN expression [8], functional

measures [9], muscle imaging [10,11], as well as electrophysiologic

markers, including motor unit number estimate (MUNE) and

compound motor action potential amplitude (CMAP) [12–14].

More recently, the technique of electrical impedance myography
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(EIM) has also been studied in this disease. EIM is a

bioimpedance-based procedure in which a high-frequency electri-

cal current is applied to a localized area of muscle and the

consequent voltages measured [15]. The voltages reflect changes

in both muscle membrane health and size and well as local

compositional changes to the muscle. A longitudinal study in

children with mainly older SMA Type 2 and Type 3 patients has

shown the relative stability of EIM values over time, in contrast to

normal children who show increasing EIM phase values with age,

consistent with progressive muscle growth and maturation [16].

Since EIM is non-invasive, painless, and simple to apply, it may be

especially useful in young children and is currently being

investigated as a part of a multicenter study.

In an effort to further refine and study EIM as a potential

technology that can be readily applied for assessment of SMA

therapies in both animals and humans, we undertook a study of

the Smn1c/c mouse with two main goals. First, we were interested

in identifying differences in EIM, CMAP, and MUNE in a group

of Smn1c/c mice longitudinally over an extended period of time

(up to 1 year of age). Second, we sought to determine how these

measures correlated to serologic biomarkers, including SMN levels

and histological data.

Methods

Animals
All procedures were approved by the Beth Israel Deaconess

Medical Center Institutional Animal Care and Use Committee

(IACUC). Breeding colonies of Smn1c/c mice (strain: B6.129-

Smn1tm5(Smn1/SMN2)Mrph/J) were established from animals ob-

tained from Jackson Labs (Bangor, Maine). Animals were

genotyped by tail snip.

Given that this animal model develops necrosis of the tail, pinna

of ear, and digits of hind-paw up to an age of approximately P90,

special care was mandated by our animal research facility.

Specifically, animals were not weaned until P28. Special bedding

and gel-packs (DietGel 76A, PharmaSer, Framingham, MA) were

provided at all times. As long as necrosis was present, the animal

was provided meloxicam subcutaneously daily. Any animal

developing paw (as compared to digital necrosis) or losing more

than 20% body weight was euthanized. No electrophysiological or

behavioral measurements were allowed until the necrosis had

completely resolved, which was at approximately 15 weeks of age.

A total of only 7 Smn1c/c and 7 wild-type (WT) mice were

ultimately studied for the full 15–52 week duration post necrosis

and included in the longitudinal analysis. An additional 4 Smn1c/c

and corresponding 6 WT animals were ultimately also included

and followed out to 52 weeks, at which time all animals were

measured a final time and sacrificed.

Experimental design
There were two separate components to the study, the first

being a longitudinal element, in which animals were followed at a

regular intervals from 15 weeks of age until 1 year of age, and the

second being a cross-sectional element, when the animals were all

sacrificed at approximately 1 year of age. Body weight, front paw

grip strength, CMAP, MUNE, and EIM were obtained on a

regular basis for 37 weeks. At approximately 1 year of age all

animals were sacrificed, at which time gastrocnemius muscle,

spinal cord (L4–5), and whole blood were collected for further

analysis.

Functional study
The front paw grip strength was measured by a grip strength

meter single computerized sensor with standard pull bars (CAT #
1027CSM, Columbus Instruments). The animal was allowed to

grasp a small bar connected to a sensitive force transducer.

Holding the lower back of the animal, the investigator (JL) pulled

the animal away from the bar until it lost its grip. The maximum

force recorded out of 5 trials was recorded.

Figure 1. Trajectories of change (6 standard deviation) over the period of 15 weeks to 52 weeks for the 7 Smn1c/c animals (in black)
and 7 WT animals (in gray) followed for the entire duration. Data is normalized to baseline with a least squares fit of the data. Only weight
and EIM showed significant differences in the trajectories between the groups.
doi:10.1371/journal.pone.0111428.g001
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CMAP and MUNE measurements
CMAP and MUNE were performed on the left hind limb via

TECA Synergy T2 EMG Monitor System (Viasys, Madison, WI)

while the animal was under anesthesia, as previously described

[17]. Briefly, the sciatic nerve was supramaximally stimulated at

the sciatic notch and the entire distal leg muscle compartment

recorded via disposable ring electrodes with a ground electrode

placed on the right hind paw to record the CMAP [18,19]. For

MUNE, we followed a previously published incremental approach

for use in animals described by others [20,21]. Briefly, 10

incremental steps were recorded and averaged to determine the

average single motor unit potential amplitude. The MUNE was

calculated by dividing the CMAP amplitude by the average single

motor unit potential amplitude. Of note, the MUNE analysis

would have been more complete had multiple methods been used

to confirm the MUNE, including multipoint [22] and modified

multipoint [23]. However, these were not attempted given the

already complex data set being collected; in addition, performing

these methods in a mouse are extremely difficult given their small

size and the need to move stimulating electrodes to different point

along the nerve.

EIM study
All EIM measurements were performed with the animals placed

under 1% isoflurane anesthesia delivered through a nose cone with

a heating pad underneath the limb to maintain consistent

temperature. The leg was then taped to the measuring surface at

an approximately 45u angle extending out from the body, away

from the head.

A fixed 4-electrode array was placed over the gastrocnemius

muscle, as previously described [17]. EIM measurements were

performed with a Skulpt Inc EIM1103 system (San Francisco,

CA).

Serological, pathological and histological studies
1. SMN protein concentration. The whole blood was obtained

via cardio-puncture and preserved at 280uC. These samples were

analyzed by PharmOptima with an electrochemiluminescence-

based SMN immunoassay developed by PharmOptima (Portage,

MI), using Meso Scale Discovery technology. 2. Muscle weight

and myocyte fiber area. The entire gastrocnemius muscle was

immediately excised at its proximal end just below the knee and

cutting the gastrocnemius tendon distally, and its mass obtained.

Figure 2. Column plots comparing 1-year end point data for WT and SMA animals.While most of the readily obtained measures, including
body weight, paw grip strength, and muscle size are smaller and SMN is markedly reduced, all electrophysiological parameters show only modest
differences. In addition, hydroxyproline, a measure of muscle fibrosis, is non-significantly increased in the SMA animals. *,0.05, **,0.01, ***,0.001.
doi:10.1371/journal.pone.0111428.g002

Figure 3. Test-retest reproducibility of EIM recorded from the
mouse gastrocnemius at the one year end point.
doi:10.1371/journal.pone.0111428.g003
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The muscle was then snap-frozen in isopentane cooled in liquid

nitrogen and stored at 280uC. The tissue was then cut into 5 mm
slices and stained with hematoxylin and eosin. Stereological

measurements were made using a Zeiss Axiophot microscope with

a motorized stage interfaced with a Dell Optiflex 380 computer

running Stereo Investigator (MBF Biosciences, Inc., Williston, VT)

software. Approximately 30 cells from each muscle were evaluated

in a blinded fashion by a single investigator (TG). 3. Hydroxy-

proline level. In order to assess the quantity of connective tissue in

the muscle as a consequence of disuse/neuronal loss, a commer-

cially available assay (Kit #6017, Chondrex, Inc. Redmond, WA)

was used to measure muscle hydroxyproline content. 4. Spinal

cord motor neuron number. All animals were perfused and then

fixed with 4% Formalin. To keep the spinal cord intact, the whole

spinal column was removed and then decalcified by EDTA over

several days. Then, the lumbar 4 and 5 levels of the spinal cord

were removed, cut into 5 mm section in paraffin, and stained by

cresyl violet. Bilateral motor neuron number in the anterior horn

on each section was counted blind to group designation. Regions

of interest were counted at 40X magnification using a Zeiss

Axiophot microscope interfaced with a Dell Optiflex 380

computer running Stereo Investigator (MF Biosciences, Inc,

VT). The region of interest was sub-divided into sections using

the optical fractionator within the Stereo Investigator software and

examined individually. Inclusion of a cell as a motor neuron was

based on cell size, centering of nucleus within the cell, and the

amount of cytoplasm within the cell.

Data analysis
In order to utilize all the data obtained, differences between

animals were initially assessed via repeated measures 2-way

ANOVA, in which the independent variable was group and

dependent variable the individual electrophysiological measures.

However, in order to mirror standard practices in clinical trials,

trajectories of change were then calculated for each individual

animal over time (fit via linear regression anchored to the baseline

visit), comparing the slopes of the trajectories for each of the

measures between groups of animals. Unpaired t-tests and Pearson

correlation analyses were also performed to determine the

relationship between various functional, electrophysiological,

pathological, and histological studies at the time of sacrifice at

one year of age. For all statistical tests, significance was determined

at p,0.05, two-tailed. All results are summarized as mean 6

standard error.

Results

Differences between groups for the three main
physiological measures: CMAP, MUNE, and EIM
In order to effectively capture all the data from multiple visits in

the comparison between groups, we performed a two-way

repeated measures ANOVA. There was a highly significant group

effect for EIM (F(12,130) = 44, p,0.001) and a similarly strongly

significant group effect for CMAP (F (12,130) = 26, p,0.001) but a

non-significant group effect for MUNE (F (12,130) = 0.31,

p = 0.58,). A significant interaction term (p,0.001) was also

present for EIM but not MUNE or CMAP.

Longitudinal trajectories for all measures
As Figure 1 demonstrates, of the three electrophysiological

parameters, only EIM demonstrated a significant difference over

time in the SMA mice as compared to the WT mice, although the

difference appeared to be due mainly to increasing values for the

WT animals rather than to a reduction in values in the SMA

animals. Animal weight showed a similar trajectory.

End point-cross sectional study
Figure 2 provides a summary of the endpoint data for the two

groups of animals. Figure 2a, 2b, and 2c show that body weight,

front paw grip strength, and gastrocnemius muscle mass in the

SMA animals were reduced compared to controls (p,0.01 for all);

of note, muscle mass was 32.8% lower in the SMA animals as

compared to WT. Figure 2d, 2e and 2f show that there were

borderline significant differences between the groups for both EIM

(p= 0.045) and CMAP (p= 0.043); MUNE showed no significant

difference between the groups.

Figure 2g, 2h, 2i and 2j showed the significant differences

between the groups for both SMN concentration (p,0.001) and

myocyte area (p= 0.043); Spinal cord motor neuron count and

hydroxyproline level did not show a significant difference between

the groups.

Figure 3 shows test-retest repeatability of the endpoint data; as

can be seen, the repeatability is good with an intra-class

correlation coefficient of greater than 0.90.

End Point Correlations
The correlations are summarized in Table 1, with selected

correlations provided in Figure 4. Among electrophysiological

measures, only EIM showed the most consistent correlations with

serological, pathological and histological measures, as presented in

Figure 4a (SMN concentration, r = 0.57, p= 0.003), 4b (hydroxy-

proline level, r = 20.50, p = 0.019), and 4c (spinal cord motor

neuron count, r = 0.41, p= 0.047), although it did not correlate

significantly with muscle fiber size. Interestingly, EIM phase also

correlated to CMAP (Figure 4d, r = 0.44, p = 0.04) whereas it had

a poor correlation with MUNE (Figure 4e, r = 20.33, p = 0.12).

Discussion

Overall, the results of this study support that EIM is sensitive to

disease status in Smn1c/c mice. Of the 3 electrophysiological

biomarkers, both EIM and CMAP revealed significant differences

between WT and SMA animals and only EIM revealed a

difference in trajectory between the groups over the approximately

36-week period of study. This finding is analogous to the data

obtained in our longitudinal study of older children with SMA

[16]. While this EIM finding may appear useful, it is important to

also point out that body weight showed a very similar trend

(compare Figures 1a and 1c), which itself has been suggested as a

useful measure in the SMND7 mouse [24]. An obvious concern is

that EIM is proving nothing more than a surrogate for body

weight. In fact, it is not unreasonable to suspect that the two

measures are associated. A major component of body weight is

muscle mass, and EIM, while not a direct measure of muscle mass,

is deeply impacted by the number and size of muscle fibers [25].

Since more, larger fibers imply greater muscle mass and hence

greater body weight, it is not surprising that EIM and body weight

show similar trends. Another point worth highlighting is that while

the final measurements show a significantly lower CMAP for SMA

animals than for WT (Figure 2), the WT CMAP actually

decreased slightly over time whereas the SMA increased slightly

(Figure 1). This apparent paradox is explained by the fact that the

CMAP data in the SMA animals was lower throughout the study,

and although both groups’ values converged slightly over time,

they never approached the point of equivalence.

Interestingly, there were no significant differences between the

number of motor neurons in the spinal cords of the diseased mice

Electrophysiologic Markers in SMA
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versus the healthy mice, consistent with previous work showing a

normal number of neurons in the L3 and L4 ventral roots [5].

This is in contrast to features of reduced MUNE and normalized

CMAP because of collateral reinnervation that have been reported

in patients with mild SMA [12]. This discordance between the

animal model and the human disease is problematical and brings

into question the value of this model. Still we do know that SMN is

expressed in muscle as well [26], so it is possible that we are

identifying muscle specific effects that may still be relevant to

disease pathogenesis even if not primary motor neuron pathology.

What remains surprising, however, is that despite this, EIM

correlated to the motor neuron counts, perhaps suggesting some

general relationship between EIM values and the number of motor

neurons in a limb. It is also intriguing that EIM correlated to the

SMN protein concentration, a second somewhat unexpected

finding. Since SMN protein is expressed in muscle [26], it is

possible that SMN levels are correlating closely with muscle size

and weight, both of which are being captured in the EIM 50 kHz

phase data.

How can these seemingly disparate results be integrated? Since

there is no apparent loss of motor neurons, either by MUNE or

motor neuron counting in the spinal cord, the mildly reduced

CMAP and EIM values in the SMA as compared to WT suggest

pathology at the distal motor neuron or in the muscle itself. The

substantially greater loss of muscle weight as compared to

reduction in fiber size (34% vs. 18%) suggests that actual loss of

individual muscle fibers (e.g., due to denervation) rather than just

limited atrophy may be playing an important role in these findings.

Loss of motor neuromuscular junctional input, with subsequent

severe fiber atrophy, would be consistent with evidence that SMN

plays an important role in the distal nerve and skeletal muscle

[27,28]. Indeed, other work has shown that neuromuscular

junctions are abnormal in this model [5]. Primary muscle

abnormalities would have the effect of leaving MUNE unaltered

while at the same time reducing the EIM and CMAP values [29],

Further supporting this interpretation is the increase in hydroxy-

proline in the SMA animal muscle, suggesting increased connec-

tive tissue in the muscle, consistent with myopathic features that

have been described in SMA [30].

A major limitation of this study is that of 220 SMA animals

bred, only 11 ultimately could be studied due limitations placed on

us by our institution’s animal ethics committee. Inasmuch as the

degree of necrosis parallels the degree of motor neuron loss, we

may have evaluated only the most mildly affected animals.

Second, the small number of animals studied, the large number of

analyses performed, and the relatively modest p values for a

number of the outcomes implies that the study is subject to both

type 1 and type 2 error. Third, we only evaluated gastrocnemius, a

mildly affected muscle in this model [31]. However, we have been

developing approaches for measuring other muscles in the mouse

including tibialis anterior, quadriceps, fore limb and even axial

muscles using minute needle electrode arrays. Thus, this work can

be viewed as only an initial effort toward assessing muscle

condition in SMA mice using EIM. Fourth, we have only focused

on a single frequency of electrical current in these studies; it is

possible that multifrequency metrics could provide additional

valuable data.

In summary, these data support that EIM may a play a useful

role in the evaluation of mild SMA animals and that EIM data

correlate to some extent with other biomarkers. It also supports its

potential application in the study of human SMA. However, it is

clear that additional study of this and other models of SMA will be

needed to fully understand the complex relationship between

electrophysiological biomarkers and disease status.
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Figure 4. A selection of the correlations between various parameters for both animal types combined.
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