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A Lower Bound on List Size for List Decoding
Venkatesan Guruswami and Salil Vadhan

Abstract—A q-ary error-correcting code C ⊆ {1, 2, . . . , q}n is
said to be list decodable to radius ρ with list size L if every
Hamming ball of radius ρ contains at most L codewords of C.
We prove that in order for a q-ary code to be list-decodable up to
radius (1−1/q)(1−ε)n, we must have L = Ω(1/ε2). Specifically,
we prove that there exists a constant cq > 0 and a function fq

such that for small enough ε > 0, if C is list-decodable to radius
(1− 1/q)(1− ε)n with list size cq/ε2, then C has at most fq(ε)
codewords, independent of n. This result is asymptotically tight
(treating q as a constant), since such codes with an exponential
(in n) number of codewords are known for list size L = O(1/ε2).
A result similar to ours is implicit in Blinovsky [2] for the binary
(q = 2) case. Our proof is simpler and works for all alphabet
sizes, and provides more intuition for why the lower bound arises.

Index Terms—Bounds on codes, List decoding, Probabilistic
method, Random codes, Randomness extractors.

I. INTRODUCTION

List decoding was introduced independently by Elias [3]
and Wozencraft [4] as a relaxation of the classical notion of
error-correction by allowing the decoder to output a list of
possible answers. The decoding is considered successful as
long as the correct message is included in the list. We point
the reader to the paper by Elias [5] for a good summary of
the history and context of list decoding.

The basic question raised by list decoding is the following:
How many errors can one recover from, when constrained
to output a list of small size? The study of list decoding
strives to (1) understand the combinatorics underlying this
question, (2) realize the bounds with explicit constructions
of codes, and (3) list decode those codes with efficient
algorithms. This work falls in the combinatorial facet of list
decoding. Combinatorially, an error-correcting code has “nice”
list-decodability properties if every Hamming ball of “large”
radius has a “small” number of codewords in it. In this work,
we are interested in exposing some combinatorial limitations
on the performance of list-decodable codes. Specifically, we
seek lower bounds on the list size needed to perform decoding
up to a certain number of errors, or in other words, lower
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bounds on the number of codewords that must fall inside some
ball of specified radius centered at some point. We show such
a result by picking the center in a certain probabilistic way.
We now give some background definitions and terminology,
followed by a description of our main result.

A. Preliminaries

We denote the set {1, 2, . . . ,m} by the shorthand [m]. For
q > 2, a q-ary code of block length n is simply a subset of
[q]n. The elements of the code are referred to as codewords.
The high-level property of a code that makes it useful for
error-correction is its sparsity — the codewords must be well
spread-out, so they are unlikely to distort into one another.
One way to insist on sparsity is that the Hamming distance
between every pair of distinct codewords is at least d. Note
that this is equivalent to requiring that every Hamming ball of
radius b(d − 1)/2c has at most one codeword. Generalizing
this, one can allow up to a small number, say L, of codewords
in Hamming balls of certain radius. This leads to the notion
of list decoding and a good list-decodable code. Since the
expected Hamming distance of a random string of length n
from any codeword is (1 − 1/q) · n for a q-ary code, the
largest fraction of errors one can sensibly hope to correct is
(1 − 1/q). This motivates the following definition of a list-
decodable code.

Definition 1.1: Let q > 2, 0 < ρ < 1, and L be a positive
integer. A q-ary code C of block length n is said to be (ρ, L)-
list-decodable if for every y ∈ [q]n, the Hamming ball of
radius ρ · (1 − 1/q) · n centered at y contains at most L
codewords of C.

We will study (ρ, L)-list-decodable codes for ρ = 1 − ε
in the limit of ε → 0. This setting is the one where list
decoding is most beneficial, and is a clean setting to initially
study the asymptotics. In particular, we will prove that, except
for trivial codes whose size does not grow with n, (1− ε, L)-
list-decodable codes require list size L = Ω(1/ε2) (hiding
dependence on q).

B. Context and Related Results

Before stating our result, we describe some of the previously
known results to elucidate the broader context where our work
fits. The rate of a q-ary code of block length n is defined to be
logq |C|

n . For 0 6 x 6 1, we denote by Hq(x) the q-ary entropy
function, Hq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x).

Using the probabilistic method, it can be shown that (ρ, L)-
list-decodable q-ary codes of rate 1−Hq((1− 1/q)ρ)− 1/L
exist [5], [6]. In particular, in the limit of large L, we can
achieve a rate of 1 − Hq((1 − 1/q)ρ), which equals both
the Hamming bound and the Shannon capacity of the q-ary
channel that changes a symbol α ∈ [q] to a uniformly random
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element of [q] with probability ρ and leaves α unchanged with
probability 1 − (1 − 1/q)ρ. When ρ = 1 − ε for small ε, we
have Hq((1 − 1/q)ρ) = 1 − Ω(qε2/ log q). Therefore, there
exist (1− ε, L(q, ε))-list-decodable q-ary codes with 2Ω(qε2n)

codewords and L(q, ε) = O( log q
qε2 ). In particular, for constant

q, list size of O(1/ε2) suffices for non-trivial list decoding up
to radius (1− 1/q) · (1− ε).

We are interested in whether this quadratic dependence on
1/ε in the list size is inherent. The quadratic bound is related
to the 2 log(1/ε)−O(1) lower bound due to [7] for the amount
of “entropy loss” in randomness extractors, which are well-
studied objects in the subject of pseudorandomness. In fact, a
lower bound of Ω(1/ε2) on list size implies such an entropy
loss bound for (“strong”) randomness extractors, using known
connections between extractors and list-decodable codes [8],
[9]. However, in the other direction, the connection loses a
factor of ε in the lower bound, yielding only a lower of Ω(1/ε)
for list size. (See the Appendix on randomness extractors.)

For the model of erasures, where up to a fraction (1 −
ε) of symbols are erased by the channel, optimal bounds of
Θ(log(1/ε)) are known for the list size required for binary
codes [10]. This can be compared with the log log(1/ε) −
O(1) lower bound on entropy loss for “dispersers,” which are
a variant of randomness extractors [7].

A lower bound of Ω(1/ε2) for list size L for (1 − ε, L)-
list-decodable binary codes follows from the work of Bli-
novsky [2]. We discuss more about his work and how it
compares to our results in Section I-E.

C. Our Result

Our main result is a proof of the following fact: the smallest
list size that permits list decoding up to radius (1−1/q)(1−ε)
is Θ(ε−2) (hiding constants depending on q in the Θ-notation).
The formal statement of our main result is below.

Theorem 1.2 (Main): For every integer q > 2 there exists
cq > 0 and dq <∞ such that for all small enough ε > 0, the
following holds. If C is a q-ary (1 − ε, cq/ε2)-list-decodable
code, then |C| 6 2dq·ε−2 log(1/ε).

D. Overview of Proof

We now describe the high-level structure of our proof.
Recall that our goal is to exhibit a center z that has several
(specifically Ω(1/ε2)) codewords of C with large correlation,
where we say two strings in [q]n have correlation ε if they
agree in (1/q+ε(1−1/q))·n locations.1 Using the probabilistic
method, it is not very difficult to prove the existence of such
a center z and Ω(1/ε2) codewords whose average correlation
with z is at least Ω(ε). (This is the content of our Lemma 2.4.)
This step is closely related to (and actually follows from) the
known lower bound of Radhakrishnan and Ta-Shma [7] on the
“entropy loss” of “randomness extractors.” (See the Appendix
on randomness extractors.)

1Correlation is defined in this way so that if we send a codeword over
a channel that replaces each symbol with a uniformly random symbol with
probability 1 − ε, then the expected correlation between the codeword and
received word is ε.

However, this large average could occur due to about 1/ε
codewords having a Ω(1) correlation with z, whereas we
would like to find many more (i.e., Ω(1/ε2)) codewords with
smaller (i.e., Ω(ε)) correlation. We get around this difficulty
by working with a large subcode C ′ of C where such a
phenomenon cannot occur. Roughly speaking, we will use
the probabilistic method to prove the existence of a large “L-
pseudorandom” subcode C ′, for which looking at any set of L
codewords of C ′ never reveals any significant overall bias in
terms of the most popular symbol (out of [q]). More formally,
all `-tuples, ` 6 L, the average “plurality” (i.e., frequency
of most frequent symbol) over all the coordinates isn’t much
higher than `/q. (This is the content of our Lemma 2.5.)
This in turn implies that for every center z, the sum of
the correlations of z with all codewords that have “large”
correlation (say at least Dε, for a sufficiently large constant D)
is small. Together with the high average correlation bound, this
means several codewords must have “intermediate” correlation
with z (between ε and Dε). The number of such codewords
is our lower bound on list size.

E. Comparison with Blinovsky’s results [2], [11], [12]

As remarked earlier, a lower bound of L = Ω(1/ε2) for
binary (1 − ε, L)-list-decodable codes follows from previous
work of Blinovsky [2]. In this work, Blinovsky explores the
tradeoff between ρ, L, and the relative rate γ of a (ρ, L)-
list-decodable code, when all three of these parameters are
constants and the block length n tends to infinity. In particular,
it is shown that for any fixed L, the rate has to be strictly less
than the list decoding capacity 1 − H(ρ/2). A special case
of the main theorem in [2] shows that if L 6 c/ε2 for some
constant c > 0, then the rate γ must be zero asymptotically,
which means that the code can have at most 2o(n) codewords
for block length n. A careful inspection of his proof, however,
reveals an f(ε) bound (independent of n) on the number of
codewords in any such code. This is similar in spirit to our
Theorem 1.2.

More recently, Blinovsky also showed a similar lower bound
of L > cq/ε

2 for the list size of (1 − ε, L)-list decodable q-
ary codes of positive rate, assuming the convexity of a certain
function [11]. Subsequent to our work, Blinovsky established
the necessary convexity criterion in [12]. Our work was the
first to give a full proof of the list size lower bound for all
alphabet sizes.

Further, our work compares favorably with [2] in the
following two respects.

1) Our result is quantitatively stronger. The dependence f(ε)
of the bound on the size of the code in [2] is much worse
than the (1/ε)O(ε−2) that we obtain. In particular, f(ε)
is at least an exponential tower of height Θ(1/ε2) (and
is in fact bigger than the Ackermann function of 1/ε).

2) Our proof seems simpler and provides more intuition
about why and how the lower bound arises.

We now comment on the proof method in [2] (a similar
method is also used in [11]). As with our proof, the first step in
the proof is a bound for the case when the average correlation
(w.r.t every center) for every set of L+ 1 codewords is small
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(this is Theorem 2 in [2]). Note that this is a more stringent
condition than requiring no set of L+1 codewords lie within a
small ball. Our proof uses the probabilistic method to show the
existence of codewords with large average correlation in any
reasonable sized code. The proof in [2] is more combinatorial,
and uses a counting argument to bound the size of the code
when all subsets of L + 1 codewords have low average
correlation (with every center). But the underlying technical
goal of the first step in both the approaches is the same.

The second step in Blinovsky’s proof is to use this bound to
obtain a bound for list-decodable codes. The high-level idea
is to pick a subcode of the list-decodable code with certain
nice properties so that the bound for average correlation can
be turned into one for list decoding. This is also similar in
spirit to our approach (Lemma 2.5). The specifics of how
this is done are, however, quite different. The approach in
[2] is to find a large subcode which is (L + 1)-equidistant,
i.e., for every k 6 L + 1, all subsets of k codewords have
the same value for their k’th order scalar product, which is
defined as the integer sum over all coordinates of the product
of the k symbols (from {0, 1}) in that coordinate.2 Such a
subcode has the following useful property: in each subset of
L + 1 codewords, all codewords in the subset have the same
agreement with the best center, i.e., the center obtained by
taking their coordinate-wise majority, and moreover this value
is independent of the choice of the subset of L+1 codewords.
This in turn enables one to get a bound for list decoding
from one for average correlation. The requirement of being
(L + 1)-equidistant is a rather stringent one, and is achieved
iteratively by ensuring k-equidistance for k = 1, 2, . . . , L+ 1
successively. Each stage incurs a rather huge loss in the size
of the code, and thus the bound obtained on the size of the
original code is an enormously large function of 1/ε. We make
do with a much weaker property than (L + 1)-equidistance,
letting us pick a much larger subcode with the property we
need. This translates into a good upper bound on the size of
the original list-decodable code.

II. PROOF OF MAIN RESULT

We first begin with convenient measures of closeness be-
tween strings, the agreement and the correlation.

Definition 2.1 (Agreement and Correlation): For
vectors x,y ∈ [q]n, define their agreement, denoted
agr(x,y) = 1

n · #{i : xi = yi}. Their correlation
is the value corr(x,y) ∈ [−1/(q − 1), 1] such that
agr(x,y) = 1

q +
(

1− 1
q

)
· corr(x,y).3

The standard notion of correlation between two strings
in {1,−1}n is simply their dot product divided by n; the
definition above is a natural generalization to larger alphabets.

A very useful notion for us will be the plurality of a set of
codewords.

Definition 2.2 (Plurality): For symbols a1, . . . , ak ∈ [q],
we define their plurality plur(a1, . . . , ak) ∈ [q] to be the most

2A slight relaxation of the (L + 1)-equidistance property is actually what
is used in [2], but this description should suffice for the discussion here.

3Note that we find it convenient to work with agreement and correlation
that are normalized by dividing by the length n.

frequent symbol among a1, . . . , ak, breaking ties arbitrarily.
We define the plurality count #plur(a1, . . . , ak) ∈ N to
be the number of times that plur(a1, . . . , ak) occurs among
a1, . . . , ak.

For vectors c1, . . . , ck ∈ [q]n, we define
plur(c1, . . . , ck) ∈ [q]n to be the component-wise plurality,
i.e. plur(c1, . . . , ck)i = plur(c1i, . . . , cki).

We define #plur(c1, . . . , ck) to be the average plurality
count over all coordinates; i.e.,

#plur(c1, . . . , ck) =
1
n

[ n∑
i=1

#plur(c1i, . . . , cki)
]
.

The reason pluralities will be useful to us is that they capture
the maximum average correlation any vector has with a set of
codewords:

Lemma 2.3: For all c1, . . . , ck ∈ [q]n,

arg max
z∈[q]n

k∑
i=1

agr(z, ci) = plur(c1, . . . , ck) , and

max
z∈[q]n

k∑
i=1

agr(z, ci) =
k∑
i=1

agr(plur(c1, . . . , ck), ci)

= #plur(c1, . . . , ck) .

Note that our goal of proving lower bound on list size
is the same as proving that in every not too small code,
there must be some center z that has several (i.e. Ω(1/ε2))
close-by codewords, or in other words several codewords with
large (i.e., at least ε) correlation. We begin by showing the
existence of a center which has a large average correlation
with a collection of several codewords. By Lemma 2.3, this is
equivalent to finding a collection of several codewords whose
total plurality count is large.

Lemma 2.4: For all integers q > 2, there exists a constant
bq > 0 such that for every positive integer t > 37q and every
code C ⊆ [q]n with |C| > 2t, there exist t distinct codewords
c1, c2, . . . , ct ∈ C such that

#plur(c1, . . . , ct) >
t

q
+ Ω

(√
t

q

)
.

Equivalently, there exists a z ∈ [q]n such that
t∑
i=1

corr(z, ci) > Ω
(√

t

q

)
. (1)

Proof: Without loss of generality, assume |C| = 2t. Pick
a subset {c1, c2, . . . , ct} from C, chosen uniformly at random
among all t-element subsets of C. For j = 1, . . . , n, define the
random variable Pj = #plur(c1j , . . . , ctj) to be the plurality
of the j’th coordinates. By definition, #plur(c1, . . . , ct) =
(1/n) ·

∑n
j=1 Pj . Notice that Pj is always at least t/q, and

we would expect the plurality to occasionally deviate from the
lower bound. Indeed, Lemma A.3 shows that for any sequence
of 2t elements of [q], if we choose a random subset of half of
them, the expected plurality count is t/q + Ω(

√
t/q). Thus,

E[Pj ] = t/q + Ω(
√
t/q). So E[(1/n) ·

∑
j Pj ] = t/q +

Ω(
√
t/q), and thus the lemma follows by taking any c1, . . . , ct
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that achieves the expectation. The equivalent reformulation in
terms of correlation follows from Lemma 2.3 and the definition
of correlation in terms of agreement (Definition 2.1).

For any ε > 0, the above lemma gives a center z and
t = Ω(1/qε2) codewords c1, . . . , ct such that the average cor-
relation between z and c1, . . . , ct is at least ε. This implies that
at least (ε/2) · t of the ci’s have correlation at least ε/2 with
z. Thus we get a list-size lower bound of (ε/2) · t = Ω(1/qε)
for decoding from correlation ε/2.

Now we would like to avoid the ε factor loss in list
size in the above argument. The reason it occurs is that the
average correlation can be ε due to the presence of ≈ εt
of the ci’s having extremely high correlation with z. This is
consistent with the code being list-decodable with list size
o(1/(qε2)) for correlation ε, but it means that this code has
very poor list-decoding properties at some higher correlations
— e.g., having εt = Ω(1/(qε)) codewords at correlation Ω(1),
whereas we’d expect a “good” code to have only O(1) such
codewords. In our next (and main) lemma, we show that we
can pick a subcode of the code where this difficulty does not
occur. Specifically, if C has good list-decoding properties at
correlation ε, we get a subcode that has good list-decoding
properties at every correlation larger than ε.

Lemma 2.5 (Main technical lemma): For all positive inte-
gers L, t, m > 2t and q > 2, and all small enough ε > 0,
the following holds. Let C be a (1−ε, L)-list-decodable q-ary
code of block length n with

|C| > 2L · t ·m!/(m− t)! .

Then there exists a subcode C ′ ⊆ C, |C ′| > m, such that for
all positive integers ` 6 t and every c1, c2, . . . , c` ∈ C ′,

#plur(c1, . . . , c`) 6 `

(
1
q

+
(

1− 1
q

)
ε+O

(
q3/2

√
`

))
Equivalently, for every z ∈ [q]n and every c1, . . . , c` ∈ C ′,
we have ∑̀

i=1

corr(z, ci) 6
(
ε+O

(
q3/2

√
`

))
· ` . (2)

Notice that the lemma implies a better upper bound on list
size for correlations much larger than ε. More precisely,
for every δ > 0, it implies that the number of codewords
having correlation at least ε + δ with a center z is at most
` = O(q3/δ2). In fact, any ` codewords must even have
average correlation at most ε+ δ.

Proof: We will pick a subcode C ′ ⊆ C of size m at
random from all m-element subsets of C, and prove that C ′

will fail to have the claimed property with probability less than
1.

For now, however, think of the code C ′ as being fixed,
and we will reduce proving the desired properties above to
bounding some simpler quantities. Let (c1, c2, . . . , c`) be an
arbitrary `-tuple of codewords in C ′. We will keep track of
the average plurality count #plur(c1, . . . , ci) as we add each
codeword to this sequence. To describe how this quantity
can change at each step, we need a couple of additional
definitions. We say a sequence (a1, . . . , ai) ∈ [q]i has a

plurality tie if at least two symbols occur #plur(a1, . . . , ai)
times among a1, . . . , ai. For vectors c1, . . . , ci ∈ [q]n, we
define #ties(c1, . . . , ci) to be the fraction of coordinates
j ∈ [n] such that (c1j , . . . , cij) has a plurality tie. Then:

Claim 2.6: For every c1, . . . , ci ∈ [q]n,

#plur(c1, . . . , ci) 6 #plur(c1, . . . , ci−1)+
+ agr(ci, plur(c1, . . . , ci−1)) + #ties(c1, . . . , ci−1) .

Proof of Claim: Consider each coordinate j ∈ [n] separately.
Clearly,

#plur(c1j , . . . , cij) 6 #plur(c1j , . . . , c(i−1)j) + 1 .

Moreover, if (c1j , . . . , c(i−1)j) does not have a plurality tie,
then the plurality increases if and only if cij equals the unique
symbol plur(c1j , . . . , c(i−1)j) achieving the plurality. Thus,

#plur(c1j , . . . , cij) 6 #plur(c1j , . . . , c(i−1)j) +Aj + Tj ,

where Tj is the indicator variable for (c1j , . . . , c(i−1)j)
having a plurality tie, and Aj for cij agreeing with
plur(c1j , . . . , c(i−1)j). The claim follows by averaging over
j = 1, . . . , n.

Thus, our task of bounding #plur(c1, . . . , c`) reduces to
bounding agr(ci, plur(c1, . . . , ci−1)) and #ties(c1, . . . , ci−1)
for each i = 1, . . . , `. The first term we bound using the list-
decodability of C and the random choice of the subcode C ′.

Claim 2.7: There exists a choice of the subcode C ′ such
that |C ′| = m and for every i 6 t and every (ordered)
sequence c1, . . . , ci ∈ C ′, we have

agr(ci, plur(c1, . . . , ci−1)) 6 1/q + (1− 1/q) · ε .

Proof of Claim: We choose the subcode C ′ uniformly at
random from all m-subsets of C. We view C ′ as a sequence of
m codewords selected randomly from C without replacement.
Consider any i of the codewords c1, . . . , ci in this sequence.
By the (1 − ε, L)-list decodability of the code C, for any
c1, . . . , ci−1, there are at most L choices for ci having agree-
ment larger than (1/q+ (1−1/q) ·ε) with plur(c1, . . . , ci−1).
Conditioned on c1, . . . , ci−1, ci is distributed uniformly on the
remaining |C| − i+ 1 elements of C, so the probability of ci
being one of the 6 L bad codewords is at most L/(|C|−i+1).

By a union bound, the probability that the claim fails for
at least one subsequence c1, . . . , ci of at most t codewords in
C ′ is at most
t∑
i=1

m!
(m− i)!

· L

|C| − i+ 1
6 t · m!

(m− t)!
· L

|C| − t+ 1
< 1.

Thus, there exists a choice of subcode C ′ satisfying the
claim.

For the #ties(c1, . . . , ci−1) terms, we consider the code-
words c1, . . . , c` in a random order.

Claim 2.8: For every sequence of c1, . . . , c` ∈ [q]n, there
exists a permutation σ : [`]→ [`] such that∑̀

i=1

#ties(cσ(1), . . . , cσ(i)) = O(q3/2 ·
√
`).
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Proof of Claim: We choose σ uniformly at random from all
permutations σ : [`]→ [`] and show that the expectation of the
left side is at most O(q3/2 ·

√
`). By linearity of expectations,

it suffices to consider the expected number of plurality ties
occurring in each coordinate j ∈ [n]. That is, we read the
symbols c1j , . . . , c`j ∈ [q] in a random order σ and count the
number of prefixes cσ(1)j , . . . , cσ(i)j having a plurality tie. If
this prefix were i symbols chosen independently according
to some (arbitrary) distribution, then it is fairly easy to
show that the probability of a tie is O(1/

√
i) (ignoring the

dependence on q), and summing this from i = 1, . . . , ` gives
O(
√
`) expected ties in each coordinate. Since they are not

independently chosen, but rather i distinct symbols from a
fixed sequence of ` symbols, the analysis becomes a bit more
involved, but nevertheless the bound remains essentially the
same. Specifically, in Lemma A.5, the expected number of
ties is shown to be O(q3/2 ·

√
`), yielding the claim.

Now to complete the proof of Lemma 2.5, let C ′ be as
in Claim 2.7, and let c1, . . . , c` be an arbitrary sequence of
distinct codewords in C ′. Let σ be permutation guaranteed by
Claim 2.8. Then, by Claim 2.6, we have

#plur(c1, . . . , c`) = #plur(cσ(1), . . . , cσ(`))

6
∑̀
i=1

[
agr(cσ(i), plur(cσ(1), . . . , cσ(i−1)))

+ #ties(cσ(1), . . . , cσ(i−1))
]

6 ` · (1/q + (1− 1/q) · ε) +O(q3/2 ·
√
`),

as desired. The equivalent reformulation in terms of correlation
again follows from Lemma 2.3 and the definition of correlation
in terms of agreement (Definition 2.1).

The following corollary of Lemma 2.5 will be useful in
proving our main result.

Corollary 2.9: Let L, t, m, q, ε, C, and C ′ be as in
Lemma 2.5 for a choice of parameters satisfying t > L. Then
for all z ∈ [q]n and all D > 2,

∑
c∈C′

corr(z,c)>Dε

corr(z, c) 6 O
( q3

Dε

)
. (3)

Proof: Let c1, c2, . . . , cr be all the codewords of C ′

that satisfy corr(z, c) > Dε. Since C, and hence C ′, is
(1 − ε, L)-list-decodable, we have r 6 L 6 t. Using (2) for
the codewords c1, c2, . . . , cr, we have

Dε 6
1
r

r∑
i=1

corr(z, ci) 6 ε+O
(q3/2

√
r

)

which gives r = O(q3/((D−1)2ε2)) = O(q3/(D2ε2)), since
D > 2. Applying (2) again,

∑
c∈C′

corr(z,c)>Dε

corr(z, c) =
r∑
i=1

corr(z, ci)

6 εr +O(q3/2
√
r)

6 O
( q3

D2ε

)
+O

( q3

Dε

)
6 O

( q3

Dε

)
.

We are now ready to prove our main result, Theorem 1.2,
which we restate (in slightly different form) below.

Theorem 2.10 (Main): There exist constants c > 0, d <∞,
such that for all small enough ε > 0, the following holds.
Suppose C is a q-ary (1−ε, L)-list-decodable code with |C| >
1/(qε2)d/(qε

2) Then L > c/(q5ε2).
Proof: Let T be a large enough constant to be specified

later. Let t = b 1
Tqε2 c. If L > t, then there is nothing to prove.

So assume that t > L > 1 and set m = 2t. Then

2L · t · m!
(m− t)!

6 2t2 · (2t)t =
(

1
qε2

)O(1/(qε2))

< |C|,

for a sufficiently large choice of the constant d. Let C ′ be a
subcode of C of size m = 2t guaranteed by Lemma 2.5.

By Lemma 2.4, there exist t codewords ci, 1 6 i 6 t, in
C ′, and a center z ∈ [q]n such that

t∑
i=1

corr(z, ci) = Ω
(√

t

q

)
. (4)

Also, for any D > 2, we have
∑t
i=1 corr(z, ci) equals∑

i:corr(z,ci)<ε

corr(z, ci) +
∑

i:ε6corr(z,ci)<Dε

corr(z, ci)

+
∑

i:corr(z,ci)>Dε

corr(z, ci) 6 εt+DεL+O
( q3

Dε

)
(5)

where to bound the second part we used that C ′ is (1− ε, L)-
list-decodable, and to bound the third part we used the fact
that C ′ satisfies (3).

Putting these together, and setting D = q4 · T , we have

Ω
(√

t

q

)
6 εt+DεL+O

( q3

Dε

)
6

√
t

T q
+DεL+O

(√ t

T q

)
.

For a sufficiently large choice of the constant T , this gives

L >
1
Dε
· Ω
(√

t

q

)
= Ω

(
1

T 1.5 · q5 · ε2

)
.

as desired.
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III. CONCLUDING REMARKS AND OPEN QUESTIONS

Several questions are open in the general direction of
exhibiting limitations on the performance of list-decodable
codes. We conclude with some remarks and mention some
of these open questions below.
• We have not attempted to optimize the dependence on the

alphabet size q in our bound on list size (i.e. the constant
cq in Theorem 1.2), and this leaves a gap between the
upper and lower bounds. The probabilistic code construc-
tion of [5], [6] achieves a nearly linear dependence on q
(specifically, list size L = O(log q/(qε2)), whereas our
lower bound (Theorem 2.10) has a polynomial depen-
dence on q (namely, it shows L = Ω(1/(q5ε2)). The
bound in Blinovsky’s recent paper [12] implicitly yields
the (near-optimal) lower bound L = Ω(1/(qε2)).

• When ε = o(1), say ε = 1/nγ is polynomially small
in the block length n, our results do not rule out the
existence of a (1 − ε, L)-list-decodable code with L =
o(1/ε2) and which has polynomially small rate (i.e., has
exp(nδ) codewords for some constant δ > 0). This is
setting of parameters is relevant to some applications of
list decoding, such as constructing randomness extrac-
tors [8], [9]. Is it possible that a list size of o(1/ε2) can
be achieved in this setting, or can one extend our lower
bound to rule out this possibility?

• It should be possible to use our main result, together
with an appropriate “filtering” argument (that focuses, for
example, on a subcode consisting of all codewords of
a particular Hamming weight) to obtain upper bounds
on rate of list-decodable q-ary codes. In particular, can
one confirm that for each fixed L, the maximum rate
achievable for list decoding up to radius p with list size
L is strictly less than the capacity 1 − Hq(p)? Such a
result was shown by Blinovsky for binary codes in [2]
and more recently for nonbinary codes in [11], [12]. It is
an interesting question whether some of the ideas in this
paper can be used to improve the rate upper bounds of
Blinovsky [2] for the binary case.

• Can one prove a lower bound on list size as a function
of distance from “capacity”? In particular, does one need
list size Ω(1/γ) to achieve a rate that is within γ of
capacity? Can one at least prove such a lower bound when
restricting to linear codes? Recently, Rudra [13] showed
that such a lower bound holds with high probability for
random codes as well as random linear codes.
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APPENDIX

COUNTING AND PROBABILITY ESTIMATES

Lemma A.1: For all integers n, k such that 0 < k < n, we
have (

n

k

)
= Θ

(√
n

k · (n− k)
· 2H(k/n)·n

)
.

Proof: Use Stirling’s approximation for the factorials.
Lemma A.2: For all positive integers t, s 6 t/2,

b
√
sc∑

i=b
√
s/2c

(
t
s+i

)(
t
s−i
)(

2t
2s

) = Ω(1)

Proof: Without loss of generality, we may assume that
s 6 t/2 (otherwise replace s with t − s). Let Ai =(
t
s+i

)(
t
s−i
)
/
(

2t
2s

)
. Using Lemma A.1, we see that

A0 = Θ

(√
t

s · (t− s)

)

= Ω
(

1√
s

)
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For 0 < i 6 b
√
sc, we have

Ai =
(t− s− i+ 1) · (s− i+ 1)

(s+ i) · (t− s+ i)
·Ai−1

=
(

1− 2i− 1
t− s+ i

)
·
(

1− 2i− 1
s+ i

)
·Ai−1

>

(
1− 2√

s

)2

·Ai−1

>

(
1− 2√

s

)2i

A0

= Ω(A0)

Therefore,
b
√
sc∑

i=b
√
s/2c

Ai = (b
√
sc − b

√
s/2c) · Ω(A0) = Ω(1).

Lemma A.3: Let t, q be integers such that q > 2 and t >
37q. Let a1, . . . , a2t ∈ [q], and let T be chosen uniformly at
random from all subsets of [2t] of size t. Then

ET [#plur(aj : j ∈ T )] >
t

q
+ Ω

(√ t

q

)
.

Proof: Notice that #plur(aj : j ∈ T ) is always at least
t/q. Thus it suffices to show that with constant probability over
the choice of T , there exists an α ∈ [q] such that #{i ∈ T :
ai = α} > t/q+Ω(

√
t/q). In fact, we restrict our attention to

a single value of α, namely the most frequent symbol among
a1, . . . , a2t. Then setting s = bt/qc, α occurs at least 2s times
among a1, . . . , a2t, so let S ⊆ [2t] be any set of 2s indices j
such that aj = α. Then,

PrT [#{j ∈ T : aj = α} = s+ i]

> PrT [|T ∩ S| = s+ i] =

(
t
s+i

)(
t
s−i
)(

2t
2s

) .

(To see the last equation, note that |T ∩ S| has the same
distribution whether T is a random and S is fixed, or T is
fixed and S is random.) Thus by Lemma A.2, with probability
Ω(1) over T , we have:

#{j ∈ T | aj = α} > s+ b
√
s/2c

>
t

q
+

√
t/q

2
− 3

>
t

q
+ Ω

(√
t

q

)
,

where in the last inequality we use the fact that t > 37q.
Lemma A.4: For integers 0 < i < a, 0 < j < b,(

a
i

)(
b
j

)(
a+b
i+j

) 6 O

(√
a · b · (i+ j) · (a+ b− i− j)
i · (a− i) · j · (b− j) · (a+ b)

)
.

Proof: Applying Lemma A.1 to each of the binomial
coefficients yields the bound above times 2t, where

t = H(i/a) ·a+H(j/b) · b−H((i+ j)/(a+ b)) · (a+ b) 6 0,

where the last inequality follows by concavity of the entropy
function.

Lemma A.5: Let b1, b2, . . . , bk be a sequence of elements
from the universe [q]. Recall that a prefix of such a sequence
has a plurality tie if there are at least two elements of [q] that
occur the same number of times in the prefix, and no other
element occurs a strictly greater number of times in the prefix.
Let Y be the random variable counting the number of prefixes
with a plurality tie in a random permutation of the bi’s. Then
E[Y ] = O(q3/2

√
k).

Proof: Assume k > q, or else Y 6 k < q and the
claimed bound holds trivially. For α ∈ [q], let Yα be a
random variable (over the choice of the permutation π of the
sequence) counting the number of i ∈ [k] such that the prefix
(bπ(1), . . . , bπ(i)) has a plurality tie, α achieves the plurality,
and bπ(i) 6= α. Then Y 6

∑
α Yα. (For every prefix with a

plurality tie, at least one of the two symbols achieving the
plurality must be different from the last symbol in the prefix.)
Thus, it suffices to show that E[Yα] = O(

√
qk) for every α.

Fix α. Let ` be the number of occurrences of α in the
sequence b1, . . . , bk. We can obtain a random permutation of
b1, . . . , bk by randomly ordering the m = k − ` elements of
the sequence other than α, and then randomly merging the
` occurrences of α into this sequence (uniformly out of all(
`+m
`

)
ways). In fact we will bound the expectation of Yα for

every fixed ordering c1, . . . , cm of the elements other than α,
and thus the only randomness is over the merging.

For each r = 1, . . . ,m, let ur = #plur(c1, . . . , cr). Notice
that r > ur > r/(q − 1). Let Xr be the indicator random
variable for whether upon merging, α occurs exactly ur times
before cr (equivalently, occurs vr = ` − ur times after cr).
Then Yα =

∑m
r=1Xr.

Fix r ∈ [m], let s = m − r, u = ur, v = vr = ` − u.
Our aim is to bound Pr[Xr = 1]. Notice that the merging can
be viewed as uniformly choosing a set S of ` out of m + `
locations to place the α’s (and putting the ci’s in the remaining
m locations). Observe that Xr = 1 only if S contains exactly
u of the first u + r locations (and thus exactly v of the last
v+s locations); let Er denote this event. (Xr = 1 also implies
that S does not contain location u+ r, but we will not make
use of that.)

We bound Pr[Er] for r ∈ {q, q + 1, . . . ,m − 1} by
considering two cases. (For r < q and r = m, we will use the
trivial bound Pr[Er] 6 1.) First, suppose that u/r > 2v/s.
Intuitively, this means that, for Er to occur, S must be
disproportionately partitioned in the merging. Specifically, the
expected number of elements of S among the first u + r
locations is

u+ r

u+ r + v + s
· (u+ v) <

u

2
.

By Chernoff bounds, the probability that the first u + r
locations contain more than u elements of S is at most
2−Ω(u) 6 2−Ω(r/q) 6 O(

√
q/r) for r > q. (The indicators

for whether each location contains an element of S satisfy
“negative dependence”, and thus Chernoff bounds apply [14].)

The second case is that

v

s
>

u

2r
>

1
2(q − 1)

. (6)
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Then, by Lemma A.4,

Pr[Er] =
(
u+ r

r

)(
v + s

s

)
/

(
u+ v + r + s

r + s

)
= O

(√
(u+ r) · (v + s) · (u+ v) · (r + s)

r · u · s · v · (u+ r + v + s)

)
. (7)

Now for positive integers x, y, we have

x · y
x+ y

=
min{x, y} ·max{x, y}

x+ y
= Θ(min{x, y}) . (8)

From (7) and (8), we conclude

Pr[Er] = O

(√
min{u+ r, v + s}

min{u, v} ·min{r, s}

)

= O

(√
q

min{r, s}

)
(using (6)).

Thus, in both cases we have Pr[Er] = O(
√
q/min{r, s}) for

r ∈ {q, q + 1, . . . ,m}. Therefore

E[Yα] 6 q +
m−1∑
r=q

Pr[Er]

= q +
m−1∑
r=1

O

(√
q

min{r,m− r}

)
= O(q +

√
qm)

= O(
√
qk),

since m 6 k and q 6 k. This gives the desired bound on
E[Yα] for each α ∈ [q].

RANDOMNESS EXTRACTORS

Here we briefly review the connection between list-
decodable error-correcting codes and “randomness extractors”
from [8], [9]. We present the definition of extractors using
nonstandard choices of variables for consistency with standard
notation for codes.

Definition A.6: A function Ext : [K] × [n] → [q] is an
(`, ε) extractor4 if for every random variable X , taking values
in [K] and such that Pr[X = x] 6 1/2` for every x, the
random variable (U[n],Ext(X,U[n])) has statistical distance
less than ε from (U[n], U[q]), where UW denotes the uniform
distribution on set W .

Thus an extractor uses a (log n)-bit random “seed” to extract
log q almost-uniform bits from any random source of min-
entropy at least `. (The min-entropy of X is defined to be
minx log(1/Pr[X = x]).)

If we have a code C ⊆ [q]n of size K with an encoding
function Enc : [K] → [q]n (s.t. Image(Enc) = C), then we
can obtain an extractor Ext : [K]× [n]→ [q] as follows:

Ext(x, y) = Enc(x)y. (9)

4In the extractor literature, such a function would normally be called an
(`, ε) strong extractor. Also, the usual definition requires that the statistical
distance be at most ε instead of strictly less than ε, but the latter choice is
more convenient here.

Conversely, every extractor yields an encoding function by
setting:

Enc(x) = Ext(x, 1)Ext(x, 2) · · ·Ext(x, q). (10)

The extraction properties of Ext and the list-decodability
properties of Enc are given by the following.

Proposition A.7 ( [8], [9], [15]): 5 Let Ext : [K]× [n]→
[q] and Enc : [K] → [q]n correspond to each other via
Equations (9) and (10). Then for every L ∈ N and ε ∈ [0, 1]:

1) If Ext is an (L, ε) extractor, then Enc is (1 − (q/(q −
1)) · ε, L− 1) list-decodable.

2) If Enc is (1 − ε, L) list-decodable, then Ext is an
(L/ε, (q − 1) · ε) extractor.

Radhakrishnan and Ta-Shma [7] proved that for most set-
tings of parameters, an (L, ε) extractor must lose at least
2 log(1/ε) − O(1) bits of entropy, i.e. log q 6 logL −
2 log(1/ε) + O(1). Equivalently, L = Ω(q/ε2). By Item 2,
this implies that a (1− ε′, L′) list-decodable code must have
L′ = Ω(1/(qε′)). Notice that this bound is only linear in 1/ε′.

In the other direction, by Item 1, our result showing that a
(1 − ε, L) list-decodable code must have list size L > cq/ε

2

implies the same for an (L, ε) extractor, which matches the
Radhakrishnan–Ta-Shma bound in its dependence on ε but is
worse in its dependence on q (which is quite significant in the
context of extractors).
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