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Immune Interferon Inhibits Proliferation and Induces 2'-5'-Oligoadenylate
Synthetase Gene Expression in Human Vascular Smooth Muscle Cells
Stephen J. C. Warner, Gary B. Friedman, and Peter Libby
Department ofMedicine (Cardiology), New England Medical Center; and U. S. Department ofAgriculture
Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111

Abstract

Proliferation of vascular smooth muscle cells (SMC) contrib-
utes to formation of the complicated human atherosclerotic
plaque. These lesions also contain macrophages, known to se-
crete SMC mitogens, and T lymphocytes. Many of the SMC in
the lesions express class II major histocompatibility antigens,
an indication that activated T cells secrete immune IFN-'y lo-
cally in the plaque. We therefore studied the effect of IFN-y on
the proliferation of cultured SMC derived from adult human
blood vessels. IFN--y (1,000 U/ml) reduced j3Hjthymidine
(TdR) incorporation into DNA by SMC stimulated with the
well-defined mitogens IL 1 (from 15.3±0.7 to 6.2±0.7 dpm
X 10-3/24 h) or platelet-derived growth factor (PDGF) (from
18.5±1.0 to 7.3±0.7 dpm X 10-3/24 h). Kinetic and nuclear
labeling studies indicated that this effect of IFN-'y was not due
to altered thymidine transport or specific radioactivity of TdR
in the cell. In longer term experiments (4-16 d) IFN-'y pre-
vented net DNA accumulation by SMC cultures stimulated by
PDGF. IFN--y also delayed (from 30 to 60 min) the time to
peak level of c-fos RNA in IL 1-treated SMC.

It is unlikely that cytotoxicity caused these effects of
IFN-'y, as the inhibition of growth was reversible and we de-
tected no cell death in SMC cultures exposed to this cytokine.
Activation of 2'-5' oligoadenylate synthetase gene expression
may mediate certain antiproliferative and antiviral effects of
interferons. Both IFN-'y and type I IFNs (IFN-a or IFN-,#)
induced 2'-5' oligoadenylate synthetase mRNA and enzyme ac-
tivity in SMC cultures, but with concentration dependence and
time course that may not account for all of IFN-y's cytostatic
effect on SMC. The accumulation of SMC in human athero-
sclerotic lesions is a long-term process that must involve al-
tered balance between growth stimulatory and inhibitory fac-
tors. The cytostatic effect of IFN-y on human SMC demon-
strated here may influence this balance during human
atherogenesis, because T cells present in the complicated ath-
erosclerotic plaque likely produce this cytokine.

Introduction

In humans, the formation of complicated atheromatous
plaques may require decades. One important feature of this
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long-term process is excessive proliferation ofvascular smooth
muscle cells (SMC)' (1). Much work over the last decade has
focused on the characterization of mediators that promote
growth of these cells. For example, adherent platelets or infil-
trating monocytes are a source of several SMC mitogens in-
cluding platelet-derived growth factor (PDGF) (1-4), IL 1 (5),
and transforming growth factor-alpha (6). Potential inhibitors
of SMC proliferation have generally received less attention,
although the degree of net SMC growth is likely to be deter-
mined by the balance between positive and negative stimuli
over the years often required to form these lesions. Heparin-
like molecules synthesized by vascular wall cells provide one
example of a potential endogenous inhibitor ofSMC prolifera-
tion (7). We have recently found that PGE2, a product ofboth
vascular endothelial and smooth muscle cells can limit prolif-
eration of human SMC in the short term (< 4 d), after which
these cells become refractory to this effect (5).

Another potential negative regulator of SMC growth in
vivo is suggested by the surprising demonstration ofimmuno-
competent cells in advanced human atherosclerotic lesions.
Recent histological studies using well-defined, cell type-spe-
cific antisera not only confirmed the long-suspected presence
of macrophages, but disclosed that T lymphocytes comprise
up to 20% of the cells in regions ofhuman atheromata (8-10).
Many of the SMC in these lesions also bear class II major
histocompatibility antigens (HLA DR' SMC) (11). Under
usual circumstances, vascular SMC do not express these anti-
gens, and the only known inducer of class II MHC expression
in these cells is immune IFN, also known as gamma IFN
(IFN-y) (12-14). T lymphocytes are a potential source of
IFN-"y within the atheroma (15-17). Taken together, these
various findings indicate that human plaques contain a popu-
lation ofSMC that have been exposed to this cytokine.

Because IFN-'y is antiproliferative for some cell types, in-
cluding human vascular endothelial cells (18-26), we tested
the hypothesis that this cytokine can also inhibit growth of
human SMC. This issue requires careful investigation because
IFN-y can interfere with thymidine transport in some cell
types, and thus confound methods commonly used to assess
the growth of cultured cells (27). Furthermore, IFN-Y, under
certain circumstances, can promote the growth of some mes-
enchymal cells (28). We show here that IFN-y inhibits the IL
1- or PDGF-stimulated growth of SMC cultured from adult
humans, modulates the kinetics of c-fos mRNA induction by
mitogens, and activates expression by SMC of the 2'-5'-oligo-
adenylate synthetase gene that encodes an enzyme thought to

1. Abbreviations used in this paper: HSVSMC, human saphenous vein
smooth muscle cells; IT, serum-free chemically defined medium sup-
plemented with 1 gM insulin and 5 Ag/ml transferrin; Oligo-A, oligo-
adenylate; PDGF, platelet-derived growth factor; PDS, plasma-derived
serum; SMC, smooth muscle cells; TdR, tritiated thymidine.
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mediate certain effects of IFN on mammalian cells (22, 23,
25). These results suggest hitherto unsuspected interplay be-
tween cells ofthe immune system and the regulation ofgrowth
of human SMC. Modulation of the responsiveness of SMC to
mitogenic stimuli by IFN-y may contribute to regulation of
the growth state and other SMC functions in the pathogenesis
of human vascular diseases.

Methods

Cell culture and characterization
(a) Human saphenous vein smooth muscle cells. Human saphenous
vein smooth muscle cells (HSVSMC) were isolated from outgrowths of
explants of unused portions of veins harvested for coronary artery
bypass surgery (5). The endothelium was removed enzymatically and
the adventitia was removed by blunt and sharp dissection before cul-
ture of the explants. This use of normally discarded tissue was ap-
proved by the Human Investigation Review Committee of New En-
gland Medical Center. The cells were maintained in DME that con-
tains 5.5 mM glucose, 25 mM Hepes (M. A. Bioproducts, Walkersville,
MD), and 10% FCS (Hyclone Laboratories, Logan, UT).

Low concentrations of bacterial endotoxin (< 100 pg/ml) can acti-
vate these cells to produce endogenous IL 1 (29). Endotoxin contami-
nation of tissue culture reagents could complicate study ofthe effects of
exogenous cytokines. Therefore, constituents of tissue culture media
were screened for endotoxin contamination using the quantitative
chromogenic Limulus amoebocyte lysate assay (QCL 1000; M. A.
Bioproducts). Only materials with endotoxin levels < 40 pg/ml are
used in these experiments. The endotoxin antagonist polymyxin B (10
Mg/ml; Sigma Chemical Co., St. Louis, MO) was included in most
experimental incubations, although this precaution does not necessar-
ily neutralize all endotoxins (30).

The cells cultured from saphenous veins (passages 3-5) exhibited
typical morphologic characteristics ofvascular smooth muscle in vitro,
including a pattern of growth in hills and valleys (31). Even after
several passages in culture many of these cells stained with HHF-35, a
MAb that selectively recognizes muscle forms of actin and that does
not react with endothelial cells or fibroblasts (32).

(b) Human arterial smooth muscle cells. Aortic SMC were isolated
enzymatically from the inner third of the tunica media of human
aortic tissues obtained from organ donors, with the cooperation of the
New England Organ Bank (5). The adventitia and abluminal two-
thirds of the tunica media were removed before dissociation of the
tissue with collagenase. Culture and characterization of these cells was
as described above for venous SMC.

Assay ofgrowth ofhuman smooth muscle cells
(a) Thymidine uptake. For growth assays, cells were subcultured into
96-multi-well plates at 1.25-2.30 X 105 cells/cm2 and used for experi-
ments 2 d after subculture. Before initiation of growth studies, these
cultures were placed for one day in medium composed ofequal parts of
DME and Ham's F- 12 medium (Gibco, Grand Island, NY) (DME/F-
12) lacking serum but supplemented with insulin (1 MM) and transfer-
rin (5 ,g/ml) (Collaborative Research, Bedford, MA), a medium de-
noted IT (33). This incubation in serum-free medium deprives the cells
of serum-associated mitogens, arrests growth, and synchronizes cell
proliferation in response to mitogens being assayed. Cultures prepared
in this manner exhibited little or no basal c-fos mRNA level but rapid
and brief c-fos expression after mitogen exposure, consistent with their
initial quiescence and synchronous response to growth stimuli (5).
Cultures were then incubated at 37°C for 2 d under various conditions
and the incorporation of [3H]thymidine (TdR) (6.7 Ci/mmol; ICN
Radiochemicals, Irvine, CA) was measured in these short-term assays
by addition of the [3H]TdR (0.25 MCi/ml) during the second 24 h ofthe
2-d incubation. This schedule of labeling maximizes TdR incorpora-

tion by mitogen-stimulated HSVSMC. At the end of the incubation
unincorporated precursor was removed by washing with distilled water
cell residues collected on nitrocellulose paper by an automated cell
harvester. Radioactivity was measured by liquid scintillation spectros-
copy, and efficiency of counting was determined by use of an external
standard.

(b) DNA assay. DNA measurements were made on lysates of cell
layers by a fluorimetric procedure based on binding of bisbenzamide
(5, 34). After being washed with HBSS that lacks Ca2+ and Mg2", the
monolayers were treated with cold EDTA (10 mM, pH 12.3) and
incubated at 370C for 20 min. IM KH2PO4 was added to neutralize the
lysate. After addition of bisbenzamide (Hoecht 33258; Calbiochem-
Behring Corp., La Jolla, CA) diluted to 200 ng/ml in 100 mM NaCl
and 10 mM Tris pH 7.0, the samples were read in an automated
microplate fluorometer (Dynatech Microfluor, Dynatech Laborato-
ries, Alexandria, VA) with calfthymus DNA (Sigma Chemical Co.) as
standard. This assay is sensitive to 50 ng of DNA, and correlation
coefficients for standard curves were > 0.99.

(c) Assessment ofDNA synthesis by thymidine nuclear labeling.
Target cells were plated at 3.0 X 104 cells/cm2 on tissue culture
chamber slides (Lab-Tek; Miles Laboratories, Naperville, IL) and
growth arrested for 4 d as described above. 18 h after addition of test
samples [3H]TdR (2 MCi/well) was added to each chamber. After 24 h,
the cell layer was washed with HBSS, fixed in absolute methanol for 45
min, washed, and air dried. The slides were dipped in emulsion NBT-2
(Eastman Kodak, Rochester, NY), air dried, and stored at 4°C in dark
boxes with dessicant. After 12 d, these slides were developed in D-19,
fixed in Ektaflow (Eastman Kodak) and counterstained with hema-
toxylin (type III; Sigma Chemical Co.) to visualize unlabeled nuclei.
The labeling index was calculated by counting 15 random high-power
microscopic fields (400X, 30-90 nuclei/field) in each condition to
quantitate the fraction of cells passing through S phase during the time
of exposure to labeled precursor. This method is little affected by
variations in the specific radioactivity of the TdR precursor pool,
which depends on thymidine transport and other factors.

(7-5')-Oligoadenylate synthetase enzyme assay
This assay was adapted from Revel et al. (35). Cell layers were washed
with 140 mM KCI 3 mM Mg acetate, 35 mM Tris-HCl (pH 7.6), and
lysed in 200 Ml per well ofbuffer B: 0.5% NP-40 in 120mM KCI, 5 mM
Mg acetate, 7 mM 2-mercaptoethanol, 10% glycerol and 20mM Hepes
(pH 7.5). The clarified lysates were stored at 4°C for up to 24 h before
further assay. Poly (rl)-poly (rC)-agarose (Pharmacia Fine Chemicals,
Piscataway, NJ) equilibrated with buffer B (25 Ml of a 50% [vol/vol]
suspension was incubated with 50-75 ;l of the cell Iysates at 30°C for
15 min, 1 ml of buffer B was added. Synthesis of 32P-oligoadenylate by
poly (rl)- poly(rC)-agarose-bound enzyme was measured by adding 10
Ml of reaction mixture to the packed beads. This reaction mixture
contained 5 mM ATP, 2.5 mM DTT; 20 mM Mg acetate, 25 mM KCI
and 500-2,500 MCi/ml a-32P-ATP (800 Ci/mmol; New England Nu-
clear, Boston, MA). The tubes were incubated for 18 h at 30°C. 8 M1 of
Tris-HCI (20 mM, pH 8) were added to each tube and the beads were
pelleted by centrifugation. 10 Ml of the supernatant was removed to
new tubes containing 4 Ml of bacterial alkaline phosphatase (100 U/ml
in 0.17 M Tris base, Sigma Chemical Co.). The reaction mixture was
kept for 30 min at 37°C, after which another 2 Ml of phosphatase was
added and incubation continued for a further 30 min. The dephos-
phorylation reaction was stopped by the addition of 1 ml of glycine-
HCI (I M, pH 2). Inorganic phosphate was separated from oligoade-
nylate cores by batch adsorption chromatography on alumina powder
acid WAI (Sigma Chemical Co.). 250 mg of the powder was washed
with 1 ml ofglycine-HCI (1 M, pH 2), by vortexing and centrifugation.
The supernatant was aspirated and replaced with the alkaline phos-
phatase-treated oligoadenylate synthetase reaction products (1 ml).
The tubes were agitated vigorously for 30 min at room temperature. A
further 2 ml ofthe glycine-HCI, was added and the alumina pelleted by
centrifugation for 5 min at 1,500 g). 32p in phosphatase-resistant oli-
goadenylate cores was determined by Cerenkov counting.
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Assessment ofspecific mRNA levels
(a) Isolation ofRNA and Northern analysis. Cultured cells were lysed
in guanidinium isothiocyanate and RNA was purified by acid phenol
extraction (36). RNA concentration was determined from the A260,
and A260/A280 ratios were > 2. RNA was electrophoresed in agarose
gels (1.2%) containing 2.2 M formaldehyde, transferred to nylon
membranes (Hybond-N; Amersham Co., Arlington Heights, IL), and
immobilized by shortwave ultraviolet illumination. The membranes
were prehybridized for at least 2 h before hybridization according to
standard protocols with 32P-labeled DNA probes labeled by random
hexanucleotide priming (37) to specific activities > 108 cpm/gg DNA,
and autoradiographed.

(b) Nucleic acid probes. 2'-5'-Oligoadenylate synthetase mRNA
was detected with a 1.3-kb Eco RI fragment ofplasmid 9.21, a kind gift
of Drs. M. Revel and J. Chebath of the Weizmann Institute, Rehovot,
Israel (38). Beta-tubulin was detected with a 1.05-kb Bam HI-to-Pst I
fragment subcloned into pSP65, and originally derived from R,6T.3, a
gift of Dr. Stephen R. Farmer, Boston University, Boston, MA (39).
The mRNA of the oncogene c-fos was probed with a 3-kb Xho I-to-
Nco I fragment derived from plasmid ATCC 41042 (American Type
Culture Collections, Rockville, MD).

Cytokines and antibodies
Recombinant human leukocyte A IFN (IFN-a) was obtained from Dr.
Peter Sorter, Hoffman-La Roche, Inc., Nutley, NJ. Purified human
IFN-3 (2.4 X I07 U/mg) was a product of Lee Biomolecular Research
Inc., San Diego, CA. Dr. Jan Vilcek of New York University kindly
provided bovine anti-human IFN-# antibody. Recombinant human
IFN-y was supplied by Genentech Co., South San Francisco, CA.
Recombinant human IL 1 a was obtained from Dr. Peter Lomedico,
Hoffman-La Roche, Inc., and recombinant IL 1 a was obtained from
Dr. Charles A. Dinarello, Tufts University, Boston, MA. Recombinant
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Figure 1. rIFN-,y reduces [3H]TdR incorporation by human SMC
treated with rIL- I and rPDGF. Cultures ofHSVSMC were plated at
1.25 x 105 cells/0.32 CM2 in DME supplemented with 10% FCS.
After a l-d incubation in IT (a chemically-defined serum-free me-
dium), the medium was replaced with either fresh IT (a) or DME
supplemented with plasma-derived serum (PDS, 5%) (an undefined
medium low in intrinsic mitogenic: activity, but that contains many
plasma factors lacking in the chemically-defined media) (v). All con-
ditions contained I ,ug/ml indomethacin. The effect of 1,000 U/ml
rIFN-,y was determined alone or with 1.0 ng/ml rIL I aY or rPDGF,
sis ( 10 ng/ml) in both of the media. TdR incorporation was measured
over the second 24-h period of a 2-d incubation. The data are
mean±SD, n = 8.
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Figure 2. Concentration-dependent inhibition by rIFN--y of [3H]TdR
incorporation by HSVSMC stimulated with rIL 1. Cultures of
HSVSMC were plated at 7.4 X I0O cells/0.32 cm2 in DME supple-
mented with 10% FCS. After a l-d incubation in IT, the medium
was replaced with fresh IT and 1 gg/ml indomethacin, supplemented
with either 0-1,000 U/ml rIFN-y and 1.0 ng/ml rIL la (---), or
0-1,000 U/ml IFN-y alone (-). TdR incorporation was measured
over the second 24-h period of a 2-d incubation. The data are
mean±SD, n = 6.

v-sis product (PDGF) was supplied by Amgen Biologicals, Thousand
Oaks, CA.

Results

Interferon-y inhibits mitogen-induced [3H]TdR incorporation
in HSVSMC. 1,000 U/ml IFN-y inhibited [3H]TdR incorpo-
ration by HSVSMC stimulated with either rPDGF or rIL 1
(Fig. 1, and data not shown). This effect of IFN-'y was concen-
tration dependent (Fig. 2) and occurred in cultures maintained
in a defined serum-free medium containing insulin and trans-
ferrin (IT), or in plasma-derived serum (PDS, 5%), a supple-
ment low in intrinsic mitogenic activity, but one that contains
many plasma factors lacking in the chemically defined me-
dium IT (40) (Fig. 1).

In certain cell types, IFN-y inhibits thymidine transport
(27). To assess whether the effect of IFN-'y on [3H]TdR incor-
poration in HSVSMC reflected an IFN-'y-induced reduction
in [3H]TdR transport and consequent alteration in the specific
radioactivity of the precursor pool for DNA synthesis, we
measured TdR transport in the absence or presence of IFN-y.
In synchronized SMC cultures 1 d after mitogen stimulation,
[3H]TdR incorporation into the acid-insoluble fraction (DNA)
increased linearly, whereas the [3H]TdR in the acid-soluble
fraction (cytoplasmic pool) reached a plateau in < 5 min (data
not shown). We measured acid-soluble radioactivity after a
2-min incubation period as an index of the initial velocity of
thymidine transport. Treatment with IFN-y did not signifi-
cantly alter this process in cells treated with rIL 1, but pro-
duced a concentration-dependent increase in the rate of [3H]-
TdR uptake into rPDGF-stimulated HSVSMC (data not
shown). These observations render unlikely the possibility that
IFN-'y inhibits [3H]TdR incorporation into acid-insoluble ra-
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Table . HSVSMC Respond to Mitogen Stimulation
after Exposure to IFN-y

DNA content

I

MEDIA +PUGF tPDGF + IFN +IFN

MEDIA +PDGF +PDGF + IFN +IFN

Figure 4. Comparison of effects of rIFN-y on nuclear labeling and
incorporation 3H-TdR in SMC treated with rPDGF. (A) The results
of the autoradiography presented in Fig. 3 were quantitated by
counting the number of labeled vs. non-labeled nuclei in 15 random
high-power fields (400X) per condition (30-90 cells per field). The
data are the mean±SD of 15 fields. (B) Cultures of the same isolate
ofHSVSMC used in the autoradiographic experiment above were
studied in parallel for incorporation of radioactive precursor TdR.
SMC were plated at 6.1 X i0s cells/0.32 cm2 in DME supplemented
with 10% FCS for 1 d. After a l-d incubation in IT to produce
growth arrest, the medium was replaced with either fresh IT, or IT
supplemented with 10 ng/ml rPDGF, si,, 10 ng/ml rPDGFsi.
+ 1,000 U/ml rIFN-'y, or 1,000 U/ml rIFN--y alone. TdR incorpora-
tion was measured over the second 24-h period of a 2-d incubation.
Data are mean+SD, n = 8.

dioactivity by decreasing [3H]TdR transport. Other experi-
ments showed that increasing the concentration of the [3H]-
TdR in the medium 10-fold (from 0.25 to 2.5 ,uCi/ml) did not
alter the inhibitory effect of IFN-'y on TdR incorporation in
PDGF or IL 1-treated SMC (data not shown). This result pro-
vides further evidence that artifacts caused by dilution of pre-

-IFN pretreatment* +IFN pretreatment*

ng/well

Control (5% PDS)* 361±29 292±18
PDGF (10 ng/ml)* 847±111 661±40
PDGF (10 ng/ml)
+ IFN-y (1,000 U/ml)* 562±33 400±21

IFN-'y (1,000 U/ml) 292±14 268±16

HSVSMC were plated at 9.6 X 103 cells/0.32 cm2 in DME-10% FCS.
After a 2-d incubation in IT, the medium was replaced with DME
supplemented with 5% PDS, with or without 1,000 U/ml IFN-y and
preincubation continued for 4 d. The IFN-y present during preincu-
bation was then removed and replaced with medium alone (control),
10 ng/ml PDGF, 10 ng/ml PDGF + 1,000 U/ml IFN-^y, or 1,000
U/ml IFN-'y alone. DNA content of the cultures was measured after
8 d. Data are mean±SD, n = 8.
* A 95% significance level was obtained by ANOVA between the fol-
lowing groups: -IFN and +IFN pretreatment, control and PDGF,
and PDGF and PDGF + IFN.

cursor pool-specific radioactivity do not account for the re-
duction in TdR uptake produced by IFN-,y.

IFN-,y inhibits nuclear labeling with [3H]TdR in mitogen-
stimulated HSVSMC. As an independent means of assessing
the effect of IFN-'y on HSVSMC proliferation we performed
autoradiography of cells treated with IFN-'y and mitogen in
the presence of [3H]TdR. This technique labels all cells that
have traversed S phase and is insensitive to the confounding
influence of transport phenomena and other factors that may
alter the specific radioactivity of the precursor pool for DNA
synthesis. Treatment of cells with 1,000 U/ml IFN-'y pre-
vented the mitogen-induced increase in labeling index, deter-
mined by autoradiography (Figs. 3 and 4 A). In parallel incu-
bations ofHSVSMC from the same isolate, 1,000 U/ml IFN-7
inhibited [3H]TdR incorporation (Fig. 4 B). The consistent
inhibitory effect of IFN-'y on [3H]TdR incorporation by mito-
gen-stimulated HSVSMC (Figs. 1 and 4 B, Table I) thus corre-
lated directly with a decrease in DNA synthesis monitored
independently by nuclear labeling.

IFN-,y inhibits mitogen-induced DNA accumulation in
long-term HSVSMC cultures. To determine whether that the
inhibitory effect of IFN-y on TdR incorporation and labeling
index actually reflected sustained changes in net DNA accu-
mulation, we measured the DNA content of cultures incu-
bated with PDGF alone, 1,000 U/ml IFN-,y alone, or both
agents together over a longer term than the experiments that
used radioactive precursors (Fig. 5). In cultures treated with
PDGF, DNA content increased during 16 d in culture. The
addition of IFN-' completely prevented this accumulation of
DNA with time. The inhibitory effect of IFN-'y is unlikely to

Figure 3. rIFN-y inhibits nuclear labeling by [3H]TdR in HSVSMC stimulated by rPDGF. HSVSMC were sub-cultured at 6.0
X 10' cells/2.0 cm2 into four-chambered tissue-culture glass slides in DME supplemented with 10% FCS. After a 4-d incubation in IT, the
medium was replaced with either (A) fresh IT alone, (B) IT supplemented with 5 ng/ml rPDGF-,is, (C) 1,000 U/ml rIFN-y alone, or (D)
rPDGF,.,i + rIFN-'y. The slides were treated for autoradiography, and counterstained with hematoxylin. The photomicrographs show represen-
tative fields, nuclei resulting from cell divisions during exposure to the labeled precursor TdR are darkened by the silver grains.
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Figure 5. rIFN-y inhibits accumulation ofDNA by cultures of
PDGF-treated HSVSMC. Replicate cultures ofHSVSMC were
plated at 9.6 X 103 cells/0.32 cm2 in DME supplemented with 10%
FCS. After a 2-d incubation in IT to produce growth arrest, the me-
dium was replaced with DME supplemented with 5% PDS alone (o)
or with 10 ng/ml rPDGF1.,i (i), 10 ng/ml rPDGFVSi, + 1,000 U/ml
rIFN-'y (o), or 1,000 U/mi rIFN-'y alone (-) and refreshed every 4 d.
DNA content was assayed at 4, 8, 12, and 16 d (eight wells/condi-
tion/time point). Data are mean±SD, n = 8.

7). Further experiments showed that treatment for 2 24 h with
as little as 1 U/ml of IFN-a or 10 U/ml of IFN-'y induced
oligo-A synthetase mRNA (data not shown). The Type I IFN's
(a and /3) induced higher levels of oligo-A synthetase mRNA
than IFN-y, as previously observed in other cells. The response
to IFN-/3 was abolished by anti-IFN-/3 antiserum, indicating
the selectivity of this induction (Fig. 7). To determine whether
the induced oligo A synthetase mRNA correlated with appear-
ance ofenzyme activity, we assayed the enzyme in extracts of
HSVSMC treated for 24 h with IFN-a, IFN-f3, or IFN--y
(0.1-1,000 U/ml). IFN-a and IFN-,8 treatment induced oligo-
A synthetake activity in a concentration-dependent manner
(Fig. 8). In agreement with the steady-state RNA levels (Fig. 7),
IFN-'y induced less oligo-A synthetase activity than the type I
IFN (Fig. 8).

Discussion

This study demonstrated, using several independent criteria,
that IFN--y treatment inhibits the responses ofcultured human
vascular smooth muscle cells to IL 1 and PDGF, two growth
factors ofparticular significance because they can be produced
by cells of the vessel wall (5, 41-43). IFN-'y added simulta-
neously with mitogen delayed the mitogen-induced increase in
c-fos oncogene mRNA levels, an early consequence ofgrowth
factor activation of cells that characteristically occurs within
minutes (Fig; 6). Prolonged exposure of SMC to IFN-7 (over
days to weeks) prevented mitogen-induced DNA accumula-

be attributable to cytotoxicity of the cytokine, as HSVSMC
treated with IFN-7 for 4 d and then stimulated with PDGF in
the absence of IFN-'y still accumulated DNA (Table I). In
addition, phase-contrast microscopy or photometric examina-
tion ofHSVSMC cultures stained with crystal violet failed to
demonstrate cytopathic effect or attrition of cells exposed to
IFN-'y (data not shown). Together, the above data indicate that
IFN-'y inhibits proliferation of HSVSMC selectively, rather
than by nonspecific cytotoxic effect.

IFN-,y alters the kinetics ofc-fos protooncogene mRNA in-
duction after mitogen stimulation. We have previously shown
in HSVSMC that both IL 1 and PDGF induce a transient
increase in c-fos mRNA levels, which peak within 15-30 min
after addition of mitogen to quiescent cultures (5). Simulta-
neous addition of 1,000 U/ml IFN-'y and 1.0 ng/tnl IL 1 a to
growth-arrested cultures of HSVSMC delayed the c-fos re-
sponse twofold, so that the peak level occurred 60 min after
mitogen addition (Fig. 6). Pretreatment with IFN-y for 24 h
did not alter the rate of accumulation of IL 1-induced c-fos
mRNA, but did reduce the maximum steady-state level ofthis
mRNA after IL 1 treatment (data not shown).

IFNs induce 2-5' oligoadenylate synthetase gene expres-
sion in HSVSMC. In certain other cell types induction of the
2T-5'-oligoadenylate synthetase enzyme (oligo-A synthetase)
and consequent increase in the intracellular level of its prod-
ucts, oligoadenylate oligomers, may mediate the antiviral as
well as the antiproliferative effect of IFNs (22, 23, 25). Under
basal conditions, cultured HSVSMC contain no oligo-A syn-
thetase mRNA or enzyme activity. HSVSMC treated for 72 h
with IFN-a, IFN-,B, or IFN-y (each at 1,000 U/ml) contained
oligo A synthetase mRNA that comigrated with the three sizes
of transcript found in human diploid fibroblasts (WI-38 cells)
treated with cycloheximide, poly I-poly C, and IFN-/3 (25) (Fig.
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Figure 6. IFN-y delays the transient IL I-induced increase in c-fos
protooncogene mRNA levels in human SMC. Cells were incubated
with 1.0 ng/ml IL 1 a, with or without 1,000 U/ml IFN-'y for the in-
dicated time periods. 20 ,g/lane RNA was electrophoresed, trans-
ferred to nylon membrane, and hybridized with c-fos probe (top).
The arrows indicate the position of migration of the 28S and 18S ri-
bosomal subunits. The blot was stripped and rehybridized with ,B-tu-
bulin probe (bottom) to confirm that approximately equal amounts
of intact RNA were loaded in each lane.
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Figure 7. Interferons induce 2'-5'-oligoadenylate synthetase mRNA
in HSVSMC. Cells were incubated for 3 d with medium alone, or
with IFN-a, IFN-fl, or 1,000 U/ml each IFN-'y. Some cells were also
incubated with 1,000 U/ml IFN-(# that had been treated with either
bovine anti-IFN-P antiserum (1: 166 dilution) or with nonimmune
bovine serum. 20 ,g ofRNA was subjected to Northern analysis and
probed for 2'-5'-oligoadenylate sequences (top). The arrows indicate
the position of the 28S and 18S ribosomal subunits. In addition,
RNA from W138 fibroblasts that had been treated for 4 h with cyclo-
heximide, poly I-poly C, and IFN-fB (WI+), or control cells (WI-)
was electrophoresed as positive and negative controls, respectively.
The blot was stripped and rehybridized with f3-tubulin probe (bot-
tom), which confirms the integrity of the RNA on the blot, and
shows that approximately equal amounts ofRNA were loaded in
each lane.

tion (Fig. 5). IFN-'y thus affects both early and late events in
pathways ofmitogen stimulation ofSMC, and may inhibit cell
proliferation by multiple mechanisms.

Our finding that IFN-y induces oligo-A synthetase mRNA
levels and enzyme activity in human vascular SMC suggests
one possible mechanism of growth inhibition. This enzyme
polymerizes ATP into oligomers that activate intracellular en-
doribonucleases that may degrade RNA, leading to reduced
protein synthesis and thus contribute to both the antiviral and
antiproliferative effects of IFNs (22, 23, 25). The finding that
IFNs lack these activities in cell strains deficient in this
RNAase supports this concept (22, 23). In bovine SMC,
serum-associated mitogens regulate the levels of c-myc and
certain other growth-related mRNA species by decreased deg-
radation rather than increased transcription (44). IFNs might
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Figure 8. IFNs induce 2'-5'-oligoadenylate synthetase enzyme activity
in HSVSMC. Cells were incubated for 24 h with IFN-a (e), IFN-,3
(o), or 0.1-1,000 U/ml IFN-'y (i). 2'-5'-Oligoadenylate synthetase ac-
tivity was measured in NP-40 cell lysates as described in Methods.
Data are mean+SD of individual determinations on triplicate or
quadruplicate wells, and were corrected by subtraction of 32P counts
per minute measured when cell lysis buffer alone was subjected to
the assay procedure.

therefore slow cell proliferation by activating intracellular
RNAase activity that could degrade such labile messages.
However, oligo A synthetase induction in human SMC (Figs. 7
and 8) is slower than at least some ofthe growth-related effects
of IFN-'y on these cells (Fig. 6), an indication that induction of
this enzyme probably does not account for all ofthe cytostatic
effects of IFN-'y in vascular SMC.

The experiments reported here establish the effects ofpuri-
fied cytokines on homogeneous cell cultures. Although extrap-
olation of our results to intact human tissues remains hypo-
thetical, Hansson and colleagues have recently shown that
IFN-'y inhibits rat SMC proliferation in vitro and in vivo after
balloon catheter injury to the carotid artery (13). Their elegant
in vivo experiments in rats suggest that class II-bearing SMC
(i.e., the very cells likely to have been exposed to IFN-7) pro-
liferate less than cells which lack these determinants. In rabbits
fed an atherogenic diet, concurrent administration of IFN in-
ducers retards the development of aortic lesions (45). These
various results in intact animals indicate that our results on
cultured human cells may well apply in vivo.

These results may be ofparticular pathophysiologic signifi-
cance in the context of human atherosclerosis. Jonasson et al.
(8), Gown et al. (9), and Emeson and Robertson (10) found
that human atherosclerotic lesions contain T lymphocytes,
cells capable of IFN-'y production (15-17). Because many of
the smooth muscle cells in lesions express surface HLA-DR
antigens (1 1), and IFN-'y is the only cytokine known to induce
these antigens on human vascular cells (12-14), it is likely that
leukocytes in the complicated human atherosclerotic plaque
are activated and secrete this mediator locally.

Three major cell types found in the advanced human ath-
eroma (endothelial cells, SMC, and mononuclear phagocytes)
can each express IL 1 genes in vitro (15, 29, 46). We recently
demonstrated that IL 1 can be a potent stimulus for prolifera-
tion of human SMC (5). These findings revealed a novel link
between mediators of the inflammatory and immune re-
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sponses and the control of proliferation of arterial SMC. The
usual requirement for IL 1 in T cell activation together with
evidence for activation of T cells within atheromata suggests
the presence of this cytokine in the human atherosclerotic
lesion.

If local IL 1 secretion contributes to the pathogenesis of
human vascular diseases, our recent findings raise an interest-
ing question. Because IL 1 begets further IL 1 gene expression
in three cell types prominent in human atheromata (47-49),
what prevents positive feedback from amplifying and propa-
gating the inflammatory response or SMC proliferation in an
uncontrolled fashion? IL 1 characteristically stimulates the cy-
clooxygenase pathway of target tissues. The major arachidon-
ate product in human SMC treated with IL 1 is PGE2. We
have found that PGEI or PGE2 inhibits the responsiveness of
human SMC to the mitogenic effect of IL 1 during short term
incubations (< 4 d). Concomitant treatment of SMC with a
cyclooxygenase inhibitor blocks the IL 1-induced increase in
PGE2 synthesis and uncovers IL l's direct mitogenic effect on
SMC (5). Thus IL l's mitogenic effect on SMC is mitigated (in
the short term at least) by simultaneous induction ofa negative
regulatory factor, PGE2. Because IFN-'y is produced by T cells
that may be activated in part by IL 1, this pathway may pro-
vide another example of growth inhibition facilitated by IL 1.
The results of our long-term experiments indicate that this
inhibitory effect is more sustained than that due to PGE2. The
formation of the human atheroma is a prolonged process, its
progression must depend in part on the dynamic balance be-
tween stimuli that promote and those which retard SMC
growth. Our present data indicate that IFN-'y may be one
pathophysiologically significant inhibitor of SMC growth in
the setting of the atherosclerotic plaque.

These various observations suggest a scenario in which a
communication network mediated by inflammatory cytokines
could play key roles in intercellular signalling in vascular
pathophysiology. T cells, attracted to the developing athero-
sclerotic lesion by locally produced cytokines such as IL 1,
become activated. The pathway of T cell activation in the
atheroma is incompletely understood at present. Although en-
dogenous IL 1 might contribute to activation of T cells, this
process usually also requires specific antigenic stimulus to in-
duce production of activation-associated lymphokines such as
IL 2 and IFN-T (15). Both the nature ofthe antigenic trigger to
T cell activation and the stimuli for local IL 1 gene expression
in the vessel wall are currently unknown, and are fruitful sub-
jects for further investigation. In any case, it is likely that some
leukocytes in the plaque are activated to produce IFN--y, since
immune interferon appears necessary to induce HLA-DR an-
tigen expression by SMC as found in the human lesion. Endo-
thelial cells can produce type I IFN activity (50), but T lym-
phocytes are the probable source of immune IFN (a type II
IFN) which activates HLA-DR expression. As shown here, the
locally produced IFN-y could then antagonize IL 1- or
PDGF-induced SMC proliferation. Either cells of the vessel
wall or infiltrating leukocytes could provide local sources of
both of these well-characterized mitogens. The view of athero-
genesis that emerges from this fusion of in vitro observations
with results of studies on human tissues in situ highlights the
dynamic aspects ofthe formation ofthese lesions, the potential
importance of cells of the vessel wall themselves as sources of
regulatory signals, and of interactions between leukocytes and
SMC. The results presented here further illustrate how alter-

ations in the balance of locally produced stimulatory and in-
hibitory cytokine messages may influence growth control and
other aspects of vascular homeostasis.
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