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When Does a Platform Create Value
by Limiting Choice?

Abstract

We present a theory for why it might be rational for a platform to limit the num-

ber of applications available on it. Our model is based on the observation that

even if users prefer application variety, applications often also exhibit direct net-

work effects. When there are direct network effects, users prefer to consume the

same applications to benefit from consumption complementarities. We show that

the combination of preference for variety and consumption complementarities gives

rise to (i) a commons problem (to better satisfy their individual preference for

variety, users have an incentive to consume more applications than the number

that maximizes joint utility); (ii) an equilibrium selection problem (consumption

complementarities often lead to multiple equilibria, which result in different utility

levels for the users); and (iii) a coordination problem (lacking perfect foresight, it is

unlikely that users will end up buying the same set of applications). The analysis

shows that the platform can resolve these problems and create value by limiting the

number of applications available. By limiting choice, the platform may create new

equilibria (including the allocation that maximizes users’ utility); eliminate equilib-

ria that give lower utility to the users; and reduce the severity of the coordination

problem faced by users.

Classification-JEL: D21, D42, L12, L82, L86

Keywords: platform governance, direct network effects, indirect network effects,

complements, tragedy of the commons, equilibrium selection, coordination, fore-

sight.



1 Introduction

Platforms such as computer operating systems (Windows), video game systems (Nin-

tendo), betting exchanges (Betfair), stock exchanges (NYSE), or online gaming sites

(Kaixin001) are institutions that facilitate users’ access to applications (defined as oppor-

tunities to fulfill users’ particular purposes—such as writing documents, playing games,

betting money, or investing capital).1 Among the many governance choices that platforms

make, they determine the number of applications users have access to (e.g., how many

games to offer by a given online gaming platform, how many firms to list by a given stock

exchange, and so on). In this paper, we study the relationship between the number of

applications available on a platform and users’ equilibrium utility. We find that narrow

choice often increases utility and thus creates value.

Platforms are characterized by the presence of indirect network effects: the larger the

number of users means the more firms are willing to join, thus increasing the diversity of

applications available, which in turn raises users’ valuation of the platform. For example,

firms’ desire to list their shares in the New York Stock Exchange grows with the number

of investors who are expected to trade there; likewise, the larger the number of firms

expected to be listed in the NYSE, the more willing the investors are to invest there

(Cantillon and Yin 2011). Naturally, indirect network effects induced by users’ preference

for application variety have played a prominent role in models of platforms, beginning at

least from the pioneering work of Church and Gandal (1992) and Chou and Shy (1996),

and spanning to recent contributions such as Hagiu (2009) and Weyl (2010).

When the value of a platform increases with the number of applications offered, com-

mon wisdom dictates that platforms should provide as many applications as possible.

Indeed, suboptimal exploitation of indirect network effects may have dreadful conse-

quences; superior platforms (better technology, better capitalized, early movers...) may

perish in their competition against second-rate alternatives. Arthur (1990), for example,

describes how Sony lost its battle against JVC in the 1980s whose VHS standard was in-

ferior to Betamax, due largely to lesser movie availability on Sony’s standard. Likewise,

it is widely believed that Apple lost its battle against the PC in the late 1980s because

of a dearth of applications. While Microsoft aggressively evangelized independent soft-

ware vendors and provided them with tools and support, Apple based its approach on

in-house development of a small number of applications. By the early 1990s, the number

1Examples of applications include: word processors or spreadsheet programs (in the case of computer
operating systems), games (in video game systems or online gaming sites), sports events (in betting
exchanges), and listed companies (in stock exchanges).
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of applications available for the Mac was a small fraction to that for the PC.

Given the wealth of evidence suggesting that maximizing application variety is a

good idea, it is puzzling that successful platform providers such as Betfair, Nintendo,

or Kaixin001 appear to have actively limited the number of applications available on

their platforms. Betfair provides an electronic platform that allows its customers to back

teams to win in sports such as soccer or horse races, but also to lay odds for others to

bet on. The company began operations in the U.K. in 2000 as a second mover after

Flutter.com. Although Flutter was the first mover and had better access to capital—

its initial funding was $43.7 million vs. £1 million for Betfair—Betfair won over the

market.2 A key difference between the two betting exchanges was that while Flutter

would allow users to bet on any event they wished to create (such as next week’s weather),

Betfair adamantly restricted the number of events (applications) on which users could

bet. Interestingly, the platform that offered fewer applications ended up faring better.

Similarly, in the late 1980s, Nintendo restricted the number of games that developers

were allowed to release each year for the Nintendo Entertainment System (NES) to five.

The company also restricted the number of developers who could sell games for the NES.

Nintendo went on to become the dominant player (market share and profit) for the 8-bit

generation.3 Likewise, the leading online social networking site, Kaixin001, provides a

limited number of games for users to engage in (e.g., Parking Cars and Stealing Crops)

when many more could be offered. The site offers the smallest number of social games

among the top social networking sites in China and lags behind its competitors in making

its platform open to third party application developers;4 however, the site has the most

highly active users among them.5 These examples run counter to the conventional wisdom

that when considering application variety in platforms “more is always better.”

In this paper, we ask: why might it be rational for a platform to limit the number

of applications when indirect network effects are at play? Our answer is that by limiting

the number of applications the platform may resolve three problems faced by users: a

commons problem, an equilibrium selection problem, and a coordination problem. When

the platform resolves these three problems it creates value because users achieve higher

utility. Thus, our analysis focuses on how limiting the number of available applications

2Betfair acquired Flutter in December 2001 and become the dominant betting exchange in Europe.
See Casadesus-Masanell and Campbell (2008).

3The NES was the leading second-generation (8-bit) game console. Nintendo’s global market share
for 8-bit consoles in 1990 was greater than 90%. See Brandenburger (1995).

4http://www.nth-wave.com/wordpress/?p=32985.
5http://www.nytimes.com/external/venturebeat/2010/04/07/07venturebeat-chinas-top-four-social-

networks-renren-kaixi-55248.html.
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affects the value created.6

Our theory is based on the observation that even when platforms enjoy indirect net-

work effects, applications often exhibit direct network effects, i.e., users are better off

using the same applications as other users due to consumption complementarities. For

example, Cantillon and Yin (2010) demonstrate that there are important direct network

effects in derivatives’ trading. Specifically, as the number of traders for a particular

derivative increases, so does liquidity. Similarly, the richness of gameplay in massively

multiplayer online games (MMOG), such as World of Warcraft, is based on the number

of interactions between players; MMOGs are not fun if played alone. When users have

limited resources (such as finite time to enjoy applications or an income constraint) and

there are many applications available, they must pick and choose which ones to use. If

direct network effects are at play, users are better off by purchasing and consuming the

same limited set of applications.

We show that when users prefer application variety but also benefit from consumption

complementarities, three issues may arise. First, the number of applications that maxi-

mizes users’ utility may not be part of an equilibrium as each user may find it optimal to

unilaterally deviate to consume more applications so as to better satisfy her craving for

variety. This is because agents do not internalize the negative externalities they impose

on others: a single user suffers almost nothing from the decrease in consumption comple-

mentarities when he increases the number of applications consumed while, in aggregate,

the loss of consumption complementarities is much greater. Second, multiple equilibria

often arise. With the usual assumption that users have perfect foresight, any one of those

equilibria could, in principle, be selected. While some equilibria lead to higher user utility

than others, nothing guarantees that the equilibrium yielding the highest utility will be

selected. Third, if users lack perfect foresight on each others’ choices in equilibrium, it is

unlikely that they will end up purchasing and consuming the exact same set of applica-

tions, but such coordination is necessary to fully exploit consumption complementarities.

Our analysis demonstrates that by limiting the choice of applications, the platform

can accomplish three tasks. First, it can create equilibria that did not exist when ap-

plication choice was broad. In particular, the allocation that maximizes users’ utility

can be guaranteed to be an equilibrium thus relieving the commons problem. Second,

it can eliminate socially inferior equilibria, effectively resolving the equilibrium selection

6We do not consider how the platform may capture that value through prices (access prices and/or
royalties). We note, however, that generating larger user surplus allows the platform to charge higher
access fees to users. A detailed analysis of platform pricing (i.e., value capture) is beyond the scope of
this paper and left for future research. See Section 4 for a more detailed discussion of this issue.
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problem. Third, it can reduce the severity of the coordination problem faced by users

when they do not know other users’ choices in equilibrium. With a smaller choice set, it

is more likely that users will end up purchasing and consuming the same applications and

are thus more likely to enjoy consumption complementarities. We conclude that when

direct and indirect network effects are at play, platforms may create value by limiting

choice.

Contrary to the recent literature on multi-sided platforms (e.g., Rochet and Tirole

2003; Caillaud and Jullien 2001; Armstrong 2006; Hagiu 2009; Casadesus-Masanell and

Ruiz-Aliseda 2009), which for the most part focuses on pricing and developer entry,

we study the behavior of users and consider exogenous application prices. We show,

however, that the three problems faced by users due to concurrent direct and indirect

network effects (i.e., commons, equilibrium selection, and coordination) arise regardless

of the prices of applications.7 The key implication is that the platform cannot induce

users to consume the optimal number of applications by manipulating application prices.

The conventional wisdom why platforms must promote large numbers of applications

is that users’ consumption utility increases with the number of applications available (due

to preference for variety). Obviously, larger utility allows the platform to charge higher

access prices. Our results imply, counterintuitively, that when direct and indirect network

effects are at play, the platform will typically be able to charge higher access prices to

users—and thus earn additional profits—if it also restricts the number of applications

available.

1.1 Literature

Our paper contributes to the literature on multi-sided platforms and two-sided markets.

Pioneering work by Spulber (1996, 1999) examines how firms establish markets acting as

intermediaries between buyers and sellers. The platforms that we study also establish

markets as they bring users and developers together. The literature on multi-sided plat-

forms and two-sided markets has continued to flourish on the basis of industry-specific

models. Rochet and Tirole (2003), for example, is inspired by the credit card industry;

Armstrong (2006) captures well the economics of newspapers; and Hagiu (2009) considers

competition between video game systems. General results have been derived by Spulber

(2006) who models centralized and decentralized two-sided markets through network the-

ory. Likewise, Rochet and Tirole (2006) proposes a formal definition of two-sided markets

7In this paper, we limit our attention to environments with symmetric prices of applications, i.e., the
applications are a priori homogeneous, and each is sold at the same price.
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and presents a general framework for the analysis of such markets; and Weyl (2010) de-

velops a general theory of monopoly pricing of networks with weak constraints on the

nature of user heterogeneity.

While most of the literature on platforms has examined issues related to pricing, there

is a new and growing line of work studying platform governance beyond pricing. Hagiu

and Jullien (2011), for example, demonstrates that platforms may have incentives to make

it harder for users to gain access to the other side of the market. Likewise, Caillaud and

Jullien (2003) considers the impact of matching technology on platform competition. Our

paper focuses on one aspect of platform governance that has received little attention thus

far: the effect of limiting the choice of applications on user behavior, and ultimately on

the value created by the platform.

The only two papers we are aware of that are directly related to the question that we

address here are Zhao (2010) and Ha laburda and Piskorski (2010). Zhao (2010) studies

hardware/software platforms and explores the effects of quantity constraints on product

quality and variety on a monopolistic two-sided platform where quality is uncontractible.

He finds that when users cannot perfectly observe application quality, developers un-

derinvest in quality and the platform can then use quantity restraints to help mitigate

free-riding and increase overall application quality.8 While Zhao (2010) studies the effects

of quantity limitations on the behavior of developers, we study the effects on the behavior

of users. A second point of differentiation is that while he provides an explanation for why

it may make sense for the platform to limit the number of applications per developer, in

his theory the platform gains nothing from limiting the number of developers. Therefore,

contrary to ours, his theory is silent about the benefits of limiting the overall number of

applications offered by the platform.

Ha laburda and Piskorski (2010) studies dating platforms, an environment with indirect

network effects: men prefer a market with a larger number of women, and women prefer

a market with more men. This paper shows that, nonetheless, users may benefit when

dating platforms limit the number of candidates among which to find a match. This is

because dating platforms limit the number of candidates on both sides. Thus by limiting

choice, platforms also limit competition between agents in the same side. Some agents

prefer a platform with less choice, because it increases the probability that they will find

a match. The current paper differs from Ha laburda and Piskorski (2010) in two ways.

First, Ha laburda and Piskorski (2010) is the best suited for markets with one-to-one

8Hagiu (2011), in turn, studies how a platform can increase the average quality of platform participants
by imposing restrictions on user access—as opposed to limiting the number of applications available.
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matching, like dating or housing markets. The current paper focuses on markets where

users can consume a large number of applications. Moreover, applications are infinitely

duplicable: when one user consumes an application, it does not limit the availability

of the same application to other users. Second, our setting lacks the competitive effect

that drives the result in Ha laburda and Piskorski (2010). To the contrary: as a result of

consumption complementarity, the direct network effect is positive. Users gain if more

users (on the same side of the market) consume the same applications. Thus, users benefit

when the platform restricts choice because it helps them take advantage of consumption

complementarities to a fuller extent rather than avoiding competition.

The paper is organized as follows. In Section 2 we present the game with perfect

foresight, solve for equilibria under direct and indirect network effects, and discuss the

utility implications of the platform limiting choice. In Section 3 we recast the model as

one where users have no foresight about other users’ choices in equilibrium. In Section 4

we discuss our main modeling choices as well as some extensions to the analysis. Section 5

concludes. Appendix A shows that our results hold for a generalized formulation of the

model. All proofs are in Appendix B.

2 Game with perfect foresight

We consider a platform which brings together developers and users of applications. There

is a set A of available applications and N users. We denote the cardinality of A by A.

We treat N and A as exogenous.

Let xka denote user k’s consumption of application a. The consumption utility that

user k derives from consuming xk = (xk1, x
k
2, . . . , x

k
A) applications is given by

u(xk; {xl}l 6=k) =

(∑
a∈A

(
xka
)1/R)R

︸ ︷︷ ︸
preference for variety

+ α
∑
a∈A

(
xka
∑
l 6=k

xla
)

︸ ︷︷ ︸
consumption complementarity

,

where α ≥ 0 captures the strength of consumption complementarity, and 1 ≤ R < 2

captures the intensity of the user’s preference for variety.9 The larger is α, the more the

9Note that when α = 0, preferences are as in Dixit and Stiglitz (1977). Moreover, the analysis is
only interesting for R < 2. For such R, the marginal benefit from consuming another application is
positive but decreasing. Conversely, for R ≥ 2, the marginal benefit from consuming another application
is increasing or constant. Thus, since for p < X a user finds it beneficial to consume one application, then
for R ≥ 2 she will always find it beneficial to consume all applications. To keep the analysis interesting,
we restrict R < 2.
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users benefit from consuming the same applications. Likewise, the larger is R, the more

the users prefer application variety, i.e., consuming a larger number of applications.

Consumption utility u captures both, direct and indirect network effects. Indirect

network effects originate from users’ preference for variety: users prefer platforms with

more users because it is more likely that more applications will be developed for that

platform. Therefore, when R is larger, the source of indirect network effects is stronger.

When R = 1, however, users have no preference for variety, and therefore there are no

indirect network effects.

Direct network effects are present when a user’s utility from consuming an application

increases with other users’ consumption levels of the same application. For example, users

of video games enjoy a given game more if their friends also consume the same game,

as they can discuss strategies to beat the game, their experiences, etc. Direct network

effects are captured by the term α · xka ·
∑

l 6=k x
l
a: user k’s enjoyment of her consumption

of application a is larger the more the other users (l 6= k) consume application a. We

let α ≥ 0. When α = 0, there are no direct network effects and as α increases, direct

network effects become stronger. In summary, user preferences may exhibit direct or

indirect network effects, or both, depending on the value of parameters α and R.

We assume that users have a budget of X units of time to consume applications and

interpret xka ≥ 0 as the amount of time that user k spends consuming application a.

Thus, if user k consumes a set Qk ⊆ A of applications, she must satisfy the time budget

constraint: X ≥
∑

a∈Qk xka. Each application is sold at an exogenous monetary price p>0,

regardless of how much time users spend consuming it.10 Since the monetary dimension is

different from the time dimension, spending p does not detract from the time budget X.

We assume that p is sufficiently low for users to find it desirable to purchase and consume

at least one application, i.e., we let p < X. Therefore, it follows that users consume at

least one application, i.e., Qk ≥ 1, where Qk denotes the cardinality of Qk.

User k’s net utility from consuming xk when price is p is given by

U(xk; {xl}l 6=k) = u(xk; {xl}l 6=k)− p ·
∑
a∈A

1(xka), (1)

where 1(·) is an indicator function taking value 1 when its argument is different from

zero.

10As foreshadowed in footnote 7, this analysis focuses on the case where the prices of applications are
symmetric. We leave the analysis of the environment with asymmetric prices for future research. The
results for p = 0 can be found in Appendix B of the working paper version (Casadesus-Masanell and
Ha laburda 2010).
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Since the focus of our analysis is on the value of limiting choice, we also assume that

absent action by the platform to constrain the set of available applications, the cardinality

of A is large. Specifically, we assume that A ≥
( (R−1)X

p

) 1
2−R . We will show (see Remark 2)

this guarantees that there are sufficiently many different applications available for users

to satisfy their preference for variety.

We consider the following two-stage game: In the first stage, all users decide simul-

taneously which applications to purchase at price p. In the second stage, users decide

simultaneously how to allocate their time budget X across the applications they have pur-

chased. We solve for the subgame-perfect Nash equilibria in pure strategies and follow

Katz and Shapiro (1985) in assuming that expectations are fulfilled in equilibrium.11

Formally, given that user k has already purchased a set of applications Qk, in the

second stage she chooses consumption xk to maximize her own consumption utility u

given the expected consumption of all other N − 1 users, xl for l 6= k:

max
xka, a∈Qk

u(xk; {xl}l 6=k) subject to X ≥
∑
a∈Qk

xka. (2)

In the first stage, users choose the set of applications to purchase, Qk ⊆ A, anticipating

their own consumption and that of all other users in the second stage. User k’s objective

is to maximize her own net utility U .

We end the description of the model by presenting two definitions that are helpful for

the discussion of equilibria.

Definition 1 (balanced strategy) Let Qk = {a|xka > 0} be the set of applications

consumed by user k, and let Qk be the cardinality of Qk. We say that user k’s strategy is

balanced if xka = X
Qk for all a ∈ Qk.

Thus, a balanced strategy is one where the user allocates her time budget equally across

all the applications she consumes. Note that balanced strategies are pure strategies and

that for any Qk there is a unique balanced strategy.

Definition 2 (balanced equilibrium) An equilibrium is balanced if all users play bal-

anced strategies.

In this section, we solve the game under the assumption that users have perfect fore-

sight about other users’ choices in equilibrium. This is a classic assumption of rational

11As we argue in Section 4, solving for the subgame perfect Nash equilibrium in a two-stage game leads
to the same results as the single-stage formulation, but is technically more convenient.
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beliefs—a part of Nash equilibrium. Later, in Section 3 we relax the perfect foresight

assumption.

In the remainder of this section, we investigate each type of network effect separately

before considering the interplay of both types together. We first study the model with

direct network effects and find that users consume one single application so as to take

full advantage of consumption complementarities (Section 2.1). Then, we move on to the

model with pure indirect network effects and find that users choose to consume a large

number of applications driven by their preference for variety (Section 2.2). Next, we study

the interplay between the two types of network effects and find that there is a tradeoff

between harnessing consumption complementarities and the utility gains from product

variety. In the equilibrium that yields the highest utility to users, they always consume

a smaller number of applications than under pure indirect network effects (Section 2.3).

Finally, we show that the platform can create value by limiting the number of applications

available even if users have perfect foresight about each others’ purchase and consumption

decisions (Section 2.4).

2.1 Direct network effects

There are pure direct network effects when users derive utility from consuming the same

applications as other users but not from product variety. Therefore, consumption utility u

exhibits pure direct network effects when R = 1 and α > 0. In this case, user k’s net

utility (1) takes the form

UD(xk; {xl}l 6=k) =
∑
a∈A

xka + α
∑
a∈A

(
xka
∑
l 6=k

xla
)
− p ·

∑
a∈A

1(xka).

User k’s consumption of application a in an equilibrium is denoted by x̂ka. Let Qk
D ⊆ A

be a set of applications that user k consumes in equilibrium in an environment with pure

direct network effects. Then, the cardinality of Qk
D is Qk

D =
∑

a∈A 1(x̂ka). Remark 1

characterizes the equilibria in this case.

Remark 1 When R = 1 and α > 0, in every equilibrium Qk
D = QD for all k and the

number of applications consumed is Qk
D = QD = 1 for all k. There are A equilibria. All

equilibria are balanced and yield the highest possible utility to the users.

Proof. See Appendix B, page 33.
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Because R = 1, users derive no utility from product variety. However, because α > 0,

they derive utility from other users consuming the same applications for longer periods of

time. Indeed, user k’s marginal utility of consuming application a is increasing in other

users’ aggregate consumption of a,

∂ uD(xk; {xl}l 6=k)
∂xka

= 1 + α ·
∑
l 6=k

xla .

Therefore, the more other users consume application a, the more user k desires to con-

sume a. Since the same applies to all users, in equilibrium all users consume the same

application. Users could coordinate on any one of the A applications available, since all

users and all applications are homogeneous.

2.2 Indirect network effects

There are pure indirect network effects when users derive utility from product variety but

not from consuming the same applications as other users. Therefore, consumption utility

u exhibits pure indirect network effects when 1 < R < 2 and α = 0. In such a case,

user k’s net utility (1) takes the form

UI(x
k; {xl}l 6=k) =

(∑
a∈A

(
xka
)1/R)R − p ·∑

a∈A

1(xka). (3)

Note that (3) is essentially the same as the setup in Dixit and Stiglitz (1977), with two

exceptions. First, the cost of time spent using application a is set in our model to 1 for

all a ∈ A. Second, we impose a price p > 0 that users must pay to use an application.12

Remark 2 characterizes the equilibria under pure indirect network effects.

Remark 2 Assume 1 < R < 2 and α = 0. In every equilibrium the number of appli-

cations consumed is Qk
I = QI for each user k, where QI = max{1,

( (R−1)X
p

) 1
2−R}. All

equilibria are balanced and yield the highest possible utility to the users.13

12More precisely, our cost of time (which we normalize to 1) corresponds to the application prices in
the original Dixit-Stiglitz’s formulation. In contrast to Dixit-Stiglitz, we assume that users must pay a
fixed price for access to each application she consumes, p > 0. This price is independent of the usage.
For example, when users buy a particular videogame title, they pay for it once regardless of the usage,
then they allocate scarce time to playing the game. In our model, the price of the game is p and the
opportunity cost of time allocated to playing the game is 1.

13There are N ·A!
QI !(A−QI)!

pure-strategy subgame-perfect Nash equilibria and continuum mixed strategy

equilibria.
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Proof. See Appendix B, page 34.

To understand this result, notice that Dixit and Stiglitz (1977) implies that when

α = 0 and p → 0, the solution to optimization problem (2) is QI → ∞ and x̂ka = X
QI
→

0. Users derive utility from product variety and find it optimal to consume as many

applications as possible in equal proportions. The result is driven by the fact that, as

long as R > 1, applications have infinite marginal consumption utility around zero,

lim
xka→0

∂ uI(x
k; {xl}l 6=k)
∂xka

=∞ ,

and that this marginal utility decreases as consumption increases. Therefore, spreading

the time budget evenly across Q + 1 applications yields more utility than spreading the

same time budget across Q applications.

To determine how many applications to purchase, users must compare the additional

benefit from consuming an additional application and the price p that they must pay

for that application. Specifically, if Q applications are consumed by a user in optimal

consumption schedule, her utility is
(
Q
(
X
Q

) 1
R
)R − pQ = QR−1X − pQ. Therefore, the

marginal benefit from increasing Q is (R− 1)QR−2X. The marginal cost of an additional

application is p. The number of applications at which the marginal benefit and marginal

cost are equal is
( (R−1)X

p

) 1
2−R .

As customary in the platforms literature (e.g., Ellison and Fudenberg 2003), we ignore

the integer problem and treat the number of applications Q as a continuous variable. As

indicated on page 7, users consume at least one application. Thus, if
( (R−1)X

p

) 1
2−R < 1,

the user consumes one application. That is, the optimal consumption is characterized

by QI = max{1,
( (R−1)X

p

) 1
2−R}. As we show later, the number of applications consumed

under direct and indirect network effects is never larger than QI . Therefore, to focus on

non-trivial analysis, from now on we assume QI > 1,14 which implies QI =
(
(R−1)X

p

) 1
2−R .

Let Qk
I ⊆ A be the set of applications that user k consumes in equilibrium in an

environment with pure indirect network effects. Remark 2 states that all users consume

the same number of applications in equilibrium, i.e., Qk
I = QI for all k. However, it does

not need to be that users consume the same applications, i.e., it may be that Qk
I 6= Ql

I for

k and l 6= k. This is because users gain no utility from consuming the same applications

as others. Thus, any N subsets of A with cardinality QI constitutes an equilibrium.

14The working paper version (Casadesus-Masanell and Ha laburda 2010) also considers the case where
QI = 1.
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2.3 Interplay between direct and indirect network effects

Now we investigate what happens when users in the platform experience both direct

and indirect network effects so that they derive utility from product variety and from

consuming the same applications as other users. In such a case, 1 < R < 2 and α > 0. Let

Qk
DI ⊆ A be a set of applications that user k consumes in equilibrium in an environment

with direct and indirect network effects, and let Qk
DI be the cardinality of Qk

DI . Note

that in the cases of pure direct and of pure indirect network effects, all equilibria could

be uniquelly characterized by the number of applications user k consumes in equilibrium,

i.e., Qk
D = 1 and Qk

I =
(
(R−1)X

p

) 1
2−R > 1. However, as we show below, when both direct

and indirect network effects are present, multiple values of Qk
DI are possible.

The study of this hybrid specification is substantially more complex than the cases

of pure direct and pure indirect network effects. We will show that there is always a

set of equilibria close to QI , the number of applications that users would choose if only

indirect network effects were at play. And if consumption complementarity is sufficiently

strong relative to preference for variety, another set of equilibria emerges around con-

suming QD = 1 (the equilibrium number of applications consumed under pure direct

network effects). Specifically, under hybrid network effects, equilibria emerge which are

not equilibria under pure network effects of either type. Moreover, possible cardinalities

of the consumption set in an equilibrium depend on the strength of consumption com-

plementarity relative to that of preference for variety. We present the analysis in parts,

beginning with two helpful lemmas.

Lemma 1 Assume that 1 < R < 2 and α > 0. In every balanced equilibrium Qk
DI = QDI

for all k.

Proof. See Appendix B, page 35.

Lemma 2 Assume that 1 < R < 2 and α > 0. If QDI is the cardinality of the consump-

tion set in a balanced equilibrium, then any set of applications QDI ⊆ A of cardinality

QDI constitutes a balanced equilibrium.

Proof. See Appendix B, page 36.

Lemma 1 says that in every balanced equilibrium all users consume the same ap-

plications. It is driven by presence of direct network effects. Lemma 2 says that if

QDI is the number of applications consumed in a particular balanced equilibrium, then

12



there are CA
QDI

equilibria with the same number of applications consumed. For exam-

ple, if A = {1, 2, 3, 4}, QDI = 2 characterizes six balanced equilibria: QDI1 = {1, 2};
QDI2 = {1, 3}; QDI3 = {1, 4}; QDI4 = {2, 3}; QDI5 = {2, 4}; and QDI6 = {3, 4}. It is easy

to see that users derive the same utility in all of these equilibria and, thus, we think of

them as equivalent. The lemmas imply that in the case of 1 < R < 2 and α > 0 we may

completely characterize balanced equilibria by simply stating equilibrium cardinalities

QDI . For clarity of exposition, we refer to balanced equilibria by just indicating their

cardinality, QDI .

Suppose that all users play balanced strategies and consume the same set of applica-

tions of cardinality Q. Then, each user’s net utility (1) is given by V (Q):

V (Q) = QR−1X + α
X2

Q
(N − 1)− pQ. (4)

Function V (Q) is helpful in studying balanced equilibria. Not every Q constitutes an

equilibrium. However, Lemma 1 implies that the net utility in every balanced equilibrium

must be given by V (Q).

Figure 1: Shape of V for different values of α.
(R = 1.7135, A = 30, X = 2, N = 16, p = 0.646.)

Figure 1 illustrates the shape of V for different values of α. The shape of V is driven

by the weight of consumption complementarity relative to that of preference for variety.

As shown by Remark 1, consumption complementarity and the resulting direct network

effects induce users to consume one application only. Remark 2, however, shows that

preference for variety and the resulting indirect network effects induce users to consume

more applications. The graph in Figure 1 shows that when users have strong preference for

variety compared to consumption complementarity (low α relative to R), indirect network

13



effects outweigh direct network effects and the Q that maximizes V is interior. When

preference for variety is weak relative to consumption complementarity direct network

effects outweigh indirect network effects and Q = 1 maximizes V .

Let

Q̂ = max

{
1, Q such that

dV

dQ
= 0

}
.

If V has interior maxima, then Q̂ is the unique interior maximum. Otherwise, V reaches

its maximum at Q̂ = 1. As we can see in Figure 1, when α is large, Q̂ = 1 (cf. α = 0.16 in

the figure). Otherwise, Q̂ > 1 (other values of α in the figure). The value Q̂ is important

for the shape of V . Specifically, for Q > Q̂, V is always decreasing. However, for Q̂ > 1,

when Q < Q̂, V first decreases and then increases. It is possible for some Q < Q̂ that

V (Q) > V (Q̂). Let Q? be Q < Q̂ such that V (Q?) = V (Q̂), when Q̂ > 1. (See Figure 2,

below, for an example.)

The following remark states that Q̂ is lower than QI , the equilibrium number of

applications consumed when there are no direct network effects (as defined in Remark 2).

Remark 3 Assume that 1 < R < 2, α > 0 and QI > 1. Then Q̂ < QI .

Proof. See Appendix B, page 36.

Intuitively, the presence of direct network effects prompts users to allocate their limited

time budget to fewer applications. Consumption complementarity, due to other users

consuming the same applications, compensates for the loss of application variety. The

fact that we consider QI > 1 guarantees that the comparison between Q̂ and QI is

nontrivial.15

As noted above, Q̂ > 1 is the unique interior maximum of V . The following proposition

shows that when Q̂ > 1, users face a commons problem. Specifically, when all users

consume Q̂ > 1 applications, every user finds it profitable to unilaterally deviate upward.

However, when all of them deviate, they receive a lower utility. Notice that Q̂ > 1 when

preference for variety, R, is large relative to consumption complementarity, α.

Proposition 1 (commons problem) Assume that 1 < R < 2 and α > 0. If Q̂ > 1,

then Q̂ is not a balanced equilibrium. Specifically, for any user k, U(Qk = Q̂ + ε, {Ql =

Q̂}l 6=k) > V (Q̂) > V (Q̂+ ε).

15For QI = 1, Q̂ = QI = 1.
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Proof. See Appendix B, page 37.

The proposition states that when Q̂ is interior, it cannot be a balanced equilibrium.

This is because there is a profitable unbalanced upward deviation, i.e., each user has

incentive to consume more applications. To see this, consider a unilateral balanced devi-

ation to ε more applications. The deviator consumes X/(Q̂+ ε) of each application. We

now show that such deviation brings no additional utility. Note that the payoff from this

upward deviation under balanced consumption is

UDI(Q̂+ ε|balanced) =
(
Q̂+ ε

)R−1
X + �

�̂Qα
X

Q̂+ ε
(N − 1)

X

�
�̂Q
− p

(
Q̂+ ε

)
,

which is the same as V (Q̂ + ε). Therefore, because V ′(Q̂) = 0, V (Q̂ + ε) is maximized

at ε = 0. This means that an incremental upward deviation with balanced consumption

from Q̂ yields 0 benefit.

We now argue that an unbalanced deviation is strictly profitable. Note that the Q̂

applications are also consumed by all other users while the new applications are consumed

by the deviator only. Because of consumption complementarity, the marginal benefit

from the Q̂ applications is larger than that from the applications that only the deviator

consumes. Therefore, shifting some consumption from the additional applications to any

of the Q̂ applications will lead to higher utility than the balanced deviation. Therefore,

an optimal upward deviation is strictly profitable. Just as in the tragedy of the commons,

all users have the same incentives and every user will deviate. When every user chooses

to consume Q̂+ ε, each of them will receive payoff V (Q̂+ ε), which is lower than V (Q̂).

The following lemma shows that there is a large set of Qs that cannot characterize

balanced equilibria. The result is helpful because it significantly constrains the set of Qs

that may characterize equilibria.

Lemma 3 Assume that 1 < R < 2 and α > 0. Then for any Q such that max{1, Q?} ≤
Q < Q̂ or Q > QI , Q cannot characterize a balanced equilibrium.

Proof. See Appendix B, page 37.

Figure 2 illustrates Lemma 3.

To understand this result, consider first Q > QI . Given that all other users consume

Q applications, any user has incentive to deviate downward to QI . The utility for user k
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Figure 2: Intervals of Q that cannot be an equilibrium as described in Lemma 3.

from deviating to Qk < Q is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X + α�
�Qk X

�
�Qk

(N − 1)
X

Q︸ ︷︷ ︸
consumption complementarity

−pQk . (5)

Note that the consumption complementarity term is independent of Qk. Since she con-

sumes Qk < Q, the deviator consumes only applications also consumed by the other

users. Each of those applications is consumed by all other users at the level of (N − 1)X
Q

.

The deviator divides her time budget X amongst the Qk applications that she consumes,

Qk · X
Qk . Therefore, the benefit of the direct network effect is constant, no matter what

Qk < Q the deviator chooses. However, the net benefit of variety (Qk)R−1X − pQk is

maximized at QI which is lower than Q. As a consequence, the deviator would want

to deviate to QI . We conclude that Q > QI may not be an equilibrium. Intuitively,

consuming more than QI applications leads to too much application variety for the price.

Moreover, if it had an effect, consumption complementarity would push users to consume

fewer applications also.

For Q ∈ [max{1, Q?}, Q̂), however, there is a profitable deviation upward. In what

follows, we impose that the deviator balances her time budget across all the applications

that she consumes. Even though this is not the optimal deviation, we show that it is a

profitable deviation (and therefore, the optimal deviation is also profitable). Given that

all other users consume Q applications in a balanced way, the utility of the deviator from

a balanced consumption of Qk applications is:

UDI(Q
k ≥ Q) =

(
Qk
)R−1

X + α��Q
X

Qk
(N − 1)

X

��Q︸ ︷︷ ︸
consumption complementarity

−pQk . (6)
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Note that UDI(Q
k ≥ Q) is the same function of Qk as V in equation (4) which has a local

maximum at Q̂ > Q. Moreover, for all Q ∈ [max{1, Q?}, Q̂), UDI(Q̂ > Q) > UDI(Q).

Thus, for all those values of Q, there is a profitable upward deviation. We conclude that

Q ∈ [max{1, Q?}, Q̂) may not be an equilibrium.

Intuitively, consuming more applications satisfies the deviator’s preference for variety

to a greater extent. However, consuming less of each application consumed by other users

means that the utility from consumption complementarity is lower. When Q ∈ [Q?, Q̂]

the tradeoff is resolved in favor of consuming more applications.

Note that for Q ∈ [1, Q?] and Q ∈ [Q̂, QI ] the same tradeoff is at play. However, it

is possible that the tradeoff is resolved in favor of consumption complementarity which

means that it is not worth it for users to deviate upward. In combination with Lemma 4,

this observation implies that equilibria are possible in the intervals Q ∈ [1, Q?] and

Q ∈ [Q̂, QI ]. Lemmas 5 and 6 show that multiple equilibria exist in these intervals. We

show that there are two aspects to this multiplicity. First, as described in Lemma 2, for

any given cardinality QDI there may exist multiple sets QDI—each constituting a separate

equilibrium. Second, there may exist many different values of QDI that characterize

equilibria. The former type of multiplicity is of no consequence to user utility while the

latter has important utility implications. Thus, we focus only on the second type of

multiplicity in our analysis.

The following lemma assures that so long as Q ≤ QI , it is never beneficial for user k to

deviate to a strategy with a lower number of applications. Thus, in searching for balanced

equilibria we need to focus only on deviations to a larger number of applications.

Lemma 4 Assume that 1 < R < 2 and α > 0. If all users play balanced strategy Q with

cardinality Q ≤ QI , then any unilateral deviation by user k to any other strategy with

Qk < Q leads to lower utility for player k.

Proof. See Appendix B, page 38.

To understand this result, suppose that all users are consuming Q ≤ QI and consider

a deviation to Qk < Q. We do not restrict the user to deviate to a balanced strategy with

Qk. However, from among all possible deviations to Qk < Q, a balanced consumption of

Qk applications from the set Q is the most profitable. Thus, the utility from the most
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profitable deviation to Qk is given by formula (5):

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X + α�
�Qk X

�
�Qk

(N − 1)
X

Q︸ ︷︷ ︸
consumption complementarity

− pQk .

Note that UDI(Q
k ≤ Q) is increasing for all Qk ≤ QI and therefore it is maximized at

Qk = Q. Thus, if Q ≤ QI , there is no incentive to deviate downward.

Intuitively, consuming fewer applications satisfies user k’s preference for variety to a

lesser extent. At the same time, there is no benefit from consumption complementarity.

The reason is that each of the applications used by the deviator are consumed by all other

users at the level of (N − 1)X
Q

. Therefore, it is optimal to the deviator to divide her time

budget X equally among the Qk applications that she consumes, whereby she consumes
X
Qk of each. Since Qk · X

Qk = X, the benefit of the direct network effect is constant no

matter what Qk the deviator chooses.

We use Lemma 4 to prove the result in Lemma 5. Lemma 5 states that there al-

ways exists a balanced equilibrium where all users consume QI applications and that Qs

close but lower than QI also characterize equilibria. Together with Lemma 3, Lemma 5

indicates that QI is the equilibrium with the largest number of applications consumed.

Lemma 5 When 1 < R < 2 and α > 0, there always exist balanced equilibria with

QDI = QI , where QI =
(

(R−1)X
p

) 1
2−R

> 1. Furthermore, there exists Qo < QI such that

any Q ∈ [Qo, QI ] characterizes balanced equilibria, i.e., Q = QDI .

Proof. See Appendix B, page 39.

Figure 3a illustrates the result in Lemma 5. This result means that so long as users

exhibit preference for variety, no matter how small, there are balanced equilibria with the

same number of applications, QI , that users would choose to consume if there were no

direct network effects.

To understand why QI is an equilibrium, by Lemma 4 we need only consider devia-

tions upward. By the same argument to that following equation (6), a deviation upward

(balanced or unbalanced) cannot improve the utility from consumption complementar-

ity. Moreover, QI maximizes utility from preference for variety. Therefore, there are no

incentives to deviate and QI is an equilibrium.

A deviation upward always decreases utility from consumption complementarity. Notwith-

standing, for Q < QI there is some benefit from increased variety. For Q less than but
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close to QI , however, this benefit is infinitesimally small (the FOC is satisfied at QI) and

it is outweighed by the utility loss from consumption complementarity. Therefore, Qs less

than but close to QI also characterize equilibria.

Lemma 6 shows that for some parameters there may also exist equilibria withQDI = 1.

Lemma 6 Assume that 1 < R < 2 and α > 0. There exist parameter values such that

QDI = 1 while QI > 1.

Proof. See Appendix B, page 40.

Notice that if Q̂ > 1, it is necessary that V (Q = 1) > V (Q̂) for Q = 1 to be an

equilibrium. It follows from Lemma 3. However, there is nothing in the proof that

connects QDI = 1 to Qo. So the equilibrium at QDI = 1 may be disconnected from the

set of equilibria around QI .

The result of Lemma 6 is illustrated in Figure 3b. There we can see that equilibria

exist in two disconnected intervals: one interval around Q = 1 (recall that following

Remark 1 QD = 1 is the equilibrium under pure direct network effects) and the other one

around QI . In the interval around QD = 1, the strong consumption complementarities

(users consume the same few applications intensely) guarantee that users do not want to

deviate to consume more applications. In the interval around QI , the weak consumption

complementarities (users consume little of many applications) guarantee that users do

not want to deviate to consume fewer applications.

(a) (b)

Figure 3: Intervals of QDI .

Lemmas 5 and 6 show that there are always multiple equilibria. We now show that

the equilibria can be ranked according to users’ utility. In particular, equilibria with
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fewer applications consumed yield higher utility than equilibria with more applications.

However, even when consumption complementarity is large relative to the preference for

variety and the allocation that maximizes users’ utility is an equilibrium, the model does

not predict which of the many equilibria will be played or the utility that users will

achieve. Therefore, users face an equilibrium selection problem.

Proposition 2 (equilibrium selection problem) When 1 < R < 2 and α > 0 there

exist multiple balanced equilibria with different values of QDI . Equilibria with smaller QDI

yield higher utility than equilibria with larger QDI .

Proof. See Appendix B, page 41.

To understand the intuition, recall that function V (Q) is user utility in a situation

where every user consumes Q applications in a balanced way. Therefore, for values of

QDI that constitute a balanced equilibrium, V (QDI) is the utility that users obtain in

equilibrium. As follows from Lemma 3 and illustrated by Figure 2, equilibria only occur

for values of Q such that V (Q) is decreasing. Therefore, equilibrium utility must be

decreasing in QDI .

In conclusion, Propositions 1 and 2 identify two undesirable properties of equilib-

ria in environments where both direct and indirect network effects are present. When

preference for variety is large relative to consumption complementarity, users face a com-

mons problem because the allocation that maximizes users’ utility is not an equilibrium.

Moreover, regardless of the values of α and R there are always multiple equilibria which

yield different levels of utility. Thus, users also face an equilibrium selection problem,

even when consumption complementarity is large relative to preference for variety and

the allocation that maximizes users’ utility is an equilibrium. In the following subsec-

tion we show how the platform can alleviate these problems by limiting the number of

applications available.

2.4 On the role of the platform: creating value by limiting

choice

We conclude Section 2 by showing that users may benefit when the platform limits the

number of applications available, but only when both direct and indirect network effects

are present. To examine the platform’s choice of the number of applications available, A,

we relax the assumption that A ≥
( (R−1)X

p

) 1
2−R .
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Notice first that when pure direct network effects are present (i.e., R = 1 and α > 0),

users achieve the same net utility in all equilibria, for any A ≥ 1. Thus, the platform

cannot change the net utility that users achieve in an equilibrium by manipulating A.

Likewise, the platform cannot improve the equilibrium outcome under pure indirect net-

work effects (i.e., 1 < R < 2 and α = 0). From Section 2.2 we know that when A ≥ QI

in an equilibrium under pure indirect network effects, every user consumes QI applica-

tions. When the platform sets 1 < A < QI then there exists a unique equilibrium—a

balanced equilibrium in which all users consume all A applications. But this yields lower

utility than consuming QI applications. Therefore, in the case of pure indirect network

effects the platform can only decrease users’ utility when limiting the number of available

applications.16

We now turn to the case where both direct and indirect network effects are present

(i.e., 1 < R < 2 and α > 0). The following definition is helpful for the arguments that

follow. Let

Q∗∗ = arg maxV (Q). (7)

From the shape of V follows that Q∗∗ may be either 1 or Q̂. In both cases Q∗∗ ≤ Q̂ <

QI .
17 When Q∗∗ = Q̂ > 1, then by Proposition 1, Q∗∗ never characterizes a balanced

equilibrium. When Q∗∗ = 1, it may characterize a balanced equilibrium (as Lemma 6

shows), but it not always does. We show that by limiting choice when Q∗∗ is not an

equilibrium, the platform helps users solve the commons problem shown in Proposition 1;

i.e., the platform creates an equilibrium at Q∗∗. And when Q∗∗ is an equilibrium, it will

typically be one of many equilibria where other equilibria yield lower utility than Q∗∗.

Thus, in this case by limiting choice, the platform helps users solve the selection problem

in Proposition 2.

Proposition 3 shows that regardless of whether Q∗∗ is in the equilibrium set of the

original game, the platform can ensure that Q∗∗ becomes the only equilibrium of the game

by restricting A to Q∗∗.

Proposition 3 Assume that 1 < R < 2 and α > 0. If the platform sets A = Q∗∗, then

there exists a unique balanced equilibrium where all users consume Q∗∗ applications.

Proof. See Appendix B, page 41.

16When A < QI , users strictly gain from access to a larger number of applications. And when A ≥ QI ,
the users do not gain or lose by having more applications available.

17Notice that whether Q∗∗ = 1 or Q∗∗ = Q̂ > 1 depends on the value of α relative to R. For small α
(as α = 0.03 in Figure 1) Q∗∗ = Q̂ > 1. For larger α (as α = 0.06 and α = 0.1 in the figure), Q̂ > 1, but

Q∗∗ = 1. For even larger α (as α = 0.16 in the figure), Q∗∗ = Q̂ = 1.
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The proposition implies that the equilibrium set may change with changes in A. In

particular, when the platform sets A = Q∗∗, Q∗∗ becomes the unique equilibrium.18

Therefore, when Q∗∗ is in the original equilibrium set, if the platform constrains A to be

equal to Q∗∗, it eliminates all equilibria that yield lower utility for the users and, thus,

eliminates the possibility that users select an inferior equilibrium. Hence,

Corollary 1 Assume that 1 < R < 2 and α > 0. When Q∗∗ is in the equilibrium set,

users may benefit when the platform restricts the number of available applications to Q∗∗.

On the other hand, if Q∗∗ is not in the original equilibrium set, when the platform

constrains A to be equal to Q∗∗, it creates a new equilibrium that makes users better off

than all the original equilibria. Thus,

Corollary 2 Assume that 1 < R < 2 and α > 0. When Q∗∗ is not in the equilibrium

set, users strictly benefit when the platform restricts the number of available applications

to Q∗∗.

In summary, when consumption complementarity is large relative to preference for

variety, then Q∗∗ is in the equilibrium set and the platform can eliminate other equilibria

(which yield lower utility) by limiting the number of applications available. When prefer-

ence for variety is large relative to consumption complementarity, then Q∗∗ is not in the

equilibrium set, and by limiting the number of applications, the platform creates a new,

unique, equilibrium that yields the highest possible utility.

If users gain higher utility from participation in the platform, the platform provider

may collect higher access fees from them. For example, in environments where user access

fees are the only source of revenue to the platform, users’ utility maximization is perfectly

aligned with the platform’s profit maximization. Perfect alignment may be lost when the

platform has other revenue streams (such as royalties). We elaborate on this in Section 4.

3 Game with no foresight

Whenever direct network effects are present, the equilibria studied in Section 2 require

users to know exactly which applications are consumed by all other users. That is, our

18We note that not all changes in A result in reducing the equilibrium set to a singleton. Put differently,
it is not the case that the platform can ensure that any Q will be played in equilibrium by setting A = Q.
For example, if the platform sets A = QI it cannot ensure that the equilibrium with QI applications will
be played, as many other equilibria are possible in this case.
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assumption has been one of perfect foresight about other users’ choices in equilibrium.

Under perfect foresight player k knows the cardinality and the identity of the applications

that all other users will consume; moreover, she also knows how much of each application

other users consume. In many environments, such perfect foresight may be difficult to

achieve. As an alternative, now we assume no foresight by which we mean that users

initially assign equal probability to any feasible strategy of other users. However, they

refine their beliefs by Bayesian updating and eventually reach equilibrium beliefs.19 The

literature has pointed out that in the presence of network effects, equilibria are influenced

by the way users form their expectations.20 Therefore, we study in this section how

equilibria change when we step away from perfect foresight in beliefs formation.

Only the assumption about user beliefs differentiates this game from the game in

Section 2. Recall that xk = {xk1, xk2, . . . , xkA} such that
∑

a∈A x
k
a = X denotes a feasible

consumption vector. We use xk to also denote a pure strategy. Let X denote the set of

all pure strategies for any given user.21 Let φkl ∼ U [X] denote user k’s beliefs on user l’s

choice of pure strategy. Let φk = {φkl }l 6=k be a vector that denotes user k’s beliefs on all

other users’ choices of pure strategy.

With this, user k’s utility from consuming vector xk is

Eφku(xk) =

(∑
a∈A

(
xka
)1/R)R

+ α
∑
a∈A

(
xka Eφk

∑
l 6=k

xla
)
,

and the optimization problem (2) becomes: maxxka, a∈A

{
Eφku(xk) − p ·

∑
a∈A 1(xka)

}
,

subject to X ≥
∑

a∈A x
k
a.

It is straightforward to show that under no foresight the expectation over consumption

of any application a by any other user l 6= k is Eφkl
xla = X

A
and Eφk

∑
l 6=k x

l
a = (N −

1)X
A

.22 Note that this expectation does not depend on how many applications or which

applications all other users consume, therefore there is no interdependence between users’

choices. Given this, we now can find the optimal choice by user k (which in our setting is

independent of what all other users do). Whatever is the number of applications Gk that

user k wishes to consume, her optimal consumption pattern is balanced consumption, i.e.,

dividing the time budget equally among the applications consumed. Once user k decides

that G∗ is the optimal number of applications for her to consume, it does not matter

19We consider such updating to be realistic. In the experiment of El-Gamal and Grether (1995)
overwhelming majority of subjects used Bayes updating rule.

20See, for example, Hurkens and Lopez (2010).
21Because all users are identical, they all have access to the same set of pure strategies.
22For formal proofs of these equalities see Section 3 of Casadesus-Masanell and Ha laburda (2010).
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which subset of A she chooses, as all yield the same expected utility. Therefore, G∗ fully

describes k’s set of best responses.

User k updates her beliefs using Bayes’ Rule. Therefore, she assigns zero probability

to dominated strategies and equal probability to undominated strategies. Since with no

foresight she does not know which applications they consume, she believes that every

subset of A with cardinality G∗ is equally likely to be consumed by user l 6= k. User k

recalculates her best response under the updated beliefs, until the recalculated best re-

sponse is exactly the same as the original best response. If every user behaves this way,

beliefs are consistent with strategies and this constitutes a no-foresight equilibrium .

We consider the case where both direct and indirect network effects are present (i.e.,

1 < R < 2 and α > 0).23 Let Gk
DI be the number of applications consumed by user k in

a no-foresight equilibrium.

Proposition 4 (coordination problem) Suppose 1 < R < 2 and α > 0. In every

no-foresight equilibrium, every user k consumes Gk
DI = GDI = QI applications in equal

amount, where QI =
(

(R−1)X
p

) 1
2−R

> 1. The expected equilibrium net utility is

EUDI(GDI) = GR−1
DI X + αX(N − 1)

X

A
− pGDI . (8)

Moreover, the platform maximizes users’ net utility by setting the number of available

applications to A = Q∗∗, where Q∗∗ is given by (7).

Proof. See Appendix B, page 41.

In the game with no foresight, users face a coordination problem. Since users do not

know which applications are consumed by other users, some of the benefit to the direct

network effects is lost. The utility that users can achieve in this environment is lower

than in the environment with perfect foresight, because users cannot exploit consumption

complementarities as well due to lack of coordination. In such a situation, the platform

can create value by limiting the number of available applications. So long as A > Q∗∗,

the equilibrium is inefficient, especially when A is large. Only when A = Q∗∗, the efficient

outcome is an equilibrium. By providing fewer applications, the platform creates a new

equilibrium and alleviates this coordination problem. We note that under no foresight,

users do not face neither equilibrium selection nor commons problems.

23The analysis of pure direct and pure indirect network effects is straightforward and can be found in
the working paper Casadesus-Masanell and Ha laburda (2010).
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4 Discussion

In this section we discuss several aspects of our approach.

Consumption complementarity and preference for variety. Although for expo-

sitional simplicity we have presented the model with reference to network effects, all that

we need for the results to go through is the presence of consumption complementarities

and preference for variety. Consumption complementarities always imply direct network

effects. Preference for variety, however, does not always imply indirect network effects.

To illustrate this point, note a key difference between hardware-software platforms (e.g.,

Nintendo) and betting platforms (e.g., Betfair). In the case of Nintendo, users benefit

from game variety as provided by a large number of independent developers, and devel-

opers benefit from a large number of users to sell games. Thus, preference for variety and

indirect network effects go hand-in-hand in this case. This contrasts with Betfair where

punters (back and lay sides) benefit from a large variety of sporting events to bet on,

but where there are no independent event providers that benefit from there being more

punters (as Betfair is the only provider of events on its platform). Although there are no

indirect network effects in this case, our analysis and results apply.

Exogenous p. We have analyzed the user side only and assumed that the price of

accessing an application, p, is exogenous. While to better understand the interactions

between users and developers it would be interesting to extend the model to endogenous

p, to do so would require imposing substantial assumptions on industry structure on the

developer side (entry conditions, production cost, number of games sold by each developer,

and so on). Of course, the equilibrium p would not be innocuous to such assumptions.

However, a critical implication of our analysis is that the platform cannot induce users

to consume the optimal number of applications by manipulating p.24 Put differently,

we have shown that regardless of the value of p, the commons, equilibrium selection,

and coordination problems will arise when, in addition to preference for variety, there

are direct network effects. Therefore, our conclusion that it is valuable for platforms to

manage the number of applications available holds regardless of whether p is endogenous

24The exception is a situation where the platform drives p so high that QI = 1, which we assumed
away on page 11. In this case, users consume one application which is the optimal number. For details,
see the working paper version (Casadesus-Masanell and Ha laburda 2010).
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or exogenous.25, 26

Value creation and value capture. We have analyzed how limiting the number

of available applications affects value created; that is, user surplus. However, we have

not considered how the platform may capture that value through prices (access prices

and/or royalties). A detailed analysis of platform pricing is beyond the scope of this

paper and left for future research. Pricing decisions may depend on specific institutional

or competitive details. Our analysis applies to the user side of the market regardless of

these details. One can imagine extending our analysis to a particular institutional setting

to find the optimal pricing strategy.

Consider first the case where the platform can only charge access fees to users (no

royalties to developers). Then, the profit-maximizing number of applications coincides

with Q∗∗ and access price to users is equal to users’ net utility. This will not be the case

when the platform charges only royalties and no access fees. In this case, the platform

earns higher profit when a larger number of applications are purchased. Therefore, selling

QI applications maximizes profits, and the platform does not benefit from limiting the

number of applications below QI . Even when the platform offers QI or more applica-

tions, there are still multiple equilibria. Thus, the platform cannot guarantee that QI

applications are purchased. Nonetheless, in any equilibrium users consume more than Q∗∗

applications (the number of applications that maximizes user surplus), since the commons

problem remains. However, the commons problem does not affect the platform’s revenue.

Finally, consider a platform that collects both access prices and royalties. In this case,

the profit-maximizing number of applications will lie somewhere between Q̂ and QI . The

commons problem does not go away but it becomes less relevant to the platform.

Implementing quantity restrictions. While the method we have considered in

Sections 2.4 and 3 for correcting the commons, equilibrium selection, and coordination

problems—outright restriction on the number of applications available—might seem bru-

tally direct, there are indirect ways to implement it. One such way is through manipula-

25Although p is often endogenous, it is not hard to think of cases where it is exogenous, particularly
when technological reasons constrain p to be zero. For example, open television channels are free to users
as it is impossible to exclude access to them. In this case, p may not be used as a coordinating device.
Although we have assumed that p > 0, our results apply when p = 0 as well. Interested readers can find
the complete analysis of the case p = 0 in Appendix B of the working paper version (Casadesus-Masanell
and Ha laburda 2010).

26In this paper, we have considered a situation where users pay price p > 0 to access each application,
and face a time budget constraint X. However, there is no monetary cost of using applications (i.e.,
no rental cost). Under rental cost, the commons, equilibrium selection, and coordination problems may
also occur. For details see Appendix B of the working paper, which considers the case of p = 0, and is
equivalent to a setting where there is a rental cost for applications but no access price.
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tion of the access fees and/or royalties charged to developers. High prices to developers

will lead to less entry and a smaller set of applications available, resulting in possibly

more value for users. An interesting and counterintuitive implication of our results is

that to the extent that higher access prices to developers result in net utility gains to

users, the platform will be able to charge higher prices to the user side. Of course, this

runs counter to the conventional wisdom that to earn more from one side of the market,

the platform must set lower prices to the other side.

Another indirect way to narrow down the set of applications available is by tinkering

with user search. For example, in the late 1980s and 1990s, Nintendo used Nintendo

Power—an in-house magazine priced to break even and carried no advertising—to pro-

mote particular games. Two years after it had launched, it had become the highest-

circulation publication targeted to children in the United States. Games not featured on

Nintendo Power were much less likely to become commercial successes.27 Likewise, the

current search capabilities on Apple’s App Store are notoriously deficient.28 Applications

appear ranked by number of downloads which, of course, reinforces direct network effects

for applications—such as word processors (Pages), spreadsheet programs (Numbers), or

presentation software (Keynote)—that exhibit consumption complementarities.

Royalties and double marginalization. Our results suggest a possible resolution

to an issue in the video game market that has traditionally been seen as a puzzle. Console

makers typically charge royalties to game developers. This seems like a bad idea due to

double marginalization. One explanation is that royalties are an instrument to compel

developers to raise the quality of games. Because games are more expensive in the pres-

ence of royalties, fewer, but better, games are developed. Thus, royalties are often seen

as resolving a tradeoff between quality and quantity. Our analysis shows that there may

be no tradeoff because the platform may prefer both, better-quality games but also fewer

games. Moreover, because they ultimately limit the number of applications available,

the motive for royalties in the video game industry could be exactly the same as the

rationale for Betfair to limit the number of betting events on its platform. To the best

of our knowledge, the idea that royalties and restrictions on application variety might be

derived from the same underlying force is new to the literature.

Competing platforms. While analysis of competing platforms is beyond the scope

of this paper, it is easy to see an interesting tradeoff that is likely to emerge when direct

27See Brandenburger (1995).
28See, for example, http://accidentaltechnologist.com/apple/apple-please-fix-the-app-store-search/

or http://www.eweek.com/c/a/Mobile-and-Wireless/10-Apple-App-Store-Problems-That-Need-Fixing-
Now-412975/.
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and indirect network effects are at play. Consider a situation with two platforms compet-

ing for a given set of users. If one of the platforms limits the number of applications when

there is preference for variety, users will likely expend some of their budget on applica-

tions from the second platform. Thus, by limiting choice, the platform may potentially

create additional value, but users are more likely to multi-home and crowd out some of

their limited resources to the other platform. As a result, competition for users is likely

to have a mitigating effect on the platform’s desire to limit choice.

Subgame perfection. This paper analyzes subgame-perfect equilibria of a two-stage

game. We now argue that we are not losing any balanced equilibria by using the subgame

perfection refinement of Nash equilibria. To see this, note first that strategies that involve

buying applications that are not consumed are strictly dominated and therefore will never

be played in any Nash equilibrium. Moreover, the same argument that allowed us to focus

on equilibria where all users purchase and use the same applications (Lemma 1) also

applies to all Nash equilibria. This means that all Nash equilibria have users buying and

consuming the same applications. Therefore, every equilibrium can be characterized by

Q, the number of applications bought and consumed. Now we can show that every Q that

does not characterize a subgame perfect Nash equilibrium cannot be a Nash equilibrium

(without refinement). As we show in the paper, if Q does not characterize a subgame

perfect Nash equilibrium, then there exists a profitable unilateral upward or downward

deviation to a different number of applications. But the same deviation is available

even without the subgame perfection refinement. Therefore, such a Q cannot be a Nash

equilibrium. In the paper, we focus on subgame perfection for technical convenience.29

Generalized formulation. In this paper we have analyzed a micro-founded model.

A micro-foundation has allowed us to clearly discuss the intuition behind the economic

forces driving our main results. In Appendix A we present a generalized formulation

of the problem and show that our main results continue to hold in this more general

setting. Specifically, the generalization suggests that the results do not depend on our

restriction to balanced equilibria. Moreover, since the generalization does not involve any

refinements of equilibria, it reinforces our earlier point that subgame perfection entails

no loss of generality.

29If the game was solved as a one-stage game, then users would directly maximize utility as given by
equation (1), subject to the budget constraint. Note that the first-order conditions in the users’ maxi-
mization problem involve dealing with derivatives of indicator functions. In the two-stage formulation,
this problem does not arise. Thus, analyzing the two-stage game is technically more convenient and
entails no loss of generality.
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5 Conclusion

We have shown that when users enjoy application variety but also benefit from con-

sumption complementarities, three problems may arise: the socially optimal number of

applications may not be part of an equilibrium; multiple equilibria ensue; and users will

likely find it hard to coordinate consumption. The analysis has demonstrated that by

limiting the number of applications, the platform can provide a solution to these prob-

lems. Specifically, by limiting choice the platform may create new equilibria that do not

exist when application choice is broad. In addition, it can eliminate equilibria that yield

lower utility. Moreover, it can reduce the severity of the coordination problem faced by

users.

The overall conclusion is that when direct and indirect network effects are at play,

an important governance decision that platforms face is the choice of the number of

applications that should be allowed to run on them. To implement such a choice, the

platform may directly suppress access to developers and impose quantity constraints, or

it may limit the number of applications indirectly through setting high access prices to

developers.

While we have shown that the platform may create value by limiting choice, the rec-

ommendation to practitioners is obviously not “provide as few applications as possible.”

Rather, it is that even in settings where users have a strong preference for variety, the

platform provider must be cognizant that there may be a number beyond which offer-

ing more applications will decrease users’ utility and, thus, overall platform value. This

recommendation is in stark contrast to the conventional wisdom that platforms should

encourage the development of complements to the maximal possible extent.

The obvious next step in this research is the endogenization of access prices in a setting

with competing platforms and direct and indirect network effects. Given the complexity

of the analysis when users are the only strategic players, we expect these extensions to

be challenging. It is our hope to have provided a solid first step on which to build general

theories of platform competition that will shed further light on the value that platforms

may create by acting as gatekeepers.
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Appendix

A Generalized formulation

In this appendix we present a generalized formulation of the micro-founded model of the main

paper. In this formulation we abstract from the intensive margin (how X is allocated across

applications). The analysis demonstrates that we do not lose any generality by focusing on

balanced equilibria in the main paper.

Given the consumption of other users ({Ql}l 6=k), the net utility of user k is:

Uk(Qk, {Ql}l 6=k) = v(Qk) + w(Qk, {Ql}l 6=k)− pQk,

where v represents the utility derived from variety, and w represents the utility resulting from

consumption complementarity. We assume that v is increasing and concave, that is v′ > 0 and

v′′ < 0. Therefore, consuming more applications brings higher utility from variety. However,

the additional value of more applications decreases as more applications are being consumed.

In our micro-foundation, the concavity of v is due to the fixed time budget X: consuming more

applications implies consuming less of each application. In the generalized formulation, it is also

possible that concavity is driven to other reasons such as users getting fed up with too much

variety—due, for example, to limited attention.

Although w is a function of N arguments, we sometimes write w(Q) to mean that Ql = Q

for all l. To simplify notation, we use w(Qk, Q) to mean w(Qk, {Ql}l 6=k) when Ql = Q for all

l 6= k.30 We assume w′(Q) < 0 and w′′(Q) < −v′′(Q).31 In our micro-foundation, w is decreasing

because as all users consume more applications, they consume less of each one, which implies

that they do not fully exploit consumption complementarities. In the generalized formulation,

this may be due to other factors such as increasing returns to spending more effort on one

particular application consumed with other users. We also assume:

∂w(Qk, Q)

∂Qk

∣∣∣∣∣
Qk=Q

= 0, Qk < Q

< 0, Qk > Q.

This derivative accounts for individual deviations by user k from Q. A deviation downward has

no effect on the payoff from consumption complementarity. This is a natural assumption that is

validated by our micro-foundation. We later explore the consequences of relaxing this assump-

30It is easy to show that in equilibrium it must be the case that all users consume the same applications.
Thus, in considering deviations by user k, it is enough to consider deviations given that all other users
consume the same applications.

31Note that in the model in the main text, this condition is not always satisfied. However, it is satisfied
on the relevant range of Qs. Specifically, it is satisfied for Q ≥ Q̂.
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tion. A deviation upward decreases the utility from consumption complementarity because the

user takes away time from consuming the same applications as other users consume. We also

assume that ∂w(Qk,Q)
∂Qk > w′(Q) for all Q. This means that in an unilateral deviation upward,

the user loses less than if everybody increases consumption.

Due to homogeneity of agents and consumption complementarity, it follows that in any

equilibrium all users will consume exactly the same applications. We use this fact to characterize

the allocation Q̂ that maximizes net utility.

Lemma A1 Suppose that v > 0. Then, in an interior solution, the utility maximizing alloca-

tion Q̂ satisfies v′(Q̂) + w′(Q̂) = p.32

Note that when there is only preference for variety (w = 0), every user consumes QI appli-

cations, where v′(QI) = p. It is easy to see that when w > 0, Q̂ < QI .

Propositions A1 and A2 below show that in this set up, the commons problem and multi-

plicity of equilibria are still present. It is convenient to define V (Q) = v(Q) + w(Q)− pQ.

Proposition A1 (commons problem) Q̂ is not an equilibrium. Specifically, for any user k,

U(Qk = Q̂+ ε, Q̂) > V (Q̂) > V (Q̂+ ε).

Proof. Consider a unilateral upward deviation from Q̂. The deviator’s utility is:

U(Q̂+ ε, Q̂) = v(Q̂+ ε) + w(Q̂+ ε, Q̂)− p (Q̂+ ε).

Now we will show
∂ U(Q̂+ ε, Q̂)

∂ ε

∣∣∣∣∣
ε=0+

> 0,

which means that there exists a profitable unilateral deviation from Q̂. Note,

∂ U(Q̂+ ε, Q̂)

∂ ε

∣∣∣∣∣
ε=0+

= v′(Q̂) +
∂ w(Q̂+ ε, Q̂)

∂ ε
− p > v′(Q̂) + w′(Q̂)− p = 0.

The last equality follows from Lemma A1, and the inequality from our assumption ∂w(Qk,Q)
∂Qk >

w′(Q). Thus, every individual has the incentive to deviate upward. When all users choose to

consume Q̂+ ε for some ε > 0, each user ends up receiving payoff V (Q̂+ ε). But this must be

less than V (Q̂), since Q̂ maximizes V .

Proposition A2 (equilibrium selection problem) There exist multiple equilibria with dif-

ferent values of QDI . Equilibria with smaller QDI yield higher utility than equilibria with

higher QDI .

32Our assumption w′′(Q̂) < −v′′(Q̂) guarantees that the second order condition is satisfied.
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Proof. We will examine incentives to deviate downward and upward from any given Q. We

will find that there are no profitable deviations downward from Q < QI , and that there are no

profitable deviations upward from Q < QI but “close” to QI .

Consider deviations downward. Consider a situation where all users consume Q applications.

We now explore whether user k has an incentive to deviate downward. Note,

∂ w(Q+ ε,Q)

∂ ε

∣∣∣∣∣
ε=0−︸ ︷︷ ︸

=0

+ v′(Q)− p︸ ︷︷ ︸
+ if Q<QI − if Q>QI

> 0 if Q < QI

< 0 if Q > QI .
(9)

Because (9) is negative when Q > QI , user k benefits by deviating downward. Conversely, the

user loses by deviating downward from Q < QI . Thus, none of Q > QI can be an equilibrium.

Now, let’s consider upward deviations. Note,

∂ w(Q+ ε,Q)

∂ ε

∣∣∣∣∣
ε=0+︸ ︷︷ ︸

< 0

+ v′(Q)− p︸ ︷︷ ︸
+ if Q<QI − if Q>QI

(10)

Notice that for all Q ≥ QI , (10) is strictly negative. Hence, there is no incentive to deviate

upward. Moreover, from the proof of Proposition A1 we know that (10) is strictly positive at

Q̂. Therefore, by continuity, there must exist Q ∈ (Q̂,QI) such that (10) is also negative. We

conclude that for those Q there are no incentives to deviate upward or downward. Therefore,

the equilibrium set includes QI and these Q ∈ (Q̂,QI) for which (10) is negative.

We now turn to proving the second part of the proposition. The fact that equilibria with

smaller QDI yield higher utility than equilibria with higher QDI follows from w′′(Q) < −v′′(Q).

Since in all equilibria all users consume the same applications, each user’s utility in an equilib-

rium Q is given by V (Q). Since w′′(Q) < −v′′(Q), V (Q) is strictly decreasing for Q > Q̂ and

all equilibria are Q > Q̂. Hence, equilibria with smaller Q yield higher utility.

Extensions

Here, we explore the implications of different versions of our assumptions. In particular, we

consider the role of our assumptions on ∂w(Qk, Q)/∂Qk. Let

∂w(Qk, Q)

∂Qk

∣∣∣∣∣
Qk=Q

=

a, Qk > Q

b, Qk < Q.
(11)

In the baseline model, we have assumed that a < 0 and b = 0. For other values of a and

b, we can use the proof of Proposition A2 to see that a regulates value Qa, below which the
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user has incentive to deviate upward. Thus, no Q < Qa can be an equilibrium. Similarly, b

regulates value Qb, above which the user has incentive to deviate downward. Thus, no Q > Qb

can be an equilibrium. However, for Q ∈ [Qa, Qb] the user has no incentive to deviate upward

nor downward, hence those values constitute equilibria.

Remark A1 Suppose that a and b characterize the derivative in equation (11).

• When a = b, then Qa = Qb, and there is a unique equilibrium.

• When a < b, then Qa < Qb, and there is a nonempty interval [Qa, Qb] of equilibrium

values.

• When a > b, then Qa > Qb, and the interval [Qa, Qb] is empty, and there is no pure-

strategy equilibrium.

If the platform sets A ≤ Qa, then QDI = A is a pure-strategy equilibrium.

The remark says that we obtain multiple equilibria only if a < b. In this case, as in the

main paper, the platform creates value by limiting the number of applications available because

that prevents suboptimal equilibria from being played. When a > b there is no pure-strategy

equilibrium. However, there is still value in the platform limiting the number of applications

available. By doing so, the platform creates a pure-strategy equilibrium which should bring

higher utility than any mixed-strategy equilibrium.

The next result identifies the relation between Qa, Qb, and QI .

Remark A2 For j = a, b, if j < 0 then Qj < QI , if j = 0 then Qj = QI , and if j > 0

then Qj > QI . Therefore, a non-empty interval [Qa, Qb] may include QI , be entirely below, or

entirely above QI .

Thus, our qualitative results hold for more general conditions (on w) than what we have

considered in the main part of this appendix.

Contrary to the generalized formulation presented in this appendix, the micro-founded model

in the main body of the paper is more closely related to the phenomenon that we study. Indeed,

the main properties of functions v and w assumed in the generalized formulation are derived

from the more specific utility function and textured environment in the micro-founded model.

This allows us to better understand how the forces driving our results play out in the market.

B Proofs

Proof of Remark 1 (page 9). First, we find the optimal consumption pattern for user k,

given that k has access to some set Q ⊆ A of applications. Let xl be a pure strategy of user
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l 6= k and a′ be an application such that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a for all a ∈ Q. In equilibrium,

user k does not consume other applications than a′. If there is only one a′, the best response of

user k is to consume only this one application, i.e., xka′ = X and xka = 0 for a 6= a′. If there is

more than one a′, any allocation of time budget X across all those applications yields exactly

the same consumption utility.

Given this optimal consumption pattern, user k needs to decide on the set of applications

that she consumes, Q, in order to maximize her net utility. If there exists unique a′ ∈ A such

that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a for all a ∈ A, then the optimal choice of applications for user k is a

singleton Qk
D = {a′}. Notice that it leads to an equilibrium, where all users allocate their whole

time budget to the same application, i.e., Qk
D = QD = {a′} and xka′ = X for all k. Therefore, it

is a balanced equilibrium. Since any a′ ∈ A would constitute such an equilibrium, there are A

equilibria of this form.

Finally, to see that there is no other equilibrium, suppose that there are more than one a′

such that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a. Since the price of an application is strictly positve, user k’s best

response is to consume only one of such applications. Therefore, there cannot be an equilibrium

with QD ≥ 2.

Proof of Remark 2 (page 10). The assumption that α = 0 implies that user k’s consumption

utility (and net utility) does not depend on other users’ strategies and thus subgame perfect

equilibrium is equivalent to nonstrategic optimal choices by all player. Given this, we first find

the optimal consumption pattern, given that user k has access to some set Q of applications,

where cardinality of Q is Q ≥ 1. The first order condition for utility maximization implies that

every application is consumed in the same amount, i.e., x̂ka = x̂ for all a ∈ Q. Since the utility

function is strictly monotone, the constraint X ≥
∑

a∈Q x
k
a needs to bind. Therefore Q·x̂ = X

and x̂ = X
Q . That implies that every equilibrium must be a balanced equilibrium.

With x̂ = X
Q , the maximal consumption utility given Q is

uI(x̂;Q) =

(∑
a∈Q

(
X

Q

) 1
R
)R

=

(
Q

(
X

Q

) 1
R

)R
= QR−1X ,

and thus user k’s maximal net utility is UI(x̂;Q) = QR−1X − pQ.

The optimal number of applications consumed by user k is characterized by the first order

condition

(R− 1)QR−2X = p ⇐⇒ Q =

(
X(R− 1)

p

) 1
2−R

:= qI . (12)

The number of applications consumed cannot be greater than A or smaller than 1. Recall

that we have assumed that A ≥ qI .33 Therefore, the optimal number of applications consumed

33If we had allowed for A < qI , it would be optimal for a user to consume all A applications. This is
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by any user k is QkI = max{1, qI}.
Since the optimal number of applications consumed is the same for all users, let QI denote

QkI for any k. Thus, {Q1
I , . . . ,QN

I } constitutes an equilibrium if and only if the cardinality of

Qk
I is QI for all k. All equilibria clearly yield the same, highest possible utility to the users.

Proof of Lemma 1 (page 12). Suppose, to the contrary, that in some equilibrium Qk 6= Ql

for some l and k (we drop the subscript DI in this proof for clarity of exposition).

First, consider the case where Qk = Ql, i.e., user k and user l consume the same amount

of applications, but different ones. Take an application a′ that k consumes, but l does not,

and application a′′ that l consumes but k does not. Suppose, without loss of generality, that∑
j 6=l, k x

j
a′ ≤

∑
j 6=l, k x

j
a′′ . User k’s net utility in such a candidate equilibrium is

( ∑
a∈Qk

(
xka

) 1
R
)R

+ α
∑

a∈Qkr{a′}

(
xka
∑
j 6=k

xja

)
+ αxka′

∑
j 6=k, l

xja′ − pQ
k .

If user k spends xka′ consuming application a′′ instead of a′ (without changing anything else),

she increases her utility to

( ∑
a∈Qk

(
xka

) 1
R
)R

+ α
∑

a∈Qkr{a′}

(
xka
∑
j 6=k

xja

)
+ αxka′

( ∑
j 6=k, l

xja′′ + xla′′︸ ︷︷ ︸
>
∑

j 6=k, l x
j

a′

)
− pQk .

Therefore, it is not an equilibrium since α > 0.

Second, consider the case where Ql > Qk in a balanced equilibrium. In this case, for the

same reason as above, Qk ⊂ Ql. Since they play balanced strategies, xla = X
Ql for a ∈ Ql, and

xka = X
Qk for a ∈ Qk, and xka = 0 for all other applications. For k, it is optimal to consume Qk.

Such consumption yields the net utility

(
Qk
)R−1

X + α
X

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

)
+ α

X

Qk
Qk

X

Ql
− pQk.

In particular, consuming Qk applications yields higher utility for user k than consuming the

same Ql applications as user l, i.e.,

(
Ql
)R−1

X+α

(
X

Ql

)2

Qk+α
X

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
−pQl ≤

(
Qk
)R−1

X+α
X2

Ql
+α

X

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

)
−pQk =⇒

because the derivative of UI(x̂;Q) is strictly positive for all Q < qI . So it would be positive on the whole
domain [1, A] for A < qI .
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=⇒ X

((
Ql
)R−1

−
(
Qk
)R−1)

+αX

(
1

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− 1

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

))
−p
(
Ql−Qk

)
≤

≤ α
X2

Ql

(
1− Qk

Ql

)
. (13)

For l, consuming Ql applications yields higher utility for user l than consuming only Qk

applications, i.e.,

X
(

(Ql)R−1−(Qk)R−1
)

+αX

(
1

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− 1

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

))
−p
(
Ql−Qk

)
≥ αX2

(
1

Qk
− 1

Ql

)
.

(14)

However, for Ql > Qk ≥ 1, α X2

Ql

(
1− Qk

Ql

)
< αX2

(
1
Qk − 1

Ql

)
. Therefore, both inequalities

(13) and (14) cannot be satisfied at the same time. Thus, it cannot be that there is a balanced

equilibrium where Ql > Qk.

Proof of Lemma 2 (page 12). By Lemma 1, we know that all users consume the same QDI

applications. Since the net utility of users is the same as long as all users consume the same

QDI applications, any subset of applications QDI of cardinality QDI constitutes an equilibrium.

Proof of Remark 3 (page 14). The remark directly follows from Lemma 7.

Lemma 7 For all parameters α ≥ 0 and 1 ≤ R < 2, QI ≥ Q̂. Moreover when QI > 1, then

Q̂ < QI , and when QI = 1, then Q̂ = QI .

Proof. QI and Q̂ are defined based on the solution (qI) to the following first order conditions,

respectively:

(R− 1)QR−2X − p︸ ︷︷ ︸
DI(Q)

= 0. (15)

D̂(Q) = (R− 1)QR−2X − p︸ ︷︷ ︸
DI(Q)

− αX(N − 1)
X

Q2︸ ︷︷ ︸
+

= 0. (16)

Therefore, whenever D̂ = 0 for some Q̃, then DI > 0 for this Q̃. Moreover, since the

derivative DI is decreasing, DI = 0 for a larger Q than Q̃. Therefore, the solution to the

first order condition (15) (denoted by qI) is always larger than any solution to the first order

condition (16), if the solution to the latter exists.

We focus on the non-trivial case when QI > 1.34 This happens when qI > 1. The value of

34For QI = 1, which happens when qI < 1, any solution to (16) must also be smaller than 1. Then

Q̂ = 1 = QI .
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Q̂ is either a solution to (16) or 1. In either case Q̂ < qI = QI .

Proof of Proposition 1 (page 14). Consider a unilateral balanced deviation to ε more

applications. The deviator consumes X/(Q̂+ ε) of each application. Note that the payoff from

this upward deviation under balanced consumption is

UDI(Q̂+ ε|balanced) =
(
Q̂+ ε

)R−1
X + ��̂Qα

X

Q̂+ ε
(N − 1)

X

��̂Q
− p

(
Q̂+ ε

)
,

which is the same as V (Q̂ + ε). Therefore, because V ′(Q̂) = 0, V (Q̂ + ε) is maximized at

ε = 0. This means that such an upward deviation with balanced consumption from Q̂ brings

no additional utility.

We now argue that an unbalanced deviation is strictly profitable. Suppose that the deviator

consumes ε of new applications (which nobody else consumes), in addition to Q̂ of old applica-

tions (which all other agents consume). It is easy to show that the deviator optimally consumes

the same amount of each of Q̂ old applications; we call this amount x̂. She also consumes in the

same amount each of ε new applications; we call this amount xε. However, without imposing

balanced consumption, x̂ and xε may be different. Thus, the consumption utility from upward

deviation to Q̂+ ε is

uDI(Q̂+ε) =
(
Q̂(x̂)

1
R + ε(xε)

1
R

)R
+αx̂X(N−1) =

(
Q̂(x̂)

1
R + ε1−

1
R (X − x̂Q̂)

1
R

)R
+αx̂X(N−1) .

The last equality follows from the constraint x̂Q̂ + xεε = X. To maximize the cosumption

utility, the agent chooses x̂ to satisfy FOC:(
Q̂(x̂)

1
R + ε1−

1
R (X − x̂Q̂)

1
R

)R−1
Q̂
(
x̂

1
R
−1 − ε1−

1
R (X − x̂Q̂)

1
R
−1
)

+ αX(N − 1) = 0 .

Because other terms are positive, x̂ satisfies the FOC only if x̂
1
R
−1 − ε1−

1
R (X − x̂Q̂)

1
R
−1 ≡

x̂
1
R
−1−x

1
R
−1

ε < 0. And since 1 < R < 2, it implies x̂ > xε. Therefore, the optimal upward devi-

ation is characterized by unbalanced consumption, and is strictly better than the best possible

balanced deviation. Hence, the optimal upward deviation is strictly profitable. This implies

that Q̂ is not a balanced equilibrium.35

Proof of Lemma 3 (page 15). Suppose that all users play a balanced strategy where they

consume a set of applications Q with cardinality Q.

35Notice the implication of this result for the incentives in the market: Suppose that the platform
limits the number of applications to Q̂, and Q̂ is optimal. Thus, the platform guarantees users the
best equilibrium outcome. Nonetheless, the users are not happy with this restriction. They may believe
(because they look at their profitable deviation upward) that if one more application would be available,
they would be better off. But, of course, in an equilibrium they would not.
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In the first step of the proof, suppose that Q > QI . Given that 1 < R < 2 and α > 0, if user

k consumes Q or fewer applications, i.e., Qk ≤ Q, she consumes the same applications as other

users, i.e., Qk ⊆ Q, according to a balanced consumption schedule: X
Qk of each. Therefore, the

net utility when user k consumes Qk ≤ Q applications is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X +�
�Qkα

X

�
�Qk

(N − 1)
X

Q
− pQk .

Since p > 0, the optimal number of applications that user k would like to consume is characterize

by the first order condition

∂UDI(Q
k ≤ Q)

∂Qk
= (R− 1)

(
Qk
)R−2

X − p = 0 . (17)

Note that this is the same condition as (12) in the proof of Remark 2. So Qk = qI is the only

positive value satisfying this condition. Therefore, for any Q > QI , user k can profitably deviate

to consuming QI applications.

In the second step of the proof, we turn to Q such that max{1, Q?} ≤ Q < Q̂, and we show

that an upward deviation with a balanced consumption schedule is profitable for any user. The

net utility from user k’s balanced consumption of Qk ≥ Q applications is

UDI(Q
k ≥ Q|balanced) =

(
Qk
)R−1

X + ��Qα
X

Qk
(N − 1)

X

��Q
− pQk .

Note that UDI(Q
k ≥ Q|balanced) is the same as V (Q) in equation (4) which has a local max-

imum at Q̂ > Q. Moreover, if there does not exist Q? ≤ 1, then for any Q ∈ [1, Q̂), and when

Q? ≤ 1 exists, then for any Q ∈ (Q?, Q̂), UDI(Q̂ > Q) > UDI(Q). Also, by the definition of

Q?, UDI(Q̂ > Q) = UDI(Q?). The most profitable deviation, however, involves a non-balanced

consumption schedule, and yields strictly higher utility than UDI(Q
k > Q). Therefore, the

optimal deviation away from Q? is profitable.

Proof of Lemma 4 (page 17). Given that α > 0, if user k consumes Q or fewer applications,

i.e., Qk ≤ Q, she consumes the same applications as other users, i.e., Qk ⊆ Q. Also, by usual

arguments we find that the consumption schedule maximizing the consumption utility, under

the constraint
∑

a∈Qk xka ≤ X is balanced strategy, i.e., xka = X
Qk for all a ∈ Qk.

Therefore, the net utility of user k from consuming Qk applications is

UDI(Q
k;Q) =

(
Qk
)R−1

X + αX(N − 1)
X

Q
− pQk . (18)

Drawing on properties of UI , notice that UDI increases with Qk. That is, the user achieves a

lower utility if she deviates from Q < QI to Qk < Q.
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Proof of Lemma 5 (page 18). Since Lemma 4 shows that there is no profitable deviation

downward, it is enough to show that there is no profitable deviation upward.

Consider user k who consumes Qk > QI applications. When user k diverts part of her time

y away from the QI applications that all other users consume, it is optimal for her to consume

the same amount of each application in QI ,
X−y
QI

. Moreover, it is also optimal to consume the

same amount of each application that user k consumes outside QI ,
y

Qk−QI
. Then, the net utility

of user k is

UDI(Q
k > QI | y) =

(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)
(

y

Qk −QI

) 1
R

)R
+α

X(X − y)

QI
(N−1)−pQk .

Consider first only the part of the net utility without the direct network effects, i.e., the first

and third terms. This is the same as the utility under pure indirect network effects. We know

from the proof of Remark 2 that for any Qk, the utility maximizing consumption schedule

is balanced. However, since α > 0, in this case the optimal deviation upward must involve

un-balanced consumption (in an optimal deviation user consumes more of each application

that other users consume and less of each applications that she alone consumes), i.e., y <
X
Qk (Qk −QI). Therefore, if Qk > QI , then

(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)
(

y

Qk −QI

) 1
R

)R
− pQk <

(
Qk
(
X

Qk

) 1
R

)R
− pQk .

Recall that QI maximizes the net utility under pure indirect network effects. Therefore, for

Qk > QI , (
Qk
(
X

Qk

) 1
R

)R
− pQk <

(
QI

(
X

QI

) 1
R

)R
− pQI .

Moreover, for any y > 0,

α
X(X − y)

QI
(N − 1) < α

X2

QI
(N − 1) .

Therefore, any positive deviation, y > 0, toward consuming more applications, Qk > QI , yields

strictly worse net utility for user k,

UDI(Q
k > QI | y) <

(
QI

(
X

QI

) 1
R

)R
+ α

X(X − y)

QI
(N − 1)− pQI <

<

(
QI

(
X

QI

) 1
R

)R
+ α

X2

QI
(N − 1)− pQI = UDI(QI) .
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Therefore, any set of applications QI with cardinality QI constitutes a balanced equilibrium.

Suppose that Q̂ > 1. By Lemma 4, for any Q such that Q̂ < Q < QI , no user has a

profitable deviation downward. Any such Q constitutes a balanced equilibrium if there is also

no profitable deviation upward.

For Q such that Q̂ < Q < QI , suppose that all other users consume Q applications, while

user k consider diverting y of her time toward more applications, Qk > Q. Let UDI(Q
k > Q| y >

0) be utility at this deviation and denote the profitability of the deviation by

DevProf(Q) = max
y>0, Qk>0

UDI(Q
k > Q| y > 0)− V (Q) .

From Proposition 1, we know thatDevProf(Q̂) > 0. We can also show thatDevProf(QI) <

0. This follows from the fact that an infinitisimal upward deviation from QI under pure indirect

effects yields 0 profit. Due to the loss of the consumption complementarity, under both indirect

and direct network effects the optimal deviation yields smaller utility. Therefore, the deviation

is not profitable. Function DevProf(Q) is continuous in Q. Therefore, there must exist Q0,

Q̂ < Q0 < QI such that DevProf(Q0) = 0. If there are multiple Q satisfying this condition,

let Q0 be the largest. Then, for all Q ∈ [Q0, QI ], DevProf(Q) ≤ 0, i.e., there is no profitable

deviation from Q. Hence, all Q ∈ [Q0, QI ] constitute balanced equilibria.

Proof of Lemma 6 (page 19). Suppose that QI > 1. When all users consume one application

only, their consumption utility is u(Q=1) = X+αX2(N−1). Now, if a user deviates to consume

y of second application, her consumption utility is:

u(Q=2) =
(

(X − y)
1
R + y

1
R

)R
+ αX(N − 1)(X − y).

The optimal level of deviation y∗ is characterized by the first order condition:

∂u(Q=2)

∂y
=
(

(X − y∗)
1
R + y∗

1
R

)R−1(( 1

y∗

)1− 1
R

−
(

1

X − y∗

)1− 1
R

)
− αX(N − 1) = 0.

Notice that y∗ decreases with N and y∗ → 0 as N →∞.

To find out if the value of the optimal deviation is larger than the price of the second

application, we compute:

u(Q=2| y=y∗)− u(Q=1) =

=
(

(X − y∗)
1
R + y∗

1
R

)R
+ αX(N − 1)(X − y∗)− (X + αX2(N − 1)) <

<
(

(X − y∗)
1
R + y∗

1
R

)R
−X.
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Note that ((X − y∗)
1
R + y∗

1
R )R−X is continuous, takes value zero at y∗ = 0 and it is strictly

increasing in y∗. Therefore for any price p, we can find N large enough so that y∗ is low enough

so that u(Q=2| y=y∗)− u(Q=1) < p, and the deviation is not profitable.

Proof of Proposition 2 (page 20). Directly from Lemma 5 we obtain the existence of

multiple equilibria with different values of QDI .

The result that the equilibria with a smaller QDI yield higher utility follows directly from

the shape of V (Q) and Lemma 3: All possible equilibria need to be included in the interval

[1, Q?) ∪ (Q̂,QI ]. (The set of equilibria is a strict subset of this interval). The utility obtained

by every user in each equilibrium Q is V (Q). Since V (Q) is strictly increasing on the interval

[1, Q?) ∪ (Q̂,QI ], a lower equilibrium Q yields higher utility for every user than a higher equi-

librium Q.

Proof of Proposition 3 (page 21). The shape of V implies that either Q∗∗ = 1 or Q∗∗ = Q̂.

First, suppose that Q∗∗ = Q̂ > 1. Then, Q? (as defined for Lemma 3) does not exist.

Therefore, by Lemma 3, no Q < Q̂ may constitute a balanced equilibrium. As in the proof of

Lemma 3, users are better off deviating upward to consuming Q̂ applications. When A > Q̂,

then Q̂ is not a balanced equilibrium, by Proposition 1. This is because there exists profitable

deviation upward, toward consuming larger number of applications. However, when A = Q∗∗ =

Q̂, such deviation is not possible. Therefore, consuming all Q̂ constitutes the only equilibrium.

Now, suppose that Q∗∗ = 1. When platform sets A = Q∗∗ = 1 then trivially, in the only

equilibrium all users consume the only application in the market.

Proof of Proposition 4 (page 24). Suppose that user k consumes Gk applications in a

no-foresight environment. For any given number of applications, Gk, the optimal consumption

schedule is a balanced consumption. This is because for any application, the expected level of

consumption by other users is the same: (N − 1)XA . User k’s expected net utility is then

EUDI(G
k) =

(
Gk
)R−1

X + α (N − 1)
X2

A
− pGk .

Note that the benefit from the direct network effect does not depend on Gk. This leads to a

result similar to the one in Remark 2: The above function UDI is maximized by Gk = qI =( (R−1)X
p

) 1
2−R , for any k.

Since QI > 1,36 when A ≥ QI =
( (R−1)X

p

) 1
2−R , the expected net utility of a user in equilib-

36When QI = 1, the expected net utility of any user in equilibrium for A ≥ 1 is EU∗DI(QI = 1) =

X + α(N − 1)X2

A − p, which is maximized by A = 1. By Lemma 7, Q̂ = 1 when QI = 1. Thus, the
unique maximum of V (Q) is always Q∗∗ = 1. In result, the platform maximizes user’s net utility when
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rium, EU∗DI(QI |A ≥ QI), is maximized for A = QI .

Since EUDI(G
k) strictly increases in Gk for Gk < QI , every user consumes all applications if

there are fewer applications available than QI . Thus, for A ≤ QI =
( (R−1)X

p

) 1
2−R , the expected

net utility of a user in equilibrium is EU∗DI(A|A ≤ QI) = (A)R−1X + α (N − 1)X
2

A − pA.

Note that this function of A is the same as V (with the exception that V is a function of Q).

Moreover, since QI > 1, it must be that Q∗∗ < QI . Because Q∗∗ is the value that maximizes V ,

then A = Q∗∗ < QI also maximizes the expected net utility EU∗DI(A|A ≤ QI). Moreover,

notice that EU∗DI(QI |A ≥ QI) is maximized at A = QI , but EU∗DI(Q
∗∗) > EU∗DI(QI). So,

A = Q∗∗ maximizes the expected utility EU∗DI on the whole range A ≥ 1.
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