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J, Jia Y, Li Y, Porter TF, et al. Small-molecule screen 
identifies Reactive Oxygen Species as key regula-
tors of neutrophil chemotaxis. Proc Natl Acad Sci 
USA 2010; In Press; PMID: 20142487; DOI: 10.1073/
pnas.0914351107.

Neutrophil chemotaxis is a critical 
component in innate immunity. 

Recently, using a small-molecule func-
tional screening, we identified NADPH-
oxidase-dependent Reactive Oxygen 
Species (ROS) as key regulators of 
neutrophil chemotactic migration. 
Neutrophils depleted of ROS form more 
frequent multiple pseudopodia and lost 
their directionality as they migrate up a 
chemoattractant concentration gradient. 
Here, we further studied the role of ROS 
in neutrophil chemotaxis and found 
that multiple pseudopodia formation 
induced by NADPH inhibitor diphenyle-
neiodonium chloride (DPI) was more 
prominent in relatively shallow chemoat-
tractant gradient. It was reported that, in 
shallow chemoattractant gradients, new 
pseudopods are usually generated when 
existing ones bifurcate. Directional 
sensing is mediated by maintaining the 
most accurate existing pseudopod, and 
destroying pseudopods facing the wrong 
direction by actin depolymerization. We 
propose that NADPH-mediated ROS 
production may be critical for disruption 
of misoriented pseudopods in chemotax-
ing neutrophils. Thus, inhibition of ROS 
production will lead to formation of mul-
tiple pseudopodia.

Chemotaxis is a process in which cells 
sense and move up a gradient of mol-
ecules (chemoattractants). It plays a cen-
tral role in the regulation of host defense 
and inflammatory reactions by recruiting 
circulating effector leukocytes, includ-
ing neutrophils, monocytes and effector 
T cells to the sites of injury or infection. 
Neutrophil chemotaxis is mediated by het-
erotrimeric guanine nucleotide-binding 
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regulatory proteins (G proteins) coupled 
receptors (GPCR). Chemoattractants bind 
membrane receptors and initiate accumu-
lation of PtdIns(3,4,5)P3 and subsequent 
actin polymerization at the leading edge 
of chemotaxing cells. Earlier studies have 
suggested that PtdIns(3,4,5)P3 plays essen-
tial role of a cellular compass.1-4 However, 
several recent studies have shown that 
loss of PI3K and reduced PtdIns(3,4,5)
P3 level lead to decreased polarity, but 
does not affect the ability of the cell to 
sense chemoattractant gradients5,6 and 
Dictyostelium,7-9 suggesting extra path-
ways are required for neutrophil chemot-
axis. Similarly, enhancing PtdIns(3,4,5)
P3 signal only augments the sensitiv-
ity of neutrophils to chemoattractant 
stimulation.10-13 In an attempt to identify 
the extra putative signal-induced chemot-
actic pathways, we conducted a functional 
screening for chemical compounds that 
disrupt neutrophil directionality. We 
identified NADPH oxidase-dependent 
Reactive Oxygen Species (ROS) as key 
regulators of neutrophil chemotaxis.14

During chemotaxis, chemoattractants 
elicit a number of changes in neutrophils. 
These include a localized polymerization 
of F-actin at the site of cell cortex closest 
to the chemoattractant source, a mor-
phological change characterized by cell 
elongation, the formation of new lamelli-
podia or pseudopods at the leading edge, 
and the forward protrusion of the leading 
edge followed by retraction of posterior of 
the cell. We found that neutrophils with 
inhibited ROS production, that were iso-
lated from CGD patients/mice or phar-
macologically/siRNA treated to inhibit 
the NADPH oxidase complex, formed 
more frequent multiple pseudopodia and 
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shallow chemoattractant gradients, new 
pseudopods are usually generated when 
existing ones bifurcate.6 The location and 
direction of pseudopod formation are 
thought to be random and are not oriented 
by chemoattractants. Directional sens-
ing is mediated by maintaining the most 
accurate existing pseudopod, and destroy-
ing pseudopods facing the wrong direc-
tion by actin depolymerization. NADPH 
mediated ROS production may be critical 
for disruption of misoriented pseudopods 
in chemotaxing neutrophils. Thus, inhibi-
tion of ROS production will lead to for-
mation of multiple pseudopodia (Fig. 3).

The mechanism by which ROS regu-
lates pseudopod formation remains elusive. 
ROS can oxidize thiols (-SH) on protein 
cysteine residues, leading to reversible pro-
tein post-translational modifications such 
as glutathionylation, disulfide bond for-
mation and sulfenic acid formation. Redox 
regulation of numerous signaling proteins 
such as Ras, protein tyrosine kinases 
(Src kinases), and protein tyrosine phos-
phatases, have been reported.15-17 These 
modifications often alter functionality/
activity of the targeted proteins.15-17 ROS 
can also regulate actin polymerization via 
modifying G-actin monomers.15-17 Thus, 
they may directly affect actin polymer-
ization/depolymerization in chemotaxing 
neutrophils.
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lost their directionality as they migrated 
up a chemoattractant gradient.14 The 
functional screening was performed using 
an EZ-Taxiscan chemotaxis device in 
which a stable chemoattractant gradient 
was formed in a 260 µm-wide channel.14 
Interestingly, the most dramatic mul-
tiple pseudopodia formation induced by 
NADPH inhibitor diphenyleneiodonium 
chloride (DPI) was observed in the middle 
part of the device, where the chemoattrac-
tant gradient was relatively shallow (Fig. 
1A). It is noteworthy that ROS does not 
appear to be involved in directional sens-
ing per se, since most neutrophils depleted 
of ROS can still migrate up the chemoat-
tractant gradient. At the lower section of 
the channel, where the chemoattractant 
gradient was relatively steep, the DPI-
induced multiple pseudopodia formation 
was less prominent (Fig. 1B). This result 
suggested that the dependent on ROS in 
neutrophil chemotaxis may rely on the 
feature of the gradient.

To further confirm that ROS is dispens-
able for neutrophil chemotaxis in steep 
gradient of chemoattractant, we generated 
the gradient using a micropipette. In this 
setup, a micropipette (Eppendorf Femtotip 
with an opening of 0.5 µm) filled with 10 
µM fMLP was lowered onto a cover slip 
plated with neutrophils. Chemoattractant 
gradient was formed by continuous passive 
diffusion from the tip of the micropipette. 
It was well documented that the chemoat-
tractant gradient generated by this device 
is steepest near the source (Fig. 2A–C). 
We examined chemotactic behavior of cells 
within a 50 µm radius. We observed stable 
formation of single pseudopodia in both 
untreated and DPI-treated neutrophils, 
again suggesting that multiple pseudopod 
formation induced by ROS depletion was 
less prominent in relatively steep chemoat-
tractant gradient.

Based on these results, we propose that 
ROS may only be involved in regulat-
ing pseudopod formation in neutrophils 
exposed to shallow chemoattractant gra-
dient. It was recently reported that, in 
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Figure 1. Multiple pseudopodia formation induced by nadPH inhibitor diphenyleneiodonium chloride (dPI) was more prominent in relatively shal-
low chemoattractant gradient. (a) relatively shallow chemoattractant gradient was generated in the upper section in the eZ-taxiscan device. (B) 
dependent on rOS in neutrophil chemotaxis relies on the feature of the gradient. neutrophils were treated with 50 µM dPI for 30 min and chemotaxis 
was induced by 100 nM fMLP. neutrophil purification, eZ-taxiscan chemotaxis assay, and analysis of cell tracks and morphology were conducted as 
previously described.14,18,19 Percentage of cells that display multiple pseudopodia (n = 20 cells, Fisher’s 2 x 2 test, *p < 0.05 versus untreated) during the 
course of the eZ-taxiscan chemotaxis assay was quantified as described by Hattori et al.14
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Figure 2. Comparison of various chemotaxis assays. (a) needle assay. Chemoattractant gradient was formed by continuous passive diffusion 
of chemoattractant from a micropipette tip. equations describe the concentration gradient C(r,t) generated in the radial direction (neglecting 
convection).20 D denotes the diffusion constant for the chemoattractant (cm2/sec), q denotes the rate at which the chemoattractant is released (mols/
sec), r is the radius from the needle tip (cm). (B) eZ-taxis scan chemotaxis device. Gradient is set up by addition of 1 µl chemoattractant to the chemoat-
tractant reservoir, and allowing diffusion towards the cell reservoir. a linear gradient is setup across a 260 µm channel within the time scale of the 
experiment (30 mins) (as per manufacturer’s description). (C) Comparison of gradients generated by needle assay and eZ-taxiscan device. Percent-
age change in chemoattractant concentration across 10 µm sections are plotted for the steady state gradient in the needle assay (C ∼1/r) and a linear 
gradient in a eZ-taxiscan device. the chemoattractant gradient is most shallow near the source for the eZ-taxiscan assay and steepest near the source 
for the needle assay.
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Figure 3. neutrophil chemotaxis in shallow chemoattractant gradient. In shallow chemoattractant gradients, new pseudopods are usually generated 
when existing ones bifurcate. their location and direction are random and are not oriented by chemoattractants. directional sensing is mediated by 
maintaining the most accurate existing pseudopod, while the ones facing wrong direction need to be quickly destroyed via actin depolymerization. 
Inhibition of actin depolymerization in misoriented pseudopods should lead to multiple pseudopod formation and reduced chemotaxis efficiency.


