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Abstract

Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in
the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we
address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes
the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed
through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer
cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility
that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is
depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of
this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is
possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that
depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.

Cells. PLoS Genet 10(10): e1004646. doi:10.1371/journal.pgen.1004646

* Email: twu@genetics.med.harvard.edu

Citation: McCole RB, Fonseka CY, Koren A, Wu C-t (2014) Abnormal Dosage of Ultraconserved Elements Is Highly Disfavored in Healthy Cells but Not Cancer

Editor: Katherine S. Pollard, University of California, San Francisco, United States of America
Received February 10, 2014; Accepted August 4, 2014; Published October 23, 2014

Copyright: © 2014 McCole et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AK was supported by funds at Harvard Medical School to S. McCarroll. CYF and RBM were supported by NIH (RO1GM61936) and funds from the
Harvard Medical School to CtW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Ultraconservation came to light when Bejerano et al. reported
that their comparison of the reference genomes of human, mouse,
and rat had revealed an unexpected 481 orthologous genomic
regions that are =200 bp in length and 100% identical in
sequence [1], each of which is unique in the reference human
genome [1,2]. Ten years later, we still lack a compelling
explanation for why these sequences, called ultraconserved
elements (UCEs), have been so extremely conserved for hundreds
of millions of years — neither enhancers, nor transcription factor
binding sites, nor promoters, nor protein coding regions require
such a high level of conservation [1,3-8]. Despite this, and because
roughly half of UCEs are intronic and one third are intergenic, a
popular expectation is that UCEs will be found to embody
important regulatory activities; indeed, they are thought to be
maintained by purifying selection [9-16], and numerous UCLEs are
able to direct tissue-specific transcription when coupled with a
reporter construct, while some have been shown to function
endogenously as enhancers [4,17-24]. UCE sequences can also
contain various transcription factor binding motifs [6,25] and bind
multiple transcription factor proteins [26]. Ultraconservation
could also be explained by a mechanism of comparison between
pairs of UCEs. Here, the two copies of each UCE in a diploid cell,
one on each of two homologous chromosomes, physically interact
and then undergo sequence comparison, wherein discrepancies in
DNA sequence or copy number, or disruptions of genome
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organization that compromise interactions, would be sensed and
result in loss of fitness through disease or reduced fertility
[2,25,27]. Such a mechanism would, over time, tend to cull away
variants in UCE sequence or copy number, maintaining the
extreme DNA conservation that characterizes UCEs. Importantly,
there is growing evidence for the potential of homologous
chromosomal regions to support at least transient, if not extensive,
pairing in somatic cells [28-38] as well as in meiotic cells.

Interestingly, we and others have found that UCEs are much
less likely to be deleted or duplicated via copy number variants
(CNVs) in healthy individuals than would be expected by chance
[2,25,39], consistent with their depletion from segmental duplica-
tions [2] and remarkable resistance to loss from mammalian
genomes [40]. In contrast, they are enriched in 26 deletions and
duplications representing 200 patients with neurodevelopmental
disorders [41]. An association between UCEs and disease was also
demonstrated [42] in a study that assembled a database of ‘cancer-
assoclated genomic regions’ from a literature search for terms
associated with cancer [43], and several publications have
highlighted possible roles for the transcription of specific UCEs
in cancer [44-51].

In sum, the basis of ultraconservation remains unclear. Indeed,
it has been suggested that UCEs represent nothing more than an
unexceptional tail end of a distribution of conservation [4].
Regardless, the apparent dosage sensitivity of UCEs remains
intriguing, especially in light of the dosage sensitivity of many
genomic functions whose importance has been well established
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Author Summary

Ultraconserved elements (UCEs) display a level of se-
quence conservation that has defied explanation. They are
also dosage sensitive, being depleted from copy number
variants (CNVs) in healthy cells. Here we address the
process underlying this dosage sensitivity in order to gain
insights into the way that UCE dosage affects cells. Our
studies demonstrate that, in contrast to CNVs inherited by
healthy individuals, cancer-specific CNVs are, as a rule, not
depleted for UCEs and may even be enriched. Further-
more, by discovering that CNVs arising anew in the
healthy, as opposed to diseased, body are depleted of
UCEs, we obtain evidence that healthy cells may be
responsive to changes in UCE dosage in a way that is
disrupted in cancer cells. After examining CNVs over time
in cell culture, we postulate that selection against UCE-
disrupting CNVs in healthy cells acts rapidly, raising the
surprising possibility of exploring in cell culture how UCE
dosage sensitivity may explain ultraconservation. Our
observations suggest that an understanding of the
different responses of healthy and cancer cells to changes
in UCE dosage could be harnessed to address genomic
instabilities in cancer.

[52-55]. Therefore, leaving aside the specific issue of ultraconser-
vation, this report focuses on the dosage sensitivity of UCEs, with
special emphasis on the time frame in which it is sensed. It takes
advantage of 37 datasets of CNVs representing whole genome
array-based or sequence-based analyses, and it begins with a
demonstration that the most recently published datasets of CNVs
representing healthy individuals are depleted for UCEs and that
this depletion is robust to the mammalian species used to define
UCEs. Importantly, we see that even de novo CNVs, which could
have passed through the germline meiotic process at most once,
are depleted of UCEs. This implies that CNVs need not be
inherited through multiple generations to be depleted of UCEs.
We then examine CNVs that have arisen in the soma, specifically
in cancer cells, and discover that they are overall not depleted for
UCEs. What is the basis by which CNVs in healthy people are
depleted of UCEs, whereas cancer-specific CNVs display the
opposite propensity? One possibility is that CNVs formed in the
soma differ from those that are inherited across generations.
Alternatively, CNVs specific to cancer may occur in positions that
differ from those of CNVs found in healthy cells. To resolve this,
we turn to CNVs that arise in healthy, as opposed to diseased,
soma. We find that healthy somatic CNVs are depleted for UCLEs,
just as are CNVs inherited through the germline. This suggests
that the profile of cancer specific CNVs reflects the diseased state,
and not simply their somatic origin. Finally, to address how de
novo and somatic CNVs of healthy individuals become depleted
for UCEs, we examine the relationship, over time, between UCEs
and CNVs in induced pluripotent stem (iPS) cells. Our results
suggest that CNVs that have deleted or duplicated UCEs may be
selectively removed from cell populations and that this process
may underlie the UCE-depleted profile of CNVs present in
healthy, but not cancer, cells.

Results

Depletion of UCEs from CNVs is seen in all inherited CNV
datasets representing healthy individuals

We previously showed that UCEs are significantly depleted
from CNVs in humans, with no overlap whatsoever between the
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positions of UCEs and CNVs in some cases, while, in other cases,
the overlap was modest [2,25]. There are three possible
explanations that can account for these results: Firstly, CNVs
could be completely excluded from forming in the vicinity of
UCEs, and any overlap seen could be the result of inaccuracies in
CNV mapping. Secondly, CNVs could be less likely to form in the
vicinity of UCEs. Thirdly, CNVs may form in the vicinity of UCEs
as much as expected by chance, but selective processes may then
remove these CNVs from populations because they are deleteri-
ous, resulting in a depleted CNV profile over time. To help
distinguish between these possibilities, we began our studies by
determining whether, and to what extent, UCEs are depleted from
six recent large scale high quality datasets of predominantly
inherited CNVs representing healthy individuals (Matsuzaki et al.
[56], Shaikh et al. [57], Conrad et al. [39], Drmanac et al. [58],
Durbin et al. [59], and Campbell ¢t al. [60]), including those
obtained through next-generation sequencing [58,59]. In order to
facilitate comparison between the current and earlier studies, we
also included two datasets that had been previously examined
(Jakobsson et al. [61] and McCarroll et al. [62]). We call all these
CNVs, which were discovered in healthy individuals without being
specified as somatic or germline in origin, “*“!CNVs (Fig. 1A).
The eight individual “***'CNV datasets consist of between 1,183
and 46,716 regions and encompass between 0.83% and 45.25% of
the human genome, a range in genome coverage that is not
unexpected for datasets produced by studies that differ widely in
their detection methods and sensitivity and in the number of
subjects included. The datasets were considered individually as
well as combined into a pooled "™ “!'CNV dataset consisting of
43,727 CNV regions and covering 51.37% of the human genome
(for more details, see Table S1).

Regarding the UCEs, the majority of our analyses were carried
out with a set of UCEs we had previously defined [2]. This set of
UCEs consists of sequences that are =200 bp in length and
identical between the reference genomes of human, mouse, and
rat (HMR), or of human, dog, and mouse (HDM), or of human
and chicken (HC), producing a set of 896 (HMR-HDM-HC
UCEs) UCEs in total [2]. We also generated two new UCE
datasets without involvement of the human genome in order to
ascertain whether the depletion of UCEs from CNVs is robust to
the inclusion of UCEs selected without involvement of, and thus
without perfect sequence identity to, sequences in the human
genome. This strategy defined 527 UCEs using the reference
genomes for dog, mouse, and rat (DMR) and another 1,696 UCEs
using the reference genomes for cow, dog, and horse (CoDHo), all
while maintaining the length and identity requirements of =
200 bp and 100%, respectively (Figure S1, Methods). As the DMR
and CoDH datasets involve only three species, while our original
HMR-HDM-HC dataset involved four mammalian and one bird
species, we assembled one additional dataset of 481 UCEs, this
one using just the three reference genomes of human, mouse, and
rat (HMR), as did Bejerano et al. when they defined the first UCE
dataset [1]. Each of these four UCE datasets was studied in its
entirety and, to parallel earlier work, subdivided into intergenic,
intronic, and exonic subclasses; such earlier studies demonstrated
that depletion is driven primarily by the intronic and intergenic
UCEs, with evidence for that depletion being due to UCEs, per se,
rather than flanking genetic regions or genes [2,25].

Using a protocol established in earlier studies, we then
determined whether UCEs are depleted in CNV datasets [2,25].
We compared the observed amount of overlap in base pairs
between a set of CNVs and a set of UCEs to the expected overlap,
as determined by a randomly placed set of elements matched to
UCE:s in terms of element number and length. In particular, the
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Figure 1. Five types of CNVs. (A) “5@lCNVs are identified solely by variation among individuals in the copy number of genomic regions. (B)
de nov CNVs are present in an individual but not in the soma of either of the parents. (C) “"“*"CNAs are copy number alterations that occur specifically
in the cancer cells (orange) of an individual and, therefore, are absent from the healthy cells of the same individual (black). In this study we required
€ance'CNAs to be recurrent between individuals. (D) **™“CNVs are defined by regions that vary in copy number among the healthy somatic cells of
an individual. (E) P*CNVs are defined by regions that vary in copy number within a population of iPS cells and which are not detectable in the

fibroblast cells from which the iPS cells were derived.
doi:10.1371/journal.pgen.1004646.g001

elements of the matched set were placed randomly on the genome
1,000 times, and the overlap between the random elements and
CNVs was calculated each time, thus producing a distribution of
the randomly generated expected overlaps. To provide a
measurement of the difference between the distribution of
expected overlaps and the observed overlap, we reported the
proportion of expected overlaps that were equal to, or more
extreme than, the observed overlap. The distribution of expected
overlaps was assessed for normality using the Kolomogorov-
Smirnov (KS) test, and the associated KS P-value is included in all
supplementary tables. Normality was observed in 263 of 318 (83%)
of analyses and, whenever observed, the distribution of expected
overlaps was compared to the observed overlap using a Z-test,
wherein a significant result, together with a ratio of observed
overlap to mean expected overlap (obs/exp) falling below 1.0
indicated significant depletion. Such an outcome would mean that
the overlap between UCEs and CNVs is significantly lower than
would be expected by chance, given the number, size, position,
and genome coverage of the CNVs at hand. In cases where
normality was not observed, we noted this in the text and reported
only the obs/exp ratio and the proportion of expected overlaps
that were equal to, or more extreme than, the observed overlap.
This protocol ensured that each analysis was tailored to its own
CNV dataset, enabling the meaningful comparisons of datasets
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that differ in terms of CNV number, size distribution, position,
and genome coverage.

For pooled “**“{CNVs; significant depletion was observed for
all UCE datasets, with all values for obs/exp falling below 1.0 (P-
values from <1.0x107"7 to 0.001, obs/exp from 0.771 to 0.867,
Table 1 and Table S2). All individual “***“!CNV datasets with
normally distributed expected overlaps also showed significant
depletion (8.8x107 "> =<P=0.020, 0.000= ohs/exp =0.887, sce
Table 2 for HMR-HDM-HC UCEs, and Table S2 for all UCE
sets); in three analyses, namely those addressing the DMR UCEs
with respect to the McCarroll 2008 “™“!CNV dataset, the
Durbin 2010 “**'CNV datasct, and the Campbell 2011
cassicall CN'V dataset, depletion could not be ascertained because
the expected overlaps were not normally distributed (Table S2).
As in previous studies, some analyses yielded 0 bp of overlap
between UCEs and CNVs (e.g., HMR-HDM-HC UCEs and
McCarroll 2008 [62], Drmanac 2010 [58], and Campbell 2011
[60]), while others showed some degree of overlap, with obs/exp
ratios ranging from 0.021 to 0.887. The presence of multiple high
quality datasets with non-zero overlaps between UCEs and CNVs
led us to reject the first explanation, wherein CNVs are
completely excluded mechanistically from forming at UCE
regions and any observed overlaps are due to errors in mapping

CNVs.
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Note that depletion was also observed in many datasets when
UCEs were separately analyzed as intergenic, intronic, and exonic
elements (see Materials and methods for details on categorization
of UCEs by genic location), with the intergenic and intronic classes
driving depletion overall and the larger HMR-HDM-HC and
CoDHo datasets showing stronger depletion (Table S2). While
depletion was also observed with exonic UCEs, it was somewhat
less consistent as that found with intronic and intergenic UCKEs.
The agreement of these results with our previous studies
demonstrates that the depletion of UCEs from CNVs is a robust
phenomenon and, hence, not dependent on 100% sequence
identity between humans and other chosen species, extending our
earlier observations [2,25]. Accordingly, except where noted, all
subsequent analyses in this study used the 896 UCEs of the HMR-
HDM-HC dataset.

Newly formed de novo CNVs are depleted for UCEs

Having eliminated the first explanation for depletion of UCEs
from CNVs, we turned our attention to the two remaining possible
explanations, which are not necessarily mutually exclusive; that
CNVs are less likely to form in the vicinity of UCEs, and/or CNVs
involving UCEs result in loss of fitness and are subsequently culled
from the population. As some CNVs are recent enough to be
polymorphic between individuals and even mosaic within individ-
uals [63-68], the latter explanation would further suggest culling
to be a relatively rapid process. We addressed these possibilities by
seeking situations in which CNVs are not depleted for UCEs. If
found, they would argue against CNVs being less likely as a rule to
form near UCEs and, in addition, might permit us to estimate how
rapidly CNVs are culled when they do involve UCEs. Accord-
ingly, we turned to de novo CNVs, which are regions of copy
number variation that are present in the soma of an individual but
not in the soma of either parent. Leaving aside the possibilities of
false positive regions (discussed in the Materials and methods), the
oldest of such variants could have formed in the germline
precursors of a parent and therefore passed no more than once
through a germline. The youngest of such variants would include
those that formed in the soma of an individual and are therefore
less than one generation old, with no involvement of the germline
(Materials and methods). We reasoned that these CNVs, which we
call “ ""°CNVs (Fig. 1B), may be so recent as to not yet have
been culled of deletions and duplications that involve UCEs, if
indeed UCE depletion results from a culling mechanism. In
contrast, all “****!CNV datasets considered thus far in this report
likely contain CNVs of varied ages, ranging from very newly
formed CNVs arising within an individual’s soma, to CNVs that
have passed through the germline across many generations.

Four % ™" <CNV datasets satisfied our criteria for further study
(Xuet al. [69], Itsara et al. [70], Malhotra et al. [71], and Sanders et
al. [72], detailed in Table S1); they represent studies using primary
tissues as the source of DNA and requiring each enov NV to have
been validated by a second, independent method, such as Sanger
sequencing (Materials and methods). While these studies examined
patients with schizophrenia [69,71] or autism [70,72], they also
included healthy individuals as controls, and it is the CNVs from
healthy individuals that we used for our analysis. One study [70]
included asthmatic individuals as healthy controls, and we did
likewise. Because the four * " “CNV datasets are small in terms of
genomic coverage (0.05%-0.45%, Table S1), falling below our
20 Mb minimum requirement (see Table S3 section A for further
discussion), we aggregated them into a pooled " ‘CNV dataset,
including 25 CNV5s covering 0.93% of the human genome (Table
S1). Remarkably, this set of ® " “CNVss is significantly depleted of
UCEs (P=0.044, obs/exp =0.395, Table 3, Table S4 section A).
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Having discovered that even newly formed CNVs are depleted of
UCEs, it remained possible that CNVs may be mechanistically
biased against forming in the vicinity of UCEs. We therefore
extended our search for CNV datasets that are not depleted for
UCE:s by turning to studies of CNVs associated with disease.

It is tempting to compare the obs/exp ratio of 0.395 (Table 3) for
depletion of HMR-HDM-HC UCE;s from pooled % "*” TNV to the
equivalent obs/exp ratio of 0.771 (Table 2) for depletion from pooled
dassical ONWs and conclude that UCE depletion from % "*? CNVs is
more extreme than from ““*“?!CNVs. Note, however, that the obs/
exp ratios for the individual “**“/CNV datasets varied from 0.000 to
0.820 (Table 2). Given this wide range of values, the obs/exp ratio for
pooled % " TNV of 0.395 is not remarkably low.

Copy number changes in cancer cells are enriched for
UCEs

Our prediction that deletions and duplications of UCEs would
reduce fitness [2,25] argued that diseased tissues might yield
datasets that are not depleted of UCEs. Consistent with this
argument, UCEs have since been correlated with CNVs associated
with diseases, including neurodevelopmental disorders [41] and
cancer [42]. Here, we determined whether deletions and
duplications found specifically in cancer cells are depleted of
UCEs. Because such copy number changes are specific for the
diseased, as versus healthy, tissues of an affected individual, they
are believed to represent somatic events and, to highlight this
difference from “®“CNVs, they are called copy number
alterations, or CNAs [73]. In this report, we use ““"““CNAs to
denote CNAs that were found specifically in cancerous tissues,
and, as explained below, were also recurrent in multiple patients
(Fig 1C).

For quality control, we required that “"““CNA datasets
represent studies wherein cancer genomes were defined relative
to the genome of healthy tissues from the same patient. This
strategy maximized the likelihood that our “"“"CNA datasets
reflect alterations that arose within the affected individuals’
lifetimes and specifically in cancerous tissues, thereby minimizing
inclusion of “™CNVs. Additionally, as “"“"CNAs that are
recurrent in multiple patients are considered more likely to be
causal “drivers” of disease, while non-recurrent ones are more
likely to be merely “passengers” [73], we only included recurrent
aberrations in our “"““CNA datasets, identified as such using the
GISITC [74] or RAE [75] algorithms, or our own analyses of
recurrence (Materials and methods).

In total, we assembled seventeen datasets from The Cancer
Genome Atlas Research Network (TCGARN) et al. [76], Walter et
al. [77], Beroukhim et al. [73], Bullinger et al. [78], Taylor et al.
[79], TCGARN et al. [80], Curtis et al. [81], TCGARN et al.
[82], TCGARN et al. [83], TCGARN et al. [84], Nik-Zainal et al.
[85], Robinson et al. [86], Walker et al. [87], Zhang et al. [88],
Holmfeldt et al. [89], TCGARN et al. [90], and Weischenfeldt
et al. [91] representing 52 different forms of cancer, each including
between 2 and 148 “"“"CNA regions and covering 0.03% to
90.15% of the genome (Table S1). To avoid confounding our
analysis with whole chromosome anueploidies, which are common
in cancer genomes, we also followed convention [73] and excluded
any “"““’CNA region that is larger than 50% of the chromosome
arm on which it resides. The datasets were analyzed individually,
except for Bullinger 2010 [78], Nik-Zainal 2012 [85], Holmfeldt
2013 [89], and Weischenfeldt 2013 [91], which are too small to be
considered on their own (Table S3). We also pooled all datasets
except one to produce our pooled “"““CNA dataset; the Walker
2012 [87] dataset was excluded because it covers 90.15% of the
genome and was therefore considered too large to be combined
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Outcome
NA

obs/exp
0.544

P value
NA

Result
Proportion

Expected overlap (bp)
Standard deviation
768 0.108

Mean
1962

bp
1068

Observed overlap
Number of

UCEs
PThe pooled “"“*'CNA dataset included all the “"“"CNA datasets listed in this table, except for Walker 2012 [87], which was excluded to avoid bias from its extensive coverage of the genome, and also included the datasets

Here, we show the relationship between 896 HMR-HDM-HC UCEs and % ™" TTNVs, ©@"“®"CNAs, °™2%CNVs, and P°CNVs, reporting the results for pooled datasets as well as all individual datasets that met our requirement for 20 Mb
Bullinger 2010 [78], Nik-Zainal 2012 [85], Holmfeldt 2013 [89], and Weischenfeldt 2013 [91], which were too small to be considered on their own.

of coverage (Table S3). Individual CNV and CNA datasets are named according to the first author and the year of the study.

The pooled % ™ <CNV dataset included datasets from Xu 2008 [69], Itsara 2010 [70], Malhotra 2011 [71], and Sanders 2011 [72], which were too small to be considered on their own.

Laurent 2011 high passage

Table 3. Cont.
Dataset

“The pooled *°™CNV dataset included the four *°™CNV datasets listed in this table as well as Piotrowski 2008 [63] and O’Huallachain 2012 [67], which were too small to be considered on their own.

%The pooled PSCNV datasets were comprised of CNVs from low, medium, and high passage iPS cells from the two datasets Hussein 2011 [100] and Laurent 2011 [98]. Proportion, P-value, and obs/exp, as described for Table 1.

0.05) for the pooled % " “CNV dataset because dataset was analyzed prior to our discovery that CNVs can be enriched for UCEs; all other assessments of depletion or enrichment

carried out with a two-tailed test (P=0.025 in each tail for an overall o of 0.05). NA (not applicable): expected overlaps not normally distributed, precluding a Z-test.

doi:10.1371/journal.pgen.1004646.t003

Outcome: determined with a one-tailed test (o
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informatively with other datasets. Conveniently, two studies,
Curtis et al. [81] and Walker et al. [87], also assembled datasets
of PNV identified in nondiseased tissue of the patients used
to identify “*“"CNAs. While the Curtis et al. [81] “*¥!CNV
dataset was too small to be examined by our methods (Table S3),
we found significant depletion of the Walker et al. [87] “*“'CNV
dataset, which represents 1,841 regions and covers 42.11% of the
genome (Table S1; P=0.008, obs/exp =0.903, Table S4 section
B). This result gave us further confidence in the quality of the
CICTCNA datasets.

Turning to the “"““"CNA datasets themselves, we then observed
a striking contrast to “““CNVs and % " “CNVs: of the 13
individual datasets large enough to be examined individually, all
but two failed to show depletion for UCEs, as did the pooled
“NCTCNA dataset (Table 3 and Table S4 section B; the TCGARN
2012 colon dataset [83] and the TCGARN 2013 dataset [90]
showed depletion with P =10.028, obs/exp =0.680 and P=0.003,
obs/exp =0.738 respectively). Indeed, as the values for obs/exp
rose above 1.0 for several datasets, we converted to a two-tailed
test (P=0.025 in each tail for an overall a of 0.05) to detect
potential enrichment (obs/exp>1.0) as well as depletion (obs/exp
<1.0) for UCEs and discovered that our pooled dataset as well as
five individual “"“’CNA datasets are significantly enriched for
UCEs (3.0x107? =P=0.016, 1.031= obs/exp =1.580, Table 3
and Table S4 section B). Furthermore, one of the datasets that had
previously shown depletion was no longer significantly depleted
(TCGARN 2012 colon [83]; P=0.028, obs/exp =0.680, Table 3
and Table S4 section B) when using a two-tailed test.

Importantly, large genome coverage and CNA size are unlikely
to explain enrichment or loss of depletion of UCEs in “"““"CNA
datasets, and three findings support this statement. First, the broad
range of genome coverage for “"“"CNA datasets showing
enrichment or loss of depletion (from 90.15% for Walker 2012
“NCTCNAs to 3.86% for TCGARN 2012 colon ““"““'CNAs)
overlaps that for datasets that are depleted of UCEs (from 51.37%
for pooled "™ “'CNVs to 0.83% for Campbell 2011 “**'CNVs),
arguing that genome coverage alone cannot easily account for our
observations of enrichment or depletion (Tables 2 and 3, S1, S2,
and S4). Second, depletion is maintained when the boundaries of
each CNV of the Jakobsson 2008 casical NV and Campbell 2011
dassicall CN'V datasets are extended on each side by 4.0 and 2.5 Mb,
respectively (P=10.007, obs/exp =0.968 and P=0.003, obs/exp
=10.952, respectively), such that the 85.86% and 74.73% genome
coverages of these enlarged datasets approach or exceed the
genome coverages of the two largest “"“"CNA datasets (90.15%
for Walker 2012 “"“CNAs and 63.81% for pooled ““*“"CNAs;
Table S1), once again indicating that high genome coverage is
highly unlikely to produce false signals of enrichment or loss of
depletion (Table S3 section B). We note, however, that as the
genome coverage of the Walker 2012 “"““CNA dataset is
extremely high and exceeds the genome coverage of the enlarged
classicall ON'W - datasets, we cannot rule out some contribution of
genome coverage to the enrichment of this specific dataset. Third,
these analyses also reveal that depletion is maintained even when
the median length of enlarged CNVs (3.485 Mb and 8.379 Mb for
Jakobsson 2008 “*CNVs and Campbell 2011 “*UCNVs,
respectively) exceeds the largest median CNA size for any enriched
CNCCNA dataset in question (3.183 Mb for TCGARN 2012
squamous “"“"CNAs), demonstrating that observations of UCE
enrichment are unlikely to be explained simply by median CNA
size (Tables S1 and S3 section B).

Taken together, our observations reveal a feature that
distinguishes the “®S“ICNV and % "” CNV datasets from those
of ““'CNAs. While the former two are characterized by a
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depletion of UCEs, not only do the “*““CNA datasets generally
fail to show depletion, several are enriched for UCEs. This
dichotomy may be explained by differences in the mutational
landscapes and/or selective forces between healthy and cancer
cells, with healthy cells displaying a bias against CNVs in the
vicinity of UCEs, and cancer cells being biased toward disruption
of UCEs by CNVs. Whether nondepletion and/or enrichment will
prove to be a universal signature of “"“"CNAs remains to be
determined, the depletion of UCEs from one “"““CNA dataset
(TCGARN 2013 [90]) suggesting that the story will be more
complex, perhaps reflecting tissue or cancer specificity. At the
least, our findings argue that the depletion of UCEs that
characterizes many CNV datasets is unlikely to reflect an intrinsic
inability, across all cell types, of CNVs to form in the vicinity of
UCEs.

Intronic UCEs drive the enrichment of UCEs in “"““'CNAs

We have also analyzed the enrichment of UCEs in “"““"CNA
datasets while treating intergenic, intronic, and exonic UCEs
separately (Table S4 section B). Of these three UCE classes, only
the intronic UCEs are enriched in pooled “"“"CNAs
(P=9.4x107", obs/exp = 1.140), the intergenic and exonic UCEs
showing neither depletion nor enrichment (P=0.153, obs/exp =
1.045 and P=0.446, obs/exp =1.007, respectively; Table S4
section B). At the level of the five individual “"“"CINA datasets
showing enrichment, we observed enrichment for both intronic
and intergenic, but not exonic, UCEs. To better understand the
basis for enrichment, we focused on the enrichment observed for
the pooled dataset and entered the coordinates of all intronic
UCEs overlapping pooled “"““CNAs into the gene ontogeny tool
GREAT [92] (Materials and methods). This analysis revealed no
enrichment in cancer-specific GO terms, suggesting that the
enrichment of intronic UCEs in “"“’CNAs may not be due to
disruption of oncogenes or tumor suppressor genes, per se, but to
an advantage for cancer cells of disrupting UCEs in particular.
Additionally, the majority of intronic UCEs are overlapped by the
pooled “"““"CNA dataset (78% of 418 intronic UCEs and 80% of
181 genes containing intronic UCEs), suggesting the effect is
spread across many UCEs and not attributable to a small subset of
UCEs or genes. To investigate this further, we examined the
sixteen individual datasets that form our pooled “"“"CNA dataset,
and scored each UCE for the number of times it is overlapped by a
“NCTCNA dataset (Table S5). The highest hit rate was six, and this
for an intronic UCE that is the one and only UCE in the gene
neurotrimin (NTM), which has not been associated with cancer.
Furthermore, of 327 intronic UCEs overlapping “"“"CNAs, 124
(38%) are overlapped by only one “"“"CNA dataset. As such, it
appears that the enrichment of UCEs in “"““CNAs relies on a
large number of UCEs, with no particular UCEs being disrupted
in a wide variety of cancers.

The correlation between UCE and “"“*'CNA positions is
independent of the position of genes, microRNAs,
transcribed UCEs, and enhancers, GC content, and
replication timing

Finally, we applied partial correlation analyses (Materials and
methods) to address whether the enrichment of UCEs in
' CNASs can be completely explained by the relative positioning
of UCEs and another genomic feature, such as genes, or whether a
positive relationship between the placement of UCEs and
“NTCNAs remains even when other genomic features are taken
mnto account. We began by considering genes, dividing the genome
into 50 kb windows and, within each window, scoring the number
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of base pairs encompassed by UCEs, “"“"CNAs, and genes. Next,
we calculated the correlation between UCEs and ““*““?CNAs, and
then, using partial correlation analyses, statistically removed from
this correlation any contribution that can be ascribed to the
positions of genes. For comparison, we also ran parallel analyses
examining the correlation between UCEs and “*“*CNVs. As
shown in the leftmost segment of Figure 2, the resulting partial
correlation coefficient indicates that the correlation of UCEs with
“NCTCNASs remains positive and significant, independent of the
location of genes in the genome (P=0.011). In contrast, and not
surprisingly, we obtained a significant negative partial correlation
between UCEs and “*¥“CNVs, indicating that the negative
correlation of UCEs with “***?!CNVs also cannot be explained by
the position of genes (P=2.6x10"7). Parallel analyses with
window sizes of 10 kb and 100 kb gave similar results (0.004=
P=0.014 for the enrichment of UCEs in “"“'CNAs and
2.9x1078<P=<1.9x10"° for the depletion of UCEs from
ClMSicalCNVS).

Because microRNAs are associated with regions of the genome
that are fragile in cancer as well as regions that are copy number
variant in cancer cells [42,43,93], reviewed in [94], we asked
whether the enrichment of UCEs within “"“"CNAs might simply
be mirroring an effect that is centered on microRNAs. Using
partial correlation analysis, we found that a significant positive
correlation remains between the positions of UCEs and “"“'C-
NAs even when accounting for the position of microRNAs
(P=0.005). The positive correlation also remained when we
controlled for the positions of transcribed UCEs and transcribed
UCE:s that show altered expression in cancer [42] (P=0.001 and
P=0.008, respectively). As UCEs have been associated with
enhancer function [4,18-21], we examined whether a potential
correlation between UCE and enhancer position could be driving
the enrichment of UCEs in “"“"CNAs and/or their depletion
from “*UCNVs, This analysis did not use enhancers that had
been identified using sequence conservation [4] because a positive
correlation between UCEs and such enhancers would be expected
a priori, given that both the UCEs and enhancers would have
been selected using similar criteria. Instead, enhancer regions were
defined using the ‘enhancer’ annotations of ENCODE, which
compiles chromatin and other modifications in six cell types [95].
We found that, even after accounting for the positions of
enhancers, the positive correlation between UCEs and “"““"CNAs
(0.004=P=0.021), as well as the negative correlation between
UCEs and “™9“ICNVs (6.9x10 '=P=2.6x10"7), remained
significant.

We also investigated the impact of GC content and differential
replication timing across the genome, both of which have been
found to be associated with the positions of “*“ICNVs [96].
Here, again, the positive correlation of UCEs with “"“"CNAs
remained significant in partial correlation analyses (P =0.002 and
P=0.006, respectively), as did the negative correlation of UCEs
with “®ICNVs (P=2.8x10"% and P=2.3x10"%, respectively).
Finally, we carried out partial correlation analysis while simulta-
neously controlling for all variables shown in Figure 2 and
obtained a positive correlation between UCEs and “"““"CNAs
(P=8.0x10""* as well as a negative correlation between UCEs
and *UCNVs (P=3.2x1079),

>

Very newly formed, somatic CNVs are depleted for UCEs

Our data have thus far demonstrated significant depletion of
UCEs from “®¥“ICNVs and % "*? “CNVs, while documenting a
lack of depletion, or even a significant enrichment, in “*““CNAs.
One explanation for this difference might be that “**CNV and
de v NV datasets represent generally healthy individuals while

October 2014 | Volume 10 | Issue 10 | e1004646



CNCTCNA datasets represent a diseased state. Alternatively, the
difference could reflect an overall younger age of ““““CNAs;
whereas the “"“““CNAs we analyzed are most likely to have arisen
somatically and not passed through a germline, some % " “CNVs
could have arisen in the germline of a parent, and many
dassicall CN'Vs are likely to have passed through many generations
of germlines.

To further address the issue of CNV age, we examined CNVs
that were established somatically but not in cancer cells, calling such
variants ™ CNVs (Fig. 1D). Here, we assembled **™“CNV
data from six publications: Piotrowski et al. [63], Forsberg et al.
[64], Jacobs et al. [65], Laurie et al. [66], O’Huallachain et al. [67],
and McConnell et al. [68]. In order to maximize the number of
datasets of sufficient size for our analyses, we included CNVs
obtained from the Jacobs et al. [65] and Laurie et al. [66] studies
involving cancer patients, although we removed from consideration
all CNVs representing individuals where the cancer-affected tissue
was also tissue used to call **™"“CNVs (e.g. a person with leukemia
whose blood was sampled to discover *™CNVs); the number of
individuals falling into this excluded category amounted to only 16
(0.03%) from Jacobs et al. [65] and 7 (0.01%) from Laurie et al. [66].
We combined the six individual datasets into a pooled **™“CNV
dataset, consisting of 136 CNVs and covering 54.99% of the
genome (Table S1). In contrast to “"““"CNAs, we find that the
pooled °™°CNV dataset is significantly depleted for UCEs
(P=0.002, obs/exp =0.917, Table 3 and Table S4 section C).
These results show that the youthfulness of a CNV dataset does not
necessarily predict an enrichment for UCEs. Furthermore, as they
show that *™CNVs resemble ““““!CNVs in terms of their
depletion for UCEs, these observations suggest a potential similarity
in the behavior of CNVs that pass through the germline and those
that are formed in the soma. Note that three of the four individual
datasets that were large enough to be analyzed on their own were
not depleted of UCEs, with one being enriched: namely Forsberg
2012 [64], Jacobs 2012 [65], and Laurie 2012 [66]. In fact, these
datasets, which consist of 5104 CNVs and cover 2.04-27.10% of
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the genome (Table S1), do contribute to the depletion seen with the
pooled *™CNV dataset. This becomes apparent when the three
datasets are combined, leading the overall CNV coverage of the
combined dataset compared to the three individual datasets to be
increased by more than is the overlap of CNVs with UCEs (95%
versus 93% for Forsberg 2012, 29% versus 22% for Jacobs 2012,
and 32% versus 22% for Laurie 2012). Indeed, this combined
dataset 1is itself depleted for UCEs (P=0.011, obs/exp =0.902,
Table S4 section C), explaining how these datasets, themselves not
depleted for UCEs, contribute to the depletion seen in the pooled
somaticCINV dataset.

Turning to the “™“CNV dataset that showed enrichment,
Forsberg 2012 [64], we noted that all subjects in this dataset were
over 60 years of age and therefore considered the possibility that
advanced age may influence the relationship between UCEs and
CNVs. We therefore examined the only two datasets of
somateCNVg representing a wide range in sample ages, Jacobs
2012 [65] and Laurie 2012 [66] (Table S4 section C). Here we
found an enrichment of UCEs in *°™CNVs in individuals who
are less than 60 years old (50 regions, 10.20% of the genome,
P=0.001, obs/exp =1.286) and neither enrichment nor
depletion for those who are 60 or over (92 regions, 35.51% of
the genome, P=0.044, obs/exp =0.921). Hence, the enrich-
ment of UCEs in the Forsberg 2012 [64] dataset is unlikely to be
explained simply by the age of the subjects. Instead, our
observations may reflect technical differences, such as sample
selection and size, tissue-specificity of the mechanisms underlying
depletion or enrichment of UCEs in CNVs, or the possibility of
some **™CNVs representing tissues that are diseased, even if
not diagnosed. Alternatively, a lack of depletion of UCEs from
individual **™*°CNV datasets may reflect the fact that
somaticCN'Vs are very young and, perhaps also that they have
not experienced passage through the germline, which may
underlie and even be required for the more consistent depletion,
and generally lower obs/exp ratios, observed with “*¥CNVs
(this study, [2,25,39]).

K562 enhancers
Replication timing
All features listed

HelLaS3 enhancers
HUVEC enhancers

HepG2 enhancers
GC content

0.004 0.006 0.006 0.005 0.002 0.006 8.0x10*

o

Zero partial correlation
v

Positive partial
correlation

Negative partial
correlation

Figure 2. Partial correlation analyses. The positive correlation between the positions of UCEs and “"“*'CNAs (first row) and the negative
correlation between the positions of UCEs and “®*?lCNVs (second row) remain even after accounting for the correlation between the positions of
UCEs and the genomic features listed across the top. P-values correspond to analyses in which the genome was divided into 50 kb windows and then
assessed for the number of base pairs encompassed by the various genetic features within each window. Analyses using 10 kb and 100 kb bins also

produced significant values across the board.
doi:10.1371/journal.pgen.1004646.9g002
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iPS cells can establish UCE depletion from CNVs in
culture

The depletion of UCEs from the pooled ™ CNV dataset
suggests that disrupting the dosage of UCEs may induce a fitness
cost at the level of the individual somatic cell. Thus, we asked
whether a signal consistent with selection of CNVs can be detected
in cell culture. For example, although not proof of selection, lack of
depletion at early time points giving way to significant depletion at
later time points would be consistent with a selective loss of CNVs
overlapping UCEs. To this end, we turned to iPS cell lines and
examined their CNV profiles over time. To provide our analyses
of different cell lines with a common starting point, we considered
only those CNVs in iPS cells that were not detected in their
matched parental cells, calling this subset "SCNVs (Fig. 1E). As
we were interested in following the fate, rather than origin, of
CNVs, we considered CNVs that arose de novo during cell growth
in culture or as a result of the protocol for generating iPS cells [97—
102] and those that were present in the parental cells at levels
below the limit of detection [103-106] as equally relevant.

We required all studies to have genome-wide CNV profiles for
1PS cell lines at multiple time points, or passage numbers, together
with profiles for the matched parental cell line(s) from which the
iPS cells were derived, and two studies satisfied our criteria:
Hussein et al. [100] and Laurent et al. [98]. In the case of Hussein
et al. [100], the dataset we assembled (Materials and methods)
consisted of CNVs from 22 human iPS cell lines produced from 3
parental fibroblast lines, while for Laurent et al. [98] we assembled
data for CNVs representing 36 iPS cell lines derived from 6
parental cell lines of various cell types. So that we could assay
CNV profiles over time in cell populations, we pooled the
PSCNVs from Hussein el al. [100] and Laurent e al. [98] into
three categories, representing low, medium, and high passage,
ensuring that the genome coverage of each category was
sufficiently large for analysis. The low passage category represents
cells from passages 4 and 5 (935 regions, 1.30% of the genome),
the medium passage category covers passages 6 through 11 (1,071
regions, 2.39% of the genome), and the high passage category
corresponds to passages 12 through 36 (300 regions, 1.63% of the
genome) (Table S1). We also considered the Hussein el al. [100]
and Laurent et al. [98] studies individually, seeking datasets
corresponding to the passage numbers of the pooled datasets and
yet still sufficiently large (Table S3) for our analyses; Hussein et al.
[100] yielded low, medium, and high passage CNV datasets, and
Laurent et al. [98] produced a high passage dataset (Table S1).

Intriguingly, we found that, while the pooled >CNVs of low
passage cells are not depleted for UCEs (P=0.387, obs/exp =
1.089), those of medium passage iPS cells trend towards depletion
(P=0.032, obs/exp =0.605), while those of late passage iPS cells
give a clear signal of depletion (P=0.005 obs/exp =
0.327; Table 3 and Table S4 section D). As expected, given that
the bulk of the pooled "*CNV data come from Hussein et al.
[100] (Table S1), the results of our analysis of the Hussein et al.
PSCNVs, alone, followed that of the pooled PSCNVs: Hussein
2011 low passage PSCNVs are not depleted for UCEs (P=0.433,
obs/exp =0.948), while Hussein 2011 medium passage "> CNVs
trend towards depletion (P=0.077, obs/exp =0.660), and
Hussein 2011 late passage ""CNVs show significant depletion
(P=0.010, obs/exp =0.107; Table 3 and Table S4 section D).
Although the Laurent 2011 high passage PSCNV analysis did not
return expected overlaps that were normally distributed, preclud-
ing a P-value for depletion, this dataset nevertheless shows a low
obs/exp ratio (obs/exp = 0.544, Table 3 and Table S4 section D).

While the replication of our studies awaits the availability of
additional "SCNV datasets of sufficient coverage and spanning
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considerable time frames, our findings thus far show that the CNV
profiles of newly generated iPS cells can, at least under some
circumstances, become depleted for UCEs over time. These
observations are consistent with UCE-disrupting CNVs being
under negative selection during iPS cell passage, with cells
containing them being lost or out-competed over time. As such,
they may explain why some CNVs may be selectively disfavored,
even though they may not affect gene expression in the iPS cells
[107]. How our observations interface with other studies
documenting changes in CNV profiles over time in cell culture
is difficult to assess, as these other studies represent a diversity of
strategies for CNV analysis and differ among themselves in terms
of the extent and direction of the changes in CNV abundance
[97,98,100,101,103]. Furthermore, while our studies were focused
on the overlap between CNVs and UCEs, these other studies were
focused on the abundance, per se, of CNVs, which may not
necessarily be correlated with depletion of UCEs. Nevertheless,
our data indicate that depletion of UCEs from CNVs could occur
without benefit of passage through the germline, suggesting that
the mechanisms underlying depletion of UCEs from CNVs may
be amenable to analysis in the laboratory.

Discussion

In this study we provide evidence suggesting that a UCE-
depleted CNV profile can be established in mitotically dividing
cells without germline transmission. This finding, obtained with
iPS cells, is consistent with our observation that, like **UCNVs,
de mov NV and *°"*°CNVs representing healthy individuals are
depleted for UCEs as well. Drawing these findings together, we
suggest that healthy human cell populations may be able to rapidly
purge themselves of copy number variant regions involving UCEs.
While this purging could involve the repair of CNVs, we find this
unlikely, and instead favor the selective loss of cells containing
CNVs that disrupt UCEs, such that the CNV profile of the
remaining population of cells is depleted of UCEs.

In striking contrast to the situation in healthy cells, the CNVs of
cancer cells are by and large not depleted of UCEs. This suggests
an important and hitherto overlooked aspect of cancer genetics
and invites the study of UCE depletion from CNVs into the realm
of diseases that develop somatically, of which cancer is just one.
Some diseased states may release cells from the dosage constraints
of UCEs or even confer cellular advantages that outweigh the
deleterious consequences of an imbalance of UCEs. Alternatively,
release from the dosage constraints of UCEs may be a prerequisite
or permissive step en route to disease. Our findings also highlight
the possibility that some diseases associated with genomic
mnstability involve instead, or in addition, a simple inability to
cull away the normal burden of deleterious CNVs arising at a
frequency that is not different from that found in healthy cells. In
any case, lack of depletion of UCEs from a CNV dataset suggests
that the cells contributing to the dataset may not represent the
healthy state, having escaped the possible deleterious consequenc-
es of deleting or duplicating UCEs either because the mechanisms
effecting such consequences were no longer in play or because the
cells had acquired a means by which to circumvent them. With
respect to “"“"CNAs, it may be that they arise when the
mechanisms producing deleterious consequences are disabled or
circumvented, their positions potentially influenced by the density
of genes with either pro- or anti-proliferative functions [108,109].

That “"““"CNV datasets can show an overall enrichment for
UCE:s is intriguing, especially since enrichment of UCEs in CNVs
associated with disease has been observed in neurodevelopmental
disorders [41]. In the case of cancer, it is unclear whether the
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enrichment we observe is on a continuum with loss of depletion or
represents a subsequent or completely separate process. For
example, release from the dosage constraints of UCEs may enable
cancerous cells to benefit from growth advantages brought about
by deletions or duplications of UCE-containing regions [45—
50,110]. This explanation is consistent with the observation that
some transcribed UCEs can act as oncogenes [42,47] or tumor
suppressors [45] or, in the case of one UCE, intercellular signaling

molecules within hepatocellular cancer [111]. An enrichment of

UCEs in “"“'CNVs could also be explained if UCE dosage were
directly or indirectly implicated in cell cycle control. Here, we
presume that cellular detection of UCE dosage is coordinated with
the cell cycle, since a cell doubles its ploidy as it traverses S-phase,
and S-phase, itself, imposes a dosage imbalance that sweeps across
the genome. As such, S-phase induced imbalances of UCEs could
be used by a replicating cell to confirm that it is in S-phase and
must continue to replicate its genome. If so, cells for which UCE
dosage has been disrupted and, as suggested above, have also
circumvented the deleterious consequences of aberrant UCE
dosage, might be predisposed to continuously undergo replication
and, hence, progress unrestrained through cell cycles. Of these,
cells that are the most disrupted in UCE dosage, in other words
enriched for the inclusion of UCEs in their CNVs, might be
expected to show the strongest phenotype of unregulated growth
and thus become cancerous.

The enrichment of UCEs in many “"“"CNA datasets may at
first be difficult to reconcile with the depletion of UCEs from
ClMSicalCNVS, de nov OCNVS, SOlna[iCCNVS, and iPSCNVS; while
cancer cells with abnormal UCE copy number appear unaffected
or even advantaged, cells with abnormal UCE copy number may
be disadvantaged in healthy individuals, this difference implying
opposite impacts on proliferation, senescence, or apoptosis.
Similarly, the mutational profiles of cancer cells may bias CNVs
toward forming in the vicinity of UCEs, possibly conferring
selective advantage, whereas the profiles of healthy cells may avoid
such disruptions.

Whether the difference in UCE disruption by CNVs in cancer
versus healthy cells is due to differences in mutational profiles,
selective retention/loss of UCE-disrupting CNVs, or a combina-
tion of both, the dichotomy of CNV profiles with respect to UCEs
between healthy and cancerous cells warrants further discussion.
One explanation argues that even though cancer cells with
disrupted UCE dosage may acquire a growth advantage, their
presence is detrimental to the overall fitness of the individual.
Hence, disruptions in UCE copy number such as those seen in
cancer would not be predicted to endure in human populations,
consistent with the UCE-depleted profile of “*““CNVs, The
same argument cannot, however, be applied to % " “CNVs,
somatic NV, or TS CNVs, because unlike T “lCNVs, these three
categories of CNVs have not been subjected to selection at the
level of the population. As such, the UCEs that are enriched in
CNCTCNAs may differ from those that are depleted from
de nov e NVs, °MUCCNVs, or PSCGNVs. This possibility can be
further investigated when more de mov ONVs, °™MU°CNV, and
PSCNV datasets become available.

Comparison of the locations, sizes, and sequences of UCEs,
their potential differential inclusion in duplications or deletions,
and other structural features may ultimately shed light on the basis
for the enrichment of UCEs in some CNV datasets and the
depletion of UCEs from others. As importantly, it may elucidate
how loss or gain of a UCE could be sensed by the healthy cell and
then translated into a deleterious consequence. At present, we
favor a mechanism wherein the maternal and paternal copies of a
UCE compare their sequences, possibly through pairing, because,
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by hypothesizing that any discrepancy between the homologs
would trigger deleterious outcomes, this model offers an explana-
tion for ultraconservation itself [2,25,27]. Such a pairing-based
mechanism would contribute to genome integrity with respect to
dosage and is compatible with the viability of mice that are
homozygous for the loss of a UCE [112] (further discussion of
heterozygous UCE deletions is presented in Chiang et al. [25]).
Requirements for sensing and maintaining dosage in the genome
are well studied (for examples, see [52-55]), and responses to
dosage imbalances, flagged by improperly paired UCEs, could
range from a growth disadvantage among cells to loss of
individuals from a population through disease and, at the
molecular level, from metabolic disruptions to deleterious muta-
tional and epimutational changes. Intriguingly, mutation within
and in the vicinity of UCEs that are no longer well paired with a
homolog may predict that ultraconserved chromosomal regions
might be enriched in de novo mutations. Such a prediction is
aligned with an intriguing observation, wherein conserved
sequences appear to occupy the more mutable parts of the human
genome, at least with regards to de novo mutations ([113,114], see
also [115]). In particular, heterozygosity for a CNV that deletes or
duplicates a UCE could enhance local rates of de novo mutation
due to disruption of pairing and, if such mutations confer a
selective disadvantage, they will be lost from the population, thus
increasing mutation rates in the short term while promoting
conservation of UCE sequence and dosage over longer time
frames. It is also possible that, if the unpaired status of a UCE
persists for an extended period of time, de novo mutations may not
all be removed by selection and perhaps even accumulate. In such
a situation, the DNA sequence of the UCE could decay, in which
case the deleterious response to disrupted pairing (loss of fitness,
e.g., disease and infertility) would vanish, explaining how UCEs
can be lost, albeit rarely [40]. UCEs could also be disabled
through epigenetic modification without disruption of UCE
sequence. Here, too, the resultant lack of constraint on a UCE
could lead to the decay of its sequence.

Finally, our results also demonstrate that the depletion of UCEs
from CNVs may be tractable to analysis in cell culture; whereas
studies of UCEs have generally been conducted in the context of
many human generations or evolutionary timescales, our findings
demonstrate that depletion of UCEs from CNVs and possibly
ultra-conservation, itself, are amenable to analyses spanning just a
few cell generations (Fig. 3). Excitingly, understanding the relative
contributions of CNV formation and selection pressure to UCE
depletion in healthy cells and loss of that depletion in cancer cells
should help reveal how cancer cells differ from healthy cells and,
perhaps, how we may mitigate cancer phenotypes by inducing
cancer cells to more closely resemble healthy cells. Indeed, if we
understand the mechanisms by which UCE depletion is
established in healthy cells, be it through selection against UCE-
disrupting  CNVs or otherwise, such mechanisms could be
harnessed to purge a diseased tissue or individual of diseased
cells, while leaving untouched cells whose CNV profiles do not
disrupt UCEs. Such a strategy could prove even more powerful
should UCEs embody a mechanism, perhaps through pairing, by
which cells assess all types of genome rearrangements, distinguish-
ing the deleterious from the benign or even beneficial.

Materials and Methods
UCE identification

Two new sets of ultraconserved elements were defined in this
study: one between the reference genomes of cow, dog, and horse
(builds: bosTau6, canFam?2, and equCab2) and the other between
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the reference genomes of dog, mouse, and rat (builds: canFam?2,
mm9Y, and rn4). We also identified UCEs between human, mouse,
and rat (builds: hgl8, mm9, rn4), which are very similar to the
UCEs identified in 2004 [1], although earlier builds were used to
identify UCEs in that study. Pairwise alignments were found
between each possible pair of genomes within the set of three, and
elements with 100% basepair identity that were =200 bp in length
were selected. We then mapped these regions to the hgl8 human
genome by BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat), fil-
tering out matches in the human genome that differed in length by
more than 3 bp and were not unambiguously unique in the
human genome. The hgl8 orthologs of our new UCE sets were
then used in our analyses. Coordinates for all UCEs are available
in Table S2.

Classifying UCEs intergenic,
exonic. UCEs were classified as intergenic, intronic, or exonic
using the UCSC Known Genes track for hgl8. If a UCE
overlapped neither exons nor introns, it was designated intergenic.
If a UCE did not overlap an exon but did overlap an intron by
1 bp or more, it was designated intronic. If a UCE overlapped an
exon by 1 bp or more, it was designated exonic.

as intronic, or

Dataset acquisition and filtering

Table S1 provides detailed information for all CNV datasets,
including the number of affected regions, median size of CNVs,
genome coverage, discovery and validation platforms used, number
of subjects, and coordinates. When necessary, coordinates were
mapped to the hgl8 genome build using the liftover utility provided
by UCSC (http://genome.ucsc.edu/cgi-bin/hgLiftOver). In each
CNV dataset, overlapping regions were collapsed to avoid counting
the same region multiple times, leading to a final list of regions for
each CNV dataset that may differ from the original set reported in
the relevant publication. Additional information for the various
CNV datasets can be found below.

classical ONV datasets. Eight “®¥“?'CNV datasets were ob-
tained from Jakobsson et al. [61], McCarroll et al. [62], Matsuzaki
et al. [56], Shaikh et al. [57], Conrad et al. [39], Drmanac et al.
[58], Durbin et al. [59], and Campbell et al. [60].

de novoCONV datasets. Four “ "“°CNV datasets were
obtained from Xu et al. [69], Itsara et al. [70], Malhotra et al.
[71], and Sanders et al. [72]. The identification of * " ‘CNVs is
exceptionally vulnerable to errors, because each % "YCNV
requires two negative results (the CNV is not detected in either
parent). For example, if a CNV is missed in the parents, but is
correctly detected in a child, it will be incorrectly designated a
de moUCNV. Additionally, the use of cell lines to detect
de oY CNVs may produce artifacts, as CNVs may arise de novo
within a cell line [70,116,117]. For these reasons, we only studied a
de v GNV if it had been identified using DNA obtained directly
from primary tissue and independently verified.

cance*CNA datasets. Seventeen ““"CNA datasets were
obtained from TCGARN et al. [76], Walter et al. [77], Beroukhim
et al. [73], Bullinger et al. [78], Taylor et al. [79], TCGARN et al.
[80], Curtis et al. [81], TCGARN et al. [82], TCGARN et al.
[83], TCGARN et al. [84], Nik-Zainal et al. [85], Robinson et al.
[86], Walker et al. [87], Zhang et al. [88], Holmfeldt et al. [89],
TCGARN et al. [90], and Weischenfeldt et al. [91]. All data were
filtered to remove any “"““’CNA longer than 50% of the length of
the chromosome arm on which it resides. This was done to remove
“NCTCINAs that result from losses of whole chromosomes or
chromosome arms, events that we consider distinct from the
smaller deletions and duplications considered in the present study.

We only considered recurrent “"“"CNAs, as they were more
likely to be important for cancer causation or progression. In cases
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where published datasets had already been filtered for recurrent
CNAs, we listed the algorithm used in Table S1. We did not
further filter these datasets. The datasets of Bullinger et al. [78],
Nik-Zainal et al. [85], Robinson et al. [86], Walker et al. [87],
Holmfeldt et al. [89], and Weichenfeldt et al. [91] had not been
pre-filtered for recurrent variants, and so, for these, we selected
only “"““"CNA regions that were present more than once in the
dataset. All these datasets except for that of Walker 2012 [87] were
included in the pooled “"““"CNA dataset. The dataset of Walker
2012 [87] was omitted because its recurrent “"““"CNA regions
covered 94% of the human genome, and we were concerned that
this level of coverage would be overbearing.

somaticCONV datasets. Six **™*““CNVs were obtained from
Piotrowski et al. [63], Forsberg et al. [64], Jacobs et al. [65], Laurie
et al. [66], O’Huallachain et al. [67], and McConnell et al. [68].
So as not to confound the analysis of **™“CNVs with “"“"CNAs,
all *°™CNV  datasets were also filtered to remove any
representing individuals where a cancer-affected tissue is used to
call **™*9°CNVs. This affected two studies, Jacobs et al. [65] and
Laurie et al. [66]. For Jacobs et al. [65], the excluded regions were
from 16 patients with AML (Acute Myeloid Leukemia), CLL
(Chronic Lymphocytic Leukemia), CML (Chronic Myelogenous
Leukemia) or NHL (Non-Hodgkin Lymphoma) and from whom
blood was used for **™*"“CNV discovery. For Laurie ¢t al. [66],
the excluded regions were from 7 patients with ‘prior heamato-
logical cancer’ and from whom blood was used for ™ CNVs
discovery.

PSCNV datasets. ' CNVs were obtained from Hussein et al.
[100] and Laurent et al. [98]. All datasets were culled of CNVs
that were also discovered in the corresponding parental cells used
to produce the iPS cells. The datasets were pooled into low passage
(4 and 5), medium passage (6 through 11), and high passage (12
through 36) categories, with passage numbers chosen to ensure
each category was sufficiently large for our analysis.

microRNAs. Since the human microRNA genomic positions
were obtained with respect to genome build hgl9 from ftp://
mirbase.org/pub/mirbase/ CURRENT/genomes/hsa.gft3, they
were converted to hgl8 using UCSC’s liftover feature (http://
genome.ucsc.edu/cgi-bin/hgLiftOver). For all analyses, we used
the genomic positions of the microRNA precursor sequences,
which defined regions that are larger in bp than the genomic
regions producing the processed microRNAs.

Determining depletion from or enrichment of UCEs in
genomic regions of interest

Tests for depletion of UCEs from, or enrichment of UCEs in,
genomic regions such as CNVs, were conducted as described in
Results and our previous publications [2,25]. We compared the
observed amount of overlap in base pairs between a set of CNVs
and a set of UCEs to the expected overlap, as determined by a
randomly placed set of elements matched to UCEs in terms of
element number and length. In particular, the elements of the
matched set were placed randomly on the genome 1,000 times,
and the overlap between the random elements and CNVs was
calculated each time, thus producing a distribution of the
randomly generated expected overlaps. To provide a measure-
ment of the difference between the distribution of expected
overlaps and the observed overlap, we reported the proportion of
expected overlaps that were equal to, or more extreme than, the
observed overlap. The distribution of expected overlaps was
assessed for normality using the Kolomogorov-Smirnov (KS) test,
and the associated KS P-value is included in all supplementary
tables. Whenever the expected overlaps exhibited a normal
distribution, they were compared to the observed overlap using
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Figure 3. Timescales through which different types of genomic variation have been present and their relationships to UCEs.

doi:10.1371/journal.pgen.1004646.9003

a Z-test, wherein a significant result, together with a ratio of
observed overlap to mean expected overlap (obs/exp) falling below
1.0 indicated significant depletion; a significant Z-test result and an
obs/exp ratio above 1.0 indicated significant enrichment. In cases
where normality was not observed, we noted this in the text and
reported only the obs/exp ratio and the proportion of expected
overlaps that were equal to, or more extreme than, the observed
overlap. In analyses in which UCEs were segregated into exonic,
intronic, and intergenic categories, random elements were drawn
solely from the exonic, intronic, or intergenic portions of the
genome.

Analysis of the number of times each UCE is overlapped
by the individual “"“*"CNA datasets

We determined the total number of “"““CNA datasets
overlapping each of the 896 HMR-HDM-HC UCEs and report
this in Table S5. For exonic and intronic UCEs, we reported the
gene that contains the element. In the case of a UCE that
overlapped multiple genes, both genes were recorded. The list of
transcripts was obtained from the UCSC Known Genes track.

Gene ontogeny
The tool GREAT (http://bejerano.stanford.edu/great/public/
html/) was used with background set to the whole genome.

Partial correlations

Data for genomic features of interest were obtained from the
following sources: UCSC genes — UCSC known genes track build
hg18; Enhancer regions — ENCODE combined genome segmen-
tation from the ENCODE UCSC hub [95] ‘E’ (enhancer) class
genomic regions for six ENCODE cell/tissue types; microRNAs —
miRBase [118]; GC content — UCSC genome browser; replication
timing — [96].
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Analyses were performed over 10 kb, 50 kb, and 100 kb
windows. Results were similar for all bin sizes, with no changes
in significance for ™ “CNVs or “"““"CNAs. Only the results for
50 kb bins are shown in Figure 2. Positional data were converted
to a density measurement by summing the number of bases in a
window covered by the feature of interest (e.g. UCE, CNV),
divided by the number of sequenced bases in the hgl8 human
genome within the same window. Partial correlations were
performed using Matlab partialcorr function.

Genome coordinates
All coordinates listed in this study are with reference to human
genome build hgl18. All start coordinates are 1-based.

Scripts
All scripts for this study are written in Python and are available
at https://github.com/rmccole/Abnormal_dosage_UCEs.

Supporting Information

Figure S1 Intersections of the CoDHo, DMR, and HMR
datasets of UCEs. We defined two new datasets of UCEs without
reference to the human genome, and compared them to a dataset
of UCEs identified using human, mouse, and rat [1]. These
datasets, CoDHo and DMR, show considerable overlap with each
other and the HMR dataset. Details on the build used to identify
UCE:s are given in the Methods. All intersections are given in bp.
(PDF)

Table S1 CNV datasets. (A) Information on datasets. Subse-
quent tabs: The coordinates for each set of regions listed in (A) are
contained in a tab, with the dataset name corresponding to the tab
title.

(XLS)
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Table $2 Depletion of UCEs from “*¥“'CNVs is maintained in
UCE datasets defined using different species. (A) Depletion
analysis of UCEs representing the union of Human-Mouse-Rat
(HMR), Human-Dog-Mouse (HDM), and Human—Chicken (HC)
UCEs, as in Derti et al. [2], from “*ICNV datasets. (B)
Depletion analysis of UCEs defined using the dog, mouse, and rat
reference genomes from all “™“*CNV datasets. (C) Depletion
analysis of UCEs defined using the cow, dog, and horse reference
genomes from all ™“*CNV datasets. (D) Depletion analysis of
UCEs defined using the human, mouse, and rat reference
genomes from all “*“UCNV datasets. (E) UCE coordinates:
Coordinates in hgl8 for UCE datasets.

(XLS)

Table S3 Investigation of the robustness of depletion and
enrichment analyses to the genome coverage and median size of
CNV datasets. A: Establishment of a lower limit for genome
coverage for depletion and enrichment analyses. We were
concerned that the small genome coverage of some CNV datasets
would make the datasets inappropriate for our analyses, even
though we had observed significant depletion of UCEs from
datasets with as little as 26 Mb of genome coverage. To further
explore the impact of genome coverage, we ‘shrank’ “*5<?!CNV
datasets by iteratively removing bases from each end of every
CNV region to produce datasets with increasingly smaller CNVs
and genome coverage and then assessed the modified dataset for
depletion of UCEs. These tables show the effect of decreasing
median CNV size and overall genome coverage (bp) of the
Jakobsson 2008 [61] and Campbell 2011 [60] “*CNV
datasets, both of which show depletion for UCEs. Significance of
depletion (P=0.034, obs/exp =0.369) was retained for the
Jakobsson 2008 dataset even when genome coverage was reduced
to 30 Mb. However, under 20Mb, the expected overlaps were no
longer normally distributed. With the Campbell 2011 dataset,
depletion was maintained with all levels of genome coverage, the
lowest tested being as little as 10 Mb (P =0.042, obs/exp = 0.000).
Similarly to the Jakobsson 2008 dataset, the expected overlaps for
the Campbell 2011 dataset were not consistently normally
distributed when genome coverage was 20 Mb or less. Taking
all these observations into account, we chose 20 Mb as the lower
limit of genome coverage for our analyses. We also pooled CNV
datasets together to achieve larger datasets, in which we would
have more confidence. B: Analysis of enlarged ““*“!CNV datasets
for UCE depletion. Reproduced from Results. Importantly, large
genome coverage and CNA size are unlikely to explain
enrichment or loss of depletion of UCEs in “"““CNA datasets,
and three findings support this statement. First, the broad range of
genome coverage for “"“"CINA datasets showing enrichment or
loss of depletion (from 90.15% for Walker 2012 “"“"CNAs to
3.86% for TCGARN 2012 colon “"““CNAs) overlaps that for
datasets that are depleted of UCEs (from 51.37% for pooled
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