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Abstract

Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using
reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells
dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure
differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse.
If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each
other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that
touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the
enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall
dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined
between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and
this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall
glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced
cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest
that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.
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Introduction

Cell fusion is essential for sexual reproduction and plays an

important role in the development of many organisms [1]. In

mammals, cell fusion is involved in the formation of myoblasts [2],

osteoclasts [3], giant cells [4], and placental cells [5]. It is also

important in the development of Caenorhabditis elegans [6] and

Drosophila melanogaster [7]. Perhaps the simplest and most well

studied form of cell fusion is the mating of the budding yeast,

Saccharomyces cerevisiae [8].

Budding yeast can exist in both a diploid and haploid state. In

either state, cells can replicate asexually by budding, producing

daughters that are genetically identical to their mothers [9].

Haploid cells can be one of two mating types, a or a, which are

defined by two alternative alleles of a single locus, MATa or

MATa. These mating types express reciprocal pheromones and

pheromone receptors, which they use to signal to each other.

Exposing a MATa cell to a-factor, the pheromone secreted by

MATa cells, (or vice versa) induces a pheromone response that

includes transcription of pheromone response genes, cell cycle

arrest in G1, and polarization in the direction of highest

pheromone concentration to form a mating projection known as

a shmoo [10].

After MATa and MATa cells have successfully communicated

and grown towards each other, they must fuse [9]. The two cells

initially bind to each other at their shmoo tips using mating

agglutinins [11–13], but their plasma membranes are still

separated by two, approximately 100nm thick, cell walls [14].

Before the mating partners can fuse, the cell wall that lies between

the two membranes must be dissolved and the boundaries of the

remaining cell walls, which surround the site of cell fusion, must

fuse to form a single, continuous structure that will enclose the

newly formed zygote [8]. The osmotic pressure differential

between the cytoplasm and the extracellular environment makes

this spatially regulated cell wall dissolution and fusion a dangerous

task [15,16]. If the cell wall is opened at the wrong time or place,

exposing the plasma membrane directly to the environment, there

will be no elastic force to resist the turgor pressure of the cell, water

will rush into the cell from the extracellular environment, and the

cell will lyse [15,16].

Various studies have been done on the molecular basis for cell

wall dissolution. In 1996, Brizzio et al. showed that high
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pheromone concentrations are required for efficient fusion and

hypothesized that vesicles found at the shmoo tip might contain

cell wall remodeling enzymes [17]. Later, Cappellaro et al. found

several proteins with homology to known cell wall glucanases,

including SCW4, whose deletion makes mating less efficient [18].

The promoter of another putative glucanase gene identified by

Cappellaro et al. [18], SCW11, has a binding site for Ste12 [19],

the transcription factor that induces genes in response to

pheromone stimulation [20].

Several proteins that are required for efficient cell fusion play a

role in delivering secretory vesicles to the shmoo tip [21–24]. A

complex containing Rvs161, an amphiphysin-like protein that

binds curved membranes [25,26], and Fus2 [22,27,28], is

hypothesized to direct vesicle transport to the cell fusion zone

[23]. Once the vesicles reach the plasma membrane, they are

anchored by Fus1 [23], a membrane spanning protein [29] that

interacts with the polarisome [30], a protein complex associated

with polarized actin polymerization [31], presumably ensuring

tight clustering of the secretory vesicles. Although these proteins

direct vesicle secretion towards the shmoo tip, their roles do not

explain how cell wall dissolution is limited to the site of contact

with a polarized partner.

The problem of remodeling the cell wall is not unique to

mating. Even when cells are growing isotropically, there must be a

balance between cell wall synthesis and destruction to allow the

continual increase in cell diameter and volume, which is

accomplished through spatially uniform secretion of synthesizing

and remodeling enzymes (Figure 1A) [32,33]. Polarized growth,

such as that associated with budding and shmooing, is achieved

through polarized secretion of these enzymes [33] (Figure 1B).

Most cell wall synthesizing enzymes are attached to the plasma

membrane, whereas most wall-degrading enzymes are free to

diffuse through the cell wall [34]. Synthesis and destruction must

be carefully balanced: an excess of synthesis over degradation will

lead to an increased cell wall thickness and eventually to slow

growth, whereas an excess of degradation will weaken the cell wall

until it is unable to resist the osmotic pressure inside the cell [35].

We propose a simple model to explain how cell walls are

dissolved at the point where two polarized mating partners contact

each other. When cells are not stuck to each other by mating

agglutinins, the degradative enzymes diffuse through the cell wall

and are then lost into the medium (Figure 1C). But when two

mating partners stick to each other, using agglutinins, the enzymes

must take a much longer path to escape, and because distance

diffused only rises as the square root of time, their concentration at

the site of fusion must rise, leading to an excess of destruction over

synthesis and the eventual dissolution of the cell wall (Figure 1D).

If our model is correct, it should be possible to cause

pheromone-induced cell death by tightly apposing pheromone-

treated cells to impermeable surfaces, thus, mimicking the

attachment of two cells to each other during mating (Figure 1E).

Although previous studies [36,37] have reported that pheromone

treatment can cause cell death, they neither hypothesized a

mechanism through which this process is regulated, nor carefully

examined the effect of holding cells against impermeable surfaces.

We therefore set out to test the idea that slowing the escape of cell

wall-degrading enzymes would lead to cell wall dissolution and

death.

We observed that the frequency of cell death increases as the

amount of cell contact with an impermeable surface increases and

as the osmotic pressure differential between a cell and its

environment rises, whereas decreasing the osmotic pressure

differential reduces cell death. Deleting Fus1 and Fus2, proteins

important for cell wall fusion [24], as well as the putative cell wall

glucanases Scw4 and Scw11 [18], also decreases the frequency of

cell death. Our evidence argues that the pheromone-induced cell

death is due to a contact-dependent increase in the local

concentration of cell wall remodeling enzymes, leading to the

dissolution of the cell wall and eventual lysis of the cell. This

mechanism may ensure safe and accurate cell wall fusion during

mating.

Results

A model for pheromone-stimulated cell wall dissolution
We propose a simple model for cell wall dissolution: cell-cell

contact increases the concentration of cell wall remodeling

enzymes because they have to diffuse further within the cell wall

from their site of secretion to reach the aqueous solution that

surrounds the cells. We mathematically analyzed the distribution

of cell wall remodeling enzymes in two situations: cells that are free

in aqueous medium and those apposed to an impermeable surface.

In both cases, we assume that the enzymes diffuse much more

slowly through the cell wall than they do in the surrounding

medium, and that this medium represents an infinite sink, allowing

us to set the enzyme concentration outside the cell wall to zero.

For unapposed cells, the enzymes need only diffuse through the

thickness of the cell wall. At steady state, the flux through all points

from the external surface of the plasma membrane to the external

surface of the cell wall must be constant, implying a linear gradient

in the enzymes’ concentration. For apposed cells, we assume that

they have a circular area of the cell wall pressed against an

impermeable surface and that secreted enzymes must diffuse

through the wall, parallel to the impermeable surface, before they

can escape. At the center of the apposed region, the cell is

secreting enzymes into the wall and the enzymes are diffusing

away from the center of this region. In this region, the flux through

the circumference of circles inscribed in the cell wall increases as

the radius of the circles increases. Because the area of secretory

activity increases with the square of the radius, whereas its

circumference increases only linearly, the flux per unit length of

the circumference increases, and thus the steepness of the gradient

increases, moving outwards from the center of the secretory zone.

Beyond this zone, no new enzyme secretion occurs, the flux

through successively larger circles remains constant, and since

their circumference increases, the radial concentration gradient

becomes progressively shallower. If we assume that the cell wall is

0.1 mm thick, the radius of the secretory zone is 0.25 mm, and the

radius of the apposed zone is 1 mm, the concentration of cell wall

degrading enzymes at the center of the apposed zone is more than

ten times the mean enzyme concentration in the wall of an

unapposed cell. Details of this analysis are found below.

Mathematical analysis of pheromone-stimulated cell wall
dissolution

First we consider an enzyme diffusing one dimensionally

through a cell wall with diffusion coefficient D. If the radius of

the secretion zone is substantially greater than the thickness of the

cell wall, it is reasonable to treat the escape of enzymes secreted at

the center of this zone as proceeding by one-dimensional diffusion

through the thickness of the cell wall. As it diffuses through the

wall, the enzyme’s flux through a unit area of the cell wall, parallel

to the surface of the cell, J, must be constant and is given by Fick’s

law

J~{D
dC

dx

Constrained Enzymes Induce Cell Wall Dissolution
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where x is the distance along the axis that runs perpendicular to

the external surface of the plasma membrane to the outer surface

of the cell wall. Since the flux is constant at all the points along this

axis, the gradient must be the same at all points through the

thickness of the wall, and thus the total concentration difference

across the wall DC must increase linearly with the thickness of the

wall, DC = x/D. If we set D within the cell wall to be much lower

than it is in solution, the concentration outside the wall will be

close to zero, and C0, the concentration at the site of secretion will

be given by C0 = Jx/D, and if we set the units of x to the thickness

of the cell wall (roughly 100 nm), C0 = J/D.

Now we consider an apposed cell, in which diffusion proceeds

radially, in the plane of the cell wall, from the site of secretion to

the edge of the apposed area. We consider two concentric regions

within the opposed area, a central one where both secretion and

diffusion occurs, and a peripheral one, where there is just diffusion.

Remembering that we have set the unit of length equal to the

thickness of the cell wall, within the region with secretion and

diffusion, the flux that must leave an area of radius r is

Flux~Jpr2

Figure 1. Model: Confining cell wall degrading enzymes in the fusion zone leads to cell wall destruction. A. Isotropically growing cells
increase the size of their cell walls equally in all directions to grow larger while maintaining an ellipsoidal shape, so cell wall remodeling enzymes are
secreted equally in all directions. B. Polarized cells grow anisotropically, so they polarize secretion of cell wall remodeling enzymes to expand their
cell walls in the direction of polarization. C. When pheromone stimulated cells are unattached, the cell wall remodeling enzymes secreted from the
shmoo tip exit the cell wall along the shortest path by traveling perpendicular to the plasma membrane. These enzymes break cell wall bonds as they
diffuse through the wall to allow continual expansion of the shmoo up the pheromone gradient, but the wall is not breached. D. When two
pheromone-stimulated cells are attached by mating agglutinins, the cell wall remodeling enzymes secreted into the future fusion zone must now
travel further to exit the cell wall, traveling parallel to the plasma membrane until they reach the edge of the agglutinated zone, increasing the local
concentration of cell wall remodeling enzymes in this zone. The cell wall remodeling enzymes dissolve the two cell walls at the point of contact while
cell wall synthesizing enzymes simultaneously interlock them, allowing the plasma membranes of the two cells to contact one another and fuse
without exposing the cell to osmotic lysis. E. We mimicked the attachment of two cells by tightly apposing single cells to impermeable surfaces,
forcing cell wall remodeling enzymes to exit the wall by traveling parallel to the plasma membrane until they reached bulk solution and thus
increasing the concentration of cell wall remodeling enzymes at the point of attachment to the impermeable surface. This causes a hole to form in
the cell wall, exposing the plasma membrane to the extracellular environment and causing the cell to undergo osmotic lysis.
doi:10.1371/journal.pone.0109780.g001
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where J is the rate of enzyme secretion per unit area. At any

radius, r, within the secretory zone, the enzyme must pass through

a ring whose area is 2pr, specifying the radial concentration

gradient, according to Fick’s Law, and then, by integration, the

concentration difference between the center (C0) and any radial

distance, r, within the secretion zone,

Jpr2~{2prD
dC

dr

dC

dr
~{

Jpr2

2prD
~{

Jr

2D

dC~{
Jr

2D
dr

Cr{C0~{

ðr

0

Jr

2D
dr~{

Jr2

4D

C0{Cr~
Jr2

4D

To get the concentration difference between the center and edge

of this region, which is at rs, the radius of the secreting region, we

substitute rs for r.

C0{Crs~
Jr2

s

4D

In the region where there is just diffusion, we can calculate the

concentration difference from the inside edge to the outside edge

of the region. Within the region, we must satisfy the condition that

the total flux through each successive circumference is equal to the

rate of enzyme production over the total producing region, which

is Jpr2
s . Thus for all r.rs,

Jpr2
s ~{2prD

dC

dr

We can rearrange and integrate to get the change in concentration

between the concentration at rs and r.

Jpr2
s ~{2prD

dC

dr

dC~{
Jpr2

s

2prD
dr~{

Jr2
s

2rD
dr

Crs{Cr~

ðr

rs

Jr2
s

2rD
dr

Crs{Cr~
Jr2

s

2D
log

r

rs

� �

The overall concentration drop from the center of the secreting

region to the edge of the apposed area is then given by adding the

concentration drop from the center to the edge of the secreting

region and the drop from the edge of the secreting region to the

edge of the apposed region, situated at rmax.

C0{Crmax~ C0{Crsð Þz Crs{Crmaxð Þ~

Jr2
s

4D
z

Jr2
s

2D
log

rmax

rs

� �
~

Jr2
s

4D
1z2 log

rmax

rs

� �� �

If we set rs = 2.5, and rmax = 10, corresponding to radii of secretion

and apposition of 0.25 and 1 mm, and consider the concentration

drop from the center of the secreted region to its edge, Cs, we get

Cs~1:56J=D

and for the drop from the outer edge of the secreted region to the

edge of the apposed region, Cd, we get

Cd~4:33J=D

giving a total concentration drop, Ctot = 5.89J/D, which implies a

maximum hydrolase concentration that is nearly six times that

attained when a cell is not apposed to another cell.

The difference between the mean concentration at the center of

the apposed region and the mean concentration in the wall of an

unapposed cell is even higher. In unapposed cells, the mean

concentration, felt half way through the cell wall, is J/2D, which is

the average of a concentration J/D at the cell surface and 0 at the

interface between the wall and solution. In the apposed cell

however, the surface that the cell is exposed to acts as a reflecting

barrier so that the concentration is constant across the thickness of

the wall, and thus the mean concentration, in the scenario we have

described is more than ten times higher for the apposed than for

the unapposed cells (Figure 2).

Figure 2. The role of radial diffusion through the cell wall of
apposed cells in increasing the concentration of cell wall
degrading enzymes. The graph shows analytical results for the
relative enzyme concentration in two scenarios: red, diffusion through
the cell wall, perpendicular to the cell surface, of a cell free in solution
and not in contact with other cells or solid surfaces, and blue, diffusion
through the cell wall, parallel to the cell surface, of a cell that is apposed
to a solid surface, with a circular contact area whose radius is 1 mm.
doi:10.1371/journal.pone.0109780.g002
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Pheromone-stimulated cells die when attached to an
impermeable surface

If contact with another cell leads to cell wall dissolution by

increasing the local concentration of wall-degrading enzymes, we

should be able to mimic the phenomenon by confining cells

against an impermeable surface. We compared the response of

pheromone-stimulated cells in environments where the cells were

either free-floating, simulating cells in a mating mixture that are

not attached to a fusion partner, or attached to an impermeable

surface, simulating cells attached to a fusion partner via mating

agglutinins. We observed cells in three different environments:

bulk culture, attachment to a single, flat, impermeable surface, and

confinement between two impermeable surfaces (Figure 3A). Cells

expressing the a-factor protease, BAR1 [38], are capable of

decreasing the pheromone concentration at their surface [38,39],

so we used MATa bar1D cells for our investigations. We incubated

bar1D cells in 50 nM a-factor in bulk culture for five hours and

found that roughly 10% of the cells die (Figure 3B). Although cells

grown in bulk culture have no enforced contacts with the other

cells or the impermeable surface of the culture tube, it is difficult to

control the physical interactions of cells when they are free-floating

in liquid culture and possible that cells could stick either to each

other, perhaps due to incomplete separation after budding, or to

the surface of the culture tube.

To mimic the attachment of two cell walls via mating

agglutinins, we attached cells to the impermeable surface of a

glass coverslip using the lectin, concanavalin A (ConA), which

binds to carbohydrates in the cell wall [40] (Figure 3A). In order to

image the yeast cells for an extended period of time, we created a

chamber several hundred times the diameter of a yeast cell. Cells

were adhered to the ConA-coated coverslip, and the chamber was

filled with medium containing 50 nM a-factor using capillary

action and then sealed and observed over a period of five hours.

We found that MATa bar1D cells attached covalently to an

impermeable surface were 1.6 times more likely to die than those

in bulk culture, indicating that forced attachment to an

impermeable surface increases the rate of cell death (Student’s t-
test, p = 0.01) (Figure 3B).

As cells attached to a single impermeable surface grow, they are

free to expand away from the glass coverslip, resulting in a low

proportion of the cell wall attached to an impermeable surface and

making it likely that cells will polarize away from the impermeable

surface. To address this problem we used a second technique to

mimic the attachment of two cell walls via mating agglutinins. We

trapped cells in a microfluidic chamber whose floor and ceiling are

separated by the height of a single yeast cell and through which

new medium is constantly perfused (Figure 3A). Cells are loaded

into this device and then trapped between the two impermeable

surfaces of a silicone ceiling and a glass floor. In addition, as the

cells grow, the fraction of their surface that is pressed against the

floor and ceiling rises, making them more likely to polarize

towards an impermeable surface. Using an inverted microscope, it

is possible to image cells over time through the glass floor as

medium perfuses through the chamber. Once again we imaged

MATa bar1D cells in 50 nM a-factor for five hours (Figure 3C

and Movies S1–S3). In the flow chamber, the rate of death of the

MATa bar1D cells was more than twice as high as in bulk culture

and 1.5 times the rate of death when attached to ConA-coated

coverslips, suggesting that a larger area of attachment to an

impermeable surface causes increased cell death (Student’s t-test,

p,0.003) (Figure 3B).

Pheromone-induced cell death increases with increased
cell polarization

Decreased pheromone production has been reported to cause

decreased cell fusion [17]. Thus, if the cell death seen here is due

to the same activities that normally promote cell fusion, we would

expect to see a decrease in cell death with decreased pheromone

concentration. We chose to assay the effect of decreased

pheromone concentration in the flow chamber, where the highest

percentage of cells died when exposed to 50 nM a-factor. As

previously reported for cells in bulk culture [37], decreasing the a-

factor concentration decreased the percentage of cells that died in

the flow chamber. In 5 nM a-factor, 50-fold fewer cells died than

when cells were exposed to 50 nM a-factor in the flow chamber

(Student’s t-test, p = 1026), and the fraction of dead cells increased

as the concentration of a-factor was increased (Student’s t-test, p,

0.02) (Figure 4A). Although shmoo formation occurs at 5 nM a-

factor, as the pheromone concentration was increased, the cells

became more tightly polarized, forming pointier shmoos (Fig-

ure 4B).

The flow chamber traps cells by wedging them into a space

minutely smaller than a single cell in height. When cells are

arrested, such as by pheromone stimulation, the cells increase in

size as they continue to grow without dividing [41]. Because of

this, it is possible that the increased frequency of cell death in the

flow chamber, as compared to bulk culture and when cells are

attached to ConA-coated coverslips, is not due to the accumula-

tion of enzymes that would normally degrade the cell wall during

cell fusion but rather because the physical strain put on the cell

wall is too high, which could be increased by the modest pressure

(14 kPa = 2 psi) applied to drive the flow of the perfused medium.

We therefore used a different method that would arrest the cell

cycle without interfering with cell growth. Like pheromone

treatment, treating cells with benomyl, a drug that leads to

microtubule depolymerization, causes cells to become larger

without dividing, but unlike pheromone-arrest, benomyl-arrested

cells are unpolarized and arrest in mitosis instead of G1 [42]

(Figure 4C). If cells in the flow chamber die because they were

squashed, a substantial percentage of benomyl-arrested cells

should die in the flow chamber. Although it is possible to find

the occasional, dead, benomyl-arrested cell, 60-fold fewer cells die

during five hours of benomyl-arrest than during exposure to

50 nM a-factor, indicating that death in the flow chamber is

specific to pheromone-arrest, where cells are polarized, and is not

due to growth under physical confinement (Figure 4D).

Pheromone-induced cell death is due to osmotic lysis
Yeast cells require cell walls at least in part due to osmotic

pressure. Since the osmolarity of the cytoplasm is higher than the

typical extracellular environment, without the rigidity of a cell

wall, water would rush into the cell and cause it to lyse [33], and

previous studies have shown that cells that are unable to regulate

the osmotic balance between the cytoplasm and the extracellular

environment have a cell fusion defect [15]. One interpretation of

the death of pheromone-treated cells pressed against an imper-

meable surface is that accumulation of cell wall-degrading

enzymes causes the cells to digest part of their cell walls leading

to membrane expansion through a hole in the cell wall and

eventual lysis. If this interpretation is correct, it should be possible

to affect the rate of death by manipulating the osmotic pressure

differential between the cell and the medium [43].

We did two experiments to determine whether the pheromone-

induced deaths are due to osmotic lysis: either increasing or

decreasing the osmotic pressure differential between the cytoplasm

and the extracellular environment. We first tested the effect of

Constrained Enzymes Induce Cell Wall Dissolution
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increasing the osmotic pressure differential between the cytoplasm

and the extracellular environment. Cells were exposed to medium

with 50 nM a-factor and 1M sorbitol, which increases the

osmolarity of the medium, for five hours. When cells are exposed

to high external osmolarity, they adapt to the osmotic stress by

synthesizing glycerol, which can take place in a matter of minutes

[44–47], thus increasing their internal osmolarity. Because of this

partial restoration of the osmotic pressure gradient across the cell

wall, we were not surprised to find that the fraction of cells that die

when exposed to 50 nM a-factor and 1M sorbitol is similar to that

of cells exposed to only 50 nM a-factor (Figure 5A). Nevertheless,

we reasoned that some of the surviving cells would have holes in

their cell walls that would be small enough to allow their survival

until we increased the osmotic pressure difference between the

inside and outside of the cells. Thus, if we replace the sorbitol-

containing medium with medium lacking sorbitol, we would

expect to see rapid cell death due to the large pressure differential.

To test this prediction, we waited until five hours after beginning

pheromone treatment and then replaced medium containing 1M

sorbitol and 50 nM a-factor with medium containing only 50 nM

a-factor. Immediately following the sorbitol washout, the number

of dead cells in the flow chamber more than doubled, supporting

the idea that the cells in the chamber are dying due to a breach in

their cell walls (Figure 5A and 5B and Movie S4).

To test the effect of decreasing the osmotic pressure differential

between the cells and the extracellular environment, we exposed

cells to 50 nM a-factor in the absence of 1M sorbitol for

80 minutes, at which point cells are just beginning to die

Figure 3. Pheromone-induced cell death increases with increasing attachments to an impermeable surface. A. Cells grown in bulk
culture were incubated in test tubes on roller drums in liquid media without any enforced contact with impermeable surfaces. Cells grown in a
concanavalin A (ConA) chamber were grown in a chamber whose depth was many times the diameter of a single yeast cell and attached to a single
surface of the chamber (the ceiling provided by a glass coverslip) using the lectin, concanavalin A. For confinement, cells were loaded into a
microfluidic chamber which traps cells between a ceiling and floor separated by the diameter of a single yeast cell, causing enforced contact with two
surfaces. Medium is then constantly perfused through the chamber. B. Percent of MATa bar1D cells that died after exposure to 50nM a-factor for five
hours in three different physical environments. Error bars represent the standard deviation of at least three independent experiments. C. Time course
of MATa bar1D cells incubated in 50nM a-factor for the indicated amount of time in the flow chamber. Yellow arrows indicate cells that died since the
previous time point. White arrows indicate cells that died earlier. The scale bar indicates 10 mm.
doi:10.1371/journal.pone.0109780.g003
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(Figure 3C and Movies S1–S3). We determined the percentage of

dead cells at this point and then perfused the chamber with

medium containing 1M sorbitol and 50 nM a-factor and observed

the percentage of dead cells 60 minutes after the change of media.

Since the sorbitol is washed in after the cells have begun to shmoo,

the cells will have less time to induce the hyperosmotic response,

and if the cell death is due to osmotic lysis, we should observe

fewer cell deaths when 1M sorbitol is present in the medium.

When we observe the fold change in cell death between

80 minutes and 140 minutes after a-factor addition in the absence

of 1M sorbitol, there is an 8.9-fold increase in the fraction of dead

cells (Figure 5C). However, when 1M sorbitol is added to the

medium 80 minutes after a-factor addition, there is only a 1.4-fold

increase in the fraction of dead cells between 80 and 140 minutes

after a-factor addition, strengthening the evidence that phero-

mone-induced cell death is due to osmotic lysis (Figure 5C).

Proteins necessary for cell wall breakdown during mating
are required for pheromone-induced cell death

We investigated the effects of deleting, FUS1 and FUS2, two

genes required for efficient cell fusion [24]. When FUS1, FUS2,

or, both FUS1 and FUS2 are deleted in both mating partners,

prezygotes, consisting of two shmoos bound to each other at their

tips, are formed, but cells cannot dissolve their cell walls and thus

fail to fuse [24,28]. Also, in fus1 and fus1fus2 mutants, the tightly

polarized vesicles that are seen in the fusion zone of wild-type

prezygotes and are hypothesized to contain cell wall remodeling

enzymes are fewer and more widely dispersed than in wild-type

cells [28]. If cell death in the flow chamber is due to pheromone-

stimulated cell wall breakdown, mutations known to impair cell

wall fusion should reduce the frequency of pheromone-induced

cell death events in the flow chamber. Corroborating previous

results obtained in bulk cultures [37], deleting FUS1 and FUS2
alone and in combination caused more than a 14-fold reduction in

cell death in the flow chamber when cells were exposed to 50 nM

a-factor for five hours (Student’s t-test, p,0.002) (Figure 6A).

If the pheromone-induced cell death in the flow chamber is due

to holes formed in the cell wall from inappropriate cell wall

dissolution, the deletion of cell wall remodeling enzymes should

decrease the frequency of pheromone-induced cell death. We

investigated the effects of two putative cell wall glucanases that

have been implicated in mating: Scw11, a target of pheromone-

induced gene expression [19], and its paralog, Scw4, whose

deletion interferes with mating [18]. If the observed cell death is

due to accumulation of cell-wall degrading enzymes and these

glucanases are major contributors to cell wall remodeling during

cell wall fusion, deleting them should reduce the frequency of

pheromone-induced cell death in the flow chamber. To test this

prediction, we incubated MATa bar1D scw11D cells in a flow

chamber in medium containing 50 nM a-factor for five hours.

Deleting SCW11 caused a 20% reduction in cell death compared

to MATa bar1D cells (Student’s t-test, p = 861024), and removing

both Scw11 and Scw4 caused a 40% reduction in cell death

compared to MATa bar1D cells (Student’s t-test, p = 361025)

(Figure 6B).

Figure 4. Pheromone-induced cell death increases with increased polarization. A. Fraction of MATa bar1D cells that died after five hours
exposure to various concentrations of a-factor in the flow chamber relative to the fraction of MATa bar1D cells that died after five hours exposure to
50nM a-factor. Error bars represent the standard deviation of at least three independent experiments. B. MATa bar1D cells incubated in the indicated
concentration of a-factor for five hours in the flow chamber. Yellow arrows indicate dead cells. The scale bar indicates 10 mm. C. MATa bar1D cells
exposed to 0.1mM benomyl for five hours in the flow chamber. The scale bar indicates 10 mm. D. Fraction of MATa bar1D cells that died after five
hours exposure to either 0.1mM benomyl or 50nM a-factor in the flow chamber relative to the fraction of MATa bar1D cells that died after five hours
exposure to 50nM a-factor (Student’s t-test, p,1026). Error bars represent the standard deviation of at least three independent experiments.
doi:10.1371/journal.pone.0109780.g004
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Discussion

The mating of budding yeast is risky and elaborately

choreographed. When two haploid yeast cells mate, they signal

through reciprocal pheromones and receptors, stimulate each

other to signal ever more strongly, arrest their cell cycles, use

pheromone gradients to direct their polarization towards each

other, and eventually fuse their cell walls, cell membranes, and

nuclei to form a single diploid cell [8,10,48,49]. Although many

aspects of yeast mating have been well studied, the mechanism by

which cells dissolve their cell walls to allow fusion of their plasma

membranes remains mysterious. Cell wall dissolution is a

particularly dangerous step in yeast mating. The plasma mem-

branes of the two partner cells cannot touch each other and fuse

until the cell walls that lie between them have been dissolved [8].

Because the osmolarity inside a cell is so much higher than outside,

the elasticity of the cell wall opposes the osmotic pressure

difference between the cytoplasm and the environment, thus

keeping water from rushing into the cell and causing it to lyse. A

cell that dissolves any part of its cell wall that does not touch a

closely apposed mating partner will die [15,16].

Pheromone-induced cell death was studied previously [36,37]

and hypothesized to be due to inappropriate activation of cell

fusion machinery, resulting in cell wall dissolution and eventual

cell lysis [37]. Although it was observed that this lysis can be

reduced by increasing cell wall integrity and deleting certain

proteins involved in cell fusion, a hypothesis to explain why cells

were dissolving their cell walls was not given [37]. Many

hypotheses can be generated to explain how cell wall dissolution

is regulated in time and space to promote mating and prevent

accidental deaths. Most of them posit additional signaling systems

in addition to the known mechanisms of pheromone signaling, but

no additional signaling molecules have been uncovered, despite a

variety of searches [8,28,50,51]. The failure of these attempts led

us to propose a hypothesis that requires no new components and

instead appeals to the physical differences between mating cell

pairs and isolated, pheromone-stimulated cells.

In an isotropically growing cell, cell wall synthesizing and

remodeling enzymes are secreted uniformly around the cell,

whereas the polarized growth that accompanies both budding and

shmooing requires similarly polarized secretion of these enzymes

[33] (Figure 1A and 1B). Thus we hypothesize that cell wall

remodeling enzymes, such as Scw4 and Scw11, are preferentially

released at the shmoo tip, which locally weakens the cell wall,

allowing the shmoo to grow continuously up the pheromone

gradient. As a shmoo approaches a suitable partner, the

concentration of pheromone increases, tightening the polarization,

and increasing the concentration of cell wall remodeling enzymes

in the part of the cell wall that has polarized towards its partner’s

site of maximum pheromone secretion [49,52–55]. If the

remodeling enzymes are diffusible, the maximum concentration

they can reach in a shmoo that has not bound to a partner is

limited: even though the secretion rate of cell wall remodeling

enzymes is high, the enzymes are able to diffuse through the cell

wall, keeping their concentration in the range that is high enough

to allow rapid remodeling of the growing shmoo but low enough to

prevent cell wall rupture (Figure 1C). But when two shmoo tips are

attached to each other via mating agglutinins, it takes longer for

cell wall remodeling enzymes to diffuse out of the fusion zone

because they must now travel laterally through the cell wall in

order to escape, thus increasing the local concentration of the

remodeling enzymes and leading to the gradual dissolution of the

cell wall, exposing the two plasma membranes to each other and

allowing their fusion to create a single, diploid cell (Figure 1D).

Figure 5. Pheromone-induced cell death is due to osmotic lysis.
A. MATa bar1D cells were grown in a flow chamber for five hours in
medium with 50nM a-factor and 1M sorbitol. After five hours, the
sorbitol was washed out, and the cells were incubated in medium with
50nM a-factor and no sorbitol. The fraction of dead cells 10 minutes
before and 10 minutes after the 1M sorbitol was washed out relative to
the fraction of cells that die when exposed to 50nM a-factor for five
hours without the addition of sorbitol was determined (Student’s t-test,
p = 261024). Error bars represent the standard deviation of at least
three independent experiments. B. Cells imaged after 290 minutes in
medium with 1M sorbitol and 50nM a-factor (Before sorbitol washout)
and 10 minutes after the medium was replaced with medium with
50nM a-factor and no sorbitol (After sorbitol washout). Yellow arrows
indicate the cells that died during the 290 minutes of pheromone
treatment prior to the sorbitol washout. White arrows in the ‘‘After
sorbitol washout’’ picture indicate cells that died during the twenty
minute period that spanned the last 10 minutes with sorbitol and the
first 10 minutes after the sorbitol washout. The scale bar indicates
10 mm. C. Cells were grown in the flow chamber for 80 minutes in
medium with 50nM a-factor. After 80 minutes, 1M sorbitol was added
to the medium such that the cells were incubated in medium with 1M
sorbitol and 50nM a-factor. The fold change in the number of cells that
died during the 80 minutes prior to and 60 minutes after the sorbitol
wash-in was determined (Sorbitol wash-in). In control chambers (No
sorbitol), no sorbitol was added to the medium, and the fold change in
the number of cells that died in the two corresponding periods was
determined (Student’s t-test, p = 961025). Error bars represent the
standard deviation of at least three independent experiments.
doi:10.1371/journal.pone.0109780.g005
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Our data supports the hypothesis that increased secretion of

remodeling enzymes and the longer distances they have to diffuse

when two polarization zones agglutinate to each other causes cell

wall dissolution. We tightly apposed pheromone-treated cells to an

impermeable surface, mimicking the effect of cell-cell attachment

during mating while ensuring that the only signal these cells can

receive is a uniformly high pheromone concentration (Figure 1E).

The cell lysis events we observe are not due merely to the physical

constraints of a flow chamber: cells also lyse when they are

chemically attached to a glass coverslip with essentially infinite

space to expand, and confined cells that grow larger isotropically

while they are arrested in mitosis do not lyse [42]. By manipulating

the presence of an osmoprotectant in the media, we show that the

frequency of lysis events rises with increasing osmotic pressure

difference between the osmolarity of the cell and its environment,

implying that breaches in the cell wall lead to osmotically induced

lysis. Lysis depends on Fus1 and Fus2, proteins that have been

previously implicated in cell fusion [24], and the cell wall

dissolution appears to be at least partially accomplished by two

putative glucanases, Scw4 and Scw11.

Although a contact-driven increase in the concentration of cell

wall remodeling enzymes is the simplest explanation for cell wall

dissolution during mating, other viable hypotheses exist. One is

that cells can only dissolve their cell walls in response to a high

concentration of pheromone that they experience while attached

to a mating partner. When cells are in the flow chamber, we do see

an increase in cell lysis as we increase the pheromone concentra-

tion arguing that high pheromone concentrations promote cell

wall dissolution; however, the increase in cell lysis in cells apposed

to impermeable surfaces argues that factors other than pheromone

concentration contribute to cell wall dissolution. Another hypoth-

esis is that the cell is capable of detecting cell wall or cell

membrane deformations that indicate that two shmoo tips are

attached via mating agglutinins. Our experiments do not negate

this possibility, since it is likely that contact with impermeable

surfaces causes cell wall deformation, but the failure of previous

attempts to identify additional signaling components [8,28,50,51]

argues against this model. A third possibility is that cells respond to

a direct signal from another cell, such as an additional,

uncharacterized signaling mechanism similar to the G-protein

coupled receptors involved in pheromone stimulation, or, perhaps,

the oscillation in pheromone concentration that would occur if

cells were close enough to detect the pulses of increased

pheromone concentration concomitant with the fusing of individ-

ual secretory vesicles with the plasma membrane. The fact that

lysis occurs without the presence of a mating partner argues

against any hypothesis that requires communication aside from

that of the reciprocal pheromones and pheromone receptors

between the two mating cells.

Taken together with previously published studies, our data

supports a model that involves pheromone-induced, polarized

secretion of cell wall remodeling enzymes. When cells are

pheromone stimulated, a MAP kinase cascade activates transcrip-

tion of pheromone-induced genes [10]. Along with many others,

these genes include the expression of mating agglutinins and cell

wall remodeling enzymes, which are packaged into vesicles for

secretion into the extracellular environment [11–13,17–19]. Fus2

and Rvs161, a protein that binds to curved membranes [25,26]

and is involved in cell fusion [51], bind to these vesicles and travel

along actin cables to the site of polarization in a Myo2-dependent

fashion [56] where they are anchored to the plasma membrane by

Fus1 [23], which interacts with the polarisome [30]. Fus2 and

Rvs161 in conjunction with Cdc42 may then facilitate the fusion of

these vesicles with the plasma membrane [57].

When cells are weakly stimulated, they form broad shmoos

(Figure 4B). Although these cells are polarized, the zone of

polarization is relatively large, and presumably, the vesicles

containing cell wall remodeling enzymes are released into a

relatively large area. The enzymes cleave carbohydrate bonds as

they diffuse through the cell wall matrix, weakening the cell wall

and allowing for further expansion in the direction of highest

pheromone concentration [34]. As a shmoo gets closer to a cell of

the opposite mating type, the pheromone concentration increases

and the shmoo tip becomes more tightly polarized [53,54]. This

tighter polarization focuses the secretion of cell wall remodeling

enzymes into a smaller fraction of the cell surface, increasing the

concentration of cell wall remodeling enzymes in this zone.

Although the concentration of cell wall remodeling enzymes in this

zone has increased, it is not typically high enough to cause

dissolution of the cell wall unless the shmoo tip is pressed against

an impermeable barrier, forcing the enzymes to travel further to

reach bulk solution. Since the time taken to diffuse a given distance

rises with the square of the distance, the effective speed at which

the enzymes move falls, and thus their concentration in the cell

wall rises (Figure 1 and 2). Similarly, when the two polarized cells

attach at their shmoo tips via mating agglutinins, the presence of a

Figure 6. Pheromone-induced cell death is dependent on cell fusion proteins and putative glucanases. A. Fraction of dead MATa bar1D
cells deleted for different combinations of FUS1 and FUS2 relative to the fraction of dead MATa bar1D cells incubated in 50nM a-factor for five hours
in the flow chamber. Error bars represent the standard deviation of at least three independent experiments. B. Fraction of dead MATa bar1D cells
deleted for different combinations of putative cell wall glucanases relative to the fraction of dead MATa bar1D cells incubated in 50nM a-factor for
five hours in the flow chamber. Error bars represent the standard deviation of at least three independent experiments.
doi:10.1371/journal.pone.0109780.g006
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second cell membrane traps the remodeling enzymes in the cell

wall by requiring them to move laterally along the cell surface to

exit the cell wall, increasing their concentration and breaking

down the cell wall (Figure 1D). As the wall dissolves, the two

plasma membranes come into contact with one another, allowing

membrane fusion to begin and pushing the Fus2-bound vesicles

outward [23], which allows for the rest of the intervening cell wall

to be dissolved and eventually full fusion of the newly formed

zygote.

Understanding more about the cell fusion of budding yeast is an

important step in understanding cell fusion in more complex

organisms. Although animal cells do not have a cell wall, the

extracellular matrix surrounding these cells must be dissolved prior

to cell fusion. A similar local increase in enzyme concentration at

points where cells are very close to each other could promote the

digestion of the matrix and allow the plasma membranes of the

two partners to touch each other.

Materials and Methods

Yeast strains and culturing
Strains used in this study are listed in Table 1. All strains were

derived from the W303 background [58] (ade2-1 can1-100 his3-
11,15 leu2-112 trp1-1 ura3-1) using standard genetic techniques.

All media was prepared as described [59] and contained 2% wt/

vol of glucose. Cells were either grown in Synthetic Complete

medium (SC) or Yeast Extract Peptone Dextrose (YPD) at 30uC in

culture tubes on roller drums or at room temperature (25uC) for

timelapse microscopy. Bovine serum albumin (BSA) was used to

reduce the non-specific absorption of a-factor to glass and plastic

surfaces; it was made into 10% wt/vol stocks in deionized water

and then diluted into media to 0.1% wt/vol. Synthetic a-factor

(Biosynthesis, Lewisville, TX) was suspended in dimethyl sulfoxide

(DMSO) and then diluted into YPD+0.1% BSA or SC+0.1% BSA

at the appropriate concentration. When appropriate, 1M sorbitol

was added to YPD by dissolving sorbitol into YPD. YPD

containing 1-(butylcarbomoyl)-2-benzimidasolecarbamate (beno-

myl) was prepared by heating YPD to 65uC and adding 34 mM

benomyl in DMSO dropwise to a final concentration of 0.1 mM.

Yeast extract was obtained from EMD Millipore (Billerica, MA).

Peptone and yeast nitrogen base were obtained from BD (Franklin

Lakes, NJ). Bacto-agar was obtained from US Biological

(Swampscott, MA). Unless otherwise noted, all chemicals were

obtained from Sigma-Aldrich (St. Louis, MO).

Microscopy
Microscopy was done at room temperature using a Nikon Ti-E

inverted microscope with a 20x Plan Apo VC 0.75NA air lens, and

images were acquired with a Photometrics CoolSNAP HQ camera

(Roper Scientific, AZ). Timelapse photography was done using

Metamorph 7.7 (Molecular Devices, CA); pictures were acquired

using differential interference contrast every 10 minutes with a

10 ms exposure.

Bulk culture lysis assay
Cells were grown to log phase (,56106 cells/mL) at 30uC in

YPD and counted using a Z2 Coulter counter (Beckman-Coulter,

CA). Cells were washed in YPD+0.1% BSA and resuspended at

106 cells/mL into plastic 14 mL culture tubes (BD Falcon, MA) in

YPD+0.1% BSA with 50 nM a-factor. These cultures were then

incubated on a roller drum at 30uC for five hours. Cells were then

put directly onto glass slides (Corning, NY) with uncoated

coverslips (VWR, PA) and imaged at 20x magnification using

differential interference contrast with a 10 ms exposure. Prior to

the experiment, the plastic culture tubes were coated in BSA by

incubating overnight at 4uC with phosphate buffered saline (PBS)

with 2% wt/vol BSA. The PBS+2% BSA was poured out

immediately prior to the addition of the cell cultures. To

determine the percentage of cells that lysed, more than 50 cells

were counted from each trial. Statistical significance was

determined using Student’s t-Test.

Concanavalin-A coated coverslip lysis assay
Coverslips (VWR, PA) were coated in concanavalin A (MP

Biomedicals, OH) in a protocol modified from Joglekar et al.
(2008) [60]. Briefly, coverslips were soaked in 1M NaOH for one

hour at room temperature (25uC), rinsed five times with deionized,

filtered water, and then incubated at room temperature for one

hour in a solution of 10 mM Na2HPO4 pH 6.0 (Fisher Biotech,

MA) +1 mM CaCl2+0.5 mg/mL concanavalin A. Coverslips were

then rinsed five times with deionized, filtered water and air-dried

over a 100uC heat block. To make a chamber, strips of parafilm

(American National Can, IL) were melted at 100uC on glass slides

(Corning, NY) and concanavalin A-coated coverslips were placed

on top of the strips. The parafilm was allowed to cool to room

temperature, creating channels with a glass slide ceiling, conca-

navalin A-coated coverslip floor, and parafilm walls on two,

parallel sides.

Cells were grown to log phase (,56106 cells/mL) at 30uC in

YPD and then washed in SC+0.1% BSA. 50 nM a-factor was

added to the cells, and the cells were immediately injected into the

chamber using capillary action. The cells were allowed to adhere

to the concanavalin A-coated coverslip for 10 minutes, and then

200 mL of SC+0.1% BSA with 50 nM a-factor was flowed

through the chamber using capillary action to wash off excess cells.

Table 1. Strains used in this study.

Strain Name Genotype (all cells are in the W303 background)

LBHY52 MATa bar1D::KanMX6 PACT1-yCerulean-HIS3MX6 @ PACT1

LBHY77 MATa bar1D::KanMX6 fus1D::NatMX4 PACT1-yCerulean-HISMX3 @ PACT1

LBHY80 MATa bar1D::KanMX6 fus2D::HphMX4 PACT1-yCerulean-HISMX3 @ PACT1

LBHY84 MATa bar1D::KanMX6 fus1D::NatMX4 fus2D::HphMX4 PACT1-yCerulean-HISMX3 @ PACT1

LBHY136 MATa bar1D::ADE2 SPA2-YFP:HIS3 scw11D::HphMX4 ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1

LBHY153 MATa bar1D::ADE2 SPA2-YFP:HIS3 scw4D::KanMX6 scw11D::HphMX4 ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1

MP 384 MATa bar1D::ADE2 SPA2-YFP:HIS3 ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1

All strains are from this study except for MP 384, which is from M. Piel.
doi:10.1371/journal.pone.0109780.t001
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The chamber was sealed with candle wax and imaged at 20x

magnification, using differential interference contrast with a 10 ms

exposure, every 10 minutes for five hours from the time when the

cells were exposed to a-factor-containing medium. To determine

the percentage of cells that lysed, more than 400 cells were

counted from each trial. Statistical significance was determined

using Student’s t-Test.

Flow chamber lysis assay
Cells were grown to log phase (,56106 cells/mL) at 30uC in

YPD and then washed in YPD+0.1% BSA. For experiments

involving a-factor, the microfluidic chambers (CellAsic, Hayward,

CA) [61] were pretreated by perfusing PBS+2% BSA through the

chamber at 34 kPa (5 psi) for 10 minutes and then YPD+0.1%

BSA through the chamber at 34 kPa (5 psi) for 10 minutes. After

cells were loaded, YPD+0.1% BSA with the appropriate

concentration of a-factor was perfused through the chamber at

14 kPa (2 psi), and pictures were taken at 20x magnification every

10 minutes for five hours using differential interference contrast

with a 10 ms exposure.

For experiments involving benomyl, the microfluidic chambers

were pretreated by perfusing YPD through the chamber at 34 kPa

(5 psi) for 10 minutes. After the cells were loaded, YPD+0.1 mM

benomyl was perfused through the chamber at 14 kPa (2 psi), and

pictures were taken at 20x magnification every 10 minutes for five

hours using differential interference contrast with a 10 ms

exposure. To determine the percentage of cells that lysed, more

than 250 cells were counted from each trial. Statistical significance

was determined using Student’s t-Test.

Sorbitol wash-out assay
Cells were grown to log phase (,56106 cells/mL) at 30uC in

YPD and then washed in YPD+0.1% BSA. The microfluidic

chambers (CellAsic, Hayward, CA) [61] were pretreated by

perfusing PBS+2% BSA through the chamber at 34 kPa (5 psi) for

10 minutes and then YPD+1M sorbitol +0.1% BSA through the

chamber at 34 kPa (5 psi) for 10 minutes. After cells were loaded,

YPD+1M sorbitol +0.1% BSA+50 nM a-factor was perfused

through the chamber at 14 kPa (2 psi) for five hours. After five

hours, the medium containing 1M sorbitol was washed out, and

YPD+0.1% BSA+50 nM a-factor was perfused through the

chamber at 14 kPa (2 psi) for two hours. Pictures were taken at

20x magnification every 10 minutes for seven hours using

differential interference contrast with a 10 ms exposure. To

determine the percentage of cells that lysed, more than 500 cells

were counted from each trial. Statistical significance was

determined using Student’s t-Test.

Sorbitol wash-in assay
Cells were grown to log phase (,56106 cells/mL) at 30uC in

YPD and then washed in YPD+0.1% BSA. The microfluidic

chambers (CellAsic, Hayward, CA) [61] were pretreated by

perfusing PBS+2% BSA through the chamber at 34 kPa (5 psi) for

10 minutes and then YPD+0.1% BSA at 34 kPa (5 psi) through

the chamber for 10 minutes. After cells were loaded, YPD+0.1%

BSA+50 nM a-factor was perfused through the chamber at

14 kPa (2 psi) for 80 minutes. At the end of 80 minutes, the YPD+
0.1% BSA+50 nM a-factor was washed out, and YPD+1M

sorbitol +0.1% BSA+50 nM a-factor was perfused through the

chamber at 14 kPa (2 psi) for 60 minutes. Pictures were taken at

20x magnification every 10 minutes for 140 minutes using

differential interference contrast with a 10 ms exposure. To

determine the percentage of cells that lysed, more than 600 cells

were counted from each trial. Statistical significance was

determined using Student’s t-Test.

Supporting Information

Movie S1 Pheromone-induced cell death in the flow
chamber. MATa bar1D cells were incubated in medium

containing 50 nM a-factor for five hours in the flow chamber.

White arrows indicate cells that die during the movie. Cells were

imaged every 10 minutes. The scale bar indicates 10 mm. Each

movie is from an independent experiment.

(MP4)

Movie S2 Pheromone-induced cell death in the flow
chamber. MATa bar1D cells were incubated in medium

containing 50 nM a-factor for five hours in the flow chamber.

White arrows indicate cells that die during the movie. Cells were

imaged every 10 minutes. The scale bar indicates 10 mm. Each

movie is from an independent experiment.

(MP4)

Movie S3 Pheromone-induced cell death in the flow
chamber. MATa bar1D cells were incubated in medium

containing 50nM a-factor for five hours in the flow chamber.

White arrows indicate cells that die during the movie. Cells were

imaged every 10 minutes. The scale bar indicates 10 mm. Each

movie is from an independent experiment.

(MP4)

Movie S4 Pheromone-induced cell death is due to
osmotic lysis. MATa bar1D cells were incubated in the flow

chamber for five hours in medium containing 50 nM a-factor and

1M sorbitol. After five hours, the sorbitol was washed out, and the

cells were incubated in medium containing 50 nM a-factor and no

sorbitol. Cells were imaged every 10 minutes. The scale bar

indicates 10 mm.

(MP4)
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