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Colloidal capsules can sustain an external osmotic pressure; however, for a sufficiently large pres-
sure, they will ultimately buckle. This process can be strongly influenced by structural inhomo-
geneities in the capsule shells. We explore how the time delay before the onset of buckling decreases
as the shells are made more inhomogeneous; this behavior can be quantitatively understood by
coupling shell theory with Darcy’s law. In addition, we show that the shell inhomogeneity can
dramatically change the folding pathway taken by a capsule after it buckles.

PACS numbers: 46.32.+x,46.70.De, 47.55.D-,47.56.+r,47.57.J-,62.20.mq,

Many important natural or technological situations re-
quire understanding thin, spherical shells; examples in-
clude colloidal capsules for chemical encapsulation and
release [1–3], biological cells [4, 5], pollen grains [6], sub-
mersibles [7], chemical storage tanks [8], nuclear contain-
ment shells [8], and even the earth’s crust [9]. In many
cases, the utility of such a shell critically depends on its
response to an externally-imposed pressure. For small
pressures, a homogeneous, spherical shell, characterized
by a uniform thickness, supports a compressive stress,
and it shrinks isotropically. Above a threshold pres-
sure, however, this shrinkage becomes energetically pro-
hibitive; instead, the shell buckles, reducing its volume
by forming a localized indentation at a random position
on its surface. For the case of a homogeneous shell, this
threshold pressure can be calculated using a linearized
analysis of shell theory [10, 11], while the exact morphol-
ogy of the shell after it buckles requires a full nonlin-
ear analysis [12–14]. However, many shells are inhomo-
geneous, characterized by spatially-varying thicknesses
and elastic constants [6, 15–18]. Such inhomogeneities
can strongly influence how a shell buckles [6, 10, 19, 21–
24]. Unfortunately, despite its common occurrence in real
shells, exactly how inhomogeneity influences the onset of
buckling, as well as the shell morphology after buckling,
remains to be elucidated. A deeper understanding re-
quires careful investigations of the buckling of spherical
shells with tunable, well-defined, inhomogeneities.

In this Letter, we use a combination of experiments,
theory, and simulation to study the buckling of spheri-
cal colloidal capsules with inhomogeneous shells of non-
uniform thicknesses. We show that the onset of buckling,
above a threshold external osmotic pressure, is well de-
scribed by shell theory; however, even above this thresh-
old, the capsules do not buckle immediately. We find that
the time delay before the onset of buckling decreases as
the shells are made more inhomogeneous; these dynamics
can be quantitatively understood by coupling shell the-
ory with Darcy’s law for flow through a porous capsule
shell, even for highly inhomogeneous shells. Moreover,

we find that the shell inhomogeneity guides the folding
pathway taken by a capsule during and after buckling.
We use these insights to controllably create novel col-
loidal structures using buckling.

We fabricate monodisperse thin-shelled capsules us-
ing water-in-oil-in-water (W/O/W) droplets prepared by
microfluidics [25, 26]. The inner and outer phases are
a 10 wt % solution of polyvinyl alcohol (PVA) of vis-
cosity µ = 13.5 mPa-s, as measured using a strain-
controlled rheometer, while the middle oil phase is a
photo-polymerizable monomer solution. The PVA so-
lution is less dense than the oil; as a result, after the
droplets are produced and collected, the light inner wa-
ter droplets gradually rise within them. This causes the
oil to gradually thin on the top side of each droplet and
thicken on the bottom [27]. We exploit this effect to pre-
pare capsules, with outer radiusR0, and spatially-varying
shell thickness h(θ) ≈ h0− δcosθ; θ is measured from the
top of the gravitationally-oriented shell, h0 is the average
shell thickness, and δ is the total distance moved by the
inner droplet, as shown schematically in Fig. 1(a). The
shell inhomogeneity can thus be quantified by the ratio
δ/h0. We use UV light to polymerize the oil either as the
capsules are produced in situ, or after different average
waiting times, tw [28]; this enables us to prepare sepa-
rate batches of capsules characterized by varying degrees
of shell inhomogeneity [29, 30]. Some capsules are subse-
quently washed in de-ionized water. The shell is a solid
characterized by a Young’s modulus E ≈ 600 MPa [31];
importantly, while this shell is impermeable to Na+ and
Cl− ions, it is permeable to water [32].

To probe their mechanical response, we subject in-
homogeneous capsules, characterized by tw = 1 min,
δ/h0 ≈ 0.2 and h0/R0 = 0.017, to an external os-
motic pressure by injecting and gently mixing 20µL of
the capsule suspension into a fixed volume of NaCl so-
lution, VNaCl ≈ 130 − 400 µL. We investigate the pres-
sure dependence of buckling using NaCl concentrations
in the range 0.063-2.165 M. Estimating the total volume
of the injected capsules using optical microscopy allows

ar
X

iv
:1

20
9.

07
58

v2
  [

co
nd

-m
at

.s
of

t]
  6

 S
ep

 2
01

2



2

us to calculate the final NaCl concentration of the outer
phase, which then ranges from cNaCl = 0.055− 2.068 M.
These correspond to osmotic pressure differences across
the shell of Π = (2cNaCl + Πout − Πin) × NAkBT =
0.025 − 10.09 MPa, where NA is Avogadro’s constant,
kB is Boltzmann’s constant, T ≈ 300 K, and Πout and
Πin are the measured osmolarities of the fluids outside
and inside the capsules, respectively, in the absence of
NaCl. For each batch of capsules studied, we monitor an
average of 75 capsules over time using optical microscopy.

The osmotic pressure difference across these inhomoge-
neous shells forces the capsules to buckle; we observe the
abrupt formation of localized indentations in the shells,
as shown in Fig. 1(b). For each osmotic pressure in-
vestigated, the fraction of the capsules that buckle in-
creases over time, eventually plateauing, as shown in Fig.
1(c). We quantify this behavior by fitting this increase
to an empirical exponential relationship, exemplified by
the smooth lines in Fig. 1(c). The plateau value of this
function yields a measure of the total fraction of the cap-
sules that ultimately buckle over sufficiently long times,
while the time constant of this function yields a measure
of the time delay before the onset of buckling, τ . For suf-
ficiently large Π, the total fraction of the capsules that
ultimately buckle increases dramatically with increasing
Π, as shown by the grey circles in Fig. 1(d); this indicates
that the capsules buckle above a threshold pressure, Π∗

[33]. We empirically fit these data using the cumulative
distribution function of a normal distribution, shown by
the black line in Fig. 1(d); the mean value and standard
deviation of this fit yield a measure of Π∗ and the spread
in Π∗, respectively.

We study the geometry dependence of Π∗ by per-
forming additional measurements on inhomogeneous cap-
sules, polymerized in situ, with different shell thick-
nesses and radii; these are characterized by δ/h0 ≈ 0.2,
and h0/R0 = 0.019 or h0/R0 = 0.1. Similar to the
h0/R0 = 0.017 case, for sufficiently large Π, the total
fraction of the capsules that ultimately buckle increases
dramatically with increasing Π, as shown by the red tri-
angles and blue squares in Fig. 1(d). Interestingly, we
find that the threshold buckling pressure Π∗ ∼ (h0/R0)2

[Fig. 1(d), inset]; this observation is reminiscent of the
prediction of shell theory for the buckling of a uniform
shell [11], despite the fact that our capsules are inho-
mogeneous. To understand this behavior, we consider
the local deformability of an inhomogeneous shell at var-
ious points on its surface. Because the 2D stretching and
bending stiffnesses scale as ∼ h and ∼ h3 [34], respec-
tively, the thinnest part of the shell, where h ≈ h0 − δ,
should be the easiest to deform. We directly visualize
that buckling begins at this “weak spot” using confocal
microscopy of inhomogeneous capsules with fluorescent
shells characterized by δ/h0 ≈ 0.84 [Fig. 1(b), lower
panel]. Consequently, we expect the onset of buckling
to be governed by deformations in this part of the shell.
To quantify this expectation, we apply shell theory to an
inhomogeneous shell characterized by the same geome-

FIG. 1: (a) Schematic showing the capsule geometry investi-
gated. (b) Upper: buckling of a capsule; scale bar is 20µm.
Lower: buckling begins at the thinnest part of the shell for
capsules with thickness inhomogeneity δ/h0 ≈ 0.84; scale bars
are 50µm. (c) Fraction of capsules buckled over time, for three
different osmotic pressures Π. Capsules have mean shell thick-
ness h0 = 1.2µm, outer radius R0 = 70µm, and δ/h0 = 0.20.
Smooth lines show exponential fits. (d) Total fraction of cap-
sules that ultimately buckle over time for varying Π, for cap-
sules with h0, R0, and δ/h0 = 1.2µm, 70µm, and 0.20 (grey
circles), 1.3µm, 67µm, and 0.23 (red triangles), and 5.5µm,
55µm, and 0.19 (blue squares). Smooth curves are fits to the
data using the cumulative distribution function of the normal
distribution. Inset shows mean osmotic pressure of each fit
versus h0/R0; vertical and horizontal error bars show stan-
dard deviation of each fit and estimated variation in h0/R0,
respectively. Straight line shows (h0/R0)2 scaling. (e) Time
delay before the onset of buckling, τ , normalized by h2

0, for
varying Π, for the same capsules as in (d). Filled points show
Π > Π∗ while open points show Π < Π∗. Vertical error
bars show uncertainty arising from estimated variation in h0.
Black line shows Π−1 scaling. (f) Time delay τ decreases with
the wait time before a shell is polymerized, tw; capsules have
h0 = 1.2µm and R0 = 70µm, and are buckled at Π ≈ 0.86
MPa > Π∗. Black line shows theoretical prediction coupling
shell theory and Darcy’s law, as described in the text, with
k ≈ 3.5 × 10−24 m2.

try as the experimental capsules [26]; this analysis yields

Π∗ = 2E√
3(1−ν2)

(
h0−δ
R0

)2
≈ 470(h0/R0)2 MPa, assum-

ing a Poisson ratio ν ≈ 1/3. The dependence of Π∗ on
h0− δ confirms our expectation that the threshold buck-
ling pressure is set by the thinnest part of the inhomoge-
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neous shell. Moreover, we find Π∗(R0/h0)2 ≈ 600 ± 200
MPa for the experimental capsules [solid line, Fig. 1(d)
inset], in good agreement with our theoretical prediction.
This indicates that the onset of capsule buckling is well
described by shell theory.

Within this framework, for Π > Π∗, a capsule remains
spherical before it buckles; it initially responds to the
applied pressure by contracting uniformly, reducing its
volume from its initial value, V0, by a threshold amount
∆V ∗, before buckling. We find that the time delay be-
fore the onset of buckling, τ , strongly decreases with in-
creasing osmotic pressure Π > Π∗, as shown by the filled
points in Fig. 1(e). We hypothesize that this behavior
reflects the dynamics of the fluid flow through the capsule
shell; for the capsule to buckle, a volume ∆V ∗ of fluid
must be ejected from its interior. The time delay can
then be estimated as τ = ∆V ∗/Q [35], where both ∆V ∗

and Q, the volumetric rate of fluid ejection from the cap-
sule interior, are functions of δ/h0. We calculate ∆V ∗ for
inhomogeneous shells using shell theory and validate the
calculations with numerical simulations; the fluid ejec-
tion rate Q follows from integrating Darcy’s law over the
surface of the capsule geometry shown in Fig. 1(a) [26].
Combining these results, we obtain

τ ≈ V0
Q0

√
3(1− ν)

1 + ν

h0
R0

(
1− δ

h0

)2

(1)

where Q0 ≡ 4πR2
0Πk/µh0 and k is the shell permeabil-

ity. For the inhomogeneous capsules, characterized by
δ/h0 ≈ 0.2, we thus expect τ/h20 ≈ 0.8µ/kΠ; our experi-
mental measurements of τ allow a direct test of this pre-
diction. Above Π∗, the data collapse when τ is rescaled
by h20, as shown by the filled points in Fig. 1(e), con-
sistent with our expectation; moreover, by fitting these
data [black line in Fig. 1(d)], we obtain an estimate for
the shell permeability, k ≈ 7 × 10−24 m2. We use opti-
cal microscopy to directly measure the rate at which the
capsule volume decreases immediately after the onset of
buckling [26]; this gives an independent measure of the
shell permeability. We find k ≈ 2 × 10−24 m2 [Fig. S8],
in good agreement with the fit shown in Fig. 1(e); this
further confirms the validity of Eq. 1.

To test the applicability of this picture to even more
inhomogeneous capsules, we measure τ for capsules poly-
merized at different tw; these have shells with h0/R0 =
0.017 and δ/h0 ranging from 0.2 up to 0.84. We impose a
fixed osmotic pressure Π ≈ 0.86 MPa > Π∗. We observe
that τ decreases only slightly with increasing tw < 103

s; however, as tw is increased above this value, τ drops
precipitously over one order of magnitude, as shown by
the points in Fig. 1(f). To quantitatively compare these
data to Eq. (1), we estimate the dependence of δ/h0 on
tw using lubrication theory; we validate this calculation
using direct measurements of δ/h0 for capsules prepared
at varying tw [26, 36]. Remarkably, we find good agree-
ment between our data and Eq. (1), with k ≈ 3.5×10−24

m2, as shown by the black line in Fig. 1(f); in particular,
this simple picture captures the strong decease in τ at

FIG. 2: Folding pathways for different shell inhomogeneities.
(a-c) Optical microscope images exemplifying buckling at
Π ≈ 0.86 MPa of (a) slightly inhomogeneous capsules poly-
merized in situ (tw ≈ 0), with δ/h0 ≈ 0.2, (b-c) very in-
homogeneous capsules polymerized after a wait time tw = 1
day, with δ/h0 ≈ 0.84. Very inhomogeneous capsules buckle
through the formation of either (b) one single indentation or
(c) two indentations. ∆t is time elapsed after buckling. Scale
bars are 35µm. (d-e) Examples of simulated shells with sim-
ilar geometries as the capsules shown in (a-c), for varying
fractional volume reduction ∆V/V0. Color scale indicates the
spatially-varying shell thickness.

tw ∼ 103s, with a shell permeability consistent with our
independent measurements [Fig. S8]. While these results
do not rule out other possible functional forms of τ , they
further suggest that the time delay before the onset of
buckling can be understood by combining shell theory
with Darcy’s law for flow through the capsule shell, even
for very inhomogeneous shells.

The shell thickness inhomogeneity may continue to
guide the development of deformations in a capsule af-
ter it buckles. To explore this possibility, we use opti-
cal microscopy to monitor the evolution of the capsule
morphologies after the onset of buckling. Slightly inho-
mogeneous capsules typically buckle through the sudden
formation of a single circular indentation. As this inden-
tation grows over time, its perimeter eventually sharpens
into straight ridges connected by 2-3 vertices [14, 19, 20];
this folding pathway is exemplified by capsules polymer-
ized in situ, characterized by δ/h0 ≈ 0.2, as shown in Fig.
2(a). This sharpening reflects the unique physics of thin
shells: because it is more difficult to compress the capsule
shell than it is to bend it, localizing compressive defor-
mations only along sharp lines and points on the capsule
surface requires less energy than uniformly compressing
the shell [37]. Interesting differences arise for very inho-
mogeneous capsules polymerized after tw = 1 day, char-
acterized by δ/h0 ≈ 0.84. The initial folding pathway
is similar; however, the perimeters of the indentations
formed in these capsules sharpen into straight ridges con-
nected by 4-5 vertices, more than in the slightly inhomo-
geneous case, as shown in Fig. 2(b). Moreover, surpris-
ingly, roughly 30% of the very inhomogeneous capsules
begin to buckle through the formation of one, then two,
adjacent indentations, as exemplified in Fig. 2(c). The
perimeters of these indentations grow over time, even-
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FIG. 3: Colloidal capsules with two or three spherical in-
terior compartments, schematized in left panels, buckle at
“weak spots” (arrows). This forms shapes with two or three
equally-spaced circular indentations after buckling (right pan-
els). Scale bars are 100µm.

tually meeting, coalescing, and sharpening into straight
ridges connected by 4-5 vertices [Fig. 2(c)]. These obser-
vations directly demonstrate that the deformations of a
capsule after it buckles are sensitive to the shell inhomo-
geneity.

To gain insight into this behavior, we perform numeri-
cal simulations of two different shells, a slightly inhomo-
geneous shell with δ/h0 = 0.20, and a very inhomoge-
neous shell with δ/h0 = 0.82, similar to the experimental
capsules. As the shell volume is reduced below V0−∆V ∗,
both shells buckle through the formation of a single in-
dentation centered at the thinnest part of the shell, as
shown in the leftmost panels of Fig. 2(d-e). As ∆V
increases, this indentation grows and its edges sharpen.
We find that the indentations formed in the very inhomo-
geneous shells begin to sharpen at smaller ∆V/V0, and
ultimately develop more vertices than those formed in
more homogeneous shells [Fig. 2(d-e)] [26]. These re-
sults qualitatively agree with our experimental observa-
tions [Fig. 2(a-c)], further confirming that after the onset
of buckling, the folding pathway of a shell depends on the
inhomogeneity. However, in contrast to the experimental
capsules [Fig. 2(c)], we do not systematically observe the
formation of adjacent indentations in the simulations on
very inhomogeneous shells [38]. This presents a puzzle
requiring further inquiry.

Our capsules may be used to guide colloidal self-

assembly; for example, a colloidal particle can sponta-
neously bind to the indentation formed during buckling
through a lock-and-key mechanism [39]. This mecha-
nism is typically applied to a homogeneous colloidal
particle, which buckles through the formation of a single
indentation at a random position on its surface. We
apply our findings to create multiply-indented capsules
having two-fold or three-fold symmetry. To do this, we
form double emulsions with two or three inner droplets
of radii larger than half the radius of the outer droplet.
Consequently, the inner droplets pack closely to form
dimers or trimers [40], as shown schematically in Fig.
3. The double emulsions are then polymerized, forming
solid capsules with two or three spherical compartments
in their interiors, and two or three equally-spaced “weak
spots” in the capsule shell [arrows in Fig. 3]. When
exposed to a sufficiently large osmotic pressure, these
capsules buckle through the formation of multiple,
equally-spaced indentations at the weak spots, as shown
in Fig. 3. This approach is thus a versatile way to create
capsules of desired symmetries, and extends the range
of structures that can be used for lock-and-key colloidal
assembly.
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PACS numbers:

I. MICROFLUIDIC FABRICATION OF
CAPSULES

To prepare monodisperse capsules, we use W/O/W
double-emulsion droplets made with two different types
of glass capillary microfluidic devices. To make cap-
sules with h0/R0 = 0.017, we use a device composed
of a hydrophobic tapered injection capillary (World Pre-
cision Instruments, Inc., 1B100-6), pre-treated with n-
octadecyltrimethoxyl silane (Aldrich), inserted in a sec-
ond square capillary (AIT glass) [1]; the inner diame-
ter of the square capillary and the outer diameter of
the injection capillary are both 1 mm. Furthermore,
a small tapered capillary is inserted into the injection
capillary to simultaneously inject two immiscible flu-
ids, as shown in Fig. S1(a). To confine the flow near
the injection tip and thereby increase the flow veloc-
ity, a hydrophilic circular capillary, pre-treated with
2-[methoxy(polyethyleneoxy)propyl] trimethoxyl silane
(Gelest, Inc.), is inserted into the square capillary at its
other end.

To make W/O/W double-emulsion droplets, we simul-
taneously introduce two immiscible phases, 10 wt% aque-
ous solution of poly (vinylalcohol) (PVA, Mw 13 000-
23 000) and ethoxylated trimethylolpropane triacrylate
(ETPTA) containing 0.2 wt% photoinitiator (2-hydroxy-
2-methylpropiophenone, Aldrich), through the injection
capillary at flow rates of 300 µL/h and 150 µL/h, respec-
tively. The aqueous solution is saturated with ETPTA
before injection to prevent diffusion of ETPTA molecules
through water. We use the same aqueous solution of
PVA as the continuous phase; this is injected through
the square capillary at the flow rate of 3000 µL/h. Be-
cause of the hydrophobic nature of the injection capillary,
the ETPTA flows along the inner surface of the injection
capillary; by contrast, the aqueous solution flows through
the center of the injection capillary as plug-like droplets
that do not contact the wall. These plug-like droplets are
emulsified at the tip of the injection capillary, resulting
in monodisperse double-emulsion droplets with an ultra-
thin middle layer as shown in Fig. S1(b). The ETPTA
formed between plug-like droplets produces large blobs at
the tip of the injection capillary; we separate these from
the double-emulsion droplets by exploiting their density
difference. We prepare thin-shelled capsules by photo-

polymerization of the droplet middle phase, ETPTA.

To make capsules with h0/R0 = 0.019 and 0.1, we use
a device composed of hydrophobic injection and collec-
tion capillaries as shown in Fig. S2(a) [2]. The innermost
aqueous phase is injected through the injection capillary
and the middle ETPTA phase is injected through the in-
terstices of the injection and the square capillaries. The
continuous aqueous phase is injected through the inter-
stices of the collection and the square capillaries as a
counter flow to the innermost and the middle phases.
These three streams flow coaxially through the orifice of
the collection capillary, making double-emulsion drops in
a dripping mode. For h0/R0 = 0.019, flow rates of the in-
nermost, the middle, and the continuous phases are kept
at 400, 80, 2000 µL/h, respectively, as shown in Fig.
S2(b). For h0/R0 = 0.1, flow rates of the innermost, the
middle, and the continuous phases are kept at 200, 100,
2000 µL/h, respectively, as shown in Fig. S2(c).

Capsules photopolymerized in situ are prepared in the
following manner: As soon as the drops flow out from
the nozzle of a microfluidic device to water bath contain-
ing 8 wt% aqueous solution of PVA which is saturated
with ETPTA, they are polymerized by continuous UV
irradiation (Omnicure S1000).

Capsules with tw = 5 s or 1 min are prepared in the fol-
lowing manner: As they are continuously produced from
the nozzle of the microfluidic device, the droplets are col-
lected into a chamber containing 8 wt% aqueous solution
of PVA saturated with ETPTA and are repetitively irra-
diated with UV irradiation (Omnicure S1000) of duration
1 second, fully polymerizing the ETPTA into a thin solid
shell, every 2 × tw. This forms a population of capsules
that have remained quiescent in the collection chamber
for an average waiting time of tw before polymerization.

Capsules with tw = 1 hr, 1 day, 2 days or 5 days are
prepared in the following manner: As they are continu-
ously produced from the nozzle of the microfluidic device,
the droplets are collected for a total time of 10 min into
a chamber containing 10 wt% aqueous solution of PVA
saturated with ETPTA. They are then photopolymerized
after a waiting time of tw − 5min.

Optical microscope images of monodisperse microcap-
sules with tw = 1 min are shown in Fig. S3.

To make microcapsules with two or three spherical
compartments, we employ two-step emulsification in a
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capillary microfluidic device [3]. Inner water drops are
produced at the tip of small tapered capillary in a drip-
ping mode, which in turn are encapsulated into oil drops
at the tip of injection capillary. Through precise control
of flow rates of three streams, we can manipulate gener-
ation frequency of inner water drops and outer oil drops.
Therefore, the number of inner drops confined in outer
drop is controllable. To make the thin shell, the flow rate
of middle oil stream is maintained to be small enough to
encapsulate two or three inner drops with nonspherical
envelope. The nonspherical double-emulsion drops are
polymerized by in-situ UV irradiation, resulting in mi-
crocapsules with multiple spherical compartments.

To buckle the capsules, we gently mix the capsule sus-
pension with the NaCl solution by repeatedly aspiring
and ejecting the fluid with a micro-pipette; this ensures
the capsules are more directly exposed to the external
osmotic pressure.

We use either scanning electron microscopy (SEM) or
confocal microscopy to directly measure the capsule ge-
ometrical characteristics.

FIG. S1: Microfluidic preparation of double-emulsion drops
with h0/R0 = 0.017. Scale bar is 200µm.

FIG. S2: Microfluidic preparation of double-emulsion drops
with (b) h0/R0 = 0.019 and (c) h0/R0 = 0.1. Scale bars are
100µm.

FIG. S3: Monodisperse microcapsules. Scale bars in (a) and
(b) are 500 µm and 200 µm, respectively.

II. BUCKLING THEORY OF
INHOMOGENEOUS SHELLS

Before we derive the threshold buckling pressure Π∗

and associated volume change ∆V ∗ for inhomogeneous
shells, it is instructive to study the derivation for homoge-
neous shells of thickness h, elastic modulus E, Poisson’s
ratio ν and radius R. We use shallow-shell theory and fol-
low the presentation by Hutchinson (ref. 4). The shallow-
shell description involves isolating a shallow section of the
shell of size ∼ L and defining a Cartesian coordinate sys-
tem (x, y) tangential to it (Fig. S5). “Shallowness” refers
to the condition that the section is small compared to the
radius, L/R� 1, so that slopes of the surface are small;
the validity of this approach for the buckling solution
will be checked later. The shape of the middle surface
is described by in-plane displacement fields u, v and a
transverse displacement w of the middle surface of the
shell. Ignoring terms of order (x/R)2, (y/R)2 � 1, the
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FIG. S4: SEM showing buckled shell with inhomogeneity.
Shells buckle at the thinnest part; as a result, the thinnest
part contacts the thickest part of the shell. Right panel: the
left arrow shows the thickest part of the shell, and the right
arrow shows the thinnest part of the shell; the solid in be-
tween the two parts of the shell is precipitated PVA. Scale
bar is 2µm.

FIG. S5: Coordinates and displacements in shallow shell the-
ory.

displacement-strain relations for the section are

γxx = u,x −
w

R
+

1

2
w2
,x,

γxy =
1

2
(u,y + v,x + w,xw,y) ,

γyy = v,y −
w

R
+

1

2
w2
,y. (S1)

The elastic energy of the shell involves stretching,
bending and a pressure term:

Etot[r] =
∫∫ [

1

2
γijσij +

Eh3

24(1− ν2)
(w,xx + w,yy)2 −Πw

]
dx dy

(S2)

where the stresses σij are related to the strains via

γxx =
1

Eh
(σxx − νσyy),

γyy =
1

Eh
(σyy − νσxx),

γxy =
1 + ν

Eh
σxy. (S3)

The initial response of the shell to an external pressure
Π is to contract uniformly, building up uniform compres-
sive shell stresses

σ0
xx = σ0

yy = −ΠR/2 (S4)

with corresponding transverse displacement field

w0 =
ΠR2(1− ν)

2Eh
. (S5)

that is also uniform over the whole section. The elas-
tic energy associated with this compressed state, which
does not involve bending of the shell surface, is roughly
σ2/(Eh) ∼ Π2R2/(Eh) per unit area. When Π gets
large, it becomes energetically favorable for the shell
to introduce some bending deformations to trade the
elastic energy of pure compression for bending energy.
The buckling transition is identified by the value of Π
for which a nonuniform deformation mode of the shell
first arises which is energetically favorable compared to
the uniform compression. A linear buckling analysis of
the Euler-Lagrange equations associated with the en-
ergy functional (Eq. S2) shows that a nontrivial solution
for the transverse displacement field w first arises at a
threshold buckling pressure [4]

Π∗ =
2E√

3(1− ν2)

(
h

R

)2

. (S6)

The form of the associated displacement field is si-
nusoidally, w = Aeiq·x, with period set by a two-
dimensional wavevector q that satisfies |q| = q∗ ≡
[12(1 − ν2)]1/4/

√
hR. (The corresponding solutions for

the in-plane displacement fields u and v have similar
forms.) Since a multitude of two-dimensional wavevec-
tors exists with magnitude equal to q∗, there are many
degenerate buckling modes at the transition. Crucially,
the wavelength associated with the buckling modes is ex-
tremely small for thin shells:

λ∗ = 2π/q∗ =
2π

[12(1− ν2)]1/4

√
hR� R. (S7)

This observation justifies the use of shallow-shell theory
to calculate the buckling pressure—a shallow section of
the shell with L/R � 1 can still accommodate many
wavelengths of the buckling modes and provides a good
description of the elastic energy of these modes.

We now consider an inhomogeneous shell with a con-
tinually varying shell thickness h(θ) = h0 − δ cos θ and
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radius R of the middle surface. By analogy with the
buckling of homogeneous shells, we expect the buckling
transition to be signalled by the existence of a nontriv-
ial solution to the energy-minimizing displacement fields
of the middle surface. Furthermore, we expect such a
mode to first appear in the vicinity of the thinnest point
of the sphere, θ = 0. We consider a shallow section
of the sphere, with Cartesian coordinates whose origin
coincides with the thinnest point. As before, shallow-
ness implies that the section is small enough that slopes
are small compared to the base of the section. The
elastic energy and the stress-strain relations are modi-
fied because the thickness of the shell is now position-
dependent: h(x, y) = h0 − δ (1− Z(x, y)/R) , where

Z(x, y) =
√
R2 − x2 − y2 is the shape of the undeformed

middle surface of the shell. Expanding in powers of x/R
and y/R, we have

h(x, y) = h0 − δ
[
1 +

1

2

(
x2 + y2

R2

)
+ ...

]
(S8)

but the shallowness of the section implies that
(x/R)2, (y/R)2 � 1 and the section is well-described by
setting h ≈ h0 − δ, a constant. Thus, the only modifica-
tion to the shallow-shell theory calculation of the critical
buckling pressure of the uniform shell is to set the shell
thickness to h = h0−δ, from which we readily obtain the
buckling pressure

Π∗ =
2E√

3(1− ν2)

(
h0 − δ
R

)2

. (S9)

The wavelength of the buckling modes that arise at this
pressure is λ∗ = 2π

√
(h0 − δ)R/[12(1 − ν2)]1/4 � R,

justifying the assumptions made. Essentially, the spatial
thickness variation of the capsules under study is so gen-
tle that there is hardly any variation in the mechanical
properties of the capsule at the scale of the small wave-
length associated with the buckling modes. Thus, the
buckling pressure is set by the thickness of the capsule
in the vicinity of the thinnest spot, where it is approxi-
mately h0 − δ. (We could consider different sections of
the capsule, with higher thicknesses, but the associated
buckling mode would arise at a pressure higher than of
Eq. S9.) Considering the magnitude of the terms ex-
cluded from the Euler-Lagrange equations by our approx-
imation of constant thickness shows that the corrections
to Eq. S9 from taking into account the spatial variation
in thickness over the shallow shell would be smaller by a
factor O(δ/R).

To test our theoretical arguments, we perform numer-
ical simulations on shells with 0.01 ≤ h0/R ≤ 0.04 and
0 ≤ δ/h0 ≤ 0.9 (see section VI below for details). The
results are reported in Fig. S6(a), showing good agree-
ment between the theoretical prediction and the simula-
tion results. The slight discrepancy between theory and
simulation likely reflects the sensitivity of the buckling
transition to non-uniformities in the simulation mesh.
This sensitivity is due to nonlinear couplings between

the degenerate buckling modes that arise as the classi-
cally predicted buckling pressure is approached, which
drive the transition to happen below the buckling pres-
sure predicted by the linear stability analysis [4]. We
expect this sensitivity to be more pronounced for the
uniform case, where the unstable modes extend over the
entire shell, in contrast to the nonuniform case, where
the unstable modes are localized in the shallow region
near the thinnest part of the shell.

We now turn to the threshold volume change at buck-
ling, ∆V ∗. The volume change prior to buckling is deter-
mined by the initial prebuckling response of the shell to
the external pressure. For a spherical shell, the only ax-
isymmetric stress distribution in response to a uniform
pressure p that is well-behaved at the poles is the uni-
form stress distribution, Eq. (S4) [5]. In contrast to the
uniform shell, however, the resulting transverse displace-
ment varies with the shell thickness:

w0(θ) =
ΠR2(1− ν)

2Eh(θ)
=

ΠR2(1− ν)

2E(h0 − δcosθ)
. (S10)

The volume change in response to pressures up to the
buckling pressure is thus (to lowest order in the inward
displacement)

∆V = 2π

∫ π

0

R2 sin θ w0(θ) dθ

= π(1− ν)
ΠR4

Eh0

[
h0

δ
ln

(
1 + δ/h0

1− δ/h0

)]
. (S11)

The threshold volume change immediately before buck-
ling is obtained by using Π∗ (Eqn. S9) in the above ex-
pression to get

∆V ∗

V0
=

1

2

h0

R

√
3(1− ν)

1 + ν

[(
1− δ

h0

)2
h0

δ
ln

(
1 + δ/h0

1− δ/h0

)]
(S12)

where V0 = 4πR3/3 is the initial volume of the shell.
We recover the result for uniform shells, ∆V ∗/V0 =√

3(1− ν)/(1 + ν)× h0/R (Ref. 24) in the limit δ/h0 →
0. Fig. S6(b) compares the analytical expression to nu-
merical simulations on shells with various thicknesses and
inhomogeneities, showing good agreement. Moreover, we
find that the total fraction of capsules that ultimately
buckle in our experiments increases with increasing tw,
and hence increasing inhomogeneity δ/h0, as shown in
Fig. S7. This supports the theoretical finding that inho-
mogeneity reduces the mechanical strength of the shell.

We note that the linearized buckling analysis sketched
out here can describe the shell up to the point of the
buckling transition, but cannot describe the postbuck-
ling shape of the shell. Once the buckling transition is
reached, the nontrivial high-wavelength buckling mode,
when it arises, coalesces into a single inversion (as shown,
for example, in [10]) unless an additional mechanism is
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introduced to arrest this coalescence for example, by
placing a slightly smaller, rigid, concentric sphere within
the shell [26]. In Carlson et al.’s work, the inner sphere
prevented the unstable buckling mode from coalescing
into a single inversion, giving rise instead to a regular
dimple pattern. In the absence of such a stabilizing mech-
anism, the high-wavelength mode itself is not observed in
buckling experiments including the ones on the inhomo-
geneous capsules prepared here.

III. FLOW RATE OUT OF AN
INHOMOGENEOUS CAPSULE

The buckling of a capsule is driven by the fluid ejec-
tion from the capsule interior, due to the imposed osmotic
pressure difference across the capsule shell, Π. This is re-
sisted by the mechanical pressure required to compress
the shell, Πm, at most Πm ≈ 2E(1 − ν)−1h0(1/R∗ −
1/R0) ≈ 3E(h0/R0)[(1−∆V ∗/V0)−1/3 − 1], where R∗ is
the radius of the shell at buckling. For the shells studied
in this work, Πm < Π∗; we thus expect the buckling dy-
namics to be dominated by the imposed osmotic pressure
for Π� Π∗, and we neglect Πm in the simple model pre-
sented here. A full treatment of the buckling dynamics
that explicitly includes Πm confirms the validity of this
simplification for the range of Π studied here [7].

We now estimate the flow rate out of an inhomogeneous
capsule due to Π; the capsule has shell thickness h(θ) =
h0 − δcosθ, as shown in Fig. 1(a) of the main text. We
use spherical coordinates (r, θ, φ) centered on the capsule
center. For an arbitrary area element dA on the shell
surface at (R0, θ, φ), the local volumetric ejection rate is
given by Darcy’s law, dA ·Πk/µh(θ), where k is the shell
permeability and µ is the fluid viscosity. Integrating this
over the entire shell surface yields the total ejection rate
through the shell:

Q = R2
0

∫ 2π

0

dφ

∫ π

0

sinθ
Πk

µ(h0 − δcosθ)
dθ =

4πR2
0Πk

µh0
· 1

2δ/h0
ln

(
1 + δ/h0

1− δ/h0

)
(S13)

The time delay before the onset of buckling, τ , is the
time taken for the volume of fluid ejected from the shell
to equate to the threshold buckling volume, τ = ∆V ∗/Q.
From Eq. S12 and Eq. S13, we obtain

τ ≈ V0

Q0

√
3(1− ν)

1 + ν

h0

R0

(
1− δ

h0

)2

(S14)

where V0 = 4πR3
0/3 is the initial capsule volume, Q0 ≡

4πR2
0Πk/µh0 and k is the shell permeability. This is Eq.

(2) in the main text.

(a)
(b)

FIG. S6: (a) Effect of inhomogeneity on the buckling pres-
sure. The symbols show the buckling pressure from simu-
lations for shells with various average thickness h0 and in-
homogeneity δ, normalized by the corresponding buckling
pressure for uniform shells with the same average thickness,
Π∗
δ=0 = 2E/

√
3(1− ν2) × (h0/R)2 (Eq. S6). The blue line

shows the theoretical prediction, Eq. S9, and the yellow line
shows 90% of the theoretical value. (b) Threshold volume
change at buckling, from simulations. The blue line shows the
theoretical prediction (Eq. S12), with ν = 1/3, while the yel-
low line shows 90% of the theoretical value. In both (a) and
(b), the theory agrees with the simulations to within about
90%, and the theory effectively captures the dependence of
the mechanical strength on the inhomogeneity. The system-
atic discrepancy of 10% or so (higher for the extremely thin
shells with h0/R = 0.01) is likely a result of the sensitivity
of the buckling transition to the small amount of disorder in
the underlying mesh. It is known that the buckling transition
of spherical shells is highly sensitive to imperfections in the
shell [4] which significantly reduce the buckling pressure and
through it the associated volume change.

IV. ESTIMATE OF CAPSULE PERMEABILITY

We estimate the capsule permeability k by measur-
ing the change in the radius of a circular indentation r
over time, immediately after it is formed in the shell,
as shown in Fig. S8. We assume the volume of the in-
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FIG. S7: Total fraction of capsules that ultimately buckle
increases with wait time before polymerization tw, and hence
the shell inhomogeneity. Capsules have h0 = 1.2µm and R0 =
70µm, and are buckled at Π ≈ 0.86 MPa> Π∗.

dentation ∆Vcap is given by that of a spherical cap hav-
ing radius r(t). The permeability is then given by k ≈
µh0d(∆Vcap)/d(∆t)

Π·4πR2
0

. In reality, the edges of the indentation

are rounded, with radius of curvature ∼
√
h0R0 ∼ 15µm

[8]; we thus expect our estimated ∆Vcap to overpredict
the actual ∆V , and consequently, we expect to underpre-
dict the shell permeability by a factor ∼ 2.

V. LUBRICATION THEORY OF THE
FORMATION OF THE INHOMOGENEOUS
SHELL (COMMUNICATED BY HOWARD A.

STONE, FEBRUARY 2012)

To estimate the variation of the shell inhomogeneity,
δ/h0, with time, tw, we apply lubrication theory to the
double emulsion geometry shown in Fig. 1(a) of the main
text. Before UV polymerization at time tw, the inner
droplet containing 10wt% PVA has radius R0 − h0 and
the outer droplet containing ETPTA monomer has radius
R0; the shell thickness is then h(tw) = h0 − δ(tw)cosθ.
The droplets are collected in 8 wt% or 10 wt% PVA so-
lution. We note that, for our shells, h0/R0 ≤ 0.1. More-
over, using our experimental measurements of δ(tw), we
estimate the characteristic translation speed of the in-
ner droplet as ∼ 1µm/day; using a characteristic droplet
length scale < 100µm, shell viscosity µo = 65mPa.s,
fluid-fluid surface tension ∼ 2.5mN/m, this corresponds
to a Reynolds number Re < 10−10 and a Capillary num-
ber Ca < 10−10. The fluid-fluid interface can thus be
approximated as spherical, and the flow in the shell be-
tween the inner and outer droplets is well described using

FIG. S8: Change in the volume of a circular indentation
formed in a capsule, ∆Vcap, over time ∆t. The indentation
forms at ∆t = 0. Top left panel shows the top view of the in-
dentation formation, measured using optical microscopy; we
use image processing to detect the edge of the indentation,
shown in the panel to the right, and track the radius of the
indentation over time, r(t). We assume a spherical cap ge-
ometry, schematically shown in the side view, to calculate
∆Vcap; the data are shown for three different capsules (dif-
ferent colors). We fit the small-time dynamics (∆t < 102s)
to measure the permeability. The capsules have h0/R0 = 0.1
and δ/h0 ≈ 0.2, and are buckled at Π = 10 MPa.

lubrication theory. We denote x = rθ as the direction
along the shell, where r is the spherical radial distance
measured from the center of the inner sphere, and z is
across the shell.

Because both inner and outer droplets are stabilized by
8-10 wt% PVA, Marangoni stresses resist shear stresses
at the fluid interfaces; thus, we assume no-slip boundary
conditions on the fluid-fluid interfaces at z = 0 and z =
h(θ, tw). The Stokes equation then yields the velocity
distribution:

ux(θ, z, tw) =
1

2µ(R0 − h0)

∂p

∂θ
z(z − h(θ, tw)) (S15)

Integrating the continuity equation twice across the
gap, with ur = 0 at the outer boundary, ur = Ucosθ at
the inner translating boundary, and uθ = ux = 0 at both
boundaries, we find the pressure distribution

p(θ, tw) = p0(tw)− 3µo(R0 − h0)2U

δh2
(S16)

Balancing forces in the z direction,
2π
∫ π
θ=0

pn · ez sinθdθ = F b, where F b ≡
(4/3)π(R0 − h0)3∆ρg is the buoyant force on the
inner sphere and ∆ρ is the difference in density between
the inner and outer spheres (0.08 g/cm3). We complete
the integral and substitute U = ∂δ/∂tw, and take the
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limit δ/h0 → 1 [25]; we obtain

1

h0 − δ
∂δ

∂tw
=

F bh2
0

6πµo(R0 − h0)4

=⇒ δ(tw)

h0
= 1− e−

2∆ρgh2
0tw

9µo(R0−h0) (S17)

To test this prediction, we use SEM or confocal mi-
croscopy measurements of capsules with fluorescently-
labeled shells to directly measure δ/h0 for capsules of
varying tw. We find good agreement between the two,
particularly for large tw, when δ/h0 precipitously rises to
1, as shown in Fig. S9. We find δ/h0 → 0.2 as tw → 0,
in contrast to the theory; this is to be expected, due to
the slight bias in the inner droplet position as the double
emulsions are formed in the microfluidics device.

FIG. S9: Measurements of δ/h0 as a function of tw · 2∆ρgh2
0

9µo(R−h0)
,

along with lubrication theory solution (black line), showing
agreement between the two.

VI. NUMERICAL SIMULATIONS OF THIN
INHOMOGENEOUS SHELLS

To test our theoretical predictions and to understand
the postbuckling shapes of the capsules, we perform nu-
merical simulations of a variety of thin, elastic, spheri-
cal shells whose surfaces are composed of “amorphous”
randomly-positioned points connected by springs. Simi-
lar models have been used to study the deformations of

uniform spherical shells [9, 10], viruses [11–15] and pollen
grains [16].

We simulate shells with a non-uniform thickness pro-
file, described by h(θ) = h0 − δcosθ, similar to the ex-
perimental capsules; θ is the inclination angle from the
thinnest point of the shell. The spring stiffnesses are
chosen so that the 3D Young’s modulus of the shell is
E = 600 MPa and the Poisson ratio is ν = 1/3, sim-
ilar to the material making up the polymeric capsules.
Since h is always much smaller than the radius of the
shell, the elastic energy may be described by a sum of
bending and stretching energies of an initially spherical
two-dimensional elastic sheet [8, 17]:

E =
∫
dS[

Eh(θ)

2(1− ν2)
·
(
(u11 + u22)2 − 2(1− ν)(u11u22 − u2

12)
)

+
Eh(θ)3

24(1− ν2)
·
(
(k11 + k22)2 − 2(1− ν)(k11k22 − k2

12)
]

(S18)

where uij is the 2×2 strain tensor, kij is the change in the
curvature tensor from its initial value, and the integration
is carried out over the mid-surface of the shell. The initial
curvature tensor k0

ij of the shell mid-surface is that of a

sphere with radius r: k0
11 = k0

22 = 1/r; k0
12 = 0 at every

point for an orthonormal basis set up in the tangent plane
to the sphere at that point.

To numerically simulate the shells, we discretize the
elastic energies on a mesh of 20,000 points. The ini-
tial, unstrained configuration is obtained by distributing
the points quasi-randomly on the surface of a sphere,
maintaining a minimum distance between nearest neigh-
bors. The disorder in the initial mesh eliminates the
effect of the 12 regularly spaced five-fold disclinations
that inevitably arise when attempting to cover a spher-
ical surface with equilateral triangles [11]. Bonds are
drawn between nearest neighbor pairs to form a mesh;
the topology of the mesh is unchanged after initializa-
tion (no rearrangement of bonds takes place), consistent
with the polymerization imposed in the experiments. A
point is arbitrarily chosen to be the thinnest point of
the sphere. The elastic stretching energy of deformations
from the initial unstrained configuration is approximated
by a harmonic spring energy associated with each bond
[18]:

Es =
∑

〈ij〉

√
3

4
Eh(θij)(rij − r0

ij)
2 (S19)

where rij and r0
ij are the lengths in the deformed and ini-

tial states of the bond connecting nearest-neighbor mesh
points i and j, and θij is the inclination angle between the
centre of the spring and the thinnest point. The spring
constant is chosen to reproduce the thickness-dependent
elastic modulus in the continuum limit, with ν = 1/3
[18].
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The often-used discretization of the bending energy in
terms of the angles between normals of adjacent facets
in the mesh is not suitable for disordered meshes where
all facets are not equilateral triangles [19]. Furthermore,
this discretization scheme does not allow for a nonzero
background curvature. Here we use a different approach.
The curvature tensor is constructed from the mean cur-
vature H and Gaussian curvature K (respectively, the
trace and the determinant of the curvature tensor) as-
sociated with each point in the deformed state. Note
that the Gaussian curvature energy is not an invariant
for inhomogeneous shells, and thus cannot be ignored, in
contrast to uniform shells [20]. An approximation for the
mean curvature associated with site i is [19]:

Hi =
1

σi

∣∣∣∣∣∣
∑

j(i)

σij
rij

(Ri −Rj)

∣∣∣∣∣∣
(S20)

where σij = rij(cotθ1 + cotθ2)/2 is the length of a bond
in the dual mesh connecting the centers of the two tri-
angular facets ijk and ijk′ that share the bond linking
points i and j (calculated in terms of the interior angles
θ1, θ2 of the vertices k and k′), σi =

∑
j(i) σijrij/4 is the

area of the dual cell (the polygon of bonds of the dual
mesh surrounding vertex i), Ri is the three-dimensional
coordinate vector of point i, and all sums are over the
neighbors of site i. The Gaussian curvature is approxi-
mated by exploiting the Gauss-Bonnet theorem [21]:

Ki =
1

σi


2π −

∑

j(i)

αj


 (S21)

where αj is the angle facet j subtends at point i and the
sum runs over all facets sharing point i. The discretized
version of the bending contribution to the elastic energy
[Eq. S3] is

Eb =

∑

i

Eh(θ)3σi
24(1− ν2)

[(
Hi −

2

r

)2

− 2(1− ν)

(
Ki −

Hi

r
+

1

r2

)]

(S22)

The total energy Es +Eb, a function of the 3× 20, 000
variables describing the point positions, is numerically
minimized using the BFGS quasi-Newton optimization
algorithm implemented in the freely available GNU Sci-
entific Library [22].

To numerically obtain the threshold buckling pressure
from simulations, we add a term Ep = ΠV to the dis-
cretized elastic energy energy, where V is the volume
enclosed by all the facets of the mesh. The pressure Π
is gradually increased until the shell collapses, and the
corresponding threshold pressure Π∗ identified.

To find energy-minimizing configurations at a particu-
lar target volume VT , we use the penalty method [16, 23].

We add a penalizing term Evol = λ(V − VT )2 to the en-
ergy, where V is the volume enclosed by all the facets of
the mesh, with λ initially chosen to be very small. We
increment λ systematically between successive minimiza-
tions of the total energy, until the difference between the
actual and target volumes is negligible. The final config-
uration is checked for stability to a small random pertur-
bation of all the point positions.

To find the threshold volume reduction at collapse, we
initially set VT to the volume V0 enclosed by a sphere
of radius r. We then reduce the target volume by small
amounts, finding the minimum energy configuration after
each decrement. The volume decrement between steps
is 0.00025V0. To quantify the buckling, we define the
asphericity of the shell as [11]

〈∆R2〉
〈R〉2 =

1

N

∑

i

(Ri − 〈R〉)2

〈R〉2 (S23)

where Ri is the radial distance of point i and 〈...〉 de-
notes averaging over all points of the mesh. The discrete
nature of the buckling inversion can be captured by plot-
ting the asphericity of the final shape against ∆V/V0:
the asphericity first becomes nonzero at a finite volume
reduction which we identify as ∆V ∗.

A. Postbuckling shapes of shells

To investigate the influence of inhomogeneity on the
shape of the inversion at large volume reductions, we sim-
ulate large volume reductions for two sets of geometric
parameters: shells with h0/R = 0.018 and δ/h0 = 0.20,
similar to the more homogeneous shells described in the
main text, and shells with h0/R = 0.0165 and δ/h0 =
0.82, similar to the very inhomogeneous shells. We use
the penalty method outlined in the previous subsection
to reduce the enclosed volume in steps of 0.0025V0 from
VT = V0 to VT = 0.75V0. For each set of geometric pa-
rameters, we investigate the robustness of the resulting
shapes by performing eight different simulations, in each
case varying the point on the underlying mesh that corre-
sponds to the thinnest point of the shell. This effectively
changes the random discretization of the shell in each
instance.

In all instances, the shells buckle when the shell vol-
ume is reduced past ∆V ∗ (whose value is approximately
0.0115V0 for the more homogeneous shells and 0.0008V0

for the very inhomogeneous shells) to form a single circu-
lar indentation centered at the thinnest part of the shell.
At larger volume changes, however, the shape of the in-
version differs between the two shells and among different
simulation instances for the same shell. In more homoge-
neous shells, the inversion remains circular upto a volume
change of ∆V ≈ 0.05V0, beyond which the perimeter
sharpens into straight ridges connected by 4-5 vertices
[main text, Fig. 3(d)]. Three out of the eight simulation
runs on the more homogeneous shells displayed inversions
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with 4 vertices, while the remaining five runs displayed
inversions with 5 vertices. Remarkably, the two types
of inversions do not differ significantly in their elastic
energies, which explains why slight differences in the un-
derlying mesh have a significant effect on the final shape.

The shape evolution of the inversions in very inhomo-
geneous shells is qualitatively different [main text, Fig.
3(e)]. The inversion takes on a ridged appearance almost
immediately after its formation, at a much smaller vol-
ume change (∆V ≈ 0.004V0) compared to the more ho-
mogeneous shells. The number of vertices in the perime-
ter is also consistently higher for the very inhomogeneous
shells: out of eight simulation runs, three displayed in-
versions with 5 vertices, four had inversions with 6 ver-
tices, and one run displayed an inversion with 7 vertices.
Again, there is no significant difference in the elastic en-
ergies of the competing shapes.

We note that while the exact number of vertices formed
differs between the experiments and the numerical sim-
ulations, both show that the inversions in very inhomo-
geneous capsules develop more vertices than the more
homogeneous case.

We further characterize the dependence of postbuck-
ling shapes on shell inhomogeneity by simulating large
volume reductions for shells with h0/R = 0.2, similar to
the experimental capsules, but varying δ/h0 from 0.05 to
0.95. The number of vertices observed in the inversion is
shown in Fig. S10. We find that the number of vertices
increases with inhomogeneity and with increasing volume
reduction.

FIG. S10: Inhomogeneity dependence of the postbuckling
shape. The number of vertices, n, of the polygonal inver-
sion is shown for four volume reductions as a function of the
shell inhomogeneity δ/h0. A value of n = 0 corresponds to
a roughly circular inversion with no discernible sharp points.
For all shells, h0/R = 0.02. The volume was reduced in steps
of 0.005V0 from VT = V0 to VT = 0.87V0. We used the same
mesh for all the simulations.

VII. MICROGRAPHS OF BUCKLED
CAPSULES

FIG. S11: Optical micrograph of the buckling of a capsule;
scale bar is 20µm.

FIG. S12: Buckling begins at the thinnest part of the shell
for capsules with thickness inhomogeneity δ/h0 ≈ 0.84

; scale bars are 50µm. These capsules are prepared with
fluorescent shells to enable visualization with confocal

microscopy.
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FIG. S13: Folding pathways for different shell inhomogeneities. (a-c) Optical microscope images exemplifying buckling at
Π ≈ 0.86 MPa of (a) slightly inhomogeneous capsules polymerized in situ (tw ≈ 0), with δ/h0 ≈ 0.2, (b-c) very inhomogeneous
capsules polymerized after a wait time tw = 1 day, with δ/h0 ≈ 0.84. Very inhomogeneous capsules buckle through the
formation of either (b) one single indentation or (c) two indentations. ∆t is time elapsed after buckling. Scale bars are 35µm.
(d-e) Examples of simulated shells with similar geometries as the capsules shown in (a-c), for varying fractional volume reduction
∆V/V0. Color scale indicates the spatially-varying shell thickness.


