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Abstract

Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in
the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we
address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes
the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed
through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer
cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility
that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is
depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of
this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is
possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that
depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions.
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Introduction

Ultraconservation came to light when Bejerano et al. reported

that their comparison of the reference genomes of human, mouse,

and rat had revealed an unexpected 481 orthologous genomic

regions that are $200 bp in length and 100% identical in

sequence [1], each of which is unique in the reference human

genome [1,2]. Ten years later, we still lack a compelling

explanation for why these sequences, called ultraconserved

elements (UCEs), have been so extremely conserved for hundreds

of millions of years – neither enhancers, nor transcription factor

binding sites, nor promoters, nor protein coding regions require

such a high level of conservation [1,3–8]. Despite this, and because

roughly half of UCEs are intronic and one third are intergenic, a

popular expectation is that UCEs will be found to embody

important regulatory activities; indeed, they are thought to be

maintained by purifying selection [9–16], and numerous UCEs are

able to direct tissue-specific transcription when coupled with a

reporter construct, while some have been shown to function

endogenously as enhancers [4,17–24]. UCE sequences can also

contain various transcription factor binding motifs [6,25] and bind

multiple transcription factor proteins [26]. Ultraconservation

could also be explained by a mechanism of comparison between

pairs of UCEs. Here, the two copies of each UCE in a diploid cell,

one on each of two homologous chromosomes, physically interact

and then undergo sequence comparison, wherein discrepancies in

DNA sequence or copy number, or disruptions of genome

organization that compromise interactions, would be sensed and

result in loss of fitness through disease or reduced fertility

[2,25,27]. Such a mechanism would, over time, tend to cull away

variants in UCE sequence or copy number, maintaining the

extreme DNA conservation that characterizes UCEs. Importantly,

there is growing evidence for the potential of homologous

chromosomal regions to support at least transient, if not extensive,

pairing in somatic cells [28–38] as well as in meiotic cells.

Interestingly, we and others have found that UCEs are much

less likely to be deleted or duplicated via copy number variants

(CNVs) in healthy individuals than would be expected by chance

[2,25,39], consistent with their depletion from segmental duplica-

tions [2] and remarkable resistance to loss from mammalian

genomes [40]. In contrast, they are enriched in 26 deletions and

duplications representing 200 patients with neurodevelopmental

disorders [41]. An association between UCEs and disease was also

demonstrated [42] in a study that assembled a database of ‘cancer-

associated genomic regions’ from a literature search for terms

associated with cancer [43], and several publications have

highlighted possible roles for the transcription of specific UCEs

in cancer [44–51].

In sum, the basis of ultraconservation remains unclear. Indeed,

it has been suggested that UCEs represent nothing more than an

unexceptional tail end of a distribution of conservation [4].

Regardless, the apparent dosage sensitivity of UCEs remains

intriguing, especially in light of the dosage sensitivity of many

genomic functions whose importance has been well established
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[52–55]. Therefore, leaving aside the specific issue of ultraconser-

vation, this report focuses on the dosage sensitivity of UCEs, with

special emphasis on the time frame in which it is sensed. It takes

advantage of 37 datasets of CNVs representing whole genome

array-based or sequence-based analyses, and it begins with a

demonstration that the most recently published datasets of CNVs

representing healthy individuals are depleted for UCEs and that

this depletion is robust to the mammalian species used to define

UCEs. Importantly, we see that even de novo CNVs, which could

have passed through the germline meiotic process at most once,

are depleted of UCEs. This implies that CNVs need not be

inherited through multiple generations to be depleted of UCEs.

We then examine CNVs that have arisen in the soma, specifically

in cancer cells, and discover that they are overall not depleted for

UCEs. What is the basis by which CNVs in healthy people are

depleted of UCEs, whereas cancer-specific CNVs display the

opposite propensity? One possibility is that CNVs formed in the

soma differ from those that are inherited across generations.

Alternatively, CNVs specific to cancer may occur in positions that

differ from those of CNVs found in healthy cells. To resolve this,

we turn to CNVs that arise in healthy, as opposed to diseased,

soma. We find that healthy somatic CNVs are depleted for UCEs,

just as are CNVs inherited through the germline. This suggests

that the profile of cancer specific CNVs reflects the diseased state,

and not simply their somatic origin. Finally, to address how de
novo and somatic CNVs of healthy individuals become depleted

for UCEs, we examine the relationship, over time, between UCEs

and CNVs in induced pluripotent stem (iPS) cells. Our results

suggest that CNVs that have deleted or duplicated UCEs may be

selectively removed from cell populations and that this process

may underlie the UCE-depleted profile of CNVs present in

healthy, but not cancer, cells.

Results

Depletion of UCEs from CNVs is seen in all inherited CNV
datasets representing healthy individuals

We previously showed that UCEs are significantly depleted

from CNVs in humans, with no overlap whatsoever between the

positions of UCEs and CNVs in some cases, while, in other cases,

the overlap was modest [2,25]. There are three possible

explanations that can account for these results: Firstly, CNVs

could be completely excluded from forming in the vicinity of

UCEs, and any overlap seen could be the result of inaccuracies in

CNV mapping. Secondly, CNVs could be less likely to form in the

vicinity of UCEs. Thirdly, CNVs may form in the vicinity of UCEs

as much as expected by chance, but selective processes may then

remove these CNVs from populations because they are deleteri-

ous, resulting in a depleted CNV profile over time. To help

distinguish between these possibilities, we began our studies by

determining whether, and to what extent, UCEs are depleted from

six recent large scale high quality datasets of predominantly

inherited CNVs representing healthy individuals (Matsuzaki et al.
[56], Shaikh et al. [57], Conrad et al. [39], Drmanac et al. [58],

Durbin et al. [59], and Campbell et al. [60]), including those

obtained through next-generation sequencing [58,59]. In order to

facilitate comparison between the current and earlier studies, we

also included two datasets that had been previously examined

(Jakobsson et al. [61] and McCarroll et al. [62]). We call all these

CNVs, which were discovered in healthy individuals without being

specified as somatic or germline in origin, classicalCNVs (Fig. 1A).

The eight individual classicalCNV datasets consist of between 1,183

and 46,716 regions and encompass between 0.83% and 45.25% of

the human genome, a range in genome coverage that is not

unexpected for datasets produced by studies that differ widely in

their detection methods and sensitivity and in the number of

subjects included. The datasets were considered individually as

well as combined into a pooled classicalCNV dataset consisting of

43,727 CNV regions and covering 51.37% of the human genome

(for more details, see Table S1).

Regarding the UCEs, the majority of our analyses were carried

out with a set of UCEs we had previously defined [2]. This set of

UCEs consists of sequences that are $200 bp in length and

identical between the reference genomes of human, mouse, and

rat (HMR), or of human, dog, and mouse (HDM), or of human

and chicken (HC), producing a set of 896 (HMR-HDM-HC

UCEs) UCEs in total [2]. We also generated two new UCE

datasets without involvement of the human genome in order to

ascertain whether the depletion of UCEs from CNVs is robust to

the inclusion of UCEs selected without involvement of, and thus

without perfect sequence identity to, sequences in the human

genome. This strategy defined 527 UCEs using the reference

genomes for dog, mouse, and rat (DMR) and another 1,696 UCEs

using the reference genomes for cow, dog, and horse (CoDHo), all

while maintaining the length and identity requirements of $

200 bp and 100%, respectively (Figure S1, Methods). As the DMR

and CoDH datasets involve only three species, while our original

HMR-HDM-HC dataset involved four mammalian and one bird

species, we assembled one additional dataset of 481 UCEs, this

one using just the three reference genomes of human, mouse, and

rat (HMR), as did Bejerano et al. when they defined the first UCE

dataset [1]. Each of these four UCE datasets was studied in its

entirety and, to parallel earlier work, subdivided into intergenic,

intronic, and exonic subclasses; such earlier studies demonstrated

that depletion is driven primarily by the intronic and intergenic

UCEs, with evidence for that depletion being due to UCEs, per se,
rather than flanking genetic regions or genes [2,25].

Using a protocol established in earlier studies, we then

determined whether UCEs are depleted in CNV datasets [2,25].

We compared the observed amount of overlap in base pairs

between a set of CNVs and a set of UCEs to the expected overlap,

as determined by a randomly placed set of elements matched to

UCEs in terms of element number and length. In particular, the

Author Summary

Ultraconserved elements (UCEs) display a level of se-
quence conservation that has defied explanation. They are
also dosage sensitive, being depleted from copy number
variants (CNVs) in healthy cells. Here we address the
process underlying this dosage sensitivity in order to gain
insights into the way that UCE dosage affects cells. Our
studies demonstrate that, in contrast to CNVs inherited by
healthy individuals, cancer-specific CNVs are, as a rule, not
depleted for UCEs and may even be enriched. Further-
more, by discovering that CNVs arising anew in the
healthy, as opposed to diseased, body are depleted of
UCEs, we obtain evidence that healthy cells may be
responsive to changes in UCE dosage in a way that is
disrupted in cancer cells. After examining CNVs over time
in cell culture, we postulate that selection against UCE-
disrupting CNVs in healthy cells acts rapidly, raising the
surprising possibility of exploring in cell culture how UCE
dosage sensitivity may explain ultraconservation. Our
observations suggest that an understanding of the
different responses of healthy and cancer cells to changes
in UCE dosage could be harnessed to address genomic
instabilities in cancer.

Ultraconserved Element Dosage in Healthy and Cancer Cells
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elements of the matched set were placed randomly on the genome

1,000 times, and the overlap between the random elements and

CNVs was calculated each time, thus producing a distribution of

the randomly generated expected overlaps. To provide a

measurement of the difference between the distribution of

expected overlaps and the observed overlap, we reported the

proportion of expected overlaps that were equal to, or more

extreme than, the observed overlap. The distribution of expected

overlaps was assessed for normality using the Kolomogorov-

Smirnov (KS) test, and the associated KS P-value is included in all

supplementary tables. Normality was observed in 263 of 318 (83%)

of analyses and, whenever observed, the distribution of expected

overlaps was compared to the observed overlap using a Z-test,

wherein a significant result, together with a ratio of observed

overlap to mean expected overlap (obs/exp) falling below 1.0

indicated significant depletion. Such an outcome would mean that

the overlap between UCEs and CNVs is significantly lower than

would be expected by chance, given the number, size, position,

and genome coverage of the CNVs at hand. In cases where

normality was not observed, we noted this in the text and reported

only the obs/exp ratio and the proportion of expected overlaps

that were equal to, or more extreme than, the observed overlap.

This protocol ensured that each analysis was tailored to its own

CNV dataset, enabling the meaningful comparisons of datasets

that differ in terms of CNV number, size distribution, position,

and genome coverage.

For pooled classicalCNVs, significant depletion was observed for

all UCE datasets, with all values for obs/exp falling below 1.0 (P-

values from ,1.0610217 to 0.001, obs/exp from 0.771 to 0.867,

Table 1 and Table S2). All individual classicalCNV datasets with

normally distributed expected overlaps also showed significant

depletion (8.8610215 #P#0.020, 0.000# obs/exp #0.887, see

Table 2 for HMR-HDM-HC UCEs, and Table S2 for all UCE

sets); in three analyses, namely those addressing the DMR UCEs

with respect to the McCarroll 2008 classicalCNV dataset, the

Durbin 2010 clasicalCNV dataset, and the Campbell 2011
classicalCNV dataset, depletion could not be ascertained because

the expected overlaps were not normally distributed (Table S2).

As in previous studies, some analyses yielded 0 bp of overlap

between UCEs and CNVs (e.g., HMR-HDM-HC UCEs and

McCarroll 2008 [62], Drmanac 2010 [58], and Campbell 2011

[60]), while others showed some degree of overlap, with obs/exp

ratios ranging from 0.021 to 0.887. The presence of multiple high

quality datasets with non-zero overlaps between UCEs and CNVs

led us to reject the first explanation, wherein CNVs are

completely excluded mechanistically from forming at UCE

regions and any observed overlaps are due to errors in mapping

CNVs.

Figure 1. Five types of CNVs. (A) classicalCNVs are identified solely by variation among individuals in the copy number of genomic regions. (B)
de novuCNVs are present in an individual but not in the soma of either of the parents. (C) cancerCNAs are copy number alterations that occur specifically
in the cancer cells (orange) of an individual and, therefore, are absent from the healthy cells of the same individual (black). In this study we required
cancerCNAs to be recurrent between individuals. (D) somaticCNVs are defined by regions that vary in copy number among the healthy somatic cells of
an individual. (E) iPSCNVs are defined by regions that vary in copy number within a population of iPS cells and which are not detectable in the
fibroblast cells from which the iPS cells were derived.
doi:10.1371/journal.pgen.1004646.g001

Ultraconserved Element Dosage in Healthy and Cancer Cells
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Note that depletion was also observed in many datasets when

UCEs were separately analyzed as intergenic, intronic, and exonic

elements (see Materials and methods for details on categorization

of UCEs by genic location), with the intergenic and intronic classes

driving depletion overall and the larger HMR-HDM-HC and

CoDHo datasets showing stronger depletion (Table S2). While

depletion was also observed with exonic UCEs, it was somewhat

less consistent as that found with intronic and intergenic UCEs.

The agreement of these results with our previous studies

demonstrates that the depletion of UCEs from CNVs is a robust

phenomenon and, hence, not dependent on 100% sequence

identity between humans and other chosen species, extending our

earlier observations [2,25]. Accordingly, except where noted, all

subsequent analyses in this study used the 896 UCEs of the HMR-

HDM-HC dataset.

Newly formed de novo CNVs are depleted for UCEs
Having eliminated the first explanation for depletion of UCEs

from CNVs, we turned our attention to the two remaining possible

explanations, which are not necessarily mutually exclusive; that

CNVs are less likely to form in the vicinity of UCEs, and/or CNVs

involving UCEs result in loss of fitness and are subsequently culled

from the population. As some CNVs are recent enough to be

polymorphic between individuals and even mosaic within individ-

uals [63–68], the latter explanation would further suggest culling

to be a relatively rapid process. We addressed these possibilities by

seeking situations in which CNVs are not depleted for UCEs. If

found, they would argue against CNVs being less likely as a rule to

form near UCEs and, in addition, might permit us to estimate how

rapidly CNVs are culled when they do involve UCEs. Accord-

ingly, we turned to de novo CNVs, which are regions of copy

number variation that are present in the soma of an individual but

not in the soma of either parent. Leaving aside the possibilities of

false positive regions (discussed in the Materials and methods), the

oldest of such variants could have formed in the germline

precursors of a parent and therefore passed no more than once

through a germline. The youngest of such variants would include

those that formed in the soma of an individual and are therefore

less than one generation old, with no involvement of the germline

(Materials and methods). We reasoned that these CNVs, which we

call de novuCNVs (Fig. 1B), may be so recent as to not yet have

been culled of deletions and duplications that involve UCEs, if

indeed UCE depletion results from a culling mechanism. In

contrast, all classicalCNV datasets considered thus far in this report

likely contain CNVs of varied ages, ranging from very newly

formed CNVs arising within an individual’s soma, to CNVs that

have passed through the germline across many generations.

Four de novuCNV datasets satisfied our criteria for further study

(Xu et al. [69], Itsara et al. [70], Malhotra et al. [71], and Sanders et
al. [72], detailed in Table S1); they represent studies using primary

tissues as the source of DNA and requiring each de novuCNV to have

been validated by a second, independent method, such as Sanger

sequencing (Materials and methods). While these studies examined

patients with schizophrenia [69,71] or autism [70,72], they also

included healthy individuals as controls, and it is the CNVs from

healthy individuals that we used for our analysis. One study [70]

included asthmatic individuals as healthy controls, and we did

likewise. Because the four de novuCNV datasets are small in terms of

genomic coverage (0.05%–0.45%, Table S1), falling below our

20 Mb minimum requirement (see Table S3 section A for further

discussion), we aggregated them into a pooled de novuCNV dataset,

including 25 CNVs covering 0.93% of the human genome (Table

S1). Remarkably, this set of de novuCNVs is significantly depleted of

UCEs (P = 0.044, obs/exp = 0.395, Table 3, Table S4 section A).

Having discovered that even newly formed CNVs are depleted of

UCEs, it remained possible that CNVs may be mechanistically

biased against forming in the vicinity of UCEs. We therefore

extended our search for CNV datasets that are not depleted for

UCEs by turning to studies of CNVs associated with disease.

It is tempting to compare the obs/exp ratio of 0.395 (Table 3) for

depletion of HMR-HDM-HC UCEs from pooled de novuCNVs to the

equivalent obs/exp ratio of 0.771 (Table 2) for depletion from pooled
classicalCNVs and conclude that UCE depletion from de novuCNVs is

more extreme than from classicalCNVs. Note, however, that the obs/

exp ratios for the individual classicalCNV datasets varied from 0.000 to

0.820 (Table 2). Given this wide range of values, the obs/exp ratio for

pooled de novuCNVs of 0.395 is not remarkably low.

Copy number changes in cancer cells are enriched for
UCEs

Our prediction that deletions and duplications of UCEs would

reduce fitness [2,25] argued that diseased tissues might yield

datasets that are not depleted of UCEs. Consistent with this

argument, UCEs have since been correlated with CNVs associated

with diseases, including neurodevelopmental disorders [41] and

cancer [42]. Here, we determined whether deletions and

duplications found specifically in cancer cells are depleted of

UCEs. Because such copy number changes are specific for the

diseased, as versus healthy, tissues of an affected individual, they

are believed to represent somatic events and, to highlight this

difference from classicalCNVs, they are called copy number

alterations, or CNAs [73]. In this report, we use cancerCNAs to

denote CNAs that were found specifically in cancerous tissues,

and, as explained below, were also recurrent in multiple patients

(Fig 1C).

For quality control, we required that cancerCNA datasets

represent studies wherein cancer genomes were defined relative

to the genome of healthy tissues from the same patient. This

strategy maximized the likelihood that our cancerCNA datasets

reflect alterations that arose within the affected individuals’

lifetimes and specifically in cancerous tissues, thereby minimizing

inclusion of classicalCNVs. Additionally, as cancerCNAs that are

recurrent in multiple patients are considered more likely to be

causal ‘‘drivers’’ of disease, while non-recurrent ones are more

likely to be merely ‘‘passengers’’ [73], we only included recurrent

aberrations in our cancerCNA datasets, identified as such using the

GISITC [74] or RAE [75] algorithms, or our own analyses of

recurrence (Materials and methods).

In total, we assembled seventeen datasets from The Cancer

Genome Atlas Research Network (TCGARN) et al. [76], Walter et
al. [77], Beroukhim et al. [73], Bullinger et al. [78], Taylor et al.
[79], TCGARN et al. [80], Curtis et al. [81], TCGARN et al.
[82], TCGARN et al. [83], TCGARN et al. [84], Nik-Zainal et al.
[85], Robinson et al. [86], Walker et al. [87], Zhang et al. [88],

Holmfeldt et al. [89], TCGARN et al. [90], and Weischenfeldt

et al. [91] representing 52 different forms of cancer, each including

between 2 and 148 cancerCNA regions and covering 0.03% to

90.15% of the genome (Table S1). To avoid confounding our

analysis with whole chromosome anueploidies, which are common

in cancer genomes, we also followed convention [73] and excluded

any cancerCNA region that is larger than 50% of the chromosome

arm on which it resides. The datasets were analyzed individually,

except for Bullinger 2010 [78], Nik-Zainal 2012 [85], Holmfeldt

2013 [89], and Weischenfeldt 2013 [91], which are too small to be

considered on their own (Table S3). We also pooled all datasets

except one to produce our pooled cancerCNA dataset; the Walker

2012 [87] dataset was excluded because it covers 90.15% of the

genome and was therefore considered too large to be combined
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informatively with other datasets. Conveniently, two studies,

Curtis et al. [81] and Walker et al. [87], also assembled datasets

of classicalCNVs identified in nondiseased tissue of the patients used

to identify cancerCNAs. While the Curtis et al. [81] classicalCNV

dataset was too small to be examined by our methods (Table S3),

we found significant depletion of the Walker et al. [87] classicalCNV

dataset, which represents 1,841 regions and covers 42.11% of the

genome (Table S1; P = 0.008, obs/exp = 0.903, Table S4 section

B). This result gave us further confidence in the quality of the
cancerCNA datasets.

Turning to the cancerCNA datasets themselves, we then observed

a striking contrast to classicalCNVs and de novuCNVs: of the 13

individual datasets large enough to be examined individually, all

but two failed to show depletion for UCEs, as did the pooled
cancerCNA dataset (Table 3 and Table S4 section B; the TCGARN

2012 colon dataset [83] and the TCGARN 2013 dataset [90]

showed depletion with P = 0.028, obs/exp = 0.680 and P = 0.003,

obs/exp = 0.738 respectively). Indeed, as the values for obs/exp

rose above 1.0 for several datasets, we converted to a two-tailed

test (P#0.025 in each tail for an overall a of 0.05) to detect

potential enrichment (obs/exp.1.0) as well as depletion (obs/exp

,1.0) for UCEs and discovered that our pooled dataset as well as

five individual cancerCNA datasets are significantly enriched for

UCEs (3.061029 #P#0.016, 1.031# obs/exp #1.580, Table 3

and Table S4 section B). Furthermore, one of the datasets that had

previously shown depletion was no longer significantly depleted

(TCGARN 2012 colon [83]; P = 0.028, obs/exp = 0.680, Table 3

and Table S4 section B) when using a two-tailed test.

Importantly, large genome coverage and CNA size are unlikely

to explain enrichment or loss of depletion of UCEs in cancerCNA

datasets, and three findings support this statement. First, the broad

range of genome coverage for cancerCNA datasets showing

enrichment or loss of depletion (from 90.15% for Walker 2012
cancerCNAs to 3.86% for TCGARN 2012 colon cancerCNAs)

overlaps that for datasets that are depleted of UCEs (from 51.37%

for pooled classicalCNVs to 0.83% for Campbell 2011 classicalCNVs),

arguing that genome coverage alone cannot easily account for our

observations of enrichment or depletion (Tables 2 and 3, S1, S2,

and S4). Second, depletion is maintained when the boundaries of

each CNV of the Jakobsson 2008 classicalCNV and Campbell 2011
classicalCNV datasets are extended on each side by 4.0 and 2.5 Mb,

respectively (P = 0.007, obs/exp = 0.968 and P = 0.003, obs/exp

= 0.952, respectively), such that the 85.86% and 74.73% genome

coverages of these enlarged datasets approach or exceed the

genome coverages of the two largest cancerCNA datasets (90.15%

for Walker 2012 cancerCNAs and 63.81% for pooled cancerCNAs;

Table S1), once again indicating that high genome coverage is

highly unlikely to produce false signals of enrichment or loss of

depletion (Table S3 section B). We note, however, that as the

genome coverage of the Walker 2012 cancerCNA dataset is

extremely high and exceeds the genome coverage of the enlarged
classicalCNV datasets, we cannot rule out some contribution of

genome coverage to the enrichment of this specific dataset. Third,

these analyses also reveal that depletion is maintained even when

the median length of enlarged CNVs (3.485 Mb and 8.379 Mb for

Jakobsson 2008 classicalCNVs and Campbell 2011 classicalCNVs,

respectively) exceeds the largest median CNA size for any enriched
cancerCNA dataset in question (3.183 Mb for TCGARN 2012

squamous cancerCNAs), demonstrating that observations of UCE

enrichment are unlikely to be explained simply by median CNA

size (Tables S1 and S3 section B).

Taken together, our observations reveal a feature that

distinguishes the classicalCNV and de novuCNV datasets from those

of cancerCNAs. While the former two are characterized by a
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depletion of UCEs, not only do the cancerCNA datasets generally

fail to show depletion, several are enriched for UCEs. This

dichotomy may be explained by differences in the mutational

landscapes and/or selective forces between healthy and cancer

cells, with healthy cells displaying a bias against CNVs in the

vicinity of UCEs, and cancer cells being biased toward disruption

of UCEs by CNVs. Whether nondepletion and/or enrichment will

prove to be a universal signature of cancerCNAs remains to be

determined, the depletion of UCEs from one cancerCNA dataset

(TCGARN 2013 [90]) suggesting that the story will be more

complex, perhaps reflecting tissue or cancer specificity. At the

least, our findings argue that the depletion of UCEs that

characterizes many CNV datasets is unlikely to reflect an intrinsic

inability, across all cell types, of CNVs to form in the vicinity of

UCEs.

Intronic UCEs drive the enrichment of UCEs in cancerCNAs
We have also analyzed the enrichment of UCEs in cancerCNA

datasets while treating intergenic, intronic, and exonic UCEs

separately (Table S4 section B). Of these three UCE classes, only

the intronic UCEs are enriched in pooled cancerCNAs

(P = 9.461025, obs/exp = 1.140), the intergenic and exonic UCEs

showing neither depletion nor enrichment (P = 0.153, obs/exp =

1.045 and P = 0.446, obs/exp = 1.007, respectively; Table S4

section B). At the level of the five individual cancerCNA datasets

showing enrichment, we observed enrichment for both intronic

and intergenic, but not exonic, UCEs. To better understand the

basis for enrichment, we focused on the enrichment observed for

the pooled dataset and entered the coordinates of all intronic

UCEs overlapping pooled cancerCNAs into the gene ontogeny tool

GREAT [92] (Materials and methods). This analysis revealed no

enrichment in cancer-specific GO terms, suggesting that the

enrichment of intronic UCEs in cancerCNAs may not be due to

disruption of oncogenes or tumor suppressor genes, per se, but to

an advantage for cancer cells of disrupting UCEs in particular.

Additionally, the majority of intronic UCEs are overlapped by the

pooled cancerCNA dataset (78% of 418 intronic UCEs and 80% of

181 genes containing intronic UCEs), suggesting the effect is

spread across many UCEs and not attributable to a small subset of

UCEs or genes. To investigate this further, we examined the

sixteen individual datasets that form our pooled cancerCNA dataset,

and scored each UCE for the number of times it is overlapped by a
cancerCNA dataset (Table S5). The highest hit rate was six, and this

for an intronic UCE that is the one and only UCE in the gene

neurotrimin (NTM), which has not been associated with cancer.

Furthermore, of 327 intronic UCEs overlapping cancerCNAs, 124

(38%) are overlapped by only one cancerCNA dataset. As such, it

appears that the enrichment of UCEs in cancerCNAs relies on a

large number of UCEs, with no particular UCEs being disrupted

in a wide variety of cancers.

The correlation between UCE and cancerCNA positions is
independent of the position of genes, microRNAs,
transcribed UCEs, and enhancers, GC content, and
replication timing

Finally, we applied partial correlation analyses (Materials and

methods) to address whether the enrichment of UCEs in
cancerCNAs can be completely explained by the relative positioning

of UCEs and another genomic feature, such as genes, or whether a

positive relationship between the placement of UCEs and
cancerCNAs remains even when other genomic features are taken

into account. We began by considering genes, dividing the genome

into 50 kb windows and, within each window, scoring the number

of base pairs encompassed by UCEs, cancerCNAs, and genes. Next,

we calculated the correlation between UCEs and cancerCNAs, and

then, using partial correlation analyses, statistically removed from

this correlation any contribution that can be ascribed to the

positions of genes. For comparison, we also ran parallel analyses

examining the correlation between UCEs and classicalCNVs. As

shown in the leftmost segment of Figure 2, the resulting partial

correlation coefficient indicates that the correlation of UCEs with
cancerCNAs remains positive and significant, independent of the

location of genes in the genome (P = 0.011). In contrast, and not

surprisingly, we obtained a significant negative partial correlation

between UCEs and classicalCNVs, indicating that the negative

correlation of UCEs with classicalCNVs also cannot be explained by

the position of genes (P = 2.661027). Parallel analyses with

window sizes of 10 kb and 100 kb gave similar results (0.004#

P#0.014 for the enrichment of UCEs in cancerCNAs and

2.261028#P#1.961026 for the depletion of UCEs from
classicalCNVs).

Because microRNAs are associated with regions of the genome

that are fragile in cancer as well as regions that are copy number

variant in cancer cells [42,43,93], reviewed in [94], we asked

whether the enrichment of UCEs within cancerCNAs might simply

be mirroring an effect that is centered on microRNAs. Using

partial correlation analysis, we found that a significant positive

correlation remains between the positions of UCEs and cancerC-

NAs even when accounting for the position of microRNAs

(P = 0.005). The positive correlation also remained when we

controlled for the positions of transcribed UCEs and transcribed

UCEs that show altered expression in cancer [42] (P = 0.001 and

P = 0.008, respectively). As UCEs have been associated with

enhancer function [4,18–21], we examined whether a potential

correlation between UCE and enhancer position could be driving

the enrichment of UCEs in cancerCNAs and/or their depletion

from classicalCNVs. This analysis did not use enhancers that had

been identified using sequence conservation [4] because a positive

correlation between UCEs and such enhancers would be expected

a priori, given that both the UCEs and enhancers would have

been selected using similar criteria. Instead, enhancer regions were

defined using the ‘enhancer’ annotations of ENCODE, which

compiles chromatin and other modifications in six cell types [95].

We found that, even after accounting for the positions of

enhancers, the positive correlation between UCEs and cancerCNAs

(0.004#P#0.021), as well as the negative correlation between

UCEs and classicalCNVs (6.961029#P#2.661027), remained

significant.

We also investigated the impact of GC content and differential

replication timing across the genome, both of which have been

found to be associated with the positions of classicalCNVs [96].

Here, again, the positive correlation of UCEs with cancerCNAs

remained significant in partial correlation analyses (P = 0.002 and

P = 0.006, respectively), as did the negative correlation of UCEs

with classicalCNVs (P = 2.861029 and P = 2.361028, respectively).

Finally, we carried out partial correlation analysis while simulta-

neously controlling for all variables shown in Figure 2 and

obtained a positive correlation between UCEs and cancerCNAs

(P = 8.061024) as well as a negative correlation between UCEs

and classicalCNVs (P = 3.261028).

Very newly formed, somatic CNVs are depleted for UCEs
Our data have thus far demonstrated significant depletion of

UCEs from classicalCNVs and de novuCNVs, while documenting a

lack of depletion, or even a significant enrichment, in cancerCNAs.

One explanation for this difference might be that classicalCNV and
de novuCNV datasets represent generally healthy individuals while

Ultraconserved Element Dosage in Healthy and Cancer Cells
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cancerCNA datasets represent a diseased state. Alternatively, the

difference could reflect an overall younger age of cancerCNAs;

whereas the cancerCNAs we analyzed are most likely to have arisen

somatically and not passed through a germline, some de novuCNVs

could have arisen in the germline of a parent, and many
classicalCNVs are likely to have passed through many generations

of germlines.

To further address the issue of CNV age, we examined CNVs

that were established somatically but not in cancer cells, calling such

variants somaticCNVs (Fig. 1D). Here, we assembled somaticCNV

data from six publications: Piotrowski et al. [63], Forsberg et al.
[64], Jacobs et al. [65], Laurie et al. [66], O’Huallachain et al. [67],

and McConnell et al. [68]. In order to maximize the number of

datasets of sufficient size for our analyses, we included CNVs

obtained from the Jacobs et al. [65] and Laurie et al. [66] studies

involving cancer patients, although we removed from consideration

all CNVs representing individuals where the cancer-affected tissue

was also tissue used to call somaticCNVs (e.g. a person with leukemia

whose blood was sampled to discover somaticCNVs); the number of

individuals falling into this excluded category amounted to only 16

(0.03%) from Jacobs et al. [65] and 7 (0.01%) from Laurie et al. [66].

We combined the six individual datasets into a pooled somaticCNV

dataset, consisting of 136 CNVs and covering 54.99% of the

genome (Table S1). In contrast to cancerCNAs, we find that the

pooled somaticCNV dataset is significantly depleted for UCEs

(P = 0.002, obs/exp = 0.917, Table 3 and Table S4 section C).

These results show that the youthfulness of a CNV dataset does not

necessarily predict an enrichment for UCEs. Furthermore, as they

show that somaticCNVs resemble classicalCNVs in terms of their

depletion for UCEs, these observations suggest a potential similarity

in the behavior of CNVs that pass through the germline and those

that are formed in the soma. Note that three of the four individual

datasets that were large enough to be analyzed on their own were

not depleted of UCEs, with one being enriched: namely Forsberg

2012 [64], Jacobs 2012 [65], and Laurie 2012 [66]. In fact, these

datasets, which consist of 5–104 CNVs and cover 2.04–27.10% of

the genome (Table S1), do contribute to the depletion seen with the

pooled somaticCNV dataset. This becomes apparent when the three

datasets are combined, leading the overall CNV coverage of the

combined dataset compared to the three individual datasets to be

increased by more than is the overlap of CNVs with UCEs (95%

versus 93% for Forsberg 2012, 29% versus 22% for Jacobs 2012,

and 32% versus 22% for Laurie 2012). Indeed, this combined

dataset is itself depleted for UCEs (P = 0.011, obs/exp = 0.902,

Table S4 section C), explaining how these datasets, themselves not

depleted for UCEs, contribute to the depletion seen in the pooled
somaticCNV dataset.

Turning to the somaticCNV dataset that showed enrichment,

Forsberg 2012 [64], we noted that all subjects in this dataset were

over 60 years of age and therefore considered the possibility that

advanced age may influence the relationship between UCEs and

CNVs. We therefore examined the only two datasets of
somaticCNVs representing a wide range in sample ages, Jacobs

2012 [65] and Laurie 2012 [66] (Table S4 section C). Here we

found an enrichment of UCEs in somaticCNVs in individuals who

are less than 60 years old (50 regions, 10.20% of the genome,

P = 0.001, obs/exp = 1.286) and neither enrichment nor

depletion for those who are 60 or over (92 regions, 35.51% of

the genome, P = 0.044, obs/exp = 0.921). Hence, the enrich-

ment of UCEs in the Forsberg 2012 [64] dataset is unlikely to be

explained simply by the age of the subjects. Instead, our

observations may reflect technical differences, such as sample

selection and size, tissue-specificity of the mechanisms underlying

depletion or enrichment of UCEs in CNVs, or the possibility of

some somaticCNVs representing tissues that are diseased, even if

not diagnosed. Alternatively, a lack of depletion of UCEs from

individual somaticCNV datasets may reflect the fact that
somaticCNVs are very young and, perhaps also that they have

not experienced passage through the germline, which may

underlie and even be required for the more consistent depletion,

and generally lower obs/exp ratios, observed with classicalCNVs

(this study, [2,25,39]).

Figure 2. Partial correlation analyses. The positive correlation between the positions of UCEs and cancerCNAs (first row) and the negative
correlation between the positions of UCEs and classicalCNVs (second row) remain even after accounting for the correlation between the positions of
UCEs and the genomic features listed across the top. P-values correspond to analyses in which the genome was divided into 50 kb windows and then
assessed for the number of base pairs encompassed by the various genetic features within each window. Analyses using 10 kb and 100 kb bins also
produced significant values across the board.
doi:10.1371/journal.pgen.1004646.g002
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iPS cells can establish UCE depletion from CNVs in
culture

The depletion of UCEs from the pooled somaticCNV dataset

suggests that disrupting the dosage of UCEs may induce a fitness

cost at the level of the individual somatic cell. Thus, we asked

whether a signal consistent with selection of CNVs can be detected

in cell culture. For example, although not proof of selection, lack of

depletion at early time points giving way to significant depletion at

later time points would be consistent with a selective loss of CNVs

overlapping UCEs. To this end, we turned to iPS cell lines and

examined their CNV profiles over time. To provide our analyses

of different cell lines with a common starting point, we considered

only those CNVs in iPS cells that were not detected in their

matched parental cells, calling this subset iPSCNVs (Fig. 1E). As

we were interested in following the fate, rather than origin, of

CNVs, we considered CNVs that arose de novo during cell growth

in culture or as a result of the protocol for generating iPS cells [97–

102] and those that were present in the parental cells at levels

below the limit of detection [103–106] as equally relevant.

We required all studies to have genome-wide CNV profiles for

iPS cell lines at multiple time points, or passage numbers, together

with profiles for the matched parental cell line(s) from which the

iPS cells were derived, and two studies satisfied our criteria:

Hussein et al. [100] and Laurent et al. [98]. In the case of Hussein

et al. [100], the dataset we assembled (Materials and methods)

consisted of CNVs from 22 human iPS cell lines produced from 3

parental fibroblast lines, while for Laurent et al. [98] we assembled

data for CNVs representing 36 iPS cell lines derived from 6

parental cell lines of various cell types. So that we could assay

CNV profiles over time in cell populations, we pooled the
iPSCNVs from Hussein et al. [100] and Laurent et al. [98] into

three categories, representing low, medium, and high passage,

ensuring that the genome coverage of each category was

sufficiently large for analysis. The low passage category represents

cells from passages 4 and 5 (935 regions, 1.30% of the genome),

the medium passage category covers passages 6 through 11 (1,071

regions, 2.39% of the genome), and the high passage category

corresponds to passages 12 through 36 (300 regions, 1.63% of the

genome) (Table S1). We also considered the Hussein et al. [100]

and Laurent et al. [98] studies individually, seeking datasets

corresponding to the passage numbers of the pooled datasets and

yet still sufficiently large (Table S3) for our analyses; Hussein et al.
[100] yielded low, medium, and high passage CNV datasets, and

Laurent et al. [98] produced a high passage dataset (Table S1).

Intriguingly, we found that, while the pooled iPSCNVs of low

passage cells are not depleted for UCEs (P = 0.387, obs/exp =

1.089), those of medium passage iPS cells trend towards depletion

(P = 0.032, obs/exp = 0.605), while those of late passage iPS cells

give a clear signal of depletion (P = 0.005 obs/exp =

0.327; Table 3 and Table S4 section D). As expected, given that

the bulk of the pooled iPSCNV data come from Hussein et al.
[100] (Table S1), the results of our analysis of the Hussein et al.
iPSCNVs, alone, followed that of the pooled iPSCNVs: Hussein

2011 low passage iPSCNVs are not depleted for UCEs (P = 0.433,

obs/exp = 0.948), while Hussein 2011 medium passage iPSCNVs

trend towards depletion (P = 0.077, obs/exp = 0.660), and

Hussein 2011 late passage iPSCNVs show significant depletion

(P = 0.010, obs/exp = 0.107; Table 3 and Table S4 section D).

Although the Laurent 2011 high passage iPSCNV analysis did not

return expected overlaps that were normally distributed, preclud-

ing a P-value for depletion, this dataset nevertheless shows a low

obs/exp ratio (obs/exp = 0.544, Table 3 and Table S4 section D).

While the replication of our studies awaits the availability of

additional iPSCNV datasets of sufficient coverage and spanning

considerable time frames, our findings thus far show that the CNV

profiles of newly generated iPS cells can, at least under some

circumstances, become depleted for UCEs over time. These

observations are consistent with UCE-disrupting CNVs being

under negative selection during iPS cell passage, with cells

containing them being lost or out-competed over time. As such,

they may explain why some CNVs may be selectively disfavored,

even though they may not affect gene expression in the iPS cells

[107]. How our observations interface with other studies

documenting changes in CNV profiles over time in cell culture

is difficult to assess, as these other studies represent a diversity of

strategies for CNV analysis and differ among themselves in terms

of the extent and direction of the changes in CNV abundance

[97,98,100,101,103]. Furthermore, while our studies were focused

on the overlap between CNVs and UCEs, these other studies were

focused on the abundance, per se, of CNVs, which may not

necessarily be correlated with depletion of UCEs. Nevertheless,

our data indicate that depletion of UCEs from CNVs could occur

without benefit of passage through the germline, suggesting that

the mechanisms underlying depletion of UCEs from CNVs may

be amenable to analysis in the laboratory.

Discussion

In this study we provide evidence suggesting that a UCE-

depleted CNV profile can be established in mitotically dividing

cells without germline transmission. This finding, obtained with

iPS cells, is consistent with our observation that, like classicalCNVs,
de novuCNVs and somaticCNVs representing healthy individuals are

depleted for UCEs as well. Drawing these findings together, we

suggest that healthy human cell populations may be able to rapidly

purge themselves of copy number variant regions involving UCEs.

While this purging could involve the repair of CNVs, we find this

unlikely, and instead favor the selective loss of cells containing

CNVs that disrupt UCEs, such that the CNV profile of the

remaining population of cells is depleted of UCEs.

In striking contrast to the situation in healthy cells, the CNVs of

cancer cells are by and large not depleted of UCEs. This suggests

an important and hitherto overlooked aspect of cancer genetics

and invites the study of UCE depletion from CNVs into the realm

of diseases that develop somatically, of which cancer is just one.

Some diseased states may release cells from the dosage constraints

of UCEs or even confer cellular advantages that outweigh the

deleterious consequences of an imbalance of UCEs. Alternatively,

release from the dosage constraints of UCEs may be a prerequisite

or permissive step en route to disease. Our findings also highlight

the possibility that some diseases associated with genomic

instability involve instead, or in addition, a simple inability to

cull away the normal burden of deleterious CNVs arising at a

frequency that is not different from that found in healthy cells. In

any case, lack of depletion of UCEs from a CNV dataset suggests

that the cells contributing to the dataset may not represent the

healthy state, having escaped the possible deleterious consequenc-

es of deleting or duplicating UCEs either because the mechanisms

effecting such consequences were no longer in play or because the

cells had acquired a means by which to circumvent them. With

respect to cancerCNAs, it may be that they arise when the

mechanisms producing deleterious consequences are disabled or

circumvented, their positions potentially influenced by the density

of genes with either pro- or anti-proliferative functions [108,109].

That cancerCNV datasets can show an overall enrichment for

UCEs is intriguing, especially since enrichment of UCEs in CNVs

associated with disease has been observed in neurodevelopmental

disorders [41]. In the case of cancer, it is unclear whether the
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enrichment we observe is on a continuum with loss of depletion or

represents a subsequent or completely separate process. For

example, release from the dosage constraints of UCEs may enable

cancerous cells to benefit from growth advantages brought about

by deletions or duplications of UCE-containing regions [45–

50,110]. This explanation is consistent with the observation that

some transcribed UCEs can act as oncogenes [42,47] or tumor

suppressors [45] or, in the case of one UCE, intercellular signaling

molecules within hepatocellular cancer [111]. An enrichment of

UCEs in cancerCNVs could also be explained if UCE dosage were

directly or indirectly implicated in cell cycle control. Here, we

presume that cellular detection of UCE dosage is coordinated with

the cell cycle, since a cell doubles its ploidy as it traverses S-phase,

and S-phase, itself, imposes a dosage imbalance that sweeps across

the genome. As such, S-phase induced imbalances of UCEs could

be used by a replicating cell to confirm that it is in S-phase and

must continue to replicate its genome. If so, cells for which UCE

dosage has been disrupted and, as suggested above, have also

circumvented the deleterious consequences of aberrant UCE

dosage, might be predisposed to continuously undergo replication

and, hence, progress unrestrained through cell cycles. Of these,

cells that are the most disrupted in UCE dosage, in other words

enriched for the inclusion of UCEs in their CNVs, might be

expected to show the strongest phenotype of unregulated growth

and thus become cancerous.

The enrichment of UCEs in many cancerCNA datasets may at

first be difficult to reconcile with the depletion of UCEs from
classicalCNVs, de novuCNVs, somaticCNVs, and iPSCNVs; while

cancer cells with abnormal UCE copy number appear unaffected

or even advantaged, cells with abnormal UCE copy number may

be disadvantaged in healthy individuals, this difference implying

opposite impacts on proliferation, senescence, or apoptosis.

Similarly, the mutational profiles of cancer cells may bias CNVs

toward forming in the vicinity of UCEs, possibly conferring

selective advantage, whereas the profiles of healthy cells may avoid

such disruptions.

Whether the difference in UCE disruption by CNVs in cancer

versus healthy cells is due to differences in mutational profiles,

selective retention/loss of UCE-disrupting CNVs, or a combina-

tion of both, the dichotomy of CNV profiles with respect to UCEs

between healthy and cancerous cells warrants further discussion.

One explanation argues that even though cancer cells with

disrupted UCE dosage may acquire a growth advantage, their

presence is detrimental to the overall fitness of the individual.

Hence, disruptions in UCE copy number such as those seen in

cancer would not be predicted to endure in human populations,

consistent with the UCE-depleted profile of classicalCNVs. The

same argument cannot, however, be applied to de novuCNVs,
somaticCNVs, or iPSCNVs, because unlike classicalCNVs, these three

categories of CNVs have not been subjected to selection at the

level of the population. As such, the UCEs that are enriched in
cancerCNAs may differ from those that are depleted from
de novuCNVs, somaticCNVs, or iPSCNVs. This possibility can be

further investigated when more de novuCNVs, somaticCNV, and
iPSCNV datasets become available.

Comparison of the locations, sizes, and sequences of UCEs,

their potential differential inclusion in duplications or deletions,

and other structural features may ultimately shed light on the basis

for the enrichment of UCEs in some CNV datasets and the

depletion of UCEs from others. As importantly, it may elucidate

how loss or gain of a UCE could be sensed by the healthy cell and

then translated into a deleterious consequence. At present, we

favor a mechanism wherein the maternal and paternal copies of a

UCE compare their sequences, possibly through pairing, because,

by hypothesizing that any discrepancy between the homologs

would trigger deleterious outcomes, this model offers an explana-

tion for ultraconservation itself [2,25,27]. Such a pairing-based

mechanism would contribute to genome integrity with respect to

dosage and is compatible with the viability of mice that are

homozygous for the loss of a UCE [112] (further discussion of

heterozygous UCE deletions is presented in Chiang et al. [25]).

Requirements for sensing and maintaining dosage in the genome

are well studied (for examples, see [52–55]), and responses to

dosage imbalances, flagged by improperly paired UCEs, could

range from a growth disadvantage among cells to loss of

individuals from a population through disease and, at the

molecular level, from metabolic disruptions to deleterious muta-

tional and epimutational changes. Intriguingly, mutation within

and in the vicinity of UCEs that are no longer well paired with a

homolog may predict that ultraconserved chromosomal regions

might be enriched in de novo mutations. Such a prediction is

aligned with an intriguing observation, wherein conserved

sequences appear to occupy the more mutable parts of the human

genome, at least with regards to de novo mutations ([113,114], see

also [115]). In particular, heterozygosity for a CNV that deletes or

duplicates a UCE could enhance local rates of de novo mutation

due to disruption of pairing and, if such mutations confer a

selective disadvantage, they will be lost from the population, thus

increasing mutation rates in the short term while promoting

conservation of UCE sequence and dosage over longer time

frames. It is also possible that, if the unpaired status of a UCE

persists for an extended period of time, de novo mutations may not

all be removed by selection and perhaps even accumulate. In such

a situation, the DNA sequence of the UCE could decay, in which

case the deleterious response to disrupted pairing (loss of fitness,

e.g., disease and infertility) would vanish, explaining how UCEs

can be lost, albeit rarely [40]. UCEs could also be disabled

through epigenetic modification without disruption of UCE

sequence. Here, too, the resultant lack of constraint on a UCE

could lead to the decay of its sequence.

Finally, our results also demonstrate that the depletion of UCEs

from CNVs may be tractable to analysis in cell culture; whereas

studies of UCEs have generally been conducted in the context of

many human generations or evolutionary timescales, our findings

demonstrate that depletion of UCEs from CNVs and possibly

ultra-conservation, itself, are amenable to analyses spanning just a

few cell generations (Fig. 3). Excitingly, understanding the relative

contributions of CNV formation and selection pressure to UCE

depletion in healthy cells and loss of that depletion in cancer cells

should help reveal how cancer cells differ from healthy cells and,

perhaps, how we may mitigate cancer phenotypes by inducing

cancer cells to more closely resemble healthy cells. Indeed, if we

understand the mechanisms by which UCE depletion is

established in healthy cells, be it through selection against UCE-

disrupting CNVs or otherwise, such mechanisms could be

harnessed to purge a diseased tissue or individual of diseased

cells, while leaving untouched cells whose CNV profiles do not

disrupt UCEs. Such a strategy could prove even more powerful

should UCEs embody a mechanism, perhaps through pairing, by

which cells assess all types of genome rearrangements, distinguish-

ing the deleterious from the benign or even beneficial.

Materials and Methods

UCE identification
Two new sets of ultraconserved elements were defined in this

study: one between the reference genomes of cow, dog, and horse

(builds: bosTau6, canFam2, and equCab2) and the other between
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the reference genomes of dog, mouse, and rat (builds: canFam2,

mm9, and rn4). We also identified UCEs between human, mouse,

and rat (builds: hg18, mm9, rn4), which are very similar to the

UCEs identified in 2004 [1], although earlier builds were used to

identify UCEs in that study. Pairwise alignments were found

between each possible pair of genomes within the set of three, and

elements with 100% basepair identity that were $200 bp in length

were selected. We then mapped these regions to the hg18 human

genome by BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat), fil-

tering out matches in the human genome that differed in length by

more than 3 bp and were not unambiguously unique in the

human genome. The hg18 orthologs of our new UCE sets were

then used in our analyses. Coordinates for all UCEs are available

in Table S2.

Classifying UCEs as intergenic, intronic, or

exonic. UCEs were classified as intergenic, intronic, or exonic

using the UCSC Known Genes track for hg18. If a UCE

overlapped neither exons nor introns, it was designated intergenic.

If a UCE did not overlap an exon but did overlap an intron by

1 bp or more, it was designated intronic. If a UCE overlapped an

exon by 1 bp or more, it was designated exonic.

Dataset acquisition and filtering
Table S1 provides detailed information for all CNV datasets,

including the number of affected regions, median size of CNVs,

genome coverage, discovery and validation platforms used, number

of subjects, and coordinates. When necessary, coordinates were

mapped to the hg18 genome build using the liftover utility provided

by UCSC (http://genome.ucsc.edu/cgi-bin/hgLiftOver). In each

CNV dataset, overlapping regions were collapsed to avoid counting

the same region multiple times, leading to a final list of regions for

each CNV dataset that may differ from the original set reported in

the relevant publication. Additional information for the various

CNV datasets can be found below.
classicalCNV datasets. Eight classicalCNV datasets were ob-

tained from Jakobsson et al. [61], McCarroll et al. [62], Matsuzaki

et al. [56], Shaikh et al. [57], Conrad et al. [39], Drmanac et al.
[58], Durbin et al. [59], and Campbell et al. [60].

de nov
6CNV datasets. Four de novuCNV datasets were

obtained from Xu et al. [69], Itsara et al. [70], Malhotra et al.
[71], and Sanders et al. [72]. The identification of de novuCNVs is

exceptionally vulnerable to errors, because each de novuCNV

requires two negative results (the CNV is not detected in either

parent). For example, if a CNV is missed in the parents, but is

correctly detected in a child, it will be incorrectly designated a
de novuCNV. Additionally, the use of cell lines to detect
de novuCNVs may produce artifacts, as CNVs may arise de novo
within a cell line [70,116,117]. For these reasons, we only studied a
de novuCNV if it had been identified using DNA obtained directly

from primary tissue and independently verified.
cancerCNA datasets. Seventeen cancerCNA datasets were

obtained from TCGARN et al. [76], Walter et al. [77], Beroukhim

et al. [73], Bullinger et al. [78], Taylor et al. [79], TCGARN et al.
[80], Curtis et al. [81], TCGARN et al. [82], TCGARN et al.
[83], TCGARN et al. [84], Nik-Zainal et al. [85], Robinson et al.
[86], Walker et al. [87], Zhang et al. [88], Holmfeldt et al. [89],

TCGARN et al. [90], and Weischenfeldt et al. [91]. All data were

filtered to remove any cancerCNA longer than 50% of the length of

the chromosome arm on which it resides. This was done to remove
cancerCNAs that result from losses of whole chromosomes or

chromosome arms, events that we consider distinct from the

smaller deletions and duplications considered in the present study.

We only considered recurrent cancerCNAs, as they were more

likely to be important for cancer causation or progression. In cases

where published datasets had already been filtered for recurrent

CNAs, we listed the algorithm used in Table S1. We did not

further filter these datasets. The datasets of Bullinger et al. [78],

Nik-Zainal et al. [85], Robinson et al. [86], Walker et al. [87],

Holmfeldt et al. [89], and Weichenfeldt et al. [91] had not been

pre-filtered for recurrent variants, and so, for these, we selected

only cancerCNA regions that were present more than once in the

dataset. All these datasets except for that of Walker 2012 [87] were

included in the pooled cancerCNA dataset. The dataset of Walker

2012 [87] was omitted because its recurrent cancerCNA regions

covered 94% of the human genome, and we were concerned that

this level of coverage would be overbearing.
somaticCNV datasets. Six somaticCNVs were obtained from

Piotrowski et al. [63], Forsberg et al. [64], Jacobs et al. [65], Laurie

et al. [66], O’Huallachain et al. [67], and McConnell et al. [68].

So as not to confound the analysis of somaticCNVs with cancerCNAs,

all somaticCNV datasets were also filtered to remove any

representing individuals where a cancer-affected tissue is used to

call somaticCNVs. This affected two studies, Jacobs et al. [65] and

Laurie et al. [66]. For Jacobs et al. [65], the excluded regions were

from 16 patients with AML (Acute Myeloid Leukemia), CLL

(Chronic Lymphocytic Leukemia), CML (Chronic Myelogenous

Leukemia) or NHL (Non-Hodgkin Lymphoma) and from whom

blood was used for somaticCNV discovery. For Laurie et al. [66],

the excluded regions were from 7 patients with ‘prior heamato-

logical cancer’ and from whom blood was used for somaticCNVs

discovery.
iPSCNV datasets. iPSCNVs were obtained from Hussein et al.

[100] and Laurent et al. [98]. All datasets were culled of CNVs

that were also discovered in the corresponding parental cells used

to produce the iPS cells. The datasets were pooled into low passage

(4 and 5), medium passage (6 through 11), and high passage (12

through 36) categories, with passage numbers chosen to ensure

each category was sufficiently large for our analysis.

microRNAs. Since the human microRNA genomic positions

were obtained with respect to genome build hg19 from ftp://

mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3, they

were converted to hg18 using UCSC’s liftover feature (http://

genome.ucsc.edu/cgi-bin/hgLiftOver). For all analyses, we used

the genomic positions of the microRNA precursor sequences,

which defined regions that are larger in bp than the genomic

regions producing the processed microRNAs.

Determining depletion from or enrichment of UCEs in
genomic regions of interest

Tests for depletion of UCEs from, or enrichment of UCEs in,

genomic regions such as CNVs, were conducted as described in

Results and our previous publications [2,25]. We compared the

observed amount of overlap in base pairs between a set of CNVs

and a set of UCEs to the expected overlap, as determined by a

randomly placed set of elements matched to UCEs in terms of

element number and length. In particular, the elements of the

matched set were placed randomly on the genome 1,000 times,

and the overlap between the random elements and CNVs was

calculated each time, thus producing a distribution of the

randomly generated expected overlaps. To provide a measure-

ment of the difference between the distribution of expected

overlaps and the observed overlap, we reported the proportion of

expected overlaps that were equal to, or more extreme than, the

observed overlap. The distribution of expected overlaps was

assessed for normality using the Kolomogorov-Smirnov (KS) test,

and the associated KS P-value is included in all supplementary

tables. Whenever the expected overlaps exhibited a normal

distribution, they were compared to the observed overlap using

Ultraconserved Element Dosage in Healthy and Cancer Cells

PLOS Genetics | www.plosgenetics.org 12 October 2014 | Volume 10 | Issue 10 | e1004646

http://genome.ucsc.edu/cgi-bin/hgBlat
http://genome.ucsc.edu/cgi-bin/hgLiftOver
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver


a Z-test, wherein a significant result, together with a ratio of

observed overlap to mean expected overlap (obs/exp) falling below

1.0 indicated significant depletion; a significant Z-test result and an

obs/exp ratio above 1.0 indicated significant enrichment. In cases

where normality was not observed, we noted this in the text and

reported only the obs/exp ratio and the proportion of expected

overlaps that were equal to, or more extreme than, the observed

overlap. In analyses in which UCEs were segregated into exonic,

intronic, and intergenic categories, random elements were drawn

solely from the exonic, intronic, or intergenic portions of the

genome.

Analysis of the number of times each UCE is overlapped
by the individual cancerCNA datasets

We determined the total number of cancerCNA datasets

overlapping each of the 896 HMR-HDM-HC UCEs and report

this in Table S5. For exonic and intronic UCEs, we reported the

gene that contains the element. In the case of a UCE that

overlapped multiple genes, both genes were recorded. The list of

transcripts was obtained from the UCSC Known Genes track.

Gene ontogeny
The tool GREAT (http://bejerano.stanford.edu/great/public/

html/) was used with background set to the whole genome.

Partial correlations
Data for genomic features of interest were obtained from the

following sources: UCSC genes – UCSC known genes track build

hg18; Enhancer regions – ENCODE combined genome segmen-

tation from the ENCODE UCSC hub [95] ‘E’ (enhancer) class

genomic regions for six ENCODE cell/tissue types; microRNAs –

miRBase [118]; GC content – UCSC genome browser; replication

timing – [96].

Analyses were performed over 10 kb, 50 kb, and 100 kb

windows. Results were similar for all bin sizes, with no changes

in significance for classicalCNVs or cancerCNAs. Only the results for

50 kb bins are shown in Figure 2. Positional data were converted

to a density measurement by summing the number of bases in a

window covered by the feature of interest (e.g. UCE, CNV),

divided by the number of sequenced bases in the hg18 human

genome within the same window. Partial correlations were

performed using Matlab partialcorr function.

Genome coordinates
All coordinates listed in this study are with reference to human

genome build hg18. All start coordinates are 1-based.

Scripts
All scripts for this study are written in Python and are available

at https://github.com/rmccole/Abnormal_dosage_UCEs.

Supporting Information

Figure S1 Intersections of the CoDHo, DMR, and HMR

datasets of UCEs. We defined two new datasets of UCEs without

reference to the human genome, and compared them to a dataset

of UCEs identified using human, mouse, and rat [1]. These

datasets, CoDHo and DMR, show considerable overlap with each

other and the HMR dataset. Details on the build used to identify

UCEs are given in the Methods. All intersections are given in bp.

(PDF)

Table S1 CNV datasets. (A) Information on datasets. Subse-

quent tabs: The coordinates for each set of regions listed in (A) are

contained in a tab, with the dataset name corresponding to the tab

title.

(XLS)

Figure 3. Timescales through which different types of genomic variation have been present and their relationships to UCEs.
doi:10.1371/journal.pgen.1004646.g003
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Table S2 Depletion of UCEs from classicalCNVs is maintained in

UCE datasets defined using different species. (A) Depletion

analysis of UCEs representing the union of Human-Mouse-Rat

(HMR), Human-Dog-Mouse (HDM), and Human–Chicken (HC)

UCEs, as in Derti et al. [2], from classicalCNV datasets. (B)

Depletion analysis of UCEs defined using the dog, mouse, and rat

reference genomes from all classicalCNV datasets. (C) Depletion

analysis of UCEs defined using the cow, dog, and horse reference

genomes from all classicalCNV datasets. (D) Depletion analysis of

UCEs defined using the human, mouse, and rat reference

genomes from all classicalCNV datasets. (E) UCE coordinates:

Coordinates in hg18 for UCE datasets.

(XLS)

Table S3 Investigation of the robustness of depletion and

enrichment analyses to the genome coverage and median size of

CNV datasets. A: Establishment of a lower limit for genome

coverage for depletion and enrichment analyses. We were

concerned that the small genome coverage of some CNV datasets

would make the datasets inappropriate for our analyses, even

though we had observed significant depletion of UCEs from

datasets with as little as 26 Mb of genome coverage. To further

explore the impact of genome coverage, we ‘shrank’ classicalCNV

datasets by iteratively removing bases from each end of every

CNV region to produce datasets with increasingly smaller CNVs

and genome coverage and then assessed the modified dataset for

depletion of UCEs. These tables show the effect of decreasing

median CNV size and overall genome coverage (bp) of the

Jakobsson 2008 [61] and Campbell 2011 [60] classicalCNV

datasets, both of which show depletion for UCEs. Significance of

depletion (P = 0.034, obs/exp = 0.369) was retained for the

Jakobsson 2008 dataset even when genome coverage was reduced

to 30 Mb. However, under 20Mb, the expected overlaps were no

longer normally distributed. With the Campbell 2011 dataset,

depletion was maintained with all levels of genome coverage, the

lowest tested being as little as 10 Mb (P = 0.042, obs/exp = 0.000).

Similarly to the Jakobsson 2008 dataset, the expected overlaps for

the Campbell 2011 dataset were not consistently normally

distributed when genome coverage was 20 Mb or less. Taking

all these observations into account, we chose 20 Mb as the lower

limit of genome coverage for our analyses. We also pooled CNV

datasets together to achieve larger datasets, in which we would

have more confidence. B: Analysis of enlarged classicalCNV datasets

for UCE depletion. Reproduced from Results. Importantly, large

genome coverage and CNA size are unlikely to explain

enrichment or loss of depletion of UCEs in cancerCNA datasets,

and three findings support this statement. First, the broad range of

genome coverage for cancerCNA datasets showing enrichment or

loss of depletion (from 90.15% for Walker 2012 cancerCNAs to

3.86% for TCGARN 2012 colon cancerCNAs) overlaps that for

datasets that are depleted of UCEs (from 51.37% for pooled

classicalCNVs to 0.83% for Campbell 2011 classicalCNVs), arguing

that genome coverage alone cannot easily account for our

observations of enrichment or depletion (Tables 2 and 3, S1, S2,

and S4). Second, depletion is maintained when the boundaries of

each CNV of the Jakobsson 2008 classicalCNV and Campbell 2011
classicalCNV datasets are extended on each side by 4.0 and 2.5 Mb

to genome coverages of 85.16% and 74.73%, respectively (P

= 0.007, obs/exp = 0.968 and P = 0.003, obs/exp = 0.952,

respectively), such that the genome coverages of these enlarged

datasets approach or exceed the genome coverages of the two

largest cancerCNA datasets (90.15% for Walker 2012 cancerCNAs

and 63.81% for pooled cancerCNAs), once again indicating that

high genome coverage does not produce false signals of

enrichment or loss of depletion (Tables S1 and S3 section B).

We note, however, that as the genome coverage of the Walker

2012 cancerCNA dataset is extremely high and exceeds the genome

coverage of the enlarged classicalCNV datasets, we cannot rule out

some contribution of genome coverage to the enrichment of this

specific dataset. Third, these analyses also reveal that depletion is

maintained even when the median length of enlarged CNVs

(3.485 Mb and 8.379 Mb for Jakobsson 2008 classicalCNVs and

Campbell 2011 classicalCNVs, respectively) exceeds the largest

median CNA size for any enriched cancerCNA dataset in question

(3.183 Mb for TCGARN 2012 squamous cancerCNAs), demon-

strating that observations of UCE enrichment are unlikely to be

explained simply by median CNA size (Tables S1 and S3 section

B).

(XLS)

Table S4 Analyses of all (A) de novuCNVs, (B) cancerCNAs, (C)
somaticCNVs, and (D) iPSCNVs.

(XLS)

Table S5 Analysis of the number of times each UCE is

overlapped by the individual cancerCNA datasets.

(XLS)
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