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Modeling sporadic Alzheimer’s disease using induced pluripotent stem cells 

 

Abstract 

 

Despite being the leading cause of neurodegeneration and dementia in the aging brain, 

the cause of Alzheimer’s disease (AD) remains unknown in most patients.  The terminal 

pathological hallmarks of abnormal protein aggregation and neuronal cell death are well-known 

from the post-mortem brain tissue of Alzheimer’s disease patients, but research into the earliest 

stages of disease development is hindered by limited model systems.  In this thesis, an in vitro 

human neuronal system was derived from induced pluripotent stem (iPS) cell lines 

reprogrammed from dermal fibroblasts of AD patients and age-matched controls.  This allows us 

to investigate the cellular mechanisms of AD neurodegeneration in the human neurons of 

sporadic AD (SAD) patients, whose development of the disease cannot be explained by our 

current understanding of AD.  We show that neural progenitors and neurons derived from SAD 

patients show an unexpected expression profile of enhanced neuronal gene expression resulting 

in premature differentiation in the SAD neuronal cells.  This difference is accompanied by the 

decreased binding of the repressor element 1-silencing transcription/neuron-restrictive silencer 

factor (REST/NRSF) transcriptional inhibitor of neuronal differentiation in the SAD neuronal 

cells.  The SAD neuronal cells also have increased production of amyloid-β and higher levels of 

tau protein, the main components of the plaques and tangles in the AD brain.    
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Chapter 1: Introduction 

Alzheimer’s disease (AD) is the most common form of dementia, highly prevalent with 

increasing age.  It is characterized by a progressive and incurable loss of cognitive abilities, 

especially related to memory and learning.  Approximately 5.3 million people in the United 

States are currently afflicted with AD and numbers are expected to rise as the average lifespan 

increases (Hebert et al 2003, Thies et al 2013).  Despite its prevalence, the cause of Alzheimer’s 

disease remains unknown in the vast majority of patients and there is no treatment available that 

delays or halts the progression of AD.  It is definitively diagnosed post-mortem by the presence 

of extraneuronal aggregates of Aβ, a proteolysis product of the amyloid precurser protein (APP), 

and intraneuronal neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein.  However, 

it is unclear if these pathologies are a cause or a consequence of the neurodegeneration.   

Research into the mechanisms of cellular degeneration in AD is hindered by the lack of a 

model system that reproduces the cellular behavior of human neurons.  This thesis characterizes 

an innovative model using induced pluripotent stem cells for studying AD pathogenesis in 

human neurons.  We discovered novel differences in neuronal activity between cells derived 

from sporadic AD and normal patients, leading to new possible insights into the cause of 

Alzheimer’s disease and future directions for therapeutics.   

A. Pathology of Alzheimer’s disease 

Alzheimer’s disease is characterized by the abnormal accumulation of proteins in the 

brain accompanied by excessive cell death.  APP is an intramembrane protein with a long 

extracellular N-terminus and a smaller intracellular C-terminus.  The Aβ fragment is produced by 

a series of proteolysis events, catalyzed by a family of proteases called secretases.  First, the β-

secretase (BACE) cleaves the N-terminus from APP, leaving a 99-residue membrane-bound 
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remnant (Cole & Vassar 2008).  Next, the γ-secretase, presenilin 1 or 2 (PSEN1, PSEN2), 

cleaves APP twice within the membrane, producing the APP intracellular domain (AICD) and 

Aβ (Wolfe 2009).  There are two major forms of Aβ, depending on the PSEN1 cleavage site: 

Aβ40 or Aβ42.  The longer Aβ42 is thought to be more pathogenic since it is the major species 

detected in the brains of AD patients (Iwatsubo et al 1994) and is required for Aβ deposition in 

vivo (McGowan et al 2005).   

Tau is a microtubule-binding protein that localizes to axons in the adult nervous system 

(Hanger et al 2009).  When phosphorylated at multiple residues, tau releases from the axonal 

microtubules and binds to itself, forming large intracellular aggregates (Buee et al 2000, Cho & 

Johnson 2003, Grundke-Iqbal et al 1986).  These neurofibrillary tangles (NFTs) of 

hyperphosphorylated tau are prevalent during AD and the severity of these tangles is the most 

highly correlated disease pathology with cognitive decline (Arriagada et al 1992).   

Alzheimer’s disease is also characterized by excessive cell and synapse loss in localized 

regions of the brain (Duyckaerts et al 2009).  Layer II of entorhinal cortex loses up to 90% of 

cells (Gomez-Isla et al 1996), while other areas disrupted by cell death include the CA1 region of 

the hippocampus and parts of the parietal and temporal cortices (Duyckaerts et al 2009).   This 

neuronal loss actually begins quite early during AD pathogenesis, with a 64% loss of neurons in 

Layer II of the entorhinal cortex seen in patients with mild cognitive impairment (MCI), the early 

stage of AD (Kordower et al 2001).  The cells of this layer are predominantly glutamatergic, 

consisting mainly of large stellate pyramidal cells that form the perforant pathway that connects 

to the dentate gyrus and is crucial in memory formation (Hyman et al 1984, Kirkby & Higgins 

1998).  Although cell loss is severe in these regions during AD, the mechanism of cell death and 

cause of increased susceptibility in certain brain regions remains unclear.   
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B. Causes of Alzheimer’s disease 

The cause of AD in the vast majority of patients remains unknown.  Most cases of AD 

are associated with increasing age and have no known dominant genetic basis and are termed 

sporadic Alzheimer’s disease (SAD).  Although the definitive instigator of disease development 

in these patients is unknown, there are genetic susceptibility factors, including the APOE4 

isoform which has the largest effect on the development of SAD (Corder et al 1993).  There are 

also a number of single nucleotide polymorphisms (SNPs) associated with changed susceptibility 

to the development of AD that have been identified through genome-wide association studies, 

but the functional consequences of these differences are still being investigated (Lambert et al 

2013).   

In addition to the more common SAD, there is also a relatively rare early onset form of 

AD that is inherited in an autosomal dominant manner called familial Alzheimer’s disease 

(FAD).  FAD is caused by mutations in APP or its γ-secretases: PSEN2 or the most prevalent 

PSEN1 (Ertekin-Taner 2007).  Less than 1% of AD cases are caused by these familial mutations 

(Ertekin-Taner 2010), yet much of current cellular AD research uses mutations in these genes to 

model AD.   

The presence of these familial mutations that affect Aβ processing led to the development 

of the amyloid cascade hypothesis to explain the development of Alzheimer’s disease. Mutations 

in PSEN1 and PSEN2 cause an increase in the production of Aβ42, the more aggregation-prone 

form of Aβ (Oddo et al 2003, Wolfe 2002).  Thus the amyloid cascade hypothesis supposes that 

the aberrant proteolysis and accumulation of Aβ42 is causative for the formation of 

neurofibrillary tangles and Alzheimer’s disease neurodegeneration (Tanzi & Bertram 2005).  

However, the dynamics of actual Aβ42 production and solubility varies considerable between the 
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different mutations causing familial Alzheimer’s disease and sporadic Alzheimer’s disease in the 

human brain (Hellstrom-Lindahl et al 2009), indicating that the pathogenesis of AD may be more 

complicated than just the aberrant production of Aβ42.   

C. The study of Alzheimer’s disease 

The earliest stages in the development of Alzheimer’s disease are very difficult to 

investigate since the disease is only diagnosed once extensive damage has already occurred.  

Animal models of AD are based on the familial mutations which account for only a small 

proportion of cases in humans and may not recapitulate the disease progression seen in humans 

with Alzheimer’s disease.  Most animal models overexpress mutant forms of APP, PSEN1, 

and/or MAPT, the gene for the tau protein.  Although MAPT mutations do not cause AD in 

humans, they do cause another neurodegenerative disorder, frontotemporal lobe dementia (FTD) 

(Spillantini et al 1998), and are prone to hyperphosphorylation and aggregation in vivo.  A 

widely used AD murine model is the ‘triple-transgenic,’ which recapitulates the plaques and 

tangles seen in human AD and contains mutations in APP, PSEN1, and MAPT (Oddo et al 2003).  

However, this artificial combination of mutations is quite severe and could be damaging to the 

brain in mechanisms entirely distinct from late-onset, sporadic AD.  Focusing primarily on the 

causes of familial neurodegeneration in a mouse system may miss important mechanisms that 

contribute to sporadic neurodegeneration in humans.   

Due to the presence of Alzheimer’s disease in the brain, previous studies of human 

neurons came from post-mortem brain samples, since biopsy of the affected tissue while the 

patient is still living is not possible.  The analysis of these samples is often complicated by high 

levels of cell loss and inflammation from advanced AD and limited identified samples with 

preclinical symptoms.  By the time of diagnosis and death, the most susceptible brain cells are 
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already lost.  Furthermore, during the time following death and before sample collection, the 

tissue can be altered including increased pH, changes in protein oxidation, and changes in protein 

expression (Chandana et al 2009).  Therefore, a different approach is needed to study the earliest 

stages of disease development in the vast majority of Alzheimer’s disease patients.   

D. Induced pluripotent stem cells and Alzheimer’s disease 

The technology of induced pluripotent stem cells (iPSCs) allows somatic cells from 

patients, such as skin fibroblasts, to be converted into a pluripotent stem cell capable of forming 

many different types of differentiated cells (Takahashi et al 2007).  The iPSCs can be 

differentiated into neurons, thus allowing the neuronal activities to be compared in the cells with 

the genetic background of patients that have actually developed sporadic AD and unaffected, 

age-matched individuals.  This allows us to study human neurons derived from patients that 

develop sporadic Alzheimer’s disease without the complications of post-mortem degradation and 

advanced disease state.   

At the commencement of this study, Alzheimer’s disease had yet to be studied using 

iPSCs or similar technology, however in the last three years several papers have been published 

using this or similar model systems.  In Israel et al (2012), iPSCs were derived from two patients 

with sporadic Alzheimer’s disease, two patients with familial Alzheimer’s disease with a 

duplication of APP, and two non-demented controls age-matched to the sporadic AD patients.  

They found increased Aβ40 production, phosphorylated-tau ratio, and active GSK3β in the FAD 

patients and one of the sporadic patients in purified neurons, but not the other SAD patient.  

GSK3β is a kinase that has been shown to phosphorylate tau and induce Aβ production 

(Takashima 2006).  Qiang et al (2011) was recently retracted due to falsification of the figures 

related to AD pathology, however in the remainder of the study, skin fibroblasts from three 
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unaffected control individuals, three sporadic AD patients, and three familial AD patients (a 

PSEN2 N141I and two PSEN1 A246E mutations) were transdifferentiated directly into a 

neuronal culture.  Kondo et al (2013) derived iPSCs from three control patients, two familial 

patients with different mutations in APP and two sporadic AD patients.  They found increased 

accumulation of intracellular Aβ in one of the APP mutants and one of the sporadic patients 

which caused oxidative stress.  They observed no difference in soluble Aβ40 or Aβ42 production 

in the sporadic AD neurons.   

Other recent studies have focused entirely on familial Alzheimer’s disease.  This 

approach is attractive due to having a known genetic defect that causes AD but thus far 

incomplete elucidation of the cellular effects from these mutations.  In Yagi et al (2011), the 

iPSCs from two patients with presenilin mutations (PSEN1 A246E and PSEN2 N141I) were 

derived and showed increased Aβ42 secretion when differentiated into neurons.  Similar results 

were seen in Sproul et al (2014) which found increased Aβ42 ratio in neural progenitors derived 

from three patients with mutations in PSEN1  (M146L and A246E).  Finally, Muratore et al 

(2014) generated iPS cells from two patients harboring a V717I mutation in APP which had 

increased β- and γ-secretase cleavage of APP resulting in elevated APPsβ and Aβ (both Aβ42 

and Aβ38) as well as increased levels of total and phosphorylated tau. 

Together, these studies show that it is possible to model Alzheimer’s disease in vitro 

using cells derived from patients, and that changes in Aβ processing are seen in all familial AD 

lines, but not all sporadic patient-derived neurons.  No study has shown a conserved phenotype 

in cells derived from sporadic Alzheimer’s disease patients.  This is possibly due to the low 

number of sporadic patients included or it could be due to the fact that sporadic lines do not share 

a common pathway in the development of AD.  However, this thesis refutes the second 
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possibility since we found a novel conserved phenotype in neuronal cells derived from a set of 

seven sporadic Alzheimer’s disease patients in which the SAD cells show a premature tendency 

towards neuronal differentiation.  Therefore, for the first time, a conserved phenotype has been 

found in cells derived from iPS cells derived from patients without a known genetic cause for 

Alzheimer’s disease.   
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Chapter 2: From Fibroblasts to Induced Pluripotent Stem Cells  

Abstract 

Dermal fibroblasts from seven patients who developed Alzheimer’s disease (six sporadic patients 

and one PSEN1 familial patient) and six age-matched controls were acquired from the Coriell 

Cell Repository. They were reprogrammed into induced pluripotent stem cells using retroviral 

transgene induction of OCT4, SOX2, KLF4, and cMYC. The iPS cells derived from each 

individual express the pluripotency markers SOX2, NANOG, TRA-1-81, and OCT3/4 and 

differentiated into all three germ layers in vitro and in vivo.  Most lines maintain normal 

karyotypes and all show inactivation of the viral transgenes.  Microarray analysis of the 

fibroblasts, but not the iPS cells, reveals a unique gene expression profile in the sporadic 

Alzheimer’s disease lines.   
 

Introduction 

 Skin biopsies from patients with Alzheimer’s disease and age-matched controls (often 

non-consanguineous relatives that do not have AD) were performed in the 1980s and the 

resulting fibroblast cell lines were banked in the Coriell Cell Repository.  The sporadic AD 

patient lines selected had a relatively early age of onset with 75% developing Alzheimer’s 

disease before the age of 75 (see later in the chapter), while the prevalence of AD in the general 

population before age 75 is less than 3% (Qiu et al 2009).   By enriching for the presence of 

individuals who developed AD earlier and thus may have increased susceptibility, we hope to 

identify more robust changes in the behavior of cells derived from these individuals.  We also 

have one patient with an early-onset, familial form of AD due to a putative mutation in PSEN1 

(Sherrington et al 1995, St George-Hyslop et al 1987).  Although it will be difficult to draw 

conclusions whether familial AD and sporadic AD have the same cellular processes and gene 
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expression from only one FAD line, it will be interesting to see if it more closely aligns with the 

SAD or NL individuals.   

 One important variable that affects the onset of sporadic Alzheimer’s disease is the 

APOE genotype. There are three different alleles of APOE: APOE3 is the most common allele 

with an allele frequency of 79% in the general population, while APOE2 accounts of 7% of the 

allele frequency and APOE4 accounts for 14% (www.alzgene.org) (Bertram et al 2007).  The 

resulting proteins vary at two amino acids at positions 112 and 158, with APOE2 coding for 

cysteine/cysteine, APOE3 coding for cysteine/arginine, and APOE4 coding for arginine/arginine 

(Weisgraber et al 1981).  The APOE4 genotype is the most important genetic contributor to 

sporadic Alzheimer’s disease, increasing the risk of developing AD from 20% to 90%, 

dependent on the number of APOE4 alleles, while the APOE2 allele has a minor protective effect 

(Corder et al 1993).    

The mechanism by which APOE4 increases the likelihood of developing AD and lowers 

the age of onset remains unclear.  APOE is an apolipoprotein predominately expressed by 

astrocytes and microglia in the central nervous system and released into the extracellular space in 

lipoprotein particles (Holtzman et al 2012).  There it may play a role in both sequestering or 

clearing soluble Aβ as well as its more traditional role mediating cholesterol transport through 

binding to its receptors on neurons.  The different isoforms vary in their ability to clear Aβ in the 

brains of mice, with APOE2 being the most efficient and APOE4 being the least effective 

(Castellano et al 2011).  More recent evidence supports a competition for clearance model in 

which both Aβ and APOE bind the same receptors, and APOE prevents Aβ from being cleared 

(Verghese et al 2013).    
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Modulation of Aβ clearance is not the only way that APOE may mediate the development 

of AD.  The functional significance of the APOE receptor interactions in the central nervous 

system is still being determined, but it has been implicated in synaptogenesis, synaptic plasticity, 

neuroprotection, and neurogenesis (Holtzman et al 2012).  The different APOE isoforms also 

affect the affinity of receptor binding and the rate at which bound receptors are recycled back to 

the surface of the cell, suggesting more possible mechanisms by which the APOE isoform could 

affect the onset of AD (Chen et al 2010, Ruiz et al 2005).   Although it is clear that the APOE 

isoform is the strongest genetic risk factor for the development of sporadic AD, the mechanism 

by which it increases the likelihood of developing AD and lowers the age of onset remains 

unclear.  Thus by including lines with a variety of APOE genotypes, we hope to elucidate 

whether differences in cellular processes and gene expression are dependent on APOE or 

whether APOE4 may enhance any molecular tendencies of sporadic AD cells.    

 Reprogramming of fibroblasts into iPS cells will change many characteristics of the cells.  

The process of transcription factor-induced reprogramming should ideally return the fibroblast 

cells to an undifferentiated state, functionally indistinguishable from the embryonic stem (ES) 

cells that arise during the earliest stages of development.  In order to be considered pluripotent, 

the iPS cells must be capable of differentiating into cells from all three germ layers of early 

development: the ectoderm, endoderm, and mesoderm.  These germ layers arise during 

gastrulation, a folding of the blastula which creates three different layers of differentiating cells: 

the ectoderm, which gives rise to the epidermis and nervous system, the endoderm, which 

differentiates into the respiratory and digestive system, and the mesoderm, which becomes 

muscle, cartilage, bone, and connective tissue.  In order to evaluate the pluripotency of the iPS 
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cells, we differentiate the cells both in vivo and in vitro to show tissue and expression markers 

from all three germ layers.   

 Reprogramming should also return the transcriptional profile and epigenetic state of the 

differentiated cell to one resembling an ES cell.    However, gene expression studies show that 

iPSCs have a profile unique from ES cells, possibly due to differential binding by the 

reprogramming factors (Chin et al 2009).  Whole genome profiles of DNA methylation show 

significant variability of epigenomic reconfiguration in different iPS lines (Lister et al 2011).  

Although reprogramming induces a robust reset of the DNA methylation patterns in most areas 

of the genome to the embryonic state, there are regions of the genome where aberrant 

methylation either retains memory of the differentiated state or shows iPSC-specific methylation 

patterns.  Therefore, although iPS cells are in many ways functionally identical to ES cells, 

differences in epigenetics may remain through the reprogramming process and affect 

downstream differentiation.   

 Another factor that may affect the differentiation capabilities of iPS cells is insufficient 

inactivation of the reprogramming factors.  Following complete reprogramming to an ESC-like 

state, the retroviral vectors should be silenced (Hotta & Ellis 2008).  However, transgene 

inactivation can be variable between iPS lines and prevent later differentiation (Toivonen et al 

2013).  Therefore, it is important to evaluate transgene expression levels to show that there is no 

difference between the SAD and NL experimental groups that may affect differentiation into 

neurons.   
 

Materials and Methods 

APOE Genotyping:  APOE genotyping was based on the protocol of Hixson and Vernier (1990).  

DNA was extracted from fibroblasts using a silica-based spin column DNA purification kit 
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(DNAeasy Blood and Tissue kit, Qiagen).  APOE was amplified using polymerase chain reaction 

(PCR) with 10 µM F6 and F4 primers (5’-ACAGAATTCGCCCCGGCCTGGTACAC-3’, 5’-

TAAGCTTGGCACGGCTGTCCAAGGA-3’), 10 mM dNTPs, 200 ng of DNA template, 1 unit 

Taq polymerase (Qiagen), and the suggested buffer, water, and Q solution to 50 µL.  The PCR 

reaction was denatured at 95ºC for 5 min, and then subjected to 30 cycles of amplification (60ºC 

for 1 minute, 70ºC for 2 minutes, and 95ºC for 1 minute) before a final extension of 70ºC for 3 

minutes.  After amplification, 5 units of Hha1 restriction enzyme (New England Biolabs) diluted 

to 1uL in NEBuffer 4 (New England Biolabs), was added to each reaction chamber and 

incubated overnight at 37ºC.  The next day, the restriction enzyme was inactivated at 65ºC for 20 

minutes.  The resulting digestion products were run on a 3% agarose gel.   

Genotyping of PSEN1 L286V: DNA from neural progenitors was harvested and isolated using 

Gentra Puregene Core kit A (Qiagen).  The PSEN1 gene was amplified to a 262 basepair product 

from exon 8 using 10 uM each primer (5’-CACCCATTTACAAGTTTAGC-3’, 5’-

GATGAGAACAAGTACCATGAA-3’), 1 unit Taq polymerase, 10 mM dNTPS, 200 ng DNA 

template, and the suggested buffer, water and Q solution to 50 µL.  The PCR reaction was 

denatured at 94ºC for 5 min, and then subjected to 35 cycles of amplification (30 seconds at 

94ºC, 45 seconds at 55ºC, and 1 minute at 72ºC) before a final extension of 72ºC for 7 minutes.  

The PCR product was purified using Purelink PCR Purification Kit (Life Technologies).  DNA 

sequencing was performed by the Biopolymers Facility at Harvard Medical School using the 

same primers from the PCR reaction.  Both forward and reverse reactions were performed to 

confirm results.  For restriction digest, 0.4 µg purified PSEN1 PCR product was incubated with 7 

units PvuII restriction enzyme (New England Biolabs) in NEBuffer 2 (New England Biolabs) 
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and water to 50 µL.  The reaction was incubated for 3 hours at 37ºC and the products were 

immediately run on a 1.2% agarose gel.   

Microarray Data Analysis and Statistics: Gene expression in fibroblasts and iPS cells were 

measured using Affymetrix U133 Plus 2.0 arrays by the Molecular Biology Core Facility at 

Dana Farber (Boston, MA).  Expression data was background adjusted and quantile normalized 

according the Robust Multichip Average (RMA) approach (Bolstad et al 2003, Irizarry et al 

2003a, Irizarry et al 2003b)  using the RMAExpress Software (v1.10.0-alpha-4, released March 

2, 2014).  Annotated probes (using Affymetrix Release 34, November 24, 2013) were 

preprocessed in GenePattern (Broad Institute) using the PreprocessDataset module (v5, released 

12/2/2013) with default floor and ceiling values (Kuehn et al 2008).  Variation filtering was set 

to the default fold change of 3 and delta of 100.  The resulting data was log2 transformed and 

significant gene expression differences between normal and SAD lines were calculated using 

Comparative Marker Selection (v10, released 12/4/2013) in GenePattern (Gould et al 2006).   

Asymptotic p-values were used to calculate q-value and the significance threshold of 0.15 was 

used (Storey & Tibshirani 2003).  Analyses of the significant gene lists were performed using 

MetaCore (Thomson Reuters), Ingenuity Pathway Analysis (Ingenuity), and DAVID algorithms 

(Huang da et al 2009a, Huang da et al 2009b).  Heat maps and Pearson correlations were 

produced using dChip (build date August 7, 2009) (Li & Wong 2001).   

iPS Cell Reprogramming and Culture: iPS cells were generated based on the described protocol 

(Park et al 2008a) with some modifications.  In brief, pMIG-hKLF4 (Addgene 17227), pMIG-

hSOX2 (Addgene 17226), MSCV hc-MYC (Addgene 18119), pMIG-hOCT4 (Addgene 17225), 

and pMXs-GFP as a positive control were each transfected into Plat-GP (Cell Biolabs) cells 

using Fugene 6 reagent (Promega) along with pMD2.G (Addgene 12259) encoding the VSV-G 
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envelop.  All four of the reprogramming factors are linked to GFP with an IRES element.  The 

media was changed daily until harvest and 0.45 µm filtration at day 4.  The viruses were 

ultracentrifuged at 112,000 x g for 90 minutes at 4º and resuspended in PBS overnight at 4º.  The 

concentration of the viruses was measured through titration in 293FT cells (Life Technologies) 

by expression of the IRES-GFP.  5x104 fibroblast cells from each SAD, control, and FAD 

individual were infected with the reprogramming factor viruses at a multiplicity of infection 

(MOI) of 5 with 4 ug polybrene.  After three days, viral transgene induction was verified through 

expression of IRES-GFP.  After four days, the infected fibroblasts were plated on mouse 

embryonic fibroblasts (iMEFs) inactivated by 10 µg/mL mitomycin C (Sigma-Aldrich) and 

grown in fibroblast media (DMEM with 10% FBS, 2 mM L-glutamine, 50 U/mL penicillin, and 

50 mg/mL streptomycin) on 0.1% gelatin.   

After 48 hours, the media was changed to hESC media (DMEM/F-12 with 20% knockout 

serum, 10 ng/mL bFGF (R&D Systems), 1 mM L-glutamine, 100 µM non-essential amino acids, 

100 µM 2-mercaptoethanol,  50 U/mL penicillin, and 50 mg/mL streptomycin (all Life 

Technologies unless noted).  Media was changed daily until iPS colonies formed after 21-30 

days.  Each colony was isolated and grown on iMEFs according to the described protocol (Lerou 

et al 2008) unless otherwise specified.   The hESC media for the iPS cell was changed daily and 

colonies were split every 6-8 days using either manual passaging or collagenase IV enzymatic 

passage.   

Immunofluorescence and Antibodies: iPS cells grown on iMEFs adhered to glass coverslips were 

washed with Hank’s Balanced Salt Solution (HBSS) and fixed for 30 minutes with 4% 

paraformaldehyde (PFA) at room temperature.  The coverslips were washed three times with 

PBS before permeablization with 0.2% Triton X-100 for 20 minutes at room temperature.  The 
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coverslips were blocked in 0.02% Triton X-100 and 5% goat serum in PBS for 30 minutes at 

room temperature.  The primary antibody was diluted in blocking buffer at the below specified 

concentrations and incubated with the cells for 1 hour at room temperature. The coverslips were 

washed three times with PBS for 5 minutes each before treatment with secondary antibody 

diluted 1:200 in blocking buffer (Goat anti-mouse IgG H&L DyLight 488 and Goat anti-rabbit 

IgG H&L DyLight 594 (Abcam)).  The coverslips were incubated 1 hour at room temperature in 

the dark before washing three times for 5 minutes each with PBS.  Excess salt was washed off 

with distilled water before inverting the coverslip on a glass slide with Prolong Gold with DAPI 

(Life Technologies).  The slides were left overnight at room temperature in the dark to dry before 

image acquisition on an Olympus Fluoview confocal microscope.   

Target Host Source Catalogue # Dilution 

Oct3/4 Rabbit Santa Cruz sc-9081 1:100 

Tra-1-81 Mouse Millipore MAB4381 1:250 

Nanog Rabbit Santa Cruz sc-33759 1:250 

Sox2 Rabbit Millipore AB5603 1:250 

Sox2 Mouse Millipore MAB4343 1:100 

 

Alkaline Phosphatase Assay: The level of alkaline phosphatase activity was evaluated in iPSCs 

using the Alkaline Phosphatase Detection Kit (Millipore) according to the manufacturer’s 

guidelines.  Images of the staining marking phosphatase activity were acquired on a brightfield 

microscope attached to a CCD camera. 

Karyotype Analysis: Cytogenetic analysis was performed by Cell Line Genetics (Madison, WI) 

on twenty G-banded metaphase cells.   
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Transgene Inactivation Analysis: cDNA for the both the endogenous and transgene version of 

each reprogramming factor was derived from iPS cells using TRIzol-harvested RNA ran through 

an extended one-step RT-PCR cycle in an iQ5 (Bio-Rad) (reverse transcription at 50º for 30 

minutes, denatured at 95ºC for 12 min, and then subjected to 60 cycles of amplification (20 

seconds at 95ºC, 30 seconds at 55ºC, and 30 seconds at 68ºC) before a final extension of 65ºC 

for 10 minutes).  The primers used were as described and listed below (Park et al 2008b).  The 

cDNA product was run on a 2% agarose gel and the correct product band was extracted using 

QIAquick Gel Extraction kit (Qiagen) according to the manufacturer’s guidelines.  The extracted 

product was concentrated through ethanol precipitation and final concentration measured using a 

NanoDrop 1000 Spectrophotometer.  The resulting purified DNA was titrated and used to create 

a qRT-PCR standard curve using QuantiTect SYBR Green RT-PCR kit (Qiagen).  The 

concentration of mRNA for each reprogramming factor in the iPS lines (one per individual) was 

calculated through comparison to its specific standard curve following qRT-PCR in an iQ5 (Bio-

Rad) using QuantiTect SYBR Green RT-PCR kit (Qiagen) and a standard cycle of reverse 

transcription at 50º for 30 minutes, denaturation at 95ºC for 12 min, and then 30 cycles of 

amplification (20 seconds at 95ºC, 30 seconds at 55ºC, and 30 seconds at 68ºC) before a final 

extension of 65ºC for 10 minutes.  GFP expression was measured using the below primers and 

the same qRT-PCR protocol.   

Primer Target Forward Sequence Reverse Sequence 
OCT4-Transgene CCTCACTTCACTGCACTGTA CCTTGAGGTACCAGAGATCT 

OCT4-Endogenous CCTCACTTCACTGCACTGTA CAGGTTTTCTTTCCCTAGCT 
SOX2-Transgene CCCAGCAGACTTCACATGT CCTTGAGGTACCAGAGATCT 

SOX2-Endogenous CCCAGCAGACTTCACATGT CCTCCCATTTCCCTCGTTTT 
KLF4-Transgene GATGAACTGACCAGGCACTA CCTTGAGGTACCAGAGATCT 

KLF4-Endogenous GATGAACTGACCAGGCACTA GTGGGTCATATCCACTGTCT 
cMYC-Transgene TGCCTCAAATTGGACTTTGG CGCTCGAGGTTAACGAATT 

cMYC-Endogenous TGCCTCAAATTGGACTTTGG GATTGAAATTCTGTGTAACTGC 
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Primer Target Forward Sequence Reverse Sequence 
GFP AAGCTGACCCTGAAGTTCATCTGC CTTGTAGTTGCCGTCGTCCTTGAA 

 

In Vitro Formation of Three Germ Layers: iPS cells growing on Matrigel hESC-qualified matrix 

(BD Biosciences) in mTESR1 media (Stemcell Technologies) were washed with phosphate 

buffered saline (PBS) and dissociated with collagenase for 10 minutes at 37º.  After partial 

dissociation, the colonies were harvested using a cell scraper and pelleted at 200 x g for 5 

minutes.   The colonies were resuspended in Aggrewell media (Stemcell Technologies) and 

transferred to ultra-low attachment plates (Corning) to form embryoid bodies.  The media was 

changed every 3 days until day 7, when the embryoid bodies were transferred to 0.1% gelatin-

coated plates in culture media (DMEM with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 

and 1% penicillin/streptomycin (Life Technologies)).  The media was changed every 3 days until 

day 7, at which point RNA was TRIzol-harvested.  Reverse-transcription PCR (RT-PCR) for 

genes representative of the three germ layers was performed on the isolated RNA by the Harvard 

Stem Cell Institute’s iPSC Core Facility (Cambridge, MA).   

Teratoma Formation: iPS cells growing on 10 cm plates coated with Matrigel hESC-qualified 

matrix (BD Biosciences) in mTESR1 media (Stemcell Technologies) were detached using 

collagenase and washed with PBS with 0.5% bovine serum albumin (BSA).  The pellet was 

resuspended in 30 µL PBS with 0.5% BSA.  The Genome Modification Facility (Harvard 

University, Cambridge, MA) performed teratoma analysis by injecting 10 µL of iPS cells, 

containing more than 1x106 cells, into the kidney subcapsules of NOD-SCID mice (three per 

line).  Teratomas appeared after 6-10 weeks and were dissected and fixed in 4% 

paraformaldehyde (PFA) for 24 hours before being stored in 70% ethanol at 4ºC until 

embedding.  The samples were embedded in paraffin by the Harvard Department of Stem Cell 
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Biology and Regenerative Biology (HSCRB) Histology-Immunohistochemistry Core 

(Cambridge, MA).  The samples were sectioned and stained with hematoxylin and eosin for 

analysis of cell morphologies from each of the three germ layers.   

Statistics: Unless otherwise noted, the significance for the difference between sporadic 

Alzheimer’s disease and normal lines was calculated using a student’s t-test on Microsoft Excel 

with the significance level set at p < 0.05. All error bars in the figures are the standard error of 

the mean (SEM) calculated through Excel unless otherwise specified.   

Results 

A. Genotyping the fibroblast lines for APOE and PSEN1 

The APOE4 genotype is the most important genetic contributor to sporadic Alzheimer’s 

disease (Corder et al 1993).  Therefore, the thirteen fibroblast lines acquired from the Coriell 

Cell Repository were genotyped at APOE to see if different alleles of this gene may affect the 

cellular mechanisms of AD neurodegeneration and are apparent in this culture system.  

Restriction digest with HhaI differentiates the three APOE alleles, showing that our lines have a 

wide variety of APOE4 genotypes (Figure 2.1a, Table 2.1).   Of note, two of the SAD lines are 

APOE4 homozygotes (SAD1 and SAD5), as well as one APOE4/E3 heterozygote (SAD6).  

There is one APOE4/E3 heterozygote who has escaped the development of AD, NL6.  Finally, 

SAD3 is an APOE3/E2 heterozygote who still developed SAD with a relatively early onset 

despite the protective effects of the E2 allele.  The rest of the patients have the most prevalent 

APOE3/E3 genotype.   

One fibroblast line was acquired from a familial AD patient FAD1 with a putative L286V 

mutation in presenilin 1.  To verify this mutation in the PSEN1 gene, both the forward and 

reverse strands of exon 8 were sequenced (Figure 2.1b).  Both strands showed a heterozygous 
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G/C basepair at the position to cause a leucine to valine transposition at amino acid 286 in the 

presenilin 1 protein.  This creates a new PvuII restriction site which is apparent in the cleaved 

products visible in the FAD1 sample, but not the NL5 control individual (Figure 2.1c).    
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B.  Gene expression in fibroblast cells 

 Microarray profiling of a subset of the fibroblast lines (NL1, NL2, NL3, NL4, SAD1, 

SAD2, SAD4, and FAD1) shows a difference in mRNA expression in the SAD and NL lines 

(Figure 2.2a).  The gene expression was measured on an Affymetrix U133 Plus 2.0 array and 

background adjusted and normalized using robust multi-array averaging (RMA) before 

preprocessing to remove genes that showed little variation and thus differences that may be due 

to platform noise or are not biologically relevant.  The normalized and preprocessed expression 

data was analyzed for differences between the normal and SAD lines.  Since there is only one 

FAD line, it was not directly included in the comparison between SAD and NL, since it may 

have a different mechanism by which the patient developed AD.  However, it was included in all 

post-hoc analyses to see if it correlates more closely with the SAD or NL line.  The results were 

corrected for multiple hypothesis testing using the Q-value (Storey & Tibshirani 2003) calculated 

with an asymptotic p-values (due to the small number of samples in each group).   

150 annotated probes showed differentially expression between the SAD and NL lines 

using a significance cut-off of q-value ≤ 0.15 which corresponds to a p-value ≤ 0.012 

(Supplementary Table 1).  In this statistical measure, 15% of the genes on the list are expected to 

be false positives.  This less stringent cut-off was chosen to be consistent with later stages of 

analysis.  Correlation analysis between the expression of the fibroblast lines shows intra-group 

correlation for both the AD lines and NL lines (Figure 2.2e).  The expression in FAD1 correlated 

most with the SAD lines (Pearson correlation coefficient r between 0.32 and 0.50), rather than 

the normal lines.  The SAD lines correlated with each other (r = 0.30-0.62), while the expression 

of normal lines correlated as well (r = 0.31-0.44). 
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 Enrichment analysis using MetaCore software shows that five of the ten most significant 

gene ontology (GO) biological processes relate to neuronal function (Figure 2.2b).  This is 

surprising since fibroblasts are not expected to express many neuronal genes.  These neuronal 

genes are mainly down-regulated in the SAD fibroblasts, as visualized through the differential 

expression of the genes in the nervous system development GO group (Figure 2.2c).  Annotation 

clustering analysis using the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) did not show enrichment for neuronal processes, but greater than expected expression 

of genes with fibronectin domains and those that localize to the plasma membrane (Figure 2.2d).   

 Interaction and upstream regulator analysis was performed using MetaCore and Ingenuity 

Pathway Analysis (IPA) respectively (Figure2.2e,f).  The interaction analysis evaluates the gene 

list for overconnected interactions, listed by the protein that serves as a hub for that network.  

Several of the overconnected interaction hubs relate to neuronal function, including the two with 

the highest number of interactions, focal adhesion kinase (FAK1/PTK2), which functions at focal 

adhesions downstream of many extracellular matrix receptors and is important in neural 

functions (Nikolic 2004) and BRG1, an ATPase which belongs to a neural progenitor-specific 

chromatin remodeling complex (Lessard et al 2007).   The upstream regulators calculated by IPA 

include an activation score to show whether the gene expression differences are consistent and 

show increased or decreased activity of the upstream regulators in the SAD lines.  The activated 

upstream regulators are the transcription regulators p53 and E2F1, which can act together in both 

cell proliferation and cell death (Polager & Ginsberg 2009).   
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C.  Reprogramming into induced pluripotent stem cells  

 Fibroblasts were reprogrammed into iPS cells using retroviral transduction of the 

Yamanaka factors (SOX2, KLF4, cMYC, and OCT4).  Multiple clones were formed for most 

lines through distinct viral integration events and distinguished by a numeral following the 

individual name (e.g. SAD2.1, SAD2.2, and SAD2.3).  Clones from each individual were 

evaluated for their expression of pluripotency markers and differentiation capability (Table 2.2).  

Every clone showed ESC-like morphology and each tested line expressed the pluripotency 

markers NANOG, SOX2, TRA-1-81, and OCT4 as well as the elevated alkaline phosphatase 

activity indicative of a undifferentiated, pluripotent stem cell (Table 2.2, Figure 2.3a,b).  All 

analyzed lines maintained a normal karyotype except SAD1.1, which had a balanced 

translocation between chromosome 3 and chromosome 5 (Figure 2.3c).  The karyotype of SAD1 

fibroblasts was normal when analyzed by the Coriell Cell Repository, indicating that the 

translocation may have occurred during the reprogramming process.   

To evaluate inactivation of the transduced reprogramming factors, actual mRNA 

expression levels of both the transgenic and endogenous reprogramming genes were measured 

using qRT-PCR to a quantified cDNA standard curve specific to each gene product (Figure 2.4a, 

b).  In the iPS cell lines tested (one per individual), the cMYC transgene was expressed at less 

than 15% of the endogenous locus, SOX2 was expressed at less than 4% of the endogenous 

locus, and OCT4 transgene expression was less than 8% of the endogenous locus.  Even KLF4, 

which had the lowest levels of endogenous expression, showed less than 30% expression of the 

transgene compared with endogenous KLF4.  Most importantly, there is no difference in 

transgene inactivation between the SAD and normal iPS lines.   
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To evaluate the overall transgene inactivation levels compared to a recently transduced 

control, GFP expression was measured for each line (Figure 2.4c).  All four of the 

reprogramming factors have an IRES-GFP element which should be expressed in tandem with 

the reprogramming gene.  Immediately following transduction, the fibroblasts express GFP, but 

the GFP expression in the mature iPS cells is below detectable limits through epifluorescent 

microscopy, indicating inactivation (data not shown).  The levels of GFP mRNA were measured 

in iPS cells using qRT-PCR and compared to a human fibroblast control line transduced with 

pMXs-GFP.  The pMXs promoter is similar, but not identical to the pMIG plasmids used for 

reprogramming, since the MMLV 5’ long terminal repeat (LTR) of pMXs differs in several 

basepairs from the MSCV 5’ LTR of pMIG  (Cherry et al 2000).   The GFP of the 

reprogramming factor vectors was expressed at less than 0.04% the levels of the GFP in the 

fibroblasts, indicating that the transgenes are inactivated not only compared to the endogenous 

genes, but also quite strongly compared to the levels following transduction.   

 In order to prove that the reprogrammed iPS cells are in fact pluripotent, we tested their 

ability to form tissues of the three germ layers formed during embryogenesis: ectoderm, 

endoderm, and mesoderm.  iPSC colonies were grown in suspension for one week without basic 

fibroblast growth factor (bFGF) to form embryoid bodies (EBs), a three-dimensional cellular 

aggregate in which differentiation to more specialized cells starts to occur.   The EBs were plated 

and differentiated for one more week in serum-containing media to induce further differentiation, 

forming diverse morphological structures (Figure 2.5b).  All iPSC lines tested (one per 

individual) were able to differentiate into the three germ layers in vitro, showing mRNA 

expression of the ectodermal markers β-tubulin III and NCAM, the endodermal markers AFP and 
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GATA4, and the mesodermal markers Flk and GATA2 through semi-quantitative RT-PCR 

(Figure 2.5a).   

The ability to form all three germ layers was also recapitulated in vivo, when iPS cells 

injected under the renal capsule of NOD-SCID mice formed teratomas, a tumor which contains 

diverse tissue types from more than one germ layer (Figure 2.6).  All thirteen lines tested (one 

per individual) formed teratomas containing tissues derived from each of the three germ layers, 

confirming that the iPS cells are pluripotent.   
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D.  Gene Expression in iPS Cells  

 Gene expression in iPS cells was evaluated using the same approach as the fibroblast 

lines, but including more individuals (Table 2.2).   One clone per individual was included in the 

analysis.  Despite the increased number of samples, there were no genes that met the statistical 

criteria of q-value less than 0.15 (Supplementary Table 2).  In fact, all of the q-values were close 

to 1, indicating that any significant gene differences indicated through p-value analysis have a 

high probability of being a false positive.   
 

Conclusions and Discussion 

We have established the largest group of iPS cells from sporadic AD and age-matched 

control patients to date from the fibroblasts of 6 NL and 6 SAD individuals, as well as one FAD 

PSEN1 mutant.   These patients are enriched for an earlier age of onset to increase the likelihood 

of recognizing differences in cellular mechanisms that may lead to AD neurodegeneration.  They 

also have a variety of APOE genotypes, including two E4/E4 homozygotes and one E2/E3 

individual that may provide evidence for the effects of APOE isoform on AD development.   

The subset of AD fibroblast lines tested show a distinct gene expression profile from the 

control lines using microarray analysis.  Although this difference was seen in a relatively small 

group of genes, this result was surprising since AD is predominantly a disease of the central 

nervous system and does not have any known effects in the skin.  However, it has been 

previously asserted that fibroblasts from familial AD patients share a distinctive gene expression 

profile, irrespective of the starting mutation (Nagasaka et al 2005).  Unfortunately, this gene 

profile was not published, therefore we are unable to see if it correlates with our findings.   

Using enrichment analysis, the distinctive genes of AD fibroblasts are enriched for 

neuronal and differentiation genes.  The top ten most significant gene ontology biological 
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processes included five related to neuronal function and development and three related to cell 

differentiation.  All of these GO groups feature genes that are predominantly down-regulated in 

the AD lines, suggesting these processes could be disrupted in AD patients.  However, 

annotation clustering analysis using DAVID supported a more important enrichment of plasma 

membrane-related genes, including those involved in signaling, cell adhesion, and containing 

fibronectin domains.  It is unclear what functional effects these differences may have in human 

fibroblasts, but they remain important areas to explore throughout the later stages of 

differentiation.   

Two possible explanations for the difference in gene expression are that 1) the gene 

expression differences may just be due to the advanced stage of the disease affecting the overall 

health of the patient or 2) this difference reflects fundamental variance in the genetic or 

epigenetic state of the individual that led to the development of AD.  To control for the gene 

expression differences due to the poor health of the patient, the gene expression profile should be 

compared to patients with other diseases, especially neurological such as Parkinson’s or 

Huntington’s.  If instead these gene expression differences may contribute to the development of 

AD, the gene expression changes should be seen in the later stages of differentiation and provide 

more insight to the effects on the brain.   

All thirteen iPS lines are pluripotent, expressing pluripotency markers and differentiating 

into all three germ layers.  They also silenced the reprogramming factors, indicating that the lines 

are suitable for differentiation.  Despite any remaining epigenetic modifications after 

reprogramming, the difference in gene expression between the SAD and NL fibroblasts was 

completely erased in the iPS cells.  Although there still could be epigenetic modifications that 

could affect expression in later stages of differentiation, this homogenous gene expression 
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supports that reprogramming returns the cells to a more embryonic state and that gene expression 

in later stages of differentiation will be primarily dependent on the genetic differences between 

the individuals. 
 

Contributions 

Nicholas Bishop reprogrammed the fibroblasts into iPS cells.  He also characterized half of the 

iPS cell lines for pluripotency markers and alkaline phosphatase activity (NL1.1, NL2.1, NL3.1, 

SAD1.2, SAD2.1, SAD4.1, and FAD1.1).  He prepared the RNA samples for the fibroblast and 

iPS microarray.  Karyotype analysis was performed by Cell Line Genetics (Madison, WI).  

Semi-quantitative RT-PCR of the differentiated iPS cells in vitro was performed by the Harvard 

Stem Cell Institute’s iPS core facility in collaboration with Laurence Daheron.  Teratoma 

formation was performed by Zhenjuan Wang at the Harvard University Genome Modification 

Facility and embedding, sectioning, imaging, and analysis was performed by Cathy MacGillivray 

at the HSCRB Histology-Immunohistochemistry core.   
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Chapter 3: Differentiation and characterization of neural progenitors  

Abstract 

Neural progenitors (NPs) were differentiated from iPS cells derived in three different labs and 

expressed the neural progenitor markers nestin, musashi, and SOX2.  Gene expression profiling 

using microarray analysis shows a robust difference between the SAD and NL neuronal 

progenitor lines, with a surprising up-regulation of neuronal differentiation genes in the SAD 

neural progenitors.  This difference was verified through qRT-PCR and western blotting and was 

confirmed to be isolated to a subset of cells through immunostaining and fluorescent-activated 

cell sorting (FACS) analysis.  Furthermore, this difference was confirmed using NP cells derived 

from multiple iPSC clones from the same patients, confirming that SAD neural progenitor lines 

have increased expression of neuronal differentiation markers compared with the NL patient age-

matched controls.    

Introduction 

Now that we have successfully reprogrammed fibroblasts into induced pluripotent stem 

cells, we want to differentiate the cells into neurons to test if there are any differences between 

the SAD and NL patient cells.  The neural differentiation process can be paused at a neural 

progenitor intermediate that is stable and self-renewing.  This type of cell is easier to culture than 

iPS cells or neurons and differentiation into neurons can be readily initiated.  It will also allow us 

to see if there are any differences between the AD and NL cells earlier in differentiation before 

the cells become mature neurons.   

Neural development is a complicated and incompletely understood process in vivo 

(Jessell 2000), which may make it difficult to replicate in vitro.  First, the neural lineage must be 

induced in cells to create a population of neural progenitors.  Then, the progenitors are 
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committed to a neuronal fate and the immature neurons must migrate, grow dendrites and axons, 

guide the axonal growth cone to postsynaptic partners, and generate synapses to become mature 

neurons.   

After gastrulation during which the three germ layers form, a neural plate forms in the 

ectoderm.  The neural plate folds into the neural tube that will become the cells of the central 

nervous system.  Neural differentiation seems to be the default state of these cells, but is 

suppressed by bone morphogenic proteins (BMP) 2 and 4 (Varga & Wrana 2005).  The BMPs 

are suppressed by noggin and chordin which are produced in the mesoderm and diffuse to the 

cells of the neural tube, allowing neural induction to occur (Chitnis 1999).   

However, positive inducers of neuronal induction including Wnt and factors that activate 

MAPK including fibroblast growth factor (FGF) family members and insulin-like growth factor 

(IGF) may also play a role in the neural induction process (Gaulden & Reiter 2008).   After 

neural induction has occurred, the cells may now be considered neural progenitors and have the 

capacity to become several different cell types of the central nervous system including neurons, 

astrocytes, and oligodendrocytes.  The commitment to the neural fate occurs during neurogenesis 

in which neural progenitors are selected through a lateral inhibition process reliant on Notch-

Delta signaling at distinct regions of the neural plate (Bally-Cuif & Hammerschmidt 2003).  

Delta expression is up-regulated in differentiating neurons and activates Notch signaling in 

neighboring progenitors, which inhibits differentiation in those neighboring cells (Kageyama et 

al 2009).   

These regions where the production of neurons and glial cells occur are defined by a 

variety of secreted morphogens including sonic hedgehog, Wnt, BMPs, FGF, and retinoic acid 

which form gradients in a process called neural patterning (Takahashi & Liu 2006).  This neural 
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patterning causes combinatorial expression of pro-neural transcription factors, leading to the 

wide variety of different types of CNS cells (Corbin et al 2008).  These transcription factors 

include members of the homeoprotein family such as HOX and PAX, TALE transcription factors 

such as MEIS, zinc-finger family such as GLI and ZIC, and basic helix-loop-helix (bHLH) 

family such as HES, ID, ASCL1 and neurogenins (Bally-Cuif & Hammerschmidt 2003).  

Expression of these various transcription factors and others are spatially and temporally 

regulated to control the location and type of cells produced by differentiation.   

Neural progenitors are a diverse group of cells in the developing brain.  In the 

telencephalon, from which most of the regions affected during Alzheimer’s disease arise 

including the cerebral cortex, hippocampus, and olfactory bulb, there are two distinct classes of 

neural progenitors: 1) the progenitors dividing at the ventricular surface including neuroepithelial 

cells and radial glia and 2) the progenitors that divide predominantly in the basal region called 

basal or intermediate progenitors (Gotz & Huttner 2005).  These progenitors remain 

incompletely understood, but are known to generate other progenitors, neurons, and glia.   

The neuroepithelial progenitors (NEPs) are the earliest of the stem cells and most similar 

to the kind we attempt to differentiate in culture from the iPS cells.  Prior to the onset of 

neurogenesis, the proliferating neuroepithelial progenitors primarily undergo symmetric 

divisions, expanding the pool of NEPs (Huttner & Kosodo 2005).  They are polarized cells 

which are anchored to the basal lamina through integrins and to each other through tight 

junctions and adherens junctions (Gotz & Huttner 2005).  However, in later stages of 

development, the NEPs asymmetrically divide to produce neurons and glia, but also another type 

of neural progenitor: the radial glia cells.   
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Radial glia cells (RGCs) have a bipolar morphology and are multifunctional.   They act as 

both a scaffold for migration of the newly generated neurons, but also the most important 

neuronal progenitor, accounting directly or indirectly for most of the neurons in the cerebral 

cortex (Guillemot 2005).  RGCs express many markers of glial cells, including expression of 

GFAP, and are not bound together by tight junctions like the neuroepithelial progenitors (Barry 

et al 2014).  However, they still express the progenitor marker of nestin.  The PAX6 transcription 

factor is important for the development of radial glia cells; forced expression in murine 

neuroepithelial cells triggers differentiation into radial glia and neurons, while knockdown 

decreases the production of RGCs (Suter et al 2009).  RGCs produce postmitotic neurons, 

astrocytes, or a third class of neuronal progenitors: the basal or intermediate neuronal 

progenitors.    

Intermediate neuronal progenitors (INPs) are not adhered to the ventricular zone like the 

NEPs and RGCs and are instead located in the basal region where the apically derived neurons 

are migrating.  They have limited proliferative potential, only undergoing 1-3 mitotic cycles and 

generate exclusively neurons (Kowalczyk et al 2009).  They are positive for the transcription 

factor Tbr2 and are thought to be important in increasing the number of neurons generated from 

a given ventricular-zone progenitor at the basal site of inclusion and possibly in balancing the 

generation of glutamatergic and GABAergic neurons (Haubensak et al 2004, Sessa et al 2010).  

A subset of INPs is also found at the apical ventricular zone, which may be equivalent to the 

short neuronal precursers seen in rodents.  These ventricular zone INPs have a distinct 

morphology and are incompletely understood (Kowalczyk et al 2009).   

 Even with these classifications of the neuronal progenitors seen in vivo during cortical 

development, there is a lot of heterogeneity with many subsets with distinct gene expression 
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profiles (Kriegstein et al 2006).   This variance may be due to differences in morphogen 

signaling and resulting transcription factor expression.   

 In adult neurogenesis, neural stem cell (NSC) populations are found in two regions: the 

subventricular zone (SVZ) that feeds into the olfactory bulb and the subgranular zone (SGZ) 

which feeds into the dentate gyrus.  The predominant NSC population in the SVZ expresses 

GFAP and CD133 which will asymmetrically generate transit amplifying cells that migrate into 

the olfactory bulb (Faigle & Song 2013).  The predominant population in the SGZ expresses 

GFAP, nestin, and SOX2 and is considered radial glia-like (RGL) cells (Type 1 cells).  This 

population can give rise to more RGL cells, glia, and a more restricted but still mitotically active 

intermediate progenitor that no longer expresses GFAP and expresses the transcription factor 

ASCL1 (Type 2A cells).  As the intermediate progenitor matures it will begin to express the 

microtubule-binding protein doublecortin and the neurogenin transcription factor (Type 2B cells) 

(Hodge et al 2008, Kempermann et al 2004).  When the cells no longer express nestin and only 

express doublecortin, they are considered Type 3 neuroblasts.  This intermediate will 

differentiate into post-mitotic glutamatergic dentate granule cells (Faigle & Song 2013).  In the 

adult brain, the NSCs are predominantly quiescent, maintained by many factors including BMP 

and Notch signaling, cell adhesion molecules, G-protein coupled receptors (GPCRs), and cell 

cycle inhibitors (Giachino & Taylor 2014).   

 It is difficult to replicate a specific population of neural stem cells (NSCs) in vitro due to 

the many factors that control stem cell character.  Small changes in secreted morphogen levels or 

substrate could have a large effect on the resulting neural stem cell population.  Replicating the 

three dimensional architecture that occurs during corticogenesis in vivo is technologically 

infeasible meaning that important feedback will be missing during the development of these 
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neural stem cells in vitro.  Therefore, our goal was to create a population of neural progenitors 

that is positive for the ubiquitous neural stem cell marker nestin, but may remain heterogenous.  

Other groups studying AD using iPS cells used FACS sorting to obtain a more homogenous 

population of NSCs (Israel et al 2012), but by only taking a small subset of the cells expressing 

nestin, that method may miss important populations of cells that are different between the AD 

and control groups.   

 We also acquired additional iPS lines from other labs: two normal patients from the 

Eggan laboratory and multiple clones from four patients from the Goldstein laboratory with two 

unaffected by AD and two with sporadic Alzheimer’s disease (Table 3.1) (Boulting et al 2011, 

Israel et al 2012).  It highly strengthens our results using iPS lines derived from multiple labs 

since laboratory of origin is known to affect gene expression (Newman & Cooper 2010).    
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Materials and Methods 

Additional iPS Lines: iPS lines derived from the Eggan and Goldstein laboratories were acquired 

from the HSCI iPS Core Facility and directly from the Goldstein laboratory, respectively.    

Differentiation and Culture of Neural Progenitors:  The neural progenitor differentiation 

protocol developed was adapted from several sources (Marchetto et al 2010, Swistowski et al 

2009).  Culture conditions for neural progenitors were based on previous published work (Shin et 

al 2006).  High density iPS cells growing on iMEF feeders (30-60 cm2) were primed for neural 

differentiation two days before passaging by supplementing the hESC media with 1x N-2 

supplement (Life Technologies) and the day before passage with 1x N-2 and 1 µM AMPK 

inhibitor (Calbiochem).  The iPSC colonies were detached with dispase and transferred intact 

using a glass pipette to be washed twice with DMEM/F-12 to remove any residual dispase.  The 

colonies were grown in suspension on 10 cm petri dishes (not treated for tissue culture) to form 

embryoid bodies (EB) in neural EB (NEB) media (DMEM/F-12 with 20% knockout serum, 1x 

N-2 supplement, 1 µM AMPK inhibitor, 1 mM L-glutamine, 100 µM non-essential amino acids, 

100 µM 2-mercaptoethanol, 50 U/mL penicillin, and 50 mg/mL streptomycin).  Media was 

changed every 2-3 days until day 8 when media was changed to neural induction media (NIM; 

DMEM/F-12 with 20% knockout serum, 1x N-2 supplement, 10 ng/mL bFGF, 1 mM L-

glutamine, 100 µM non-essential amino acids, 100 µM 2-mercaptoethanol, 50 U/mL penicillin, 

and 50 mg/mL streptomycin).  After three more days culture in suspension, the EBs were plated 

on 10 cm2 CELLstart-coated (Life Technologies) tissue culture dishes in NIM.  The NIM was 

changed every 2-3 days until neural rosettes formed (1-4 days).   

The neural rosettes are manually harvested and transferred intact onto 0.002% 

polyornithine (Sigma Aldrich) and 5 ug/mL laminin (Sigma Aldrich) coated plates.  The plates 
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were coated for 2 hours with polyornithine diluted in sterile, distilled water at 37º before washing 

and coating with 5 µg/mL laminin diluted in 4º Dulbecco’s PBS without calcium or magnesium 

(Life Technologies) for 2 hours at 37º.  The rosettes are grown in neural progenitor media (NPM) 

(Neurobasal media with 1x B-27 without vitamin A (Life Technologies), 1 mM L-glutamine, 10 

ng/mL bFGF, 10 ng/mL leukemia inhibitory factor (LIF, Millipore), 50 U/mL penicillin, and 50 

mg/mL streptomycin).  Once confluent, the neural rosettes are broken apart and passaged using 

accutase (StemCell Technologies).  The resulting NP cells are plated on polyornithine/laminin 

and NPM is changed every 2-3 days.   The NPs are split with accutase when confluent.   

DNA Fingerprinting: DNA fingerprinting was performed by Cell Line Genetics (Madison, WI) 

using the Powerplex 16 kit (Promega). Samples were run in duplicate and the interpreter blinded 

to confirm results.    

Immunofluorescence (IF) and Antibodies: IF was performed as described in Chapter 2 on neural 

progenitors growing on glass coverslips coated with polyornithine and laminin.  For all 

quantification, at least five randomized fields were imaged per coverslip and the cells expressing 

each marker were counted using MetaMorph (v7.7.0.0) software.  First, the channels were 

separated into a separate image for each fluorophore using the command “Color Separate”.  

Then, the number of cells expressing each marker was counted using the “Multi Wavelength Cell 

Scoring” application and consistent inclusion criteria throughout all coverslips.      

Target Host Source Catalogue # Dilution 

Nestin Mouse Millipore MAB5326 1:200 

Musashi Rabbit Millipore AB5977 1:250 

Sox2 Millipore Rabbit AB5603 1:250 
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β-tubulin III Mouse Chemicon MAB1637 1:250 

Doublecortin Rabbit Cell Signaling 4604S 1:400 

 

Microarray Analysis:  RNA was extracted using TRIzol reagent (Life Technologies) from 

confluent neural progenitors.  mRNA was measured on Affymetrix U133 Plus 2.0 arrays by the 

Molecular Biology Core Facility at Dana Farber (Boston, MA) and the data was analyzed as 

described in Chapter 2.  For the additional clones, the increased sample size allows for 

permutation testing, therefore 10,000 permutations were performed to calculate the p- and q-

values.   

Quantitative RT-PCR and Primers: Primers were designed for 100-250 bp segments spanning 

exon boundaries highly conserved between alternative transcripts using Ensembl gene mapping 

information and Primer3 to optimize G/C concentration and melting temperature.  The primer 

products were verified by agarose gel electrophoresis and a standard curve was established for 

each primer pair using serial dilution of a titrated RNA sample to account for primer efficiency.  

RNA was harvested from NP cells using either TRIzol reagent or Cells-to-cDNA II kit with 

DNase treatment.  The mRNA was quantified using QuantiTect SYBR Green PCR kit according 

to the manufacturer’s guidelines and run in a one-step RT-PCR cycle in an iQ5 (Bio-Rad) 

(reverse transcription at 50º for 30 minutes, denatured at 95ºC for 12 min, and then subjected to 

35 cycles of amplification (20 seconds at 95ºC, 30 seconds at 55ºC, and 30 seconds at 68ºC) 

before a final extension of 65ºC for 10 minutes).  The purity of the PCR products was 

determined by single peak melting curves.  The relative cDNA was quantified using the standard 

curve established for each primer pair and normalized to GAPDH or β-actin.  Statistical 
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differences between the SAD and NL lines were calculated using a two tailed student’s t-test 

assuming unequal variances for both the normalized relative mRNA concentration and its log2.   

Primer Target Forward Sequence Reverse Sequence 
GAPDH AGCCACATCGCTCAGACACC GTACTCAGCGCCAGCATCG 

Doublecortin GAACTGGAGGAAGGGGAAAG GCTCAAAAGAGTGGGCTGTC 
ASCL1 AACAGTCAACCAACCCCATC GCTGTGCGTGTTAGAGGTGA 
CD24 ATGTGGCAAGGAAAAACAGG CTCCATTCCACAATCCCATC 

EPHB1 GGCCCATCGCATCTACAC ATCAGCCTTCCCCCAAAG 
COL11A1 ATGGAATCACGGTTTTTGGA AGGTTCCTGAGCTTGAGCAG 

CD44 GCAGGTATGGGTTCATAGAAGG GTCATACTGGGAGGTGTTGGAT 
Actin TTCTACAATGAGCTGCGTGTG AGAGGCGTACAGGGATAGCA 

 

Western blotting: Confluent cultures of neural progenitor cells were washed with PBS before 

manual harvest with a cell scraper.  Samples were resuspended in lysis buffer (RIPA-DOC (50 

mM Tris-Cl (pH 7.2), 150 mM NaCl, 1% Triton x-100, 0.1% SDS, and 1% deoxycholate) with 

1x PhosSTOP (Roche) and 1x cOmplete protease inhibitor (Roche)).  Lysed samples were 

sonicated for 15 seconds each with a 550 Sonic Dismembrator (Fisher).  Protein concentration 

for each sample was measured using DC protein assay kit (Bio-Rad) and adjusted to 0.8-1.5 

µg/µL in 5x SDS-reducing sample buffer.  Equivalent amounts of protein were loaded per lane 

and resolved by 4-20% SDS-PAGE.  Protein was transferred to PVDF membrane and blocked 

with 5% nonfat milk in PBS with 0.02% Tween-20 (PBST) for 1 hour at room temperature with 

shaking.  Membranes were cut to allow targeting of multiple size proteins on the same blot and 

incubated overnight with primary antibody diluted in PBST with 5% bovine serum albumin and 

0.05% sodium azide at 4ºC with shaking.   The membranes were thoroughly washed with PBST 

before incubation for 1 hour with peroxidase-conjugated secondary antibody against the host 

species (Jackson ImmunoResearch, 1:2500) in 5% nonfat milk in PBST.  After 1 hour, the 

membranes were washed thoroughly with PBST before visualization by chemiluminescence 
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(ECL or ECL Prime, GE Healthcare).  Intensities of the immunoreactive bands were 

quantitatively analyzed on a gel documentation system (SynGene).  All quantified proteins were 

normalized to GAPDH or β-actin and, if multiple membranes were necessary, also to control 

samples common to blots.  Significance between groups was calculated using a two tailed 

student’s t-test assuming unequal variances.   

Target Host Source Catalogue # Dilution 

Doublecortin Rabbit Cell Signaling 4604S 1:1000 

GAPDH Mouse Abcam ab8245 1:2500 

 

Fluorescence-activated Cell Sorting (FACS): Confluent neural progenitor cells were dissociated 

from 10 cm2 tissue culture dishes with accutase at 37º and triturated in Neurobasal media.  They 

were incubated for 10 minutes with 10 U/mL DNase.  The cells were filtered in a 40 µm filter, 

spun down, and resuspended in 100 µL NPM with 5 µM EDTA and 0.5% bovine serum albumin 

(BSA) (about 1x106 cells).  20 uL (1 test) of mouse anti-human CD24-FITC (BD Biosciences, 

560992) was added per sample and incubated in the dark on ice for 30 minutes.  The cells were 

then washed twice with Neurobasal with EDTA and BSA and resuspended in NPM with EDTA 

and BSA at 2.5 x105 cells/mL.  Cells were stored on ice in the dark until analyzed on a 

FACSCalibur unit (BD Biosciences) omitting forward and side scatter.  Cells incubated without 

antibody were used as a negative control to adjust settings above autofluorescence.  Significance 

between groups was calculated using a two tailed student’s t-test assuming unequal variances.   
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Results 

A.  Generation of neural progenitor cells 

When this project was established, protocols for differentiating iPSCs into glutamatergic 

neurons had not been published, therefore a variety of hESC differentiation protocols were tested 

for our lines.  We wanted to establish a protocol for a stable, self-renewing neural progenitor 

population so that neural differentiation could be readily initiated from cells that are easier to 

culture than iPSCs.  We adapted the protocol from Swistowksi et al. (2009) with further 

modifications based on Marchetto et al. (2010) and personal correspondences with an author of 

that paper (C. Carromeu).   For the protocol that established the highest yield of neural rosettes 

that could be harvested to form neural progenitors, iPSCs were cultured in suspension as 

embryoid bodies (EBs) for 8 days in a culture media containing the AMPK inhibitor 

dorsomorphin and neuronal N-2 supplement to predispose the EBs to neural differentiation 

(Figure 3.1).  The AMPK inhibitor inhibits TGF-β superfamily receptors, blocking activin and 

BMP signaling and inducing neuroectoderm formation (Zhou et al 2010).  For the next three 

days, the EBs were cultured in a neural induction media without AMPK inhibitor and with basic 

fibroblast growth factor (bFGF) to begin transitioning to a stable neural progenitor cell type.  

bFGF is a mitogen for neural progenitors, increasing the rate at which they divide (Kitchens et al 

1994), but prevents differentiation of ESCs, thus it was removed from the media during early 

neural differentiation (Xu et al 2005).   

The EBs are then plated on CELLstart, a proprietary xeno-free substrate for stem cell 

growth.  On this substrate, neural rosettes form which are radial arrangements of columnar cells 

that have a broad neural differentiation potential (Elkabetz et al 2008, Wilson & Stice 2006).  

These rosettes can be harvested and maintained in a neural progenitor media containing bFGF  
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and leukemia inhibitory factor (LIF), which is a member of the IL-6 cytokine family and 

increases NP expansion rates and prevents senescence while inhibiting terminal differentiation 

(Wright et al 2003).  The NP media also contains B-27, a neuronal support supplement, but 

without vitamin A, which can be metabolized into retinoic acid, a potent enhancer of neural 

differentiation.  The rosettes can be dissociated to form a population of cells positive for the 

neural progenitor markers nestin, musashi, and SOX2 (Figure 3.2a,b).  More than 95% of the NP 

cell population is positive for these markers, while none of the cells are positive for the earlier 

pluripotent stem cell markers including nanog, Oct3/4, and Tra-1-81 or the glial marker GFAP 

(data not shown).  Based on the markers, the cells seem most similar to neuroepithelial 

progenitors that arise during corticogenesis or nonquiescent adult neural stem cells of the SGZ.  

These NP cells can be passaged for many months without loss of proliferative potential.  One 

clone per individual was DNA fingerprinted following NP differentiation to ensure that the lines 

used still correspond with the original fibroblasts of the patient (Table 3.2).   

Although most of the NP lines showed similar morphology, one line derived from 

SAD6.1 has a large population of cells with an aberrant shape: elongated cells with a spindle-like 

morphology.  To determine what kind of cells these are, we immunostained for an early neuronal 

marker (β-tubulin III), a glial marker (GFAP), and an endothelial marker (lectin) (Figure 3.3a).  

The aberrant cells were positive for β-tubulin III, but negative for GFAP and lectin, indicating 

they may be some kind of early bipolar neuron.  Due to their morphology, the aberrant cells 

could also be a radial glia like the small subset that expressed β-tubulin III in vivo, but it is 

unlikely since it does not express GFAP.  Multiple differentiations from this clone as well as 

from SAD6.2 showed the same aberrant morphology not seen in other lines, so it was not used 

for any later analysis.   
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To verify that the reprogramming transgenes remain inactivated in the NP cell 

population, GFP expression was measured for each line using qRT-PCR (Figure 3.3b).  All four 

of the reprogramming factors have an IRES-GFP element which should be expressed in tandem 

with the reprogramming gene.  Levels of GFP mRNA were compared to a human fibroblast 

control line transduced with pMXs-GFP.  The GFP of the reprogramming factor vectors was 

expressed at less than 0.2% the levels of the GFP in the fibroblasts.  This level is slightly higher 

than in the iPS cells (highest relative GFP expression ~0.04%), however the transgenes remain 

inactivated quite strongly compared to the levels following transduction and most importantly, 

there is no difference between the AD and NL lines.   
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B.  Divergent expression of neural differentiation genes in SAD NPs 

 Microarray profiling of neural progenitor cells between 7 and 16 passages was performed 

on Affymetrix U133 Plus 2.0 arrays for most of our NP lines and the two control lines derived 

from iPS cells from the Eggan laboratory (Table 3.2) with NP lines derived from one iPS clone 

per individual.   The gene expression was analyzed according to the same methods described for 

fibroblasts and iPS cells.  The SAD neural progenitors showed a strong gene expression 

difference compared to the normal controls with 326 annotated probes showing differential 

expression from the NL lines using a significance q-value of ≤ 0.15, which corresponds with a p-

value ≤  0.020 (Supplementary Table 3, Figure 3.4a).  Using a q-value of 0.15 allows for the 

inclusion of most of the genes that appear to be biological significant due to their functional 

similarities to other significant genes and presence of multiple significant probes corresponding 

to the same gene.   

Correlation analysis for the significant gene list shows intra-group correlation for both the 

SAD (Pearson correlation coefficient r between 0.37 and 0.80) and NL lines (r = 0.24-0.63, 

except NL4.1), however the FAD1.1 correlates with neither group and NL4.1 diverges from the 

other controls (Figure 3.4b).  The normal NP lines derived from the Eggan iPS lines correlated 

well with each other (r = 0.49) and other NL lines (r = 0.24-0.53, except NL4.1), indicating that 

laboratory origin of the iPS does not affect the normal NP gene expression.   

Enrichment analysis of the differentially expressed genes shows that biological processes 

related to nervous system development and development in general are highly enriched in the 

gene list (Figure 3.4c).  This strong bias towards neuronal differentiation genes is supported by 

secondary analysis using DAVID, which shows an enrichment factor of 8.86 for the neuron 

development annotation cluster, much higher than any other cluster (Figure 3.4d).  Unlike in the  
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fibroblasts in which nervous system development genes were predominantly down-regulated, the 

genes associated with that cluster for NPs have more up-regulated genes, including some that are 

increased more than 10-fold in the SAD neural progenitors (Figure 3.4e).  Comparison of the two 

stages of differentiation shows very little gene overlap (Figure 3.4f).  Only five genes are in both 

the fibroblast and NP gene list and three of those are regulated in different directions.  The only 

genes that are down-regulated in both significant gene lists are CD44, a cell adhesion molecule 

found in many tissues, and FGF18, a growth factor important in skeletal development (Goodison 

et al 1999, Haque et al 2007).  Therefore, there seems to be little overlap between the 

mechanisms affecting gene expression in SAD fibroblasts and SAD neural progenitors. 

Using MetaCore software to identify interacting proteins that are over-represented in the 

SAD neural progenitor gene list shows a large number of highly significant interactors 

(Supplementary Figure 5).  The most significant transcription factors include ASCL1/MASH1, 

which is highly up-regulated in the SAD neural progenitors and REST/NRSF, an important 

repressor of neuronal genes (Jones & Meech 1999), as well as many other transcription factors 

involved with development (Figure 3.5a). The two most significant interacting proteases are 

BACE1 and BACE2, which both have been associated with the generation of Aβ, although 

BACE1 is the primary beta-secretase for APP (Ahmed et al 2010).  The receptor and ligand 

category are both enriched for cell surface proteins, including semaphorin and ephrin receptors, 

which are involved in neuronal axon growth and guidance, and TGF-β type II receptor, which 

modulates the proliferation, survival, and differentiation of many different cell types.  All three 

of these signaling systems have genes differentially expressed in the NP gene list, including the 

down-regulation of the TGF-β type II receptor, the up-regulation of the ephrin receptors A4, A7, 

and B1, and the up-regulation of semaphorin 6 (Supplementary Figure 3).   
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Many of these interactions are supported using Ingenuity Pathway Analysis (IPA), which 

uses an algorithm to distinguish upstream regulators which may cause the gene expression 

changes seen in the gene list (Supplementary Figure 6).  One strength of IPA is that it evaluates 

whether the upstream regulator is up- or down-regulated through its activation score. 

Considering the most strongly activated and inactivated regulators (Figure 3.5b), there are some 

clarifications of the hubs identified through interactions analysis, including that TGF-β receptor 

II signaling is down-regulated, while ASCL1 is activated, both consistent with their expression 

levels in SAD neural progenitors. Interferon signaling is also down-regulated, seen also in 

MetaCore by the significance of the BLIMP1 transcription factor, a repressor of interferon 

signaling (Doody et al 2010).  The strongest activated upstream regulator is the retinoic acid 

receptor, a well-known pathway for inducing the induction of neural differentiation.   

To further explore which genes and pathways are up- and down-regulated in the sporadic 

AD NPs, the genes were analyzed separately.  Tables of the most significant up- and down-

regulated genes show that the down-regulated genes are enriched for components and modulators 

of the extracellular matrix, including three different alpha chains of collagen (11, 13, and 23), 

matrilin 3, ependymin-like, the alpha subunit of the integrin receptor, and neuroserpin (Figure 

3.6a).  The gamma 1 subunit of laminin is also down-regulated 2.3-fold in the SAD neural 

progenitors.  Enrichment analysis using the MetaCore Process Network Ontology shows the 

greatest enrichment for cell-matrix interactions in the down-regulated genes, as well as cell cycle 

regulation (Figure 3.6b).  Also down-regulated are genes associated with various growth 

signaling pathways, including CNPY1, which modulates FGF signaling, and BMP5, in the TGF-

β superfamily.  The EGF receptor is also down-regulated 2.4-fold.   
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Many of the up-regulated genes are specific or increased in early neural development, 

including doublecortin, MEIS1, ASCL1, CD24, stathmin 2, and ephrin receptor B1, while 

KCNIP4, the neuropeptide Y receptor, and LGI1 are also enhanced in mature neuronal tissues 

(Figure 3.6c).  Other of the highly up-regulated genes includes the developmental transcription 

factors HOXA3, HOXA2, MAFB, and SP8.  Many other transcription factors that belong to 

families associated with neural induction or patterning are up-regulated in the SAD neural 

progenitors, including HOX(A1, A2, A3, B2), PAX6, ID(2,3), HES(4,6), TSHZ1, and MEIS(1,2) 

(Supplementary Table 3).   

 Enrichment analysis for the up-regulated gene list supports this connection to neuronal 

development with the most significant process networks including neurogenesis, axonal 

guidance, and synaptic contact (Figure 3.6d).  The only significant process network in both the 

up- and down-regulated NP genes is attractive and repulsive receptors.  In summary, there is a 

robust and significant difference in NP gene expression between the SAD and NL lines in which 

neuronal differentiation genes are predominantly up-regulated and genes related to the 

extracellular matrix and growth factors are mostly down-regulated.   
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C.  SAD neural progenitor gene expression differences verified through qRT-PCR 

 To confirm the differences in gene expression identified through microarray analysis, 

mRNA from the neural progenitors for several key genes was measured using quantitative real-

time PCR (qRT-PCR).  RNA samples were included from one clone per individual, including the 

individuals that were not analyzed by microarray: NL5 and the four patients from the Goldstein 

study (Table 3.2).  Thus neural progenitor cells from a total of 18 patients (10 normal, 7 SAD, 

and 1 FAD) were evaluated from iPS cells derived in three different laboratories, the largest 

number of individuals studied in neural cells from AD patients thus far.   

Most of the microarray findings are confirmed with the increased number of individuals 

(Figure 3.7).  DCX expression is 9-fold higher in the SAD neural progenitors than the NL cells.  

Doublecortin is a microtubule binding protein which is expressed transiently in immature 

neurons during neurogenesis and migration, but is not expressed in mature neurons (Gleeson et 

al 1999).  It is widely used as a marker for adult neurogenesis (Couillard-Despres et al 2005).  

(Figure 3.7).  ASCL1 expression is 4.7-fold higher in the SAD neural progenitors.  It is a basic-

loop-helix transcription factor which has been shown in mice to promote neuronal fate 

determination through sustained expression (Imayoshi et al 2013).  It is also widely used for the 

transdifferentiation of fibroblasts and other somatic cells into neurons using induced expression 

of transcription factors (Pang et al 2011, Vierbuchen et al 2010).  Together, expression of these 

two genes is used to identify the maturing intermediate cells of neurogenesis in the SGZ during 

adult neurogenesis (Hodge et al 2008, Kempermann et al 2004).   

CD24 is 7.1-fold higher in the SAD neural progenitors.  It is a glycosylphosphatidyl-

inositol (GPI)-anchored cell adhesion protein which is expressed in regions of developmental 

and adult neurogenesis (Calaora et al 1996).  Its increased expression during neuronal  
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differentiation is widely used as a marker of immature neural lineage during FACS sorting 

(Pruszak et al 2009, Yuan et al 2011).  EPHB1 expression is increased 5.2-fold in SAD neural 

progenitors.  EPHB1 is a receptor for ephrins that plays a diverse role in neural development, 

including possible roles in neuronal migration and axon targeting cones through repulsion and 

regulation of cell adhesion (Wilkinson 2001).   

COL11A1 is down-regulated 4.6-fold in the SAD lines.  It is not associated with neural 

tissue, but rather encodes a component of type XI collagen which is enriched in cartilage and the 

vitreous of the eye (Richards et al 2010).   CD44 was an interesting candidate gene to investigate 

because its down-regulation was one of the few changes conserved from fibroblasts to neural 

progenitors and its role in regulating the extracellular matrix to maintain the stem cell niche 

(Wagner et al 2008).  However, only a few of the probes for CD44 were significant in both the 

fibroblasts (1/13) and NPs (3/13).  qRT-PCR confirmed that this is not a significant difference 

between the SAD and NL neural progenitors with a log2 p-value of 0.16.  Although CD44 trends 

higher in the normal lines, expression levels are highly variable and one SAD line (SAD 

(SAD1.1 Gs)) shows quite high expression.  This does not exclude the possibility that an 

alternatively spliced product not recognized by the qRT-PCR primers could be differentially 

expressed in the SAD neural progenitors.   

Although the average levels of the early neuronal markers tested showed a significant 

increase in the SAD neural progenitors, not all the lines had the same amplitude of increase.  The 

four strongest lines were SAD3.1, SAD4.1, SAD5.1, and SAD (SAD2.4 Gs), while SAD1, 

SAD4, and SAD (SAD1.1 Gs) had weaker phenotypes although still generally higher than NL.   

There is no clear correlation between the four stronger lines; out of the two APOE4/E4 

individuals (SAD1 and SAD5), one is a strong expresser and the other is a weaker expresser of 
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the neural genes.  From the sporadic iPS lines derived in the Goldstein laboratory, one of them is 

a strong expresser and the other is a weak expresser.  Interestingly, the strong expresser, SAD 

(SAD2.4 Gs), is also the individual identified in their study as having stronger AD phenotypes: 

increased phosphorylated tau, secreted Aβ40, and active GSK3β (Israel et al 2012).  FAD1.1, 

with a L286V PSEN1 mutation, has an intermediate expression level for the neuronal markers, in 

line with the weaker SAD expressers and higher NL individuals.   

D. A subset of neural progenitors expresses neuronal differentiation markers 

 Since it is clear that the mRNA levels are higher for early neuronal differentiation 

markers in the SAD neural progenitor cells, we next wanted to evaluate if that difference is 

maintained through protein expression.  Western blotting for doublecortin shows an increase in 

protein levels in the SAD neural progenitors, although at a slightly lower magnitude than seen 

for the mRNA expression with a fold change of 1.2 to 5-fold over NL lines (Figure 3.8a,b).  

FAD1.1 again falls in the middle of the SAD and NL with doublecortin protein expression 

increased 1.2-fold over NL.   

 Immunofluorescent staining for doublecortin shows that the increase is not due to all cells 

expressing more doublecortin, but rather a small number of cells highly expressing doublecortin 

(DCXHIGH, Figure 3.8c).  Most cells remain positive for the neural progenitor marker nestin, 

showing despite the premature differentiation in a few cells, the culture is still predominantly 

progenitors.  Staining for another marker of early neuronal differentiation, β-tubulin III, which 

was not differentially expressed at the mRNA level, shows a similar pattern where a few cells are 

highly positive (TUBB3HIGH), while the majority remain positive for the neural progenitor 

marker musashi (Figure 3.8d).   Co-staining for DCX and TUBB3 shows that the same small 

population of cells are positive for both DCX and TUBB3, although individual cells may show 
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higher levels of one or the other (Figure 3.8e).  These cells have also started to form processes, 

further supporting that the DCXHIGH and TUBB3HIGH population of cells are early neurons that 

have differentiated out of the neural progenitor pool.  Quantification of the number of cells 

DCXHIGH and TUBB3HIGH shows a trend towards increased number of early neuronal cells in the 

SAD lines, but it is not statistically significant (p=0.096, p=0.11) (Figure 3.8f).  This suggests that 

although there may be a difference in some lines for the number of DCXHIGH and TUBB3HIGH  

neural progenitors, more important is that the SAD lines have a higher level of DCX expression in 

those cells, leading to the significantly higher overall protein levels.   

 To further differentiate the SAD and NL neural progenitors by protein expression, FACS 

analysis was performed for CD24, a cell surface adhesion protein with mRNA levels 

significantly enriched in SAD neural progenitors.  It is expressed in regions of neurogenesis and 

has widely been used as a marker of immature neural lineage during FACS sorting in tandem 

with other cell surface proteins (Pruszak et al 2009, Yuan et al 2011).   CD24 expression was 

widely varying between the neural progenitor lines (Figure 3.8g,h).  There are two clear 

populations of CD24LOW and CD24HIGH for most lines after the data is presorted to include only 

single cells through the amount of forward and side scatter.  Most of the control lines are 

predominantly CD24LOW, while some of the SAD lines are almost entirely CD24HIGH.  The large 

number of CD24HIGH cells in the SAD neural progenitors indicates that it isn’t the same 

population as smaller proportion of DCXHIGH and TUBB3HIGH cells, although it may overlap.  

There are a few outliers (NL5.1 and NL (20b Eg) are more CD24HIGH than other NL), but overall 

the number of CD24HIGH neural progenitors is significantly increased in the SAD lines (p = 

0.012), further supporting that the SAD neural progenitors are skewed towards a further neural 

differentiation state than the NL controls.   
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E. The difference between SAD and NL differentiation is specific to the neural lineage 

 The next question we wanted to answer is whether this difference in propensity to 

differentiate is true for all types of differentiated cells or specific for the neural lineage.  We have 

already tested the differentiation capabilities of these lines when we evaluated the pluripotency 

of the iPS cells.  The semi-quantitative RT-PCR for markers of the three germ layers after 

undirected differentiation into EBs did not show a difference (Figure 2.5), but using quantitative 

real-time RT-PCR may pick up a more subtle difference.   

qRT-PCR for DCX and ASCL1 in the 2-week differentiated EBs that did not contain 

reagents to induce the neuronal lineage (such as AMPK inhibitor and N-2 supplement) does 

show a trend towards increased neuronal differentiation markers, but it is not statistically 

significant (DCX: p = 0.12, ASCL1: p = 0.29) (Figure 3.9a).  With more lines, this may become 

significant, but at this point more evidence is needed to conclude whether the difference in 

neuronal propensity is intrinsic to the differentiating iPS cells without any chemical inducement.   

 Another assay that may give insight into the inclination to differentiate is the in vivo 

teratoma assay (Figure 2.6).  Teratomas consisting of all three germ layers formed from each of 

iPS lines, but if there was a difference in the rate of differentiation, the SAD lines may form 

teratomas more rapidly than the NL iPS cells.  However, there was no difference in the rate at 

which teratomas formed (Figure 3.9b).  One complication of this analysis is that the quantified 

output is when the teratoma becomes visible and differing rates of growth may not be dependent 

on differentiation state.  Therefore, although we can conclude that there is no difference in the 

rate at which teratomas grow to a visible size, we cannot conclude that this is due to equivalent 

propensity to differentiate. 
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F. Gene expression profiles of neural progenitors from additional iPSC clones of four SAD 

and four NL individuals 

 One concern is that we have only made neural progenitor cells from one iPS clone per 

patient.  Therefore, the difference in neural differentiation state that we see may be due 

stochastic differences during the NP differentiation process and not specific to the individual 

patient.  Therefore, we derived NP lines from additional clones from eight of the patients: NL2, 

NL5, SAD2, SAD3, NL (NDC1 Gs), NL (NDC2 Gs), SAD (SAD1 Gs), and SAD (SAD2 Gs) 

(Table 3.3). With this data, we will now have full NP gene expression information for every 

Goldstein patient, as well as our own that were not quantified in the first NP microarray (NL5).  

The NP lines that were duplicated (NL2.1, SAD2.1, and SAD3.1) were from separate RNA 

harvests and passages than the original microarray.  The gene expression was analyzed on 

Affymetrix U133 Plus 2.0 arrays in the same manner as the fibroblast, iPS cells, and other neural 

progenitors (Table 3.4).  With the larger sample size (12 NL and 13 SAD), permutation analysis 

is now statistically relevant, so the p- and q-values were derived through 10,000 permutations.   

 294 probes are differentially expressed between the SAD and NL NP lines with a q-value 

less than 0.15, which corresponds to a p-value of 0.0096 (Supplementary Table 7, Figure 3.10a).  

The SAD and NL lines have intra-group correlation, but not as strongly as when one clone per 

individual was analyzed (Figure 3.10b).   The gene expression correlates more closely by AD 

diagnosis than by individual, indicating that the significant changes identified through the 

statistical analysis are not specific to the patient.   

 The overlap of significant genes between the original NP microarray (one clone per 

individual) and new multiple clones doesn’t have a large number of genes overlapping (36) 

(Figure 3.10c).  However, the genes that do overlap are all differentially expressed in the same  
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direction, indicating that the regulation is the same in this set of neural progenitors.  Some key 

gene expression differences shared between the two analyses include ASCL1, DCX, COL13A1, and 

STMN2.  Some genes identified in the first NP microarray are not significant at the 0.15 q-value 

threshold for the multiple clones, but still trend in the same direction.  For example, CD24 (FC 1.8-

2, p-value 0.02-0.05 for the different probes), EPHB1 (FC1.6-2.3, p-value 0.09), and MEIS1 (FC 

1.9-2, p-value 0.013-0.017) are still up-regulated in the additional clones but do not reach q-value 

significance.  This is not true for all the strong hits from the initial NP gene list.  Although 

COL13A1 is down-regulated in SAD in both gene lists, COL11A1 is not differentially expressed in 

the additional clones in the microarray analysis.   

 Enrichment analysis using DAVID shows that the most enriched annotation cluster is for 

neurogenesis, while genes localized to neuronal projections, and homeobox genes are also in the 

top six (Figure 3.10d).    Using MetaCore software to identify interactors that are over-

represented in the genes differentially expressed in the additional NP clones shows some overlap 

with the first NP microarray, but it is not robust (Supplementary Figure 8, Figure 3.11a).  The c-

Myc, Oct-3/4, CREB1, and SP1 transcription factors are significant interactors in both groups, 

while BACE 1 is a top protease.  Other top interactors include a different TGF-beta receptor 

(type III) and the plexin A4 receptor, which interacts with neuropilins (down-regulated in SAD 

neural progenitors) and transduces signals from semaphorins (up-regulated in SAD neural 

progenitors) (Suto et al 2005).   

 Using Ingenuity Pathway Analysis to calculate the strongest activated and inhibited 

upstream regulators also shows some similarity to the initial NP microarray (Supplementary 

Figure 9, Figure 3.11b).  Retinoic acid is one of the top activated upstream regulators and its 

receptor was strongly activated in the original NP microarray.  The neurogenin 3 transcription  
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factor is activated, whereas the neurogenin 1 was activated in the first microarray.  Interestingly, 

estrogen receptor activity is activated in both NP microarray differential gene lists.  The inhibited 

upstream regulators are strongly enriched for growth factors and cytokines, including VEGF, 

interleukin 1B, fibroblast growth factor 2, EGF, interleukin 5, platelet-derived growth factor, 

tumor necrosis factor, and TGFB1.  The inhibition of TNF and IL1B activity is shared between 

the original NP microarray and the additional clone microarray.   

To further explore whether similar genes and pathways are up- and down-regulated in the 

additional neural progenitor clones, the genes with the largest fold changes were emphasized 

(Figure 3.12a,c).  The most down-regulated genes several genes are related to the extracellular 

matrix: COL13A1, TIMP4 (an inhibitor of metalloproteinases), ECM1, and laminin gamma 1.  

Several of the genes are also related to VEGF signaling: KDR and neuropilin 1 and 2 are all 

down-regulated receptors for VEGF.  MetaCore analysis identifies cytoskeleton rearrangement 

and actin filaments in addition to cell-matrix interactions as process networks enriched in the 

down-regulated genes (Figure 3.12b).   

The top up-regulated gene in the SAD additional clones is a homeobox gene, HOXA9. 

HOXA10 and HOXA5 are also up-regulated, compared to the initial NP microarray in which 

HOXA1, 2, and 3 were up-regulated.  The highly up-regulated genes include neuronal genes 

shared with the initial microarray: STMN2, DCX, and EPHA7.   Other up-regulated neuronal 

genes include SEMA6D (interacts with the down-regulated neuropilins), EPHA3, and ROBO2, all 

of which are involved with axon guidance.  MetaCore analysis shows the most significant 

process networks of the up-regulated genes is neurogenesis and axonal guidance, with cell 

adhesion and attractive and repulsive receptors also significant (Figure 3.12d).   
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One interesting SAD up-regulated gene is the FGFR since upstream regulator analysis 

shows that FGF signaling is inhibited in these cells.  This dichotomy is also seen in TGF 

signaling, where TGFB2 is up-regulated in the additional clones, but TGFβ signaling is down.  

This may suggest a disruption in growth factor signaling regulation since despite the higher 

levels of the FGF receptor and the TGFβ ligand, downstream gene expression from these 

signaling pathways remains inhibited.   

Neuronal gene expression differences were confirmed through qRT-PCR for DCX, 

ASCL1, and CD24 (Figure 3.13).  All three genes had a p-value less than 0.01 for the difference 

in expression between the SAD and NL neural progenitor lines.   
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Conclusions and Discussion 

 The increase in neuronal differentiation genes in the SAD neural progenitor lines was a 

surprising result.  Despite the intensive research into Alzheimer’s disease, few studies have 

shown increases in the propensity for neural differentiation affecting the development of AD.  

Our own fibroblast microarray results show a down-regulation of neuronal genes in the SAD 

patients.  Therefore, the difference in the SAD neural progenitor was carefully confirmed.  

Despite still showing predominant expression of neural progenitor markers such as nestin, 

musashi, and SOX2, the SAD lines showed increased mRNA and protein levels for markers of 

later neuronal differentiation, including doublecortin, ASCL1, and CD24.  These markers seem 

to be localized to a subset of cells, suggesting that the premature differentiation in a small 

number of cells is accounting for the larger differences in gene and protein expression.   

 These results were confirmed using neural progenitors differentiated from iPS cells 

derived from three different laboratories, precluding the possibility of lab-specific iPSC effects.  

The mRNA results were further confirmed using multiple clones from eight different patients: 

four SAD and four NL patients.  The SAD lines showed a highly significantly significant 

increase in neural differentiation markers, supporting that these results were not artifacts from 

random differences in the differentiation process, but due to the intrinsic propensity of the SAD 

lines to neuronal differentiation.   

However, despite the clear overall increase in the SAD lines, there is significant line-to-

line variability.  In fact, the two NP microarrays, although showing a strong overlap of neuronal 

differentiation genes, did not share that many other genes.  This supports a model in which 

different upstream mechanisms lead to the same results: increased neuronal differentiation.  

However, later markers of differentiation such as TBR2, which is seen in INPs and more matured 
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SGZ neural stem cells, are not differentially expressed, suggesting that the increase is in the 

earliest stage of committed progenitors.   

There are many candidates for what may cause the difference in neuronal differentiation.  

Many different signaling pathways that affect neuronal differentiation are differentially 

expressed in the SAD neural progenitors.  The transcription factors that are differentially 

expressed include ASCL1, MEIS1/2, DACH1, MAFB, and TSHZ1.  Upstream regulator analysis 

also identifies the activation of Hox genes, neurogenins, and various ubiquitous differentiation 

regulators.  The up-regulated DLL3, a delta-like protein, is a target of ASCL1 and is found in 

enriched in early post-mitotic neurons where it may inhibit notch signaling, thus enhancing 

neural differentiation (Henke et al 2009).  HES6, unlike the rest of the notch-dependent HES 

family, actually promotes neurogenesis through binding HES1 and preventing it from inhibiting 

ASCL1 (Bae et al 2000, Jhas et al 2006).  But the inhibited upstream regulators, many of which 

are implicated in neural patterning, could also play a substantial role in the differentiation of the 

SAD neural progenitor lines.  TGF-β, EGF, VEGF, and FGF2 signaling have all shown evidence 

for down-regulation which could influence the differentiation state of the neural progenitor cells.   

It is clear that it is a complicated story.  In addition to the up-regulated neuronal genes, 

some, such as the neuropilin genes, are down-regulated.  Many other genes show differential 

expression including down-regulation of extracellular matrix genes including collagens, laminin, 

and integrins.  These changes in gene expression could prepare the developing neurons for 

migration or denote a difference in intermediate neural stem cell state.   However, it could also 

be showing a pathological difference in adhesion properties between the SAD and NL lines.    

One important question is why the previous groups that have used iPS cells to study 

Alzheimer’s disease have not seen this difference in neuronal differentiation.  There are several 
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important differences between our approach and the approach used by other groups.  Israel et al. 

(2012), which used some of the same cell lines, did not see a difference in neural stem cell 

production using the FACS analysis for cells that were CD184+, CD15+, CD44-, and CD271-.  

However, it is unclear what this population of cells represents since, although based on previous 

work (Yuan et al 2011), it does not use the same markers for neural stem cells, and is less than 

15% of the population of neural progenitor cells. This subpopulation was then used for later 

differentiation experiments.  Furthermore, the protocol for deriving these neural progenitor cells 

is different than ours, in which they plated the iPS cells on PA6 mouse stromal cells and treated 

with Noggin and SB431542 (inhibitors of Smad, which is downstream of BMP) to induce neural 

differentiation.  Results may have been further difficult to interpret since there were only two 

patients in both the SAD and control group and the SAD lines had a relatively high age of onset.  

Qiang et al. (2011) and Kondo et al. (2013) do not use a neural progenitor intermediate during 

their differentiation process.   

 The differences in the neural progenitor gene expression profile did not resemble the 

fibroblast gene expression profile.  In the fibroblasts, neuronal genes were down in SAD, while 

neuronal genes were predominantly up in the neural progenitors.  There were few shared 

significant genes between the two groups.  This suggests that these differences are specific to the 

neuronal lineage and that the differences in the fibroblasts may reflect that the cells were taken 

from sick patients.  The correlation between FAD and SAD in the fibroblasts, but not the neural 

progenitors, supports this hypothesis.   

 The fact that the one FAD line does not more closely mirror the sporadic patients in 

neural progenitor gene expression is interesting.  Although it is difficult to draw conclusions 

from just one patient, it suggests that this neuronal differentiation phenotype may not be shared 
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between the sporadic and FAD patients.  However, a recent paper looking at iPS cells from 

M146L and A246E PSEN1 mutants differentiated into neural progenitors did see an increase in 

NCAM expression (a marker of neuronal differentiation) and a gene expression profile consistent 

with a subtle increase in neurogenic potential (Sproul et al 2014).  More patients with different 

mutations in PSEN1, PSEN2, and APP would need to be tested to verify that the difference seen 

in our SAD neural progenitors are consistent with changes seen in FAD.   

The APOE genotype does not appear to have a strong effect on the expression of the 

neural differentiation markers, since SAD5.1 is a strong expresser, while SAD1.1 is a weaker 

expresser (both E4/E4), suggesting that while APOE may still contribute to this phenotype; it 

does not seem to be the primary effector.  However, APOE may play a role in neurogenesis, 

since the levels of doublecortin-positive cells is increased in a mouse model of APOE4, although 

overall neuronal maturation from adult neurogenesis may be impaired (Adeosun et al 2014, Li et 

al 2009a).  APOE-deficient mice have increased proliferation in the dentate gyrus at an early age 

before depletion in neural progenitors later in life (Yang et al 2011).  Therefore, although it 

remains unclear the exact effects APOE may have during neurogenesis, it does to appear to be 

important in that process and may be modulating the neuronal differentiation phenotype seen in 

the APOE4/E4 SAD lines.   
 

Contributions 

Nicholas Bishop differentiated iPS cells into the following NPs: NL1.1, NL4.1, NL6.1, SAD1.1, 

SAD2.1, and FAD1.1.  Tao Lu and Ying Pan differentiated the following NP lines: SAD2.2, 

SAD2.3, SAD2.4, NL5.2, NL5.3, SAD (SAD2.4 Gs), SAD (SAD1.1 Gs), NL (NDC1.2 Gs), and 

NL (NDC2.3 Gs).   Tao Lu designed the primers for DCX, CD24, CD44, EPHB1, ACTIN, and 
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ASCL1.  Zhenjuan Wang at the Harvard Genome Modification Facility gathered the data on the 

teratoma formation timeline.    
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Chapter 4: Differentiation and characterization of neurons  

Abstract 

Since neurons are the cell type predominantly affected during Alzheimer’s disease, the neural 

progenitors were next differentiated into a neuronal culture.  Neurons expressing the neuronal-

specific markers β-tubulin III and MAP2 were generated using a protocol optimized for the 

generation of glutamatergic neurons.  Neuronal cells from all lines were able to form action 

potentials and had functional sodium and potassium currents in response to depolarization.  The 

neurons were characterized more thoroughly at 6 weeks of differentiation at which point the 

culture is predominantly β-tubulin III and MAP2-expressing with a subset of cells expressing the 

glial marker GFAP.  They form both glutamatergic and GABAergic neurons, although 

glutamatergic is the predominant subtype.  Gene expression profiling shows a continued robust 

gene expression difference between the SAD and NL lines, predominantly with an up-regulation 

of genes involved with mature neuronal functions and a down-regulation of growth factor 

signaling and cell cycle progression in the SAD neurons.  This difference in gene expression is 

accompanied by a difference in mature neuronal function in the SAD neurons, which form more 

synapses at 6 weeks of differentiation and are able to generate action potentials earlier than the 

NL lines.   

Introduction 

 Alzheimer’s disease is a disease of the brain, therefore in order to model the disease in 

vitro we want to generate the cells affected by the disease in vivo.  Using fMRI to map metabolic 

defects shows that during the preclinical stage of AD, the first region affected is the lateral 

entorhinal cortex (Khan et al 2014).  A combination of clinical post-mortem studies and fMRI 

shows a loss of metabolism and neurons that extends into the hippocampus and then the cortex as 
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the disease progresses (Scahill et al 2002).  By the time the disease is diagnosed, the numbers of 

cells in the hippocampus and entorhinal cortex have already been severely diminished.   

 Since AD is only diagnosed at an advanced stage of dysfunction, there is still some 

controversy over the most affected cell type.  The brain contains many different types of cells, 

including a diverse plethora of neurons and glial support cells.  Glial cells include microglia, an 

immune cell which acts in the brain, and astrocytes, which are the most numerous cells in the 

brain and are important in diverse activities including structure, metabolic support of neurons, 

regulation of the extracellular space, and modulation of synaptic transmission.  Other glial cells 

of the central nervous system (CNS) include oligodendrocytes, which envelop the axons and 

potentiate the transmission of action potentials, and radial glia cells, which were previously 

discussed since they act as neural progenitors within the CNS as well as a scaffold of early 

neuronal migration.  Neurons of the central nervous system are highly diverse and usually 

initially categorized by their neurotransmitter, which includes the predominantly excitatory 

glutamatergic and the predominately inhibitory GABAergic which make up the vast majority of 

neurons in the brain.  Other neurons of the CNS include those that release cholinergic, 

dopaminergic, and serotonergic neurotransmitters.   

 Many of these cells have been implicated in various stages of AD, however, the cell type 

that is affected during some of the earliest stages of pathology is the loss of function, synapses, 

and eventual death of the hippocampal pyramidal neurons (Kerchner et al 2010).  These are 

glutamatergic neurons which make up about 90% of the neurons in the hippocampus (Olbrich & 

Braak 1985, West & Gundersen 1990).  In further evidence for their susceptibility to the 

development of AD, a recent study showed selective toxicity of Aβ for glutamatergic over 

GABAergic neurons in cultures derived from induced pluripotent stem cells (Vazin et al 2014).  
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Therefore, the ideal culture will be predominantly glutamatergic, although other cell types will 

still be useful to test alternative hypotheses for the development of AD.   

 From the neural progenitor stage of differentiation derived in the previous chapter, the 

cells must be induced to mature.  Neurons are different from most other cells in the body in that 

they no longer divide and are post-mitotic. In fact, expression of cell cycle genes and a return to 

cell division results in cell death for neurons both during development and neurodegeneration 

(Herrup & Yang 2007).  Neurons are defined by their capability to propagate electrochemical 

signals through action potentials and synaptic activity.  A mature neuron will be able to respond 

to depolarization through the induction of sodium and potassium channels, causing first further 

depolarization as the sodium channels are activated and then repolarization as the potassium 

channels activate.  Action potentials (APs) form as a cyclical depolarization and repolarization 

through the activity of the sodium and potassium channels and can be measured through the 

voltage across the membrane using the patch clamp technique. The AP signaling causes 

neurotransmitters to release and mediates neuronal signaling.  Together, the formation of 

synapses, generation of action potentials, and the formation of neuronal morphology are used to 

verify the generation of functional neurons in vitro.   

 

Materials and Methods 

Neuronal Differentiation Tests: The following different surfaces were tested: polystyrene tissue 

culture plates (Corning), glass coverslips (German, #1.5), and plastic coverslips (Thermanox).  

Four different coatings were tested.  Poly-L-lysine was coated at 0.1 mg/mL in sterile water for 1 

hour at room temperature.  Polyornithine (Sigma) was coated at 20 µg/mL in sterile water for 2 

hours at 37° followed by 5 µg/mL laminin diluted in 4° DPBS without calcium or magnesium 

(Life Technologies) or 1 mg/mL laminin for two hours at 37°.  Matrigel (BD Biosciences) was 
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diluted to 200 µg/mL in 4° Neurobasal media and coated for one hour at room temperature.  Cell 

concentration was counted using a Z1 Coulter Particle Counter (Beckman Coulter).  Three 

differentiation media were tested.  NB media contains Neurobasal media with 1x B-27 (Life 

Technologies), 1 mM L-glutamine, 50 U/mL penicillin, and 50 mg/mL streptomycin.  DBN 

media contains DMEM/F-12 media with 1x B-27, 1x N-2, 1 mM L-glutamine, 50 U/mL 

penicillin, and 50 mg/mL streptomycin.  1:3 media contains both DMEM/F-12 and Neurobasal 

media in a 1:3 ratio along with 1x N-2, 1 mM L-glutamine, 50 U/mL penicillin, and 50 mg/mL 

streptomycin.   

 Potassium chloride (Sigma) was tested at 20 nM, BDNF and GDNF were tested at 20 

ng/mL each, and kynurenic acid was tested at 1 mM.  All the additives were tested in NB media.  

For glial co-culture, rat glia were cultured in DMEM with 10% FBS, 2 mM L-glutamine, 50 

U/mL penicillin, and 50 mg/mL streptomycin and split with trypsin.  The Banker method is 

based on the published protocol (Kaech & Banker 2006) in which glass coverslips have hot 

paraffin drops applied to the surface (3-4 per coverslip).  Once the paraffin is cooled, the 

coverslips are coated as usual on the surface with the paraffin dots and plated with NPs.  The 

next day, the coverslips are inverted over rat glia so that the NP cells are separated from the rat 

glia by the paraffin drops.  For direct co-culture, the NPs are plated directly onto the rat glia.   

Differentiation and Culture of Neurons: Neural progenitors were plated at the desired 

concentration on plates coated with polyornithine/laminin (20 µg/mL and 5 µg/mL, respectively) 

or Matrigel (200 µg/mL) in NP media.  After 24 hours, the media is changed to NB media.  

Media is changed every 3-4 days in which approximately half of the media is removed through 

vacuum aspiration without drying out the differentiating neurons and new NB media is added.   
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Immunofluorescence (IF) and Antibodies: Neural progenitors were plated on glass or plastic 

coverslips at 5x104 cells/coverslip unless otherwise specified.  Neurons were differentiated for 6 

weeks before fixation, unless otherwise specified.  IF was performed as described in Chapter 2.  

For the plastic coverslips, each coverslip was covered with and imaged through a larger glass 

coverslip.  For all quantification, at least five randomized fields were imaged per coverslip and 

the cells expressing each marker were counted using MetaMorph (v7.7.0.0) software as 

described in Chapter 3.  Synapsin-1-positive puncta were defined as between 1-8 µm and greater 

than 1500 times the baseline intensity.  GABAergic neurons were identified by the presence of 

GABA in the soma overlapping the nucleus, while GFAP-expressing cells were counted 

manually.   

Target Host Source Catalogue # Dilution 

β-tubulin III Rabbit Covance MRB-435P 1:1000 

GFAP Mouse Cell Signaling 3670 1:300 

Nestin Mouse Millipore MAB5326 1:200 

β-tubulin III Mouse Chemicon MAB1637 1:250 

Doublecortin Rabbit Cell Signaling 4604S 1:400 

MAP2 Mouse Millipore MAB3418 1:500 

VGLUT1 Mouse MediMABS MM-0016-P 1:400 

GABA Rabbit Sigma A2052 1:2000 

Synapsin 1 Rabbit Calbiochem 574777 1:1000 

 

Electrophysiology: Electrophysiology was performed in collaboration with the laboratory of Dr. 

Li-Huei Tsai (MIT).  The excitability of neurons was measured after different periods of 
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differentiation on glass coverslips coated with polyornithine/laminin using the patch clamp 

technique on an Axon Axopatch 200B (Molecular Devices).  The presence of induced action 

potentials was confirmed by measuring voltage in response to current steps ranging from -100 

pA to +200 pA.  Sodium and potassium channel activity was determined by measuring current in 

response to voltage steps ranging from -50 mV to +55 mV.  The external solution was 130 mM 

NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, and 10 mM glucose (pH = 7.4, 

osmolality = 325 mOsm kg-1).  The internal solution was 110 mM potassium gluconate, 20 mM 

KCl, 2 mM MgATP, 10 mM sodium phosphocreatine, 1 mM EGTA, 0.3 mM GTP-Tris, and 20 

mM HEPES (pH = 7.3, osmolality = 320 mOsm kg-1).  Pipettes were fire-polished to resistances 

between 2-4 mOhm and series resistance was compensated 75%.  Between 4 and 12 cells were 

tested per coverslip and pClamp10 software was used for data analysis.   

Microarray Analysis: RNA was extracted using TRIzol reagent (Life Technologies) from 6-

week differentiated neurons plated on polyornithine/laminin, directly on polystyrene 10 cm2 

tissue culture dishes.  mRNA was measured on Affymetrix U133 Plus 2.0 arrays by the 

Molecular Biology Core Facility at Dana Farber (Boston, MA) and the data was analyzed as 

described in Chapter 2.   

Quantitative RT-PCR and Primers: qRT-PCR was performed as described in Chapter 3. All cells 

were differentiated on polyornithine/laminin coated polystyrene tissue culture plates.  The below 

new primers were used.   
 

Primer Target Forward Sequence Reverse Sequence 
CCND2 AGTCCCATCTGCAACTCCTG CGCAAGATGTGCTCAATGAA 

ZIC3 GCAAGTCTTTCAAGGCGAAG CTGTTGGCAAAGCGTCTGT 
HOXA3 CAAACAAATCTTCCCCTGGA ACAGGTAGCGGTTGAAGTGG 
SPON1 GCGTCAAACAAGTTGCAGAA CCATCATGGTCAGGAAGGAC 
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NESTIN CAGCGTTGGAACAGAGGTTGG TGGCACAGGTGTCTCAAGGGTAG 
COL11A1 ATGGAATCACGGTTTTTGGA AGGTTCCTGAGCTTGAGCAG 

 

Cell Count: Neural progenitors were counted on a Z1 Coulter Particle Counter (Beckman 

Coulter) after dissociation with accutase and plated at 5x104 cells/well in a 24-well plate.  

Experiments 1 and 3 had one well per time point and experiment 2 had four wells per time point.  

For the neuronal cell count, two wells per time point were plated on Matrigel at 2x104 cells/well 

in a 24-well plate.  Lines that did not adhere well and had less than 2.5x105 cells at 7 days were 

removed from the analyses.  The neurons were dissociated with trypsin and counted on the Z1 

Coulter Particle Counter.   

Results 

A.  Generation of neurons 

A variety of conditions were tested to differentiate the NPs into neurons (Table 4.1).  The 

greatest challenge was preventing the differentiating neurons from lifting off the substrate over 

the course of differentiation up to 12 weeks.  Various surfaces were tested: directly on plastic 

tissue culture dishes, on glass coverslips, and on plastic coverslips.  The NPs preferred to 

differentiate directly onto the tissue culture plates.  However, many applications, such as 

immunocytochemistry and electrophysiology experiments require coverslips.  The cells were 

more likely to remain adhered to plastic rather than glass coverslips, but the plastic coverslips 

interfere with fluorescent microscopy and changed the morphology of the neurons to a more 

flattened state, making them more difficult to measure in electrophysiology experiments.    

Therefore, glass coverslips are used for those applications.   

Various coating conditions were also tested including poly-L-lysine, polyornithine with 

two different concentrations of laminin, and Matrigel.  The cells did not remain adhered to poly- 
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L-lysine during differentiation and unlike in previous reported results, we did not see better 

adherence with a higher laminin concentration (Shin et al 2006), although this may be due to 

inadequate distribution of the high concentration laminin.  A coating of polyornithine and 5 

µg/mL laminin was usually sufficient to keep cells adhered throughout the differentiation 

process, however Matrigel had the best adherence success as previously found (Uemura et al 

2010).  One concern with using Matrigel is that it is derived from mouse tumor cells and is not 

well-defined. It contains multiple growth factors including FGF, EGF, IGF1, TGFβ, PDGF, and 

nerve growth factor (NGF) which could affect neural differentiation (Vukicevic et al 1992).  

Therefore, both polyornithine/laminin and Matrigel coating are used for neural differentiation 

and specified for each experiment.   

Various starting cell concentrations of neural progenitors were also tested.  Proliferation 

continues even after the onset of differentiation, making it difficult to predict the ending 

confluency of post-mitotic neurons.  There was significant variability between lines but in 

general 2.5x105 cells/cm2 works best for maximizing adherence and still allowing individual 

cells to be visualized and manipulated on polyornithine/laminin.  Higher concentrations can be 

used when the whole population is being studied such as harvesting mRNA or protein.  Cells on 

Matrigel proliferate more before differentiation, so a lower starting density of NPs was needed.   

Three different previously described neuronal differentiation medias were tested: 

Neurobasal/B27 (NB media), DMEM F-12/N-2/B-27 (DNB media), and 1:3 DMEM F-12: 

Neurobasal with N2 (1:3 media) (Li et al 2009b, Shin et al 2006, Spiliotopoulos et al 2009).  All 

cultures produced a mixture of β-tubulin III-expressing neurons and GFAP-expressing glial cells 

(Figure 4.1a).  The DNB media had the greatest concentration of glial cells, while NB media 

provided the most uniform distribution of neuronal processes with only a few glial cells.   
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Various additives were used to optimize the differentiation process.  Quite a few cells die 

during the differentiation process, therefore the addition of 20 nM potassium chloride and 1 mM 

kynurenic acid were tested.  Potassium chloride is a neuroprotective agent that depolarizes 

neurons, causing elevation of intracellular calcium, and preventing apoptosis (Franklin & 

Johnson 1992).  Kynurenic acid is an NMDA antagonist that prevents excitotoxicity (Li & Stys 

2000).  However, neither of these treatments improved neuronal cell culture quality.  Brain-

derived neurotrophic factor (BDNF) and glia cell-derived neurotrophic factor (GDNF) are 

survival-promoting neurotrophic factors (Yan et al 1999).  Addition of these factors to all the 

tested media caused an increase in cells expressing GFAP (Figure 4.1b).  In media containing 

DMEM F-12, the GFAP+ cells had a more flattened morphology, while in NB media the GFAP+ 

cells have the bipolar morphology of radial glial cells.   

During their growth, neurons condition their media with factors that promote cell 

survival; therefore changing the media can disrupt cell growth.  I tested both changing the full 

media and only removing half of the depleted media before adding fresh media as well as altered 

the frequency of media change from daily to every 3-4 days.  The neurons thrived when 

disturbed the least, therefore the half media changes every 3-4 days had the best cell adherence 

and survival during differentiation.   

Finally, to further condition the media, neurons can be cultured with glia.  I tested two 

methods of culture with rat glia: the Banker method in which the cells are grown on an inverted 

coverslip separated from the glial layer by a paraffin tripod and direct co-culture where the 

human neurons are differentiated directly on a layer of rat glia (Kaech & Banker 2006).  The 

cells thrived in both conditions; however the methods were complicated by the presence of 

foreign cells.  In the Banker method, GFAP-expressing cells were localized to the edge of the 
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coverslip and regions near the paraffin, suggesting that rat glia may have migrated onto the 

neuronal coverslip (Figure 4.1c).  In both methods, without a marker for our iPS-derived 

neuronal cells, it is challenging to make conclusions about differentiation.  Therefore, glial co-

culture was not used for most of our experiments.   

Since the population of cells that we are most interested in is neurons, the optimized 

conditions for neuronal differentiation of our neural progenitors is first plating at the desired 

density in NPM, then changing the media the next day to NB media after the cells adhere.  Half 

of the NB media is changed every 3-4 days.  The cells are plated directly on the tissue culture 

plate or glass coverslips as needed, coated with Matrigel or polyornithine/laminin.  The 

capability of the neural progenitors to differentiate into neurons is not affected by the passage 

numbers tested (Table 4.2).  One limitation to the optimization is that most of the differentiation 

tests were done on SAD lines, and the ideal protocol for AD neurons may not necessarily be the 

ideal protocol for the control lines.   
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B. Characterization of neuronal cells 

Using this protocol, all lines form cells with processes positive for the neuron-specific 

marker β-tubulin III (TUBB3) and MAP2, a neuronal filament that localizes in the dendrites 

(Figure 4.2a,b) (Caceres et al 1986).  The electrical properties of the differentiated neurons were 

tested using patch clamp to measure the current or potential across the cell membrane.  When 

current was measured following depolarization, the cells re-established the membrane potential 

using sodium and potassium channels consistent with neurons (Figure 4.2c).  When voltage was 

measured while current was altered, the cells underwent cyclical oscillations to a higher voltage 

consistent with the depolarization and repolarization that occurs during an action potential 

(Figure 4.2d).  Lines from each individual were able to form these induced action potentials after 

4.5-15 weeks differentiation.  Together, these data support that activity-capable neurons are 

derived from all lines.   

The neurons were further characterized after 6 weeks of differentiation.  This stage of 

differentiation is used for further analysis since some of the lines have already formed mature 

neurons with electrical capabilities, although other lines seem to have a later timeline for 

maturation which will be explored throughout the rest of this chapter.  After 6 weeks 

differentiation, all the lines are predominantly positive for TUBB3, with a small number of cells 

positive for the glial marker GFAP (Figure 4.3a).  There is a significant increase in the number 

of GFAP-expressing cells in the SAD 6-week differentiated neurons with the SAD cultures 

having between 1% and 13% and the NL cultures having between 0% and 5% after 6 weeks of 

differentiation (Figure 4.3b) (p = 0.023).  The GFAP-expressing cells do not have the typical 

morphology of astrocytes, raising the possibility that they are a type of GFAP-expressing  
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progenitor (Seki et al 2014).  However, astrocytes can have distinct morphologies dependent on 

region and function in the brain, so more markers are needed to fully elucidate the identity of the 

GFAP-positive cells (Matyash & Kettenmann 2010).  Greater than 75% are positive for the 

neuronal-specific TUBB3 with no difference between the NL and AD lines (Figure 4.3b).   

The neurons are a mixture of GABAergic and glutamatergic neurons with the amount of 

each being variable between lines (Figure 4.3c).  In general, greater than 60% of the neurons are 

positive for the glutamatergic marker VGLUT1, while less than 25% stain for GABA, the 

neurotransmitter for GABAergic neurons (Figure 4.3d).  There is a trend towards increased 

GABAergic neurons and decreased glutamatergic in the SAD cultures, however it is not 

significant (p = 0.14).  A subset of lines was also stained for the more immature marker of 

neurogenesis, doublecortin, as well as the neural progenitor marker nestin (Figure 4.3d).  The 6-

week differentiated cultures still have cells that are positive for both markers.  The nestin-

expressing cells have a different morphology than the NP stage and are bipolar and elongated.  

This suggests that they may be more mature neural progenitors, such radial glia cells, although 

work is still lacking to fully elucidate the stages of neural differentiation since it varies in 

embryonic corticogenesis, each zone of adult neurogenesis, and in vitro.  In summary, after 6 

weeks of differentiation, there is a diverse culture of mostly GABAergic and glutamatergic 

neurons with some GFAP-expressing cells.  The cultures still express the immature markers of 

doublecortin and nestin, indicating that the cells are still in the process of reaching terminal 

differentiation.  RNA was harvested from these cultures to see if there is a difference in gene 

expression between the SAD and NL 6-week differentiated neurons.   
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C. Divergent gene expression in 6-week differentiated SAD neurons 

Microarray profiling for 6-week differentiated neurons using the 6 normal and 5 SAD 

lines derived in our lab was performed on Affymetrix U133 Plus 2.0 arrays with lines derived 

from one clone per individual (Table 4.2).  The gene expression was analyzed as previously 

described for earlier stages of differentiation.  The difference between the SAD and NL 6-week 

neurons was much more significant than previous stages of differentiation, therefore the more 

stringent cut-off of q≤0.035 was used for later analysis, corresponding to a p-value of 0.016.  843 

differentially expressed probes met this criterion for significance (Figure 4.4a, Supplementary 

Table 10).   

Correlation analysis for the significant gene list shows intra-group correlation for both the 

SAD (Pearson correlation coefficient r between 0.52 and 0.80) and NL lines (r = 0.50-0.74, 

except NL4.1), except for two outliers: NL5.2 and SAD4.1 (Figure 4.4b).  NL5.2 correlated 

more strongly with the SAD lines (r = 0.32-76), while SAD4.1 correlated more weakly with the 

other SAD lines (r = 0.16-0.32).   

Enrichment analysis of the differentially expressed genes shows that nervous system 

development remains one of the most significant gene ontology biological processes enriched 

differential gene list (Figure 4.4c).  Other significant biological processes include regulation of 

localization and transport, regulation of molecular functions and biological processes, and 

general system development.  The genes of the nervous system development gene ontology 

group are predominantly up-regulated, with many greater than 5-fold up-regulated in the SAD 

neurons (Figure 4.4d).  This increase in neuronal differentiation gene levels is similar to the 

pattern seen in the SAD neural progenitors.  Analysis using DAVID confirms the enrichment for 

neuronal-related genes with the cellular compartments of synapse, vesicles, plasma membrane,  
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and cytoskeleton being among the most enriched, as well as biological processes of long-term 

depression, vesicle-mediated transport, long-term potentiation, and neuron differentiation (Figure 

4.4e).  These annotation clusters are associated with the functioning of more mature neurons than 

seen in the neural progenitors, in which enrichment of processes related to intermediate 

progenitor function, such as cell motion, neuron projection, and neurogenesis were predominant.   

Comparison between the two stages of neural differentiation does show some overlap (Figure 

4.5a).  There are 7 genes that are differentially expressed in all three neuronal lineage 

microarrays: the 6-week neurons, neural progenitor single clone, and neural progenitor multiple 

clones.  These genes are all up-regulated in the SAD, except for the cannabinoid receptor, which 

is highly up-regulated in both neural progenitor microarray analyses, but down-regulated in the 

6-week neurons (Figure 4.5b).  The SAD up-regulated genes include CSRNP3/TAIP2, a cell-

death related gene expressed in the brain during development (Yamada et al 2008), LSAMP, a 

limbic-system associated membrane protein that acts as a cell adhesion molecule in neurite 

formation and outgrowth (Philips et al 2014), and REEP1 which is specific to neuronal tissues 

and required for endoplasmic reticulum (ER) network formation and linking to the cytoskeleton 

(Hurt et al 2014, Philips et al 2014, Yamada et al 2008).  STMN2/SCG10 is a microtubule-

destabilizing factor involved in neuronal growth during brain development (Sobczak et al 2011), 

SYT4 (synaptotagmin 4) acts as a postsynaptic calcium sensor which enhances the presynaptic 

function and is important in scaling synaptic strength in response to network activity (Dean et al 

2012, Yoshihara et al 2005), and ZNF503/NOLZ1 is a transcriptional repressor which promotes 

striatal neurogenesis and increases the number of β-tubulin III and MAP2-positive neurons 

(Nakamura et al 2008, Urban et al 2010).  Clearly, these genes that are up-regulated in both the 

SAD neural progenitors and neurons are important in neuronal development.   
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Significant genes that are shared between the 6-weeks neurons and just one of the neural 

progenitor microarrays contain genes that are both up- and down-regulated in SAD (Figure 

4.5c,d).  Expression data from the non-significant NP microarray was also included to see if the 

trend was consistent even if the q-value didn’t reach the statistical threshold for significance.  

Some of the genes that were down-regulated in all three microarray experiments include ADM 

(adrenomedullin), a peptide hormone which plays a role in neural stem cell growth regulation 

(Martinez-Herrero et al 2012), CCND2, a regulator of G1 progression whose mRNA localization 

affects the self-renewal of neural stem cells (Tsunekawa et al 2012), and SHC1 which encodes 

adaptor proteins that are found in neural stem cells, but not differentiated neurons (Conti et al 

1997).  Other down-regulated genes include CNPY1 (Canopy1), a positive regulator of FGF 

signals (Hirate & Okamoto 2006), EN2 (Engrailed2), a homeobox transcription factor which 

plays a role in neural patterning and is adjacent to CNPY1 (Choi et al 2014), and KDR, also 

called VEGFR2.  Most of the most conserved down-regulated SAD genes through neural 

differentiation are involved with neural stem cell proliferation and growth factor signaling, 

which is consistent with the increased neural differentiation phenotype in the SAD lines.   

Genes that are up-regulated in SAD cells throughout the neuronal differentiation include 

the homeobox transcription factors HOXA2 and HOXA3, the potassium channel subunits KCNC1 

and KCNMA1, and the surprising TGFB2, which is up-regulated despite TGFβ downstream 

signaling being consistently down-regulated in the SAD lines.  Many of the genes that are up-

regulated are specific to neurons and the neuronal lineage, including AFF2/FMR2 which is the 

gene silenced in fragile X syndrome, LGI1, a extracellular matrix protein that may help connect 

pre- and post-synaptic proteins (Soleman et al 2013), RALYL which encodes an RNA-binding 

protein enriched in the brain (Ji et al 2003), and TENM4/ODZ4 which is a transmembrane 
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protein which positively regulates neurite outgrowth (Suzuki et al 2014).  Other genes enriched 

in neurons that are up-regulated in the SAD microarrays include ELAVL4/HuD, an RNA-binding 

gene which is important in hippocampal circuitry and neurite outgrowth (DeBoer et al 2014), 

RGS8 which is a brain-specific G-protein regulator (Saitoh et al 1997), and NSG1 which is a 

neuron-specific protein involved with receptor recycling (Rengaraj et al 2011).  Some of the 

conserved up-regulated genes are canonical to neuronal pathways, including the SLIT3, ROBO2, 

and EPHA3 of axonal guidance, RAB3C in synaptic vesicles, and SNAP25 of the tSNARE 

complex which fuses synaptic vesicles to the plasma membrane.  Together, the conserved up-

regulated genes strongly support an increase in neuronal functions in the SAD neural lineage.   

Not all the genes are expressed consistently.  SERPINI1 (neuroserpin) is a regulator of 

the proteolytic degradation of the ECM during synaptogenesis and is down-regulated in the SAD 

neural progenitors, but up-regulated in the neurons.  ITGB8 (integrin-β 8) which plays a role in 

promoting TGFβ activation is up in SAD neural progenitors, but down in neurons.  ARBB1 (β-

arrestin 1) regulates the receptor sensitization of GPCR and is down-regulated in SAD neural 

progenitors and up-regulated in SAD neurons.   

D. Neuronal microarray enrichment analysis 

Using MetaCore software software to identify interacting proteins that are over-

represented in the SAD neural progenitor gene list shows a large number of highly significant 

interactors (Supplementary Figure 11).  Many of the top transcription factors are conserved from 

earlier stages of differentiation, including CREB1, REST/NRSF, the glucocorticoid receptor, 

SP1, the androgen receptor, c-Myc, c-Jun, and p53 (Figure 4.6a).  There are also some new 

highly interacting transcription factors, including ATF4, RelA, and NRF2.  ATF4 is induced in 

response to ER stress or amino acid starvation in a mechanism requiring the kinase 
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Perk/EIF2AK3, which is down-regulated in the 6-week SAD neurons (Vattem & Wek 2004) and 

is predicted to be inhibited by Ingenuity Pathway Analysis (Figure 4.6b).  NRF2 is induced by 

oxidative stress and protects the cells against damage, prevents apoptosis, and promotes cell 

survival (Kaspar et al 2009).  SMAD3 is induced by TGFβ and is required for the survival of 

proliferative intermediate progenitor cells in the mouse dentate gyrus (Tapia-Gonzalez et al 

2013).  All three of those transcription factors are most significant in down-regulated genes, 

suggesting that their activity is reduced in SAD lines.   

The most significant interacting receptors are Synaptotagmin 1, APP, TIE2, and two 

Dopamine receptors.  Synaptotagmin 1 is a calcium sensor which acts in synaptic vesicle 

docking and at the presynaptic membrane and modulates release probability (Fernandez-Chacon 

et al 2001).  APP is the precursor for the amyloidogenic Aβ, but its endogenous role remains 

unclear although it has been shown to limit neurite outgrowth and trigger neuronal cell death 

(Nikolaev et al 2009, Young-Pearse et al 2008).  TIE2 is a cell surface receptor that is activated 

by angiopoietins and is most widely known to act in blood vessel regulation (Fukuhara et al 

2009).  However, it may also be important in neurogenesis since angiopoeitin-1 increases neural 

stem cell proliferation and the number of NeuN-positive neurons via Tie2 (Rosa et al 2010).   

The two most significant kinases are c-Src and GSK3β.  Increased levels of active GSK-3β have 

been shown in Alzheimer’s disease brains and in neuronal cultures derived from AD iPS cells 

(Israel et al 2012, Leroy et al 2007).  Plasmin is the most significant interactor of the protease 

family and it is an activated protein which degrades the extracellular matrix during neuronal cell 

death as well as cleaving BDNF into an active form during long-term potentiation (Chen & 

Strickland 1997, Pang et al 2004).  The most significant enzyme, EZH2, is a methyltransferase of  
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histone H3K27 which is expressed in dividing neural stem cells and neurons and regulates 

neurogenesis (Zhang et al 2014).   

Ingenuity Pathway Analysis (IPA) of upstream regulators, which calculates the predicted 

activation or inhibition of the regulators, predicts a strong activation of proteins involved with 

cell cycle arrest, apoptosis, and neuronal functions (Figure 4.6b).    BCL2, RBL1, NELFB, miR-

34, and RB1 have all been implicated in the inhibition of cell cycle progression and/or apoptosis.  

The most strongly activated upstream regulator is BCL2, a regulator of mitochondrial membrane 

permeabilization which inhibits cell death in developing neurons during normal and ischemic 

stress conditions (Sasaki et al 2006).  It also acts independently of its apoptotic effects to inhibit 

cell cycle entry (Huang et al 1997).  RBL1/p107 is a transcriptional regulator that inhibits cell 

cycle progression.  It limits the precursor pool in both the developing and adult brain by 

promoting neural progenitor commitment to a neuronal fate (Vanderluit et al 2007).  RB1 is 

related to RBL1 and intrinsic to the regulatory circuit controlling G1 to S transition, and regulates 

the interplay between apoptosis, differentiation, and cell cycle progression (Herwig & Strauss 

1997).  Ectopic expression of the microRNA miR-34a can induce cell cycle arrest, apoptosis, and 

cell differentiation and has been shown to modulate dendritic spine morphology during neuronal 

development (Agostini et al 2011, Chen & Hu 2012).   NELF-B/COBRA-1 is a negative 

regulator of transcription which inhibits cell cycle progression (Sun & Li 2010).   

The predicted activated proteins related to neuronal activity include APOE, ANXA2, and 

ERBB4.  The activity of APOE, the previously discussed strongest genetic risk factor for 

sporadic Alzheimer’s disease, is predicted to be up-regulated by Ingenuity Pathway Analysis.  

ANXA2 or annexin A2 regulates actin cytoskeletal rearrangement and cell adhesion, possibly 

mediating cell migration (Rescher et al 2008).  It also plays a key role of the activation of 
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plasmin by localizing the plasminogen precursor with its activator: tissue plasminogen activator 

(tPA) (Hajjar & Krishnan 1999).  Finally, ERBB4 is a receptor for neuregulin which acts in the 

nervous system in the release of neurotransmitters by interneurons (Wen et al 2010).   

Upstream regulators predicted to be inhibited by Ingenuity Pathway Analysis are 

predominantly growth factor and cytokine pathways as well as those related to oxidative stress 

response (Figure 4.6b).  Predicted down-regulated growth factor and cytokine upstream 

regulators include Interleukin-1B, FGF2/bFGF, EGF, TNF, PDGF, and IFN gamma.  Although 

cytokines are traditionally thought to act predominantly in the immune system, they also play a 

role in regulating neuronal differentiation, although the exact effects remain unclear.  Interleukin 

1B has been shown to inhibit the proliferation of NP cells and increase apoptosis, as well as 

impair hippocampal neurogenesis (Wang et al 2007b, Zhang et al 2013a).  Interferon gamma 

(IFNγ) has shown mixed results in regulating neural differentiation with one paper showing 

enhanced neurogenesis in vivo in the absence of IFNγ and while another found that it was a 

potent inducer of neurogenesis in vitro (Leipzig et al 2010, Li et al 2010).  Tumor necrosis factor 

(TNF) increases the proliferation of neural stem cells while decreasing neurogenesis (Takei & 

Laskey 2008, Widera et al 2006).  The receptor of another cytokine, LIF, is significantly down-

regulated in the SAD 6-week neurons (Supplementary Figure 10).  LIF increases proliferation of 

neural progenitors, but inhibits terminal differentiation (Moon et al 2002).   

Growth factor signaling is also predicted to be inhibited, including most significantly 

FGF2, EGF, and PDGF, but also TGFβ, IGF1, and VEGF (Supplementary Table 13).  Many of 

these growth factor act through ERK kinases, whose activity are also predicted to be down-

regulated by IPA.  The effects of these growth factors on neurogenesis are complicated.  FGF2 is 

important for the proliferation of neural progenitors, but inhibits terminal neuronal differentiation 
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(Chen et al 2007).  Expression of both FGF2 and the FGFR are down-regulated in the SAD 6-

week neurons (Supplementary Table 10).  PDGF signaling is similar: it acts as a mitogen and 

survival factor for immature neurons, but prevents further differentiation into a post-mitotic state 

(Enarsson et al 2002).  EGF also induces proliferation of neural progenitors, although possible 

effects on later differentiation have not been fully elucidated (Kitchens et al 1994).   

 Hydrogen peroxide signaling is also predicted to be highly inhibited by IPA analysis.  

Endogenous hydrogen peroxide is produced during aerobic metabolism and can both cause 

oxidative stress to the cell as well as play an important role in redox signaling, acting as a second 

messenger in several growth-factor-induced signaling cascades (Sies 2014).  In fact, neural 

progenitors have a comparatively high level of reactive oxygen species and low levels of 

hydrogen peroxide treatment increase multipotent potential and progenitor proliferation (Le 

Belle et al 2011).  These ROS levels are decreased in cells that express ASCL1, but enriched in 

the cells that express doublecortin.  The decreased response to oxidative regulation is supported 

by the predicted inhibition of ATF4, which is induced by ER stress and the transcriptional down-

regulation of the related ATF3 in the microarray of the 6-week SAD neurons.  The predicted 

activation of TRIB3 is also consistent with this decrease in oxidative signaling since it inhibits 

stress response through a negative feedback loop with the stress-responsive ATF4 (Jousse et al 

2007).   

 F2/thrombin is the active form of a serine protease that is most commonly associated with 

blood coagulation, however it is also expressed in the nervous system where it has many diverse 

functions involving growth, maintenance, and morphological changes (Rohatgi et al 2004).  It 

stimulates the proliferation and nestin-expression of radial glia cells while also inhibiting neural 

differentiation (Jalink & Moolenaar 1992, Wautier et al 2007).  Thrombin is also known to 
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induce the release of growth factors in other cell types, such as smooth muscle cells where after 

binding to the PAR-1 receptor, thrombin induces secretion of PDGF, FGF2, VEGF, TGFβ, and 

other growth factors (Bassus et al 2001, Stouffer & Runge 1998).  Therefore, the predicted 

inhibition of its activity is consistent with decreased growth factor signaling.   

 To further explore the patterns of differential regulation between the SAD and NL 6-

week differentiated neurons, the most highly up- and down-regulated genes were analyzed 

separately.  A table of the top down-regulated genes shows down-regulation of genes involved 

with growth factor response, the extracellular matrix, and protease-related genes (Figure 4.7a).  

VGLL3 is a transcriptional cofactor and its inhibition decreases proliferation rate and migration 

properties in soft tissue sarcomas (Helias-Rodzewicz et al 2010).  BCAT1 is an enzyme which 

initiates the catabolism of branched-chain amino acids and promotes proliferation in gliomas 

(Tonjes et al 2013).  CYR61/CCN1 is an extracellular-matrix localized protein that is induced by 

growth factors and plays diverse roles in cell survival, apoptosis, cell adhesion, and cell 

proliferation (Lau 2011).   

 TFPI2 (tissue factor pathway inhibitor) is a matrix-associated inhibitor of serine proteases 

including trypsin, chymotrypsin, and plasmin.  It is suppressed by CD24, which was highly up-

regulated in the SAD neural progenitors.  Cathepsin C is a serine protease which also acts as a 

central coordinator for the activation of many other serine proteases, especially in immune cells 

(Methot et al 2007).   PLAT, the tissue plasminogen activator (tPA), is a serine protease that 

activates plasmin, another serine protease that modulates the extracellular matrix and catalyzes 

the degradation of laminin during excitotoxic cell death of hippocampal neurons (Chen & 

Strickland 1997).  Its inhibitor, Neuroserpin/SERPINI1 is up-regulated in the 6-week SAD 

neurons, unlike the neural progenitors, where it is down-regulated.  PTX3 is induced by IL-1β  
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and is important for the deposition of extracellular matrix in response to ischemic stress 

(Rodriguez-Grande et al 2014).  Together, these genes show that there is a strong enrichment for 

genes that modulate the extracellular matrix and especially serine proteases, although the 

predicted effects of these gene changes are contradictory.   

Enrichment analysis of all the down-regulated genes in 6-week SAD neurons using 

MetaCore does not pick up the enrichment for extracellular matrix modulating serine proteases, 

but it does show significant down-regulation of G1-S transition and growth factor signaling 

(Figure 4.7c).  The down-regulation of these processes is consistent with a neuron differentiating 

to become post-mitotic.   

A table of the most robust up-regulated genes in 6-week differentiated neurons is 

enriched for transcription factors, neuronal genes, guanosine nucleotide-binding proteins (G 

proteins), and modulators of the extracellular matrix (Figure 4.7b).  Many of them are also 

localized to the extracellular matrix, including the neuronal-enriched OLFM1/Noelin-1, LGI-

1/Epitempin, NELL-1, and SPON1.  SPON1/F-spondin is the most strongly up-regulated gene in 

the 6-week differentiated neurons.  It is an extracellular matrix protein that is cleaved by plasmin 

to create two functional fragments that both act to direct axon growth (Tzarfaty-Majar et al 2001, 

Zisman et al 2007).   

Many of the other most significant up-regulated genes are specific to neuronal function.  

RIT2 is a neuronal-specific GTPase (Zhang et al 2013b).  The neuropeptide Y-receptor is a 

neuronally enriched GPCR and RGS4 is a GTPase-activating protein.  One of RGS4 functions is 

the inhibition of PAR-1, a thrombin receptor (Ghil et al 2014).  Normal functioning of this 

signaling pathway would lead to the up-regulation of thrombospondin/THBS1, an extracellular 

matrix protein that is down-regulated in the SAD 6-week neurons (McLaughlin et al 2005).  
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ROBO2 is an axon guidance receptor, SYT17 is a member of the synaptotagmin family that acts 

in regulation of neurotransmitter release, and RAB3B is a small G-protein which regulates 

exocytosis in neuronal and other secretory cells (Nishimura et al 2008).  SLC8A1/NCX1 is a 

sodium/calcium exchanger localized to the mitochondrial membrane that may play an important 

role in regulating postsynaptic calcium transients and protecting the cell from calcium overload 

and death (Gobbi et al 2007).  Together, most significant up-regulated genes in 6-week SAD 

neurons strongly support an increase in neuronal gene expression, G proteins, and changes in 

extracellular matrix proteins.   

Enrichment analysis of all the SAD up-regulated genes in 6-week neurons shows an 

increase in neuronal genes involved with synaptic contact and axonal guidance, as well as 

cytoskeleton rearrangement and Wnt signaling, which was also enriched in the down-regulated 

genes (Figure 4.7d).   

E. SAD 6-week neuron gene expression differences verified through qRT-PCR 

To confirm the differences in gene expression identified in the 6-week differentiated 

neurons derived from iPS lines derived in the Yankner lab in a larger cohort, mRNA from the 

neurons for several key genes was measured using quantitative real-time PCR (qRT-PCR) 

(Figure 4.8).  RNA samples were included from one clone per individual for all 18 individuals 

(10 normal, 7 SAD, and 1 FAD).   

Most of the microarray findings are confirmed with the increased number of individuals 

(Figure 4.8).  Cyclin D2 (CCND2) was down-regulated 2.1-fold in the 6-week differentiated 

neuron subset and is confirmed to be down-regulated 1.7-fold in the entire cohort.  CCND2 is a 

positive regulator of G1 cell cycle progression and has been shown to be essential for the 

expansion of the intermediate progenitor cell pool in vivo (Glickstein et al 2009).  Furthermore,  
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uneven inheritance of cyclin D2 protein in neural progenitors supports asymmetric cell division 

in which a self-renewing daughter cell inherits more cyclin D2 (Tsunekawa et al 2012).   

Depletion of cyclin D2 results in terminal neuronal differentiation.  ZIC3 is a Gli transcription 

factor which is required for the maintenance of pluripotency in ES cells and is also essential in 

neural progenitors in maintaining an undifferentiated state by inhibiting neuronal differentiation 

(Inoue et al 2007, Lim et al 2007).  It is down-regulated 6.89-fold in the microarray neurons and 

4.81-fold in the expanded qRT-PCR cohort.  Together, these markers support a loss of neural 

progenitor proliferation capabilities in the SAD 6-week neurons.   

The two strongest up-regulated genes as well as the most robust down-regulated genes 

were confirmed in the expanded cohort.  SPON1 and HOXA3 were up-regulated 34- and 28-fold 

respectively in the SAD 6-week neuronal microarray, but qRT-PCR confirms that it is a few 

lines which are highly up-regulated for each gene.  SPON1 is increased 193-fold over the 

average of the NL lines in SAD5.1, and also noticeable up-regulated in SAD2.1, SAD3.1, and 

SAD (SAD1.1 Gs).  HOXA3 is up-regulated 50-fold in SAD5.1 with a similar expression profile 

in the other lines, although it is also increased in SAD4.1.  Due to the many orders of magnitude 

separating the gene expression in the different lines, the difference between these lines is not 

statistically significant using a student’s t-test.  However, by converting the expression data to 

log2 scale, the differences in magnitude are attenuated and both SPON1 and HOXA3 are 

significant in the SAD lines (p = 0.002, p = 0.033).  COL11A1 is the most robust down-regulated 

gene, with a decrease of 9.3-fold in the microarray analysis.  It is also down-regulated in the 

expanded cohort with an average fold change of -4.32-fold.   

Not all the significant genes from the 6-week neuronal microarray were confirmed using 

qRT-PCR in the expanded cohort, indicating that there is heterogeneity in the SAD and NL lines.  
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Nestin (NES) was down-regulated in the SAD neuronal microarray, but not using qRT-PCR and 

SNAP25 was up-regulated in the microarray, but not differentially expressed using qRT-PCR 

(only NES data shown).  Together, these results support that the gene expression differences 

identified in neuronal cells differentiated from our iPS lines are relevant to an expanded cohort, 

however some expression changes are more robust and conserved.  FAD1.1, with a L286V 

PSEN1 mutation, appears to have a gene expression profile more closely aligned with the NL 

differentiated neurons.     

F. Functional Differences between SAD and NL Differentiating Neurons 

The gene expression differences at 6 weeks of neuronal differentiation strongly support a 

difference in neuronal function.  However, the fact that all lines are capable of forming neurons 

that generate action potentials (APs) suggests that the difference may be in timeline rather than 

terminal differentiation capabilities.  Therefore, the expression of the early neuronal marker 

doublecortin was measured in a subset of lines (4 SAD and 4 NL from iPS cells derived from 

both our laboratory and the Goldstein laboratory) from neural progenitors to 9 weeks of 

differentiation.  Doublecortin is expressed transiently during neuronal development, becoming 

up-regulated as progenitor cells commit to the neuronal fate and down-regulated at terminal 

differentiation (Brown et al 2003).  During our differentiation protocol, levels of doublecortin 

increase drastically from the neural progenitor stage of differentiation (0 weeks) to 6 weeks of 

neuronal differentiation before starting to decline at 9 weeks (Figure 4.9a).   

The fold change of DCX expression between the AD and NL cells is greatest at 0 weeks 

(Figure 4.9b).  As the culture starts to differentiate into more mature neurons, the doublecortin 

expression becomes equal between the SAD and NL lines, especially at the 6 and 9 week time 
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point.  Therefore, the NL lines are still capable of expressing differentiation genes like the SAD 

lines, but just in a delayed timeline.   

Since many of the most strongly down-regulated genes affect cell cycle progression and 

differential expression of some of those genes is conserved from neural progenitors, I tested the 

proliferation rate of both neural progenitors and neurons.  SAD neural progenitors showed a 

significant decrease in proliferation after 48 hours (Figure 4.9c).  This may be due to either the 

neural progenitors being in a slightly more quiescent state, possibly due to increased resistance to 

the mitogenic LIF or bFGF in the media, or it could be due to the larger proportion of 

differentiating cells dividing more slowly.  The differentiating neurons also showed a significant 

difference in proliferation 7 days into differentiation with more NL cells, but this significant 

difference disappears as differentiation continues (Figure 4.9d).  This analysis is complicated by 

the fact that cell death occurs during the normal differentiation process and in these cultures, thus 

proliferation isn’t the only mechanism affecting cell number.  The cells were plated on Matrigel 

to increase adherence, but this also increases proliferation over the polyornithine/laminin coating 

on which gene expression results were obtained, complicating interpretation as well.  

Interestingly, both the SAD and NL lines have a strong outlier in both the neural progenitor and 

neuronal proliferation rates (SAD1.1 and NL1.1).  When those two lines are removed from the 

analyses, the difference in cell number between the two groups becomes highly significant (p = 

0.034 at 3 days, 0.015 at 7 days, 0.025 at 14 days, and 0.058 at 21 days), implying that this 

difference in proliferation is characteristic of some, but not all SAD lines, and is conserved 

through neuronal differentiation in those lines.   

Gene expression differences at 6 weeks indicated an increase in gene expression in many 

genes involved with synapse formation and function in the SAD lines.  To see if there is a  
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difference in the formation of synapses, the puncta of the pre-synaptic marker synapsin-1 were 

quantified at 6 weeks of differentiation (Figure 4.10 a,b).  At this stage of differentiation there 

are fewer than two synapsin-1-localized synapses per nuclei, however the SAD lines have 

significantly more synapses than the NL lines (p = 0.018).  Cells expressing MAP2, which was 

used to mark the dendritic neuronal processes, did not show a difference between the AD and NL 

lines.  Synaptic levels of FAD1.1 aligned more with the SAD than the NL neurons.    

The gene expression profile of the 6-week differentiated neurons also had an increase in 

the expression of ion channel genes, indicating that there may be differences in the excitability of 

the SAD and NL neurons.  All the lines are capable of forming induced action potentials, but the 

time of differentiation may vary between the SAD and NL lines.  The ability to form action 

potentials was first measured at 4.5 weeks of differentiation.  At this time of differentiation, half 

of the SAD lines tested formed action potentials, but none of the NL lines (Figure 4.10c).  After 

7.5 weeks, all of the SAD lines tested were able to generate action potentials, but none of the NL 

lines or FAD1.1.  At 10 weeks, all tested lines were able to form action potentials, both SAD and 

NL, and by 15 weeks all lines had formed induced action potentials.  The time of differentiation 

until first measurement of action potentials was significantly lower in SAD (p = 0.009) (Figure 

4.10d), however an important caveat is that not all the lines were tested at the earlier time points 

and therefore it may not be an accurate representation of the time at which they are first capable 

of forming APs.  Together, these results support a model whereas the SAD neurons have an 

accelerated differentiation into functional neurons compared to NL neurons.  Based on their 

ability to form action potentials, it seems possible that the NL neurons do reach an equal level of 

functioning after sufficient time, but more testing is needed to confirm that hypothesis.   
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Conclusions and Discussion 

 After optimization of the differentiation conditions, a culture of predominantly MAP2+ 

and TUBB3+ neurons was generated that was able to form functional neurons with sodium and 

potassium channels capable of forming action potentials.  After 6 weeks of differentiation, these 

cells were predominantly glutamatergic neurons with a small proportion of GFAP-expressing 

glia and GABAergic neurons.  These populations were enriched in the SAD lines, particularly 

for GFAP.  This supports that there is a difference in the differentiation potential and mechanism 

between the SAD and NL lines.  At this stage of differentiation, the neurons are still maturing 

with cells still expressing doublecortin, a marker of immature neurons, and nestin, a marker of 

neural progenitors.   

 Gene expression profiling showed a robust difference between the SAD and NL 

differentiating cells in a subset of the lines.  These differences were enriched for up-regulated 

genes related to neuronal differentiation, but unlike in the neural progenitors where many of the 

strongest up-regulated genes were related to cellular migration and axon guidance, the 6-week 

neurons are enriched for genes related to synapse function and ion channels that could play a role 

in excitability.  This suggests that there continues to be a difference in differentiation timeline 

between the SAD and NL individuals, which was supported by an increase in synapse number in 

the SAD lines which was significant for all lines.  The SAD and NL lines may also have a 

different timeline for action potential generation, with SAD lines able to form action potentials 

earlier than any NL lines tested.  However, it is unclear if this difference in neuronal function is 

just a modulation of development or if there are differences in the functioning of the mature 

neurons.  In support of the first model, all lines tested are able to generate action potentials and 

the gene expression of the early neuronal marker DCX does become equivalent as differentiation 
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proceeds.  However, more study at later points of differentiation is necessary to ascertain if there 

are any differences in mature neuronal functions.    

 The down-regulated genes in the SAD neurons show enrichment in genes that regulate 

cell cycle progression and growth factor regulation.  This could correlate with the verified 

difference in neuronal differentiation, however it could also be pathological to AD.  Although 

growth factors have been extensively studied during the earlier stages of neural patterning and 

maintenance of the neural progenitor pool, it is less clear what the role of each growth factor may 

be during the maturation of a neuron.  For example, TGFβ signaling is predicted to be down-

regulated using Ingenuity Pathway Analysis for expression of downstream targets, however in 

the microarray analysis TGFβ2 expression is up-regulated in the SAD lines.  Furthermore, 

TGFβ2 has conflicting effects on neuronal precursors dependent on the extracellular milieu 

(Kane et al 1996).  In the presence of serum, it increases progenitor proliferation, while in the 

absence, it inhibits proliferation.   Clearly, the effect of growth factor signaling in neuronal 

differentiation is complicated and it is difficult to ascertain if any changes in the expression seen 

in AD neurons are pathological or consistent with normal differentiation. 

 The decrease in genes promoting cell cycle progression is consistent with enhanced 

neuronal differentiation.  Cell cycle control also plays an important role in apoptotic regulation 

in the central nervous system with loss of trophic support during development leading to 

increases in cyclin D and cell death (Freeman et al 1994).  During the later highly 

neurodegenerative stages of Alzheimer’s disease, cell cycle genes are up-regulated, unlike the 

changes we observed in the differentiating neurons (Liu & Greene 2001, Nagy et al 1997).  

Stress-response genes are also down-regulated in the SAD neurons, including ATF3 which is 

induced by oxidative stress and GADD45A and GADD45B which are induced by DNA damage.  
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Together, these changes represent a gene expression profile consistent with less cellular stress 

and cell death, however it is unclear if the cells actually have less stress or are just less 

responsive.   

 The FAD1.1 line continues to defy classification.  Its gene expression of the selected 

genes in qRT-PCR more closely resembles the NL lines, however it shows an increase in 

syanpsin-1-localized puncta at 6 weeks consistent with the SAD lines.  This suggests that it may 

be differentiating more efficiently than the NL lines, however the mechanism may be different 

than the SAD lines.   More lines are needed to test that hypothesis.   

Contributions 

Rat glia for glial co-culture were isolated by Yoshiho Ikeuchi in the laboratory of Dr. 

Azad Bonni.   Electrophysiology measurements were performed by Susan Su, Sukhee Cho, 

Jinsoo Seo, and Jun Wang in the laboratory of Dr. Li-Huei Tsai.   
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Chapter 5: Alzheimer’s disease in the culture dish 

Abstract 

The three pathological hallmarks of Alzheimer’s disease in the human brain are amyloid 

plaques consisting mainly of Aβ, neurofibrillary tangles of predominantly hyperphosphorylated 

tau protein, and loss of neurons.  To test if the SAD lines have increased proclivity for these 

processes, each was examined in the SAD and NL progenitors and neurons.  The SAD neural 

progenitors have increased production of Aβ40, but the SAD neurons have no significant 

increase in Aβ40 or Aβ42 production.  Both the neural progenitors and neurons show a 

significant up-regulation of MAPT mRNA levels.  The neural progenitors have an increase in 

tau protein levels, but not levels of phosphorylated tau, while the 6-week neurons have 

increased phosphorylated tau levels, but not total tau.  To test whether there is difference in 

susceptibility to stress, the neural progenitors were treated with oxidative and genotoxic 

stresses, but there was no decreased cell survival in the SAD lines.  SAD gene expression 

differences seen at 6 weeks differentiation were examined more closely for their association 

with AD pathology and AD in the human brain.  The SAD gene expression differences seen at 6 

weeks are enriched for proteins that interact with APP, MAPT, APOE, and other proteins 

associated with the onset of Alzheimer’s disease as well as having an expression profile with 

some intriguing similarities to the gene changes seen in the human prefrontal cortex during 

Alzheimer’s disease.   
 

Introduction 

Now that the differentiated neuronal cells have been characterized in vitro, the next 

question is whether these differences between SAD and NL lines may lead to any of the 

pathological changes seen in the human brain during Alzheimer’s disease.  Ever since the 
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familial mutations were identified as increasing Aβ production, and more specifically increasing 

the relative production of Aβ42:Aβ40, this difference became the leading hypothesis for the 

development of Alzheimer’s disease (Hardy & Selkoe 2002).  The amyloid hypothesis posits 

that increased Aβ42 production and accumulation causes synaptic and neuritic injury, resulting 

in oxidative injury, formation of neurofibrillary tangles, and cell death probably due to the toxic 

nature of the Aβ42 oligomers.  In support of this hypothesis, the increased ratio of Aβ42:Aβ40 

in PSEN1 mutations probed in culture correlates with decreasing age of onset (Duering et al 

2005).   However, despite the strong genetic and molecular evidence for the role of Aβ42 in the 

development of familial Alzheimer’s disease, the data in sporadic AD are less clear.   

Although Aβ levels are unquestionably increased in the SAD brain, any modulations of 

the Aβ42:Aβ40 ratio are less obvious.  Aβ levels measured in post-mortem brain tissue shows 

increased insoluble Aβ42/40 ratio in patients with PSEN1 mutations, but not SAD patients or 

patients with an APP mutation (Hellstrom-Lindahl et al 2009).  Furthermore, siRNA 

knockdowns of the genes identified as risk factors for the development of Alzheimer’s disease 

did not affect the Aβ42:Aβ40 ratio in HeLa cells expressing APP with the Swedish mutation, 

however addition of the familial PSEN mutations increased the ratio (Bali et al 2012).  Two 

recent drug trials targeting Aβ in sporadic AD using bapineuzumab and solanezumab failed to 

produce productive results, suggesting that other mechanisms may be important in the 

development of sporadic AD, although there could be other factors that contributed to the 

drug’s failure (Callaway 2012).   

Neuronal cells from sporadic Alzheimer’s disease patients in vitro have shown mixed 

results.  Isarel et al. (2012) was unable to measure Aβ42 levels due to the low number of cells, 

but observing increased Aβ40 in one sporadic AD line, but not the other.  Kondo et al (2013) 
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observed increased accumulation of intracellular Aβ in one of the sporadic patients but no 

difference in soluble Aβ40 or Aβ42 production in the SAD lines, unlike an APP mutant line.  

Together, these results suggest that modulations of Aβ42 and Aβ40 production are important for 

the development of familial AD, especially with PSEN1 mutations, but whether there are any 

changes in sporadic AD remains unclear.   

In Alzheimer’s disease, the brain also forms tangles of hyperphosphorylated and 

aggregated tau protein.  The severity of these tangles during AD is the most highly correlated 

disease pathology with cognitive decline (Arriagada et al 1992).  However, since mutations in 

MAPT, the gene which encodes the tau protein, cause frontal temporal lobe dementia and not 

Alzheimer’s disease, it is hypothesized that these tangles are an effect of Alzheimer’s disease 

and not the cause.  Tau is thought to play an important role in the eventual induction of neuronal 

cell death during neurodegeneration since tau deletion in mice expressing mutant APP and 

PSEN1 reduces neuronal and synaptic loss (Leroy et al 2012).  Israel et al (2012) observed 

increased phosphorylated tau in proportion to total tau in one of the SAD patient lines, but not 

the other.   

Loss of neurons and synapses in the brain is the third hallmark of the Alzheimer’s 

disease brain, especially in the entorhinal cortex, dentate gyrus, and hippocampus with 64% loss 

of neurons in Layer II of the entorhinal cortex in mild cognitive impairment when the cognitive 

deficits of Alzheimer’s disease are first becoming apparent (Kordower et al 2001).  There are 

many hypotheses for the mechanism by which cell death is induced in Alzheimer’s disease, 

including mitochondrial dysfunction, excitotoxicity, oxidative stress, and intracellular calcium 

dynamics however it is unknown if the neurons of sporadic Alzheimer’s patients are more 

susceptible to stress or just undergo greater stress to induce cell death.  Therefore, we tested the 
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neural progenitor cells for increased apoptotic response to oxidative and genotoxic stress to 

examine if there is increased intrinsic susceptibility to cell death.    

Based on our observation of increased neuronal differentiation in the SAD neurons, we 

wonder if these pathologies could result from aberrant activation of a developmental pathway.  

There is evidence that the important proteins in the pathogenesis of Alzheimer’s disease may 

also play an important role in neuronal development.  APP is the precursor for the 

amyloidogenic Aβ, but its endogenous role remains unclear although it has been shown to limit 

neurite outgrowth and trigger neuronal cell death (Nikolaev et al 2009, Young-Pearse et al 

2008).  Stable overexpression of APP in hESCs causes rapid differentiation along the neuronal 

lineage to induce expression nestin and β-tubulin III even in the presence of normal ES media 

through the actions of an N-terminal secreted form of APP (sAPPβ) which is released by the β-

secrestase (Freude et al 2011).  Clearly, APP can modulate neuronal differentiation in many 

ways that have yet to be fully elucidated.   

Tau phosphorylation also may play a role in neuronal development.   Tau is highly 

phosphorylated in fetal neurons at sites specific to development which decrease with age (Brion 

et al 1994, Yu et al 2009a).  The same developmentally-associated phosphorylation sites are 

also seen phosphorylated in the pathological tau of Alzheimer’s disease.   Levels of tau 

phosphorylation are also quite high in areas of adult neurogenesis, with the 

hyperphosphorylated tau colocalizing with doublecortin and possibly playing an important role 

in neuronal migration (Fuster-Matanzo et al 2009).  This early neuronal tau phosphorylation 

may be important in axonogenesis, since tau is differentially expressed along a growing axon 

where it is highly phosphorylated in the cell body of maturing neurons (about 80% of studied 
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sites) but not at the growth cone, where only 20% of those sites are phosphorylated (Mandell & 

Banker 1996).   

Thus the pathological proteins of Alzheimer’s disease may also affect neuronal 

development, suggesting that there it could be disruption of the neuronal differentiation process 

that leads to the development of Alzheimer’s disease in the human brain.  By comparing the 

differentially expressed genes from our differentiating neurons to both the genes associated with 

the onset of Alzheimer’s disease and the gene expression changes seen in the AD brain, we may 

gain insight into the dysfunction that leads to the development of sporadic Alzheimer’s disease.   

Materials and Methods 

Aβ ELISA: Levels of Aβ40 and Aβ42 were quantified in media conditioned for 5 days on either 

the neural progenitors or neuronal culture using their respective ELISA kits according to the 

manufacturer’s guidelines (Life Technologies).  Two dilutions were made for each sample and 

Aβ levels were compared to a standard curve specific to each experiment.  The Aβ levels were 

normalized to the total protein levels in the culture, harvested immediately after conditioned 

media harvest and quantified using a DC protein assay kit (Bio-Rad).   

Quantitative RT-PCR and Primers: qRT-PCR was performed as described in Chapter 3. All 

neurons were differentiated on polyornithine/laminin coated polystyrene tissue culture plates.  

The below new primers were used.   

Primer Target Forward Sequence Reverse Sequence 

MAPT TGGCGGAGGAAATAAAAA GACACCACTGGCGACTTG 
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Western blotting: Western blotting was performed as described in Chapter 3.  The following 

additional antibodies were used.   

Target Host Source Catalogue # Dilution 

APP Rabbit Life Technologies 36-6900 1:1000 

Actin Rabbit Sigma A2066 1:5000 

Total Tau (Tau-5) Mouse Life Technologies AHB0042 1:500 

Phospho-Tau 
(Thr231) 

Rabbit Millipore AB9668 1:1000 

Phospho-Tau 
(Thr205) 

Rabbit MBL International AT-5016 1:1000 

 

Cell Viability: Cell viability was measured using the CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay (Promega) according to the manufacturer’s guidelines after treatment with 

camptothecin, etoposide, or hydrogen peroxide with ferric chloride to induce cell death in 

confluent neural progenitor cultures in 96-well plates.  In this assay, the MTS (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) reagent 

is converted into a colorimetric formazan product by living cells.  The MTS reagent was 

incubated for 2 hours with fresh NP media in the cells after treatment for 5 or 24 hours.  The 

plates were then mixed on an orbital shaker to evenly distribute the colorimetric product before 

measuring the product by absorbance at 490 nm.  All treatments were compared to untreated 

controls of the same cell line.  At least 4 wells were averaged for every line at each time point 

and treatment.   

Results 

A.  Generation of Aβ in neural progenitors and neurons 

Levels of Aβ40 and Aβ42 were measured in both neural progenitors and neurons.  Aβ40 

levels were significantly increased in the SAD lines (p = 0.041), but Aβ42 levels were below the 
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accurate detection limits of the ELISA (Figure 5.1a).  This difference is not due solely to an 

increase in APP protein level, since the levels are not significantly different between the SAD 

and NL lines (Figure 5.1b).  However, the SAD line with the highest Aβ40 generation also has 

the highest APP protein levels (SAD3.1), indicating that this could partially explain the 

increased Aβ40, at least in that line.   

Aβ40 and Aβ42 are not significantly different in 5-week differentiated neurons, although 

SAD3.1 remains the highest producer of Aβ40 (Figure 5.1c).  Interestingly, the most consistent 

result in the 5-week neurons is a decreased ratio of Aβ42:Aβ40 in the SAD neurons (p = 0.003) 

(Figure 5.1d).  FAD1.1 is an important control because the highest ratio of Aβ42:Aβ40 is seen 

in this line, as has been previously shown for the PSEN1 L286V mutation (Citron et al 1997).  

APP protein levels are not significantly different between the NL and SAD neurons, although 

SAD3.1 continues to have the highest APP levels, possibly indicating a pathogenic method of 

APP expression regulation.   
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B.  Tau in neural progenitors and neurons 

MAPT, the gene which encodes the tau gene, was one of the strongest hits in the 6-week 

neuronal microarray with 4 probes showing an average 3.7-fold increase in MAPT expression in 

the SAD lines (Supplementary Table 10).  Therefore, MAPT expression levels were measured at 

both the neural progenitor and 6-week neuronal stage.  There was a significant increase in 

MAPT expression in the SAD patient lines even at the neural progenitor stage with both the 

single clones and multiple clones (p = 0.048 and p = 0.0001, respectively) (Figure 5.2a,b).  The 

difference at the 6-week neurons was less robust although overall expression levels were highly 

increased.  Although the lines that were analyzed by microarray showed a significant increase in 

MAPT expression in the SAD lines, extending the cohort minimized this differences since NL 

(17a Eg), NL (20b Eg), and NL (NDC2.3 Gs) all had levels of MAPT expression similar to the 

SAD lines (Figure 5.2c).  Since the difference in MAPT expression spans many orders of 

magnitude, the significance of the difference following log2 transformation shows a significant 

increase in SAD MAPT expression (p = 0.04).   

Both tau overall protein levels as well as phosphorylation levels at a few important 

residues were quantified in neural progenitors and neurons using western blotting.  Tau is a 

complicated protein with extensive alternative splicing and over 80 possible phosphorylation 

sites (Wang et al 2013).  In these blots, proteins from 45-75 kDa are shown, corresponding to 

the adult isoforms of the tau protein (Buee et al 2000).  Tau protein levels in neural progenitors 

are quite low, however a significant increase in total tau expression is seen in the SAD lines (p 

= 0.002) (Figure 5.3a,b).  This difference is not seen in blots for antibodies specific for two 

different phosphorylated tau residues: threonine 231 and threonine 205 (Figure 5.3c-f).  

Phosphorylation at both Thr231 and Thr205 mediates the assembly of tau filaments which are  
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the major component of neurofibrillary tangles in the AD brain (Rankin et al 2005, Wang et al 

2007a).  SAD neural progenitors had no change in the levels of phosphorylated tau.   

In the 6-week differentiated neurons, there is a trend towards increased total tau protein 

levels, but it is not statistically significant (p = 0.085) (Figure 5.4a,b).  Levels of phosphorylated 

Thr231 tau are significantly increased in the SAD neurons (p = 0.015) (Figure 5.4 c,e), although 

levels of phospho-Thr205 are not increased significantly (p = 0.17) (Figure 5.4d,f).  Overall, 

total tau protein and mRNA levels are significantly increased in SAD lines, especially in the 

neural progenitors, but these differences lessen during differentiation.  This is similar to the 

pattern of other neuronal marker such as DCX.  However, differences in phosphorylated tau 

levels at Thr231 are only significant in the differentiating neurons, suggesting that this process 

may be specific to the SAD neurons.  
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C. Cell death in response to stress in neural progenitors 

Neurons in the brain are predominantly post-mitotic and irreplaceable, so preventing 

loss of these cells is an integral process to normal brain functioning.  However, loss of neurons 

is the predominant pathological outcome of Alzheimer’s disease, causing severe disruption to 

normal brain function during the neurodegenerative process.  Therefore, we wondered whether 

SAD neuronal cells had increased susceptibility to stress and were more likely to undergo an 

apoptotic response.  Neural progenitors from three SAD and three NL patients were subjected to 

oxidative and genotoxic stress.  Oxidative stress, induced by hydrogen peroxide in conjunction 

with ferric chloride to catalyze the production of reactive oxygen, causes a dose-dependent 

increase in cell death (Figure 5.5a).  However, there is no difference between the SAD and NL 

lines with an insignificant trend towards increased survival in the SAD lines.   

Genotoxic stress was induced using camptothecin and etoposide.  Both of these drugs 

are used in the treatment of cancers due to their ability to induce cell death in dividing cells by 

inhibiting topoisomerase I and topoisomerase II, respectively, and causing damage to the DNA 

(Baldwin & Osheroff 2005, Pommier 2006).  These treatments also reduced cell survival in a 

dose-dependent manner, but there was no significant difference in response between the AD and 

NL neural progenitors (Figure 5.5b).  Together, these results suggest that differences in 

apoptotic response to oxidative or genotoxic stress is not important in the pathogenesis of 

Alzheimer’s disease, although the mechanism controlling this response in differentiated neurons 

may be different.   
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D. AD susceptibility genes and the SAD microarray 

Multiple genes associated with Alzheimer’s disease are differentially regulated in the 

neuronal cells derived from SAD and NL patients.  APOE is down-regulated 1.7-fold in the 

SAD NPs and MAPT is up-regulated 3.7-fold in the SAD 6-week neurons.  SORL1 (sortilin-

related receptor) is up-regulated 1.7-fold in the SAD neurons.  SNPs in SORL1 are associated 

with the development of AD, but they result in the down-regulation of SORL1 expression 

(Rogaeva et al 2007).  It is a cell-surface receptor in the APOE receptor family which has been 

implicated in the processing of APP (Hoe & Rebeck 2008, Offe et al 2006).   

F-spondin (SPON1), the most highly up-regulated gene in the SAD neurons interacts 

with the APOER2 and APP, causing decreased Aβ production (Hoe et al 2005).  The SPON1 

gene has been shown to improve memory performance and mice and a SNP in the gene is 

associated with milder clinical dementia scores and a lower risk of Alzheimer’s disease (Hafez 

et al 2012, Jahanshad et al 2013).   

SYT4 (synaptogamin IV) is up-regulated in the SAD neural progenitors (both microarray 

analyses) and neurons.  It has also found to be up-regulated in neurons in a transgenic mouse 

model of Alzheimer’s disease which overexpresses a mutant APP after the formation of plaques 

(Tratnjek et al 2013).   

Some AD risk genes that have been identified by GWAS are not differentially expressed 

in the 6-week neurons, but closely related genes are (Lambert et al 2013).  EPHA1 has a nearby 

SNP associated with AD, while EPHA2 and EPHA3 are both differentially expressed in the 6-

week SAD neurons, and EPHA3, EPHA4, EPHA7, and EPHB1 are differentially expressed in 

the SAD neural progenitors (all up-regulated).   PTK2B is located nearby a SNP associated with 

AD, and PTK2 is down-regulated 2.5-fold in the SAD neurons.  The PTKs are both kinases that 
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mediate the attachment of cells to the extracellular matrix, controlling cell migration and 

adhesion (Lim et al 2008).  Finally, a SNP near CELF1, an RNA-binding protein, has been 

associated with the onset of AD, while CELF4, CELF5, and CELF6 are all up-regulated in the 

SAD neurons.   

Using Ingenuity Pathway Analysis, APP, MAPT, and APOE were all identified as 

upstream regulators that are affected in the SAD 6-week neurons (Supplementary Table 13).  

APOE had an activation score of 2.35, APP had an activation score of -1.4, while MAPT didn’t 

have a predicted activation state, but was highly significant with a p-value of 0.009 in the gene 

list.  The affected downstream genes that were differentially expressed in the 6-week 

differentiated neurons were extracted and mapped using Cytoscape software (Figure 5.6).  This 

chart shows that the interactions of APP, APOE, and MAPT are highly interconnected and that 

those interactions are enriched in the genes differentially expressed in the 6-week differentiated 

neurons.   

Together, the relationship between the genes associated with the risk of AD 

development, AD pathologies, and the gene expression changes in the 6-week differentiated 

neurons suggest an interconnected pathway that may be disrupted during the development of 

Alzheimer’s disease.  The premature differentiation seen the iPS-derived neuronal cells from 

SAD patients may be a manifestation of the changes that will lead to neurodegeneration during 

the progression of Alzheimer’s disease.   
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E. Gene expression changes in the AD brain 

Many studies have shown gene expression changes in the post-mortem AD brain 

(Blalock et al 2004, Colangelo et al 2002, Ginsberg et al 2000), but there has been some 

conflicting results.  In Colangelo et al (2002), comparison of gene expression in the CA1 region 

in AD and control show a generalized decrease in transcription, including decreases in 

transcription factors, neurotrophic factors, and synaptic plasticity genes, but increases in 

apoptotic and neuroinflammatory genes.  In Ginsberg et al (2000), the gene expression in 

neurons bearing neurofibrillary tangles from the CA1 were compared to normal CA1 neurons 

from control brains.  They saw reductions in gene expression of cytoskeletal, synaptic, and 

glutamate receptor genes.  These results are all dissimilar to the 6-week differentiated neuron 

microarray in which we observed up-regulation of synaptic and other neuronal genes, however 

the gene expression changes seen in the advanced stage of Alzheimer’s disease may be very 

different than those seen in the earliest stages.   

Studies that attempt to look at the earlier stages of AD development do see an up-

regulation of some gene ontology categories.  Blalock et al (2004) observed that there was up-

regulation of genes involved in proliferation and differentiation as well as adhesion, apoptosis, 

lipid metabolism, and inflammation in early hippocampal AD neurons.  Some of the up-

regulated genes were similar to what we observed in the SAD neurons derived from iPS cells, 

including up-regulation of ASCL1, but there wasn’t a large overlap.   

A more recent study from Berchtold et al (2014) found that gene expression in four 

brain regions, but especially the entorhinal cortex, show an increase in synaptic, energy 

generation, and protein homeostasis genes in mild cognitive impairment that is not seen in age-

matched control or later AD brains.   Many genes showed a distinct pattern of decreased 
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expression in the normal aging brains, increased in MCI, and then decreased again in the later 

stages of AD which may explain the inconsistent results seen in earlier AD brain microarrays.  

Some of the genes associated with a worse mini–mental state examination (MMSE) score 

include those up-regulated in our SAD neural progenitors or neurons such as SNAP25 and 

EPHA4.  Many of the MCI up-regulated genes are traditionally associated with enhanced 

cognitive function, much like the up-regulated genes in the 6-week neurons.   

When we overlap the gene expression changes in the SAD 6-week differentiated 

neurons with the genes that are differentially expressed in the prefrontal cortex during AD (Tao 

Lu, unpublished results), we see an interesting pattern (Figure 5.7).  The up-regulated SAD 

genes from the 6-week neurons are also up-regulated in AD, but not the aging brain.  These 

same genes are also up-regulated in the young brain, but not to the same extent as the AD brain.  

The down-regulated 6-week neuronal genes do not show as clear a pattern, with the genes 

appearing to still be up-regulated in the AD brain with inconsistent expression in the younger 

brains.  Therefore, it seems that the up-regulated genes of the 6-week SAD neurons may be 

more consistent with the changes occurring in the AD brain and help distinguish the AD brain 

from age-matched controls.  These up-regulated genes are enriched for genes associated with 

neuronal activities, including synaptic function, neurogenesis, and cell adhesion (see Figure 

4.7d).  An important caveat is that the gene expression profiles are in the prefrontal cortex 

which is affected during the later stages of AD, not the hippocampus or entorhinal cortex where 

most of the AD pathology begins and where Berchtold et al. (2014) saw the strongest up-

regulation of neuronal genes in MCI.   
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Conclusions and Discussion 

 The neuronal cells derived from SAD patients recapitulate some, but not all the 

pathologies associated with AD in the human brain.  These differences provide data in support 

and opposition to several well-established hypotheses for the development of AD. 

Aβ40 production is increased in the neural progenitors, but Aβ40 and Aβ42 levels are 

not significantly enhanced in 5-week differentiated neurons.  However, the ratio of Aβ42:Aβ40 

is decreased, which contradicts the amyloid cascade hypothesis in which increased relative 

generation of Aβ42 and its resulting toxicity is thought to cause AD.  Although it may play an 

important role of the development of FAD, particularly in patients with PSEN mutations, based 

on this data Aβ42 production does not to appear to be modulated in neurons derived from SAD 

patients.  However, there is still a trend towards increased overall Aβ generation and/or 

decreased clearance which may be more significant at later stages of neuronal differentiation, so 

a possible difference in overall Aβ levels cannot be ruled out for mature neurons.   

 Tau protein and mRNA levels are increased in the neural progenitors, consistent with the 

premature neuronal differentiation seen in the NP culture.  This difference is reduced in the 

differentiating neurons, indicating it may be a transient disparity during differentiation.  

However, phosphorylated tau levels, specifically at residue Thr231, are increased in the SAD 

neurons.  Although it is unclear what this increased phosphorylation may mean functionally, it 

is consistent with what is seen in both the developing brain during differentiation and 

pathologically during Alzheimer’s disease.   

 There is no difference in susceptibility to apoptosis in neural progenitors following 

genotoxic or oxidative stress, thus providing evidence against the hypothesis that AD neuronal 

cells have increased vulnerability to these stressors.  An important caveat is that these results are 
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in dividing neural progenitors and not post-mitotic and long-lived neurons which have different 

priorities for cellular maintenance and preventing apoptosis (Barzilai 2007).   

 The interconnections between the genes related to AD susceptibility and the 

differentially expressed genes in the 6-week differentiated neurons suggest that modulations in a 

common pathway may be causing the development of sporadic Alzheimer’s disease.  The 

function of this common pathway has not been fully elucidated, but APP, APOE, their 

receptors, and other proteins that modulate their activity in the extracellular matrix, such as f-

spondin, are highly enriched in both AD susceptibility genes and the gene expression changes 

seen in SAD iPS-derived neurons.  A change in neuronal differentiation is an attractive 

candidate for an affected pathway, since we observe a functional difference between the SAD 

and NL patient derived cells in which SAD cells prematurely differentiate out of the neural 

progenitor stage and show earlier neuronal function through the formation of action potentials 

and synapses.   

 Finally, the comparison of the gene expression profile in the 6-week differentiated 

neurons to the prefrontal cortex of the AD brain shows the greatest correlation in the up-

regulated SAD genes, which are down in age-matched controls, but not the young brain.  From 

Chapter 4, the up-regulated genes are particularly enriched for genes related to synaptic and 

other neuronal functions.  Together, with the recent microarray results from Berchtold et al 

(2014) showing up-regulation of synaptic genes in the entorhinal cortex and the hippocampus 

during MCI which inversely correlate with cognitive function, it suggests the possibility that the 

increase in neuronal genes in SAD is not just a difference in neuronal timeline, but may be 

related to the changes seen during the early stages of AD development.    
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Contributions 

Tao Lu performed all the AD and aging brain microarray experiments and analyzed their 

similarity to the gene expression differences seen in the 6-week differentiated neurons.   
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Chapter 6: Investigations into a mechanism 

Abstract 

Since the phenotype of premature neuronal differentiation is shared by cells from different SAD 

patients, the next question is whether this difference derives from the same mechanism or 

different mechanisms in each patient cell line.  The transcriptional regulation of the differentially 

expressed genes is bioinformatically predicted to have a conserved effector during neuronal 

differentiation: REST/NRSF, a transcriptional repressor which is the most significant regulator 

of the up-regulated genes.  Although expression of this transcription factor is not different 

between SAD and NL neuronal cells, there is decreased binding in the promoter of the highly up-

regulated DCX in neural progenitors.  Also, overexpression decreases both DCX and MAPT 

expression, making it an attractive candidate for modulating the SAD gene expression profile.  

Other mechanisms tested, including modulations in GSK3β activity and effects of media 

conditioned by SAD and NL lines have no significant effect on the expression of neuronal 

differentiation genes.   

Introduction 

 It was quite surprising to discover such a strong shared phenotype in cells derived from 

patients that developed Alzheimer’s disease sporadically without a known genetic cause.  The 

shared gene expression profile of up-regulated early neuronal differentiation genes is strongly 

conserved throughout the different SAD patients, but the entire gene profile is not shared.  This 

is evidenced by the relative small overlap of significant genes between the neural progenitor 

microarrays from one clone from many individuals versus multiple clones from fewer 

individuals.  This dichotomy suggests that there may be different mechanisms for the same 

shared inclination towards neuronal differentiation.   
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 Therefore, multiple signaling pathways were analyzed to investigate possible shared or 

specific mechanisms that cause the premature differentiation.  First, the significant transcription 

factors predicted to regulate the differentially expressed genes were probed to see if there is 

consistent and shared change in regulation activity which may explain the gene expression 

changes seen.   

 REST/NRSF (repressor element 1-silencing transcription factor/neuron restrictive 

silencing factor) was identified as a highly significant transcriptional regulator of the up-

regulated genes. REST is a transcriptional repressor of neuronal genes, which prevents the 

expression of those genes in non-neuronal cells (Schoenherr & Anderson 1995).  During 

development, REST coordinates both the transition from pluripotent cell to neural progenitor and 

from progenitor to mature neuron through changes in both expression levels and binding (Ballas 

et al 2005).  Recently, REST was identified in the Yankner laboratory as an important regulator 

of aging in the brain, but its activity is lost during Alzheimer’s disease (Lu et al 2014).  In 

addition to its role in regulating neuronal differentiation, Lu et al (2014) also found a 

neuroprotective role for REST, where increased expression protects against oxidative stress and 

Aβ-mediated toxicity, thus making it a particularly attractive target for affecting the pathogenesis 

of Alzheimer’s disease.   

 Another signaling pathway that has been long associated with neuronal development is 

the Wnt signaling pathway (Inestrosa & Varela-Nallar 2014).  In the canonical Wnt pathway, 

Wnt ligands binds its receptor Frizzled (Fz) and the associated co-receptor LRP5/6 to activate 

disheveled, which inhibits the GSK-3β kinase and preventing the phosphorylation and 

subsequent degradation of β-catenin.  This allows β-catenin to translocate to the nucleus where it 

activates Wnt target genes, including those genes important in synaptogenesis and synaptic 
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plasticity, as well as neurogenesis in the adult SGZ and SVZ.  GSK3β activation can also be 

induced by Aβ and increase the phosphorylation of tau (Resende et al 2008).  Israel et al. (2012) 

showed increased activation of GSK3β in neurons derived from the two APP duplication lines 

and one of the sporadic Alzheimer’s disease lines.  Also, REST activation is induced by Wnt 

signaling and inhibition of GSK3β (Lu et al 2014), making modulations in this pathway an 

attractive target for dysregulation during neuronal development or the progression of 

Alzheimer’s disease.   

Neurons and neural progenitors secrete a variety of extracellular factors, including those 

involved with cell-cell interactions, molecular chaperone proteins, and redox proteins  (Schubert 

et al 2009).  To see if the difference in the neuronal differentiation between the SAD and NL 

lines was due to either increased secretion of a soluble factor or enhanced depletion of a factor in 

the media, media conditioned on both SAD and NL lines was transferred to SAD neural 

progenitors to see if this would affect the expression of neuronal markers.   

By identifying an upstream pathway that could be modulated, this may allow future 

therapeutics to be developed that could prevent the onset of Alzheimer’s disease.   
 

Materials and Methods 

Western blotting: Western blotting was performed as described in Chapter 2.  The following 

novel antibodies were used.   

Target Host Source Catalogue # Dilution 

REST Rabbit Millipore 07-579 1:500 

β-catenin Rabbit Cell Signaling 9587 1:2000 

β-lamin Rabbit Abcam ab16048 1:5000 
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Nuclear Fractionation: Cells were harvested in PBS containing protease and phosphatase 

inhibitors before resuspending in hypotonic buffer (10 mM HEPES and 10 mM KCl) for 15 

minutes on ice.  The cells were homogenized using a dounce homogenizer with pestle size B.  

The homogenized sample was spun at 2000 x g at 4º for 10 minutes and the nuclear pellet was 

resuspended in RIPA-DOC buffer with 1x PhosSTOP (Roche), 1x cOmplete protease inhibitor 

(Roche), 0.5% SDS, and 25 U/100 uL Benzonase (Millipore).  The mixture was incubated at 

room temperature for 10 minutes before addition of sample buffer and loading.    For each 

sample, some of the cells were removed and treated with the nuclease Benzonase (Millipore) 

following homogenization and centrifugation to obtain cytoplasmic and whole cell fractions to 

compare to the nuclear fraction to ensure successful fractionation.     

Chromatin Precipitation (ChIP) PCR: The ChIP assay was performed as previously described 

(Lu et al 2014).  Neural progenitors cells were cross-linked using 1% formaldehyde at room 

temperature for 10 minutes.  The reaction was stopped by addition of 1.25 M glycine to a 

concentration of 125 mM and washed twice by centrifugation.   The cell pellet was dissolved in 

SDS lysis buffer (1% SDS, 10 mM EDTA, and 50 mM Tri-HCl, pH 8.1) and the genomic DNA 

sheared by sonication (Biorupter) at the intensity required to create 300-1000 bp fragments, 

previously verified for the samples through agarose gel.  The sonicated samples were spun down 

for 10 minutes at 15,000 x g at 4º C.  The supernatant was diluted 1:10 in ChIP dilution buffer 

(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 167 mM NaCl, 16.7 mM Tris-HCl, pH 8.1) 

and precleared with Protein A Sepharose beads (Life Technologies) before adding REST-

antibody conjugation beads.  5% of the sheared DNA was reserved as input control.  The 

sample/beads was incubated for 12 hours with rocking at 4º C and then washed twice with  low 

salt wash buffer and once with high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM 
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EDTA, 150 mM NaCl or 500 mM NaCl, 20 mM Tris-HCl, pH 8.1).  The beads were washed 

once with LiCl wash buffer (0.25 M LiCl, 1% NP-40, 1% deoxycholic acid, 1 mM EDTA, 10 

mM Tris-HCl, pH 8.1) and twice with TE buffer (1 mM EDTA, 10 mM Tris-HCl, pH 8.1).  The 

beads were then incubated with elution buffer (1% SDS, 0.1 M NaHCO3) for 30 minutes with 

rocking and vortexed every 10 minutes.  The supernatant was transferred to a new tube and 5 M 

NaCl was added, followed by de-crosslinking at 65º C for 4 hours.  The eluted preparation was 

treated with RNase A for 10 minutes at room temperature followed by treated with proteinase K 

and 0.5 M EDTA for 1 hour at 55º.  DNA was isolated using the Qiagen PCR purification kit and 

PCR was run using primers directed to the RE1 binding site of DCX.   

Antibody: ChIPAb+ 
REST Millipore Cat. #: 17-641 

Primers: DCX-
RE1 F: AGGAAGGGAAGCTGGATTGT R: CAAGAGAAAGGCACTGGCATA 

 

REST Overexpression: pHAGE-CMV-Flag-REST-IRES-ZsGreen plasmid was used for REST 

overexpression (Mulligan et al 2008) and transduced into SY5Y cells and the neural progenitors 

using lentiviruses. 

Conditioned Media Assay: For conditioned media transfer assays, neural progenitor cells from 

lines NL2.1 and SAD2.1 were grown to near confluency before fresh NP media was added.  The 

NP media was conditioned for 3 days before it was removed and centrifuged to remove any 

contaminating cells.  The media was transferred onto a plate containing neural progenitors of line 

SAD3.1 with four wells per condition: no media change control, fresh media at 24 hours, 6 hours 

and 24 hours with SAD-conditioned media, and 6 and 24 hours with NL-conditioned media.   
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The media on the SAD3.1 cells no media change had been added at the same time as the media 

for conditioning, for a total of 4 days.  It was removed and re-added to the cells to control for any 

mechanical effects from media removal.  RNA was harvested after the prescribed time using 

Cells-to-cDNA lysis buffer (Life Technologies).   
 

Results 

A. Transcription factors regulating SAD gene expression 

The MetaCore transcription factor analysis tool uses the transcriptional regulation 

interactions in its database in order to calculate the significance of each transcription factor.  The 

most significant transcription factors were calculated for the SAD differentially expressed genes  

in both the neural progenitor (single clone) and 6-week differentiated neuron microarray analyses 

(Figure 6.1a).  There was only one shared transcription factor that was significant for all genes in 

both the neural progenitors and neurons: REST/NRSF.  It was also the most significant 

transcription factor of the up-regulated genes for both types of neuronal cells with a p-value of 

5.7x10-9 for the NPs and 2.2x10-17 for the neurons.   

Since REST is a transcriptional repressor, the fact that its targets are enriched in the up-

regulated genes suggests that REST activity is decreased.  However, the MetaCore database only 

contains a subset of the recognized REST targets.  Therefore, the canonical REST target genes 

identified in Bruce et al (2004) were overlapped with the differentially expressed genes in the 

three neuronal microarray analyses (Figure 6.1b).  The plots show the fold change of each REST 

target within the differentially expressed gene lists.  The majority of the REST-targeted genes are 

up-regulated in each gene list with fold changes significantly greater than the down-regulated 

genes.  This supports the down-regulation of REST activity, at least at most of its targeted genes.   
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B.  REST expression and activity 

In neural progenitors, REST activity is thought to be primarily regulated by expression 

levels (Ballas et al 2005), however the microarray analyses showed no difference in REST 

mRNA expression between SAD and NL neural progenitors or neurons which was confirmed by 

qRT-PCR (data not shown).  Therefore, western blotting was used to quantify the amount of 

REST protein to see if there could be a difference in regulation at the protein level, which is 

decreased in the AD brain (Lu et al 2014).  But there was no difference in REST protein levels in 

either the neural progenitors or neurons in the SAD line (Figure 6.2a,b).  REST is active in the 

nucleus and localization has been shown to be disrupted in AD, so we also looked at REST 

expression only in the nucleus following cellular fractionation.  Unlike in the AD brain, there 

was no difference in REST levels in the nucleus (Figure 6.2c,d).   

However, since so many REST targets are differentially expressed, we decided to look 

directly at REST binding at the repressor element 1 (RE1) site in the promoter of one the 

strongest differentially expressed genes in the neural progenitor microarray, DCX, which is a 

REST target.  Chromatin immunoprecipitation (ChIP) using antibodies for REST protein was 

used to isolate the DNA cross-linked to the REST proteins.  The DNA was then separated and 

PCR with primers specific to the DCX-RE1 site shows increased REST occupancy in the DCX 

promoter in NL neural progenitor lines (p = 0.039) (Figure 6.2e).  Therefore, even though there 

isn’t a difference in REST expression or localization, there is a decrease in REST function in the 

SAD neural progenitors, at least at the DCX gene.   

Next, the functional effects of modulations in REST activity were tested through REST 

overexpression in neural progenitors and SY5Y cells, a neuroblastoma cell line.  Two neural 

progenitor lines were transduced with the REST overexpression vector: NL2.1 and SAD 
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(SAD2.4 Gs).  They both showed a substantial increase in REST mRNA levels at 10 days 

following transduction (Figure 6.2f).  Furthermore, REST overexpression decreased DCX 

expression significantly in both lines supporting its role in repressing DCX expression.  

However, even with the increased REST expression, DCX  levels were still significantly higher 

in the SAD (SAD2.4) neural progenitors, indicating that either decreased REST is not the only 

factor mediating the increase in DCX expression in SAD (SAD2.4 Gs) or that increasing overall 

expression of REST isn’t enough to change its binding to the DCX promoter.   

REST was also overexpressed in SY5Y cells and the levels of REST and tau protein were 

measured using western blotting (Figure 6.2g,h).  MAPT has an RE1-site and is targeted for 

repression by REST (Bruce et al 2004).  REST overexpression greatly decreased the amount of 

tau protein expression in the SY5Y cells, supporting that the mechanism of reduced MAPT 

expression in the SAD neuronal cells may be related to decreased REST binding.  Although 

REST expression is not different between SAD and NL cells, differences in REST occupancy 

and the functional effects of modulating REST expression indicates that it may still play a 

significant role in regulating the neuronal differentiation in the SAD lines.    
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C. β-catenin signaling in neural progenitors 

There is some evidence from the gene expression profile for differences in Wnt signaling 

in the SAD neurons.  WNT4, a Wnt ligand that has not been widely studied in the CNS, is up-

regulated 4.4-fold and SFRP4 (secreted frizzled-related protein 4), an inhibitor of Wnt signaling, 

is down-regulated 4-fold in the SAD neurons.  Wnt signaling was also identified as an enriched 

process network in both the up- and down-regulated 6-week neuronal genes.  Together, these 

changes suggest that Wnt signaling may be affected in SAD neurons, although whether the effect 

is an activation or inhibition remains unclear.  GSK3β was shown to be activated in AD neuronal 

cells (Israel et al 2012) as well as the AD brain, which is consistent with a down-regulation of 

Wnt signaling.   

GSK3β kinase activity was inhibited using lithium chloride (LiCl) and the more specific 

CHIR9904 at doses recommended as effective to inhibit GSK3β in neuronal cells (Tau Lu, 

personal communication).  Two SAD and two NL lines were treated and there was not a 

significant difference in DCX or ASCL1 expression following treatment with LiCl or CHIR9904, 

although levels were quite variable (Figure 6.3a).  One time point (7 hours of 5 mM LiCl 

treatment) showed the strongest variability, leaving the possibility that it was affecting the 

neuronal gene expression differentially in the SAD and NL neural progenitors.  Therefore, that 

treatment was repeated in more detail using three wells for each line and treatment.  DCX 

expression levels were highly consistent between the different wells for each line and LiCl 

treatment had no effect on its expression (Figure 6.3b).  Therefore, GSK3β inhibition does not 

appear to change the expression on the early neuronal genes in the SAD neuronal cells.   

Next, we looked directly at β-catenin localization to the nucleus.  When β-catenin isn’t 

phosphorylated by GSK3β, it avoids degradation and translocates to the nucleus where it can 
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induce gene expression.   Therefore, nuclear localization of β-catenin is a direct read-out of Wnt 

signaling.  In SAD and NL neural progenitor nuclei, there is no difference in β-catenin 

localization (Figure 6.3c,d).  Together, the lack of effect on neuronal differentiation genes from 

GSK3β inhibition and absence of differences in β-catenin in the nuclei of SAD and NL neural 

progenitors strongly suggests that Wnt signaling is not an important modulator of the increased 

neuronal phenotype seen in the SAD neuronal cells.   
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D. Effects of conditioned media on neuronal gene expression 

Many of the upstream pathways predicted to be different in the SAD NPs and neurons by 

Ingenuity Pathway Analysis involve secreted factors.  Many growth factor signaling pathways 

are predicted to be down-regulated, including EGF, FGF2, TGFβ, VEGF, and PDGF, as well as 

the cytokine IL-1b. The differentially expressed receptor genes for the growth factor and 

cytokine signaling pathways are all down-regulated in SAD neurons (KDR, LIFR, FGFR1, and 

IGF1R), however the ligands have a more complicated expression pattern with TGFB2 up-

regulated, although VEGFA and FGF2 are both down-regulated.  Significantly, receptors for 

both of the growth factors added to the NP media to prevent neuronal differentiation are down-

regulated in the SAD neurons.  Together, these results suggest that there could be a difference in 

either the production or utilization of growth factors or other secreted compounds in the media.   

To test this, media conditioned for three days by either SAD or NL neural progenitor 

cells were added to a growing culture of SAD3.1 (Figure 6.4).  Surprisingly, the strongest 

decrease in DCX and ASCL1 expression was seen simply through the exchange for fresh media 

in the control, indicating that depletion of factors in the media, such as bFGF/FGF2 and LIF, 

may be allowing the SAD lines to express more neuronal genes.  The conditioned media may 

also have an effect, although results were not significant.  SAD3.1 consistently has lower 

expression of ASCL1 and DCX after addition of the NL-conditioned media, raising the possibility 

that there are either secreted factors from the NL neural progenitors or less depletion of the 

growth factors in the media that is affecting the expression of neuronal genes in the SAD3.1 

neural progenitors.  This experiment could be expanded to more lines as well as include the re-

addition of exogenous growth factors to further delineate the mechanism and to see if 

significance could be achieved.   
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Conclusions and Discussion 

Investigations into the mechanisms regulating increased expression of neuronal genes in 

sporadic Alzheimer’s disease cells have provided clues, but no definitive answers.  Based on the 

lack of effect from GSK3β inhibition or changes in β-catenin nuclear localization, it is unlikely 

that differential Wnt signaling is involved.  The possible variance in response to media 

conditioned with SAD or NL neural progenitors provides an intriguing possibility for differences 

in modulations of the extracellular milieu in SAD neuronal cells, but it needs to be more 

thoroughly examined before any conclusions can be drawn.   

A change in REST activity in the SAD neural progenitors provides another interesting 

possibility for regulating neuronal differentiation.  Although REST expression levels and 

localization are not different in the SAD and NL lines, REST does have decreased binding to one 

of its highly up-regulated targets, DCX.  This difference, along with the functional results 

showing that increased expression of REST strongly decreases both DCX and tau expression in 

neural progenitors and SY5Y cells respectively, supports the capability of REST to regulate the 

expression of the SAD neuronal genes.   

Furthermore, the pattern of gene expression seen in the prefrontal cortex for the genes up-

regulated in the SAD 6-week neurons closely follows the pattern of REST targets in the brain 

(Lu et al 2014).  The REST targets are increased in the young brain, but decrease with advancing 

age, except in Alzheimer’s disease where the targets are again up-regulated.  This is the same 

pattern seen in Figure 5.7 for the SAD neuronal up-regulated genes, suggesting that decreased 

REST may be a shared mechanism in the SAD neurons and the AD brain.  The corresponding 

loss of neuroprotective effects from REST transcriptional repression may help explain the 

neurodegeneration seen in the AD brain.   
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However, since decreased REST expression is not the cause of the decreased activity, 

another factor must be regulating REST’s binding to the RE1-sites.  Regulation of REST activity 

is complicated.  In the transition from ES cells to neural progenitors, REST levels are reduced 

through posttranslational degradation and during the transition to a post-mitotic neuron REST 

expression is inhibited by the retinoic acid receptor (RARE) (Ballas et al 2005).   

REST activity is also modulated by the actions of its cofactors.  There are two classes of 

RE1-containing genes.  Class I genes have a binary control where REST recruits cofactors to the 

RE1 site, including Sin3, MeCP2, HDAC, and CoREST, but when REST dissociates, the entire 

repressor complex releases and gene expression commences.  Class II genes have a more 

nuanced control in which in addition to the REST complex, there is also a CoREST complex that 

is bound to a separate methylated site in the gene promoter.  REST can dissociate from these 

genes during neuronal differentiation, but repression will be maintained by the CoREST complex 

in an activity-dependent mechanism.  REST alone is not sufficient for gene silencing (Johnson et 

al 2008), therefore differential recruitment of the REST cofactors may result in the difference in 

REST target gene expression seen in the SAD neuronal cells.   
 

 

 

Contributions 

Tao Lu and Ying Pan performed the ChIP-PCR analysis on the harvested chromatin.  Tao Lu 

created the SY5Y lines that stably overexpress REST and GFP.  He also transduced and analyzed 

the NL2.1 and SAD (SAD2.4 Gs) neural progenitor lines overexpressing REST and GFP.   
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Chapter 7: Conclusions and discussion 

With the discovery of induced pluripotent stem cells and related technology, there is for 

the first time a method for generating and examining human neurons from patients that develop 

neurological dysfunction without a known genetic cause.  This is an incredible asset for a disease 

like Alzheimer’s disease in which despite the high prevalence, the vast majority of cases have no 

known cause.   

However, it is also surprising that one would see a difference in these cells.  Sporadic 

Alzheimer’s disease is typically not diagnosed until after the age of 65 in post-mitotic cells that 

have been present since development, thus having decades to develop the pathologies that lead to 

neurodegeneration.  Furthermore, it is unclear if all patients that develop Alzheimer’s disease 

share the same disease mechanism, which could make it challenging to find patterns in any 

differences seen in cellular behavior since it could be pathological or just a difference in that 

particular line that was unrelated to the development of AD.  The idea of recapitulating a disease 

that takes decades to develop in the human brain in a few weeks in culture dish does not seem 

entirely feasible.   

Therefore, the discovery of a shared phenotype of premature differentiation in the 

neuronal cells derived from sporadic Alzheimer’s disease patients was both surprising and 

intriguing as well as subject to rigorous confirmation.  It suggests there is a genetic or possibly 

epigenetic predisposition for the development of AD which can be modeled in vitro.   

A. Generation and characterization of Alzheimer’s disease iPS cells 

The greatest strength of this study is the large number of individuals studied compared to 

previous sporadic Alzheimer’s disease studies.  We derived iPS lines capable of differentiating 

into neurons from six age-matched control patients (NL), five sporadic Alzheimer’s disease 
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patients (SAD), and one familial AD patient (FAD) with a mutation in PSEN1 (L286V) using 

dermal fibroblasts acquired from the Coriell Cell Repository.  Both the sporadic and control 

patients had a variety of APOE genotypes, allowing for the analysis of possible effects due to 

differences in the APOE4 isoform.  One strength of this patient set is the relatively young age of 

onset for the sporadic AD patients, which may mean that any phenotype resulting in the 

development of AD would be stronger in these patients than those that develop the disease at an 

older age.   

The fibroblasts were reprogrammed into iPS cells using retroviral transduction of the 

Yamanaka factors.   The iPS cells express the pluripotency markers OCT4, TRA-1-81, SOX2, 

and NANOG, are capable of forming all three germ layers both in vitro and in vivo, and have 

mostly silenced the reprogramming factors.  Gene expression differences seen in the fibroblasts 

between the AD and NL patients in a subset of the SAD and NL fibroblast lines were completely 

erased through the reprogramming process.  Together, these results support that successful 

reprogramming has occurred and that the iPS cells are appropriate for later differentiation 

experiments.   

We also acquired additional iPS lines derived in other laboratories to both increase our 

sample size as well as provide evidence that the findings are not specific to cells derived in our 

laboratory.  We obtained two NL lines from the Harvard Stem Cell Institute iPS Cell Repository 

derived in the Eggan laboratory, as well as iPS lines from two NL and two SAD patients from 

the Goldstein laboratory (Boulting et al 2011, Israel et al 2012).  In all, we analyzed 10 NL lines, 

7 SAD lines, and 1 FAD line, the largest cohort of patients yet established for the study of 

sporadic Alzheimer’s disease.   
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B.  Increased markers of neuronal differentiation 

Neural progenitors (NPs) were differentiated from iPS cells through an embryoid body 

intermediate and use of the AMPK inhibitor, dorsomorphin.  The NPs expressed the neural stem 

cells markers of nestin, musashi, and SOX2, however gene expression profiling identified that it 

is not an entirely homogenous population.  The SAD neural progenitor cultures had increased 

expression of early neuronal markers, including ASCL1, DCX, and CD24.  Staining for the 

neuronal markers TUBB3 and DCX showed that a subset of cells were highly positive for the 

early neuronal markers and thus had undergone premature neuronal differentiation.  Fluorescent-

activated cell sorting for the early neuronal cell surface marker CD24 confirmed the increase in 

early neuronal population in the SAD neural progenitor culture.  The differences in gene 

expression seen in the SAD NPs did not overlap strongly with the differences seen in AD 

fibroblasts, suggesting that these changes are specific to the neuronal lineage.   

 Since this result was so novel and surprising, we needed to confirm that stochastic 

differences in the differentiation process was not the cause of the SAD lines showing higher 

neuronal markers and that it is specific to the patient.  Therefore, we differentiated additional iPS 

clones from four SAD and four NL patients, including the four lines acquired from the Goldstein 

laboratory.  Although the gene expression at the neural progenitor stage was variable between 

clones, the overall analysis confirmed a strong up-regulation of the early neuronal genes such as 

ASCL1 and DCX.  Enrichment analysis for both neural progenitor microarray analyses showed 

the most robust enrichment for genes related to neuronal development and neurogenesis.   

The neural progenitors were differentiated into neurons expressing β-tubulin III and 

MAP2 by the withdrawal of proliferation-inducing bFGF (FGF2) and LIF.  After 6 weeks 

differentiation, the cultures are predominantly glutamatergic with a subset of GABAergic 
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neurons.  There is also a small population of cells which expressed the glial marker GFAP, 

however it is unclear if these cells are astrocytes or radial glia cells that could differentiate into 

neurons.  The GFAP-positive population is increased in the SAD neuronal cultures.  After 6 

weeks of differentiation, the cultures are not fully mature neurons with cells still expressing the 

early neuronal marker doublecortin and the neural progenitor marker nestin, however the 

morphology is greatly changed from the neural progenitor cultures with all cells showing 

elongated morphology.   

Gene expression profiling of these cells shows that the difference between the SAD and 

NL neurons is conserved through early maturation.  Enrichment analysis still reveals an 

enhancement of neuronal genes in the SAD lines, but rather than those related to early 

development, the most significant annotations now relate to synapse formation and vesicle 

transport, such as the genes used in neurotransmitter release.  The neurons also have functional 

differences in differentiation timeline, with the SAD lines showing more synapsin-1-localized 

puncta after 6 weeks, signifying increased synaptic formation.  Neurons derived from all the 

lines are capable of forming the action potentials of the electrochemically mature neuron, 

however SAD lines are able to generate action potentials earlier than any NL line tested.  

Together, these results support that the differences in neuronal differentiation seen in neural 

progenitors is conserved during maturation.  However, it is unclear if the mature neurons obtain 

the same level of function from the NL patients as the SAD patients, although the eventual 

formation of action potentials in all lines supports this possibility.   

C. Alzheimer’s disease pathologies in the iPS-derived neuronal cells 

Increased production of Aβ42 is one of the main hallmarks of FAD, especially in 

individuals with a PSEN mutation (Wolfe 2007).  This observation along with the high levels of 
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Aβ in the human brain led to the amyloid hypothesis of Alzheimer’s disease in which the 

increased production of Aβ and more specifically Aβ42 is thought to cause neurodegeneration 

(Hardy & Selkoe 2002).  However, our results do not support the role of Aβ42 in sporadic 

Alzheimer’s disease.  Increased Aβ40 production is seen in the SAD neural progenitors, but in 

the differentiated neurons this differences is attenuated.  Aβ40 and to a lesser degree Aβ42 trend 

higher in the SAD neurons, but the difference is not significant.  Importantly, the ratio of the 

Aβ42:Aβ40 is significantly decreased in the SAD neurons.  Our results do not preclude a model 

in which Aβ clearance is inhibited and accumulates over time in the SAD brain causing 

dysfunction, however our results suggests that there is limited difference in Aβ production and 

strongly refutes any increased production of Aβ42 in the SAD neurons.   

The second pathological hallmark of Alzheimer’s disease is the formation of intracellular 

aggregates of hyperphosphorylated tau protein.  MAPT expression is robustly increased in the 

SAD neural progenitors and to a lesser degree in the SAD 6-week neurons.  This difference is 

confirmed at the protein levels with SAD neural progenitors showing increased total tau protein 

and the neurons trending higher, but not reaching statistical significance.  Adversely, 

phosphorylated tau levels are not increased at the neural progenitor stage but are higher in SAD 

neurons at the Thr231 residue.  Together, these results suggest that tau may have an expression 

profile similar to other neuronal markers in which expression is higher in SAD at the earlier 

stages of differentiation, but becomes more similar as differentiation progresses.  The 

phosphorylation difference, however, suggests that there are still differences in kinase or 

phosphatase activity in the SAD neurons which could lead to the tangles seen during 

Alzheimer’s disease.  Since the phosphorylation of tau is associated with neuronal differentiation 
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(Brion et al 1994), this difference could also be a function of the neuronal differentiation 

variance between the SAD and NL patient lines. 
 

D. A network of SAD genes? 

One consistent observation throughout the differentiation process, but especially once the 

cells become neurons, is how many of the differentially expressed genes have a functional 

connection to APP and APOE.   APP is very much at the center of the Alzheimer’s disease 

puzzle since increased expression of APP alone, such as in APP duplications and Down’s 

Syndrome, is enough to lead to the development of AD (Sleegers et al 2006).  However, it is 

possible that its most important function in the development of AD is not as the Aβ fragment but 

through another signaling pathway.  The physiological role of AD has been the subject of much 

research, but the strongest evidence supports an important role in axon pruning through binding 

to DR6/ TNFRSF21, in a newly clarified BACE-independent mechanism (Olsen et al 2014).  

DR6 (TNFRSF21) is up-regulated in our 6-week neuronal microarray.   

Although there was no clear pattern to the differences in the SAD lines due to their APOE 

genotype, APOE remains the most important genetic risk factor for sporadic AD with the 

different isoforms capable of being both protective and increasing risk for AD.  APOE interacts 

with a family of cell surface receptors with varying affinity called the low density lipoprotein 

receptor (LDLR) or APOE receptor family.  These receptors include the LDLR, very low density 

lipoprotein receptors (VLDL), the LDLR-related proteins (LRPs), APOE receptor 2 (APOER2), 

and the sortilin-related receptor, LDLR class (SORL1) (Jiang et al 2014).  Several of these 

receptors also interact with APP, including LRP1 and LRP1B which differentially modulate the 

production of Aβ (Cam et al 2004, Trommsdorff et al 1998).   
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APP and APOE both bind SORL1, which is up-regulated in the 6-week SAD neurons and 

is genetically associated with sporadic Alzheimer’s disease development (Rogaeva et al 2007).  

SORL1 localizes mainly in late endosomal and Golgi compartments and increased expression is 

thought to reduce Aβ production by localizing APP to the Golgi, while loss of SORL1 is thought 

to increase Aβ production by leaving APP in Aβ-generating endosomes (Offe et al 2006).   

LRP2, LRP3, and LRP4 are all differentially expressed in the 6-week neurons, with 

LRP2 and LRP4 down-regulated and LRP3 up-regulated.  LRP4 has been found to interact with 

both APP and APOE, but its function is not well studied, although it may affect neuronal 

survival (Choi et al 2013, Lu et al 2007).  LRP3 has not been widely studied.  A mutation in the 

LRP2 (Megalin) promoter which decreases gene expression increases the risk of developing AD 

(Vargas et al 2010).  LRP2, which is an endocytic receptor, interacts with APP and may play a 

role in internalizing it (Alvira-Botero et al 2010).  This interaction acts as a negative regulator of 

neurite branching.   

Clusterin (CLU), which has also been strongly genetically linked to the development of 

AD, is another ligand of LRP2, APOER2, and VLDLR (Gil et al 2013, Leeb et al 2014).  It may 

act in the SVZ to induce proliferation and increased neurogenesis by the same pathways as reelin 

(Leeb et al 2014).  Reelin interacts with APOER2 and VLDLR and is highly up-regulated in 

three of the SAD lines.   It interacts with APP as well and may help scaffold its interaction with 

integrin α3β1, increasing APP cell surface levels, decreasing β-cleavage, and promoting neurite 

outgrowth (Hoe et al 2009).  Thrombospondin (THBS1) is another ligand for APOER2 and 

VLDLR and it is down-regulated 6-fold in the SAD neurons.  It also activates the same signaling 

pathway as reelin and may play a role in promoting neuronal migration in the SVZ independent 

of reelin (Blake et al 2008).   
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APP also binds f-spondin, which increases its localization to the membrane and provides 

a scaffold by which it interacts with APOER2, which is also a receptor for APOE (Hoe et al 

2005).  This interaction both decreases the β-cleavage of APP, but also may affect the 

downstream signaling from the c-terminal domain of both APP and APOER2.  F-spondin 

(SPON1) is one of the strongest up-regulated genes in the 6-week SAD neurons.  F-spondin is 

also regulated by plasmin, which cleaves f-spondin to detach it from the extracellular matrix, 

possibly disrupting its interaction with APOER2 and APP (Tzarfaty-Majar et al 2001).  Plasmin 

is activated by the tissue plasminogen activator (PLAT, tPA, down 5-fold in the SAD neurons) 

and inhibited by the tissue factor pathway inhibitor 2 (TFPI2, down 5.8-fold in SAD neurons) 

(Liu et al 1999).  tPA is also a ligand for the low-density LRP1 in its right and plays a role in 

long-term potentiation (Zhuo et al 2000).   

Clearly, APP and APOE are intrinsically linked to wide range of proteins that are 

differentially expressed in the 6-week SAD neurons.  Other genetic risk factors for sporadic AD, 

including SORL1 and CLU, are also involved in the same family of interactions.  It is difficult to 

predict the downstream effects from changes in expression data since mRNA levels will not 

necessarily correlate with protein functioning due to post-translational regulation or response to 

feedback loops, however this network is an attractive candidate for disruption during 

Alzheimer’s development.  Many of these receptor-ligand interactions have been shown to affect 

not only Aβ processing and clearance, but also neuronal migration, neurite outgrowth, or 

progenitor proliferation.  Therefore, the premature differentiation seen the iPS-derived neuronal 

cells from SAD patients may be a manifestation of the changes in this network that will leads to 

neurodegeneration during the progression of Alzheimer’s disease.   
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E. Possible role of REST in regulating the neuronal gene expression 

The mechanism for the increased neuronal gene expression in SAD neuronal cells 

remains a major question for these results.  Using bioinformatics, the transcriptional repressor 

REST/NRSF was identified as the most significant conserved transcription factor affecting 

differential gene expression in the SAD neural progenitors and neurons.  It is especially 

significant in the up-regulated genes, indicating a reduction in activity.  REST is a master 

coordinator of neuronal gene repression and plays an important role in suppressing neuronal 

genes in non-neuronal tissues (Schoenherr & Anderson 1995).  It also plays an important role in 

the transition from neural progenitor to neuron, where some of its target genes are fully de-

repressed and others retain a residual repression through the maintained binding of a CoREST 

complex which can be removed in response to activity (Ballas et al 2005).  In support of REST’s 

role in regulating the genes that are differentially expressed in the SAD neurons, REST 

overexpression causes decreased expression of both DCX and tau protein.    

The primary established method for regulating REST levels is through posttranslational 

degradation in neural progenitors and transcriptional inhibition by the retinoic acid receptor 

(RARE) during the transition to a post-mitotic neuron (Ballas et al 2005).  In the AD brain, there 

are reduced levels of both total REST protein and nuclear localized REST (Lu et al 2014).   We 

do not see a difference in REST protein or mRNA levels in the SAD neuronal cells, however we 

do see decreased binding at the RE1 site of DCX in SAD cells.  Therefore, there is decreased 

activity of REST in the SAD neuronal cells, but it may not be regulated through a transcriptional 

or posttranslational mechanism.    

Although baseline REST expression was not changed in the SAD cells, there may be 

differences in regulations of its cofactors, including Sin3, MeCP2, HDAC, and CoREST, since 
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REST alone is not sufficient for gene silencing (Johnson et al 2008).  Additionally, REST 

expression is induced in neuronal cells in response to oxidative and Aβ stressors (Lu et al 2014), 

so even though the baseline expression is the same in the SAD and NL neuronal cells, there may 

be a difference in ability to respond to stress that could modulate the expression of neuronal 

genes.  A difference in stress-induced expression would be of particular importance in the AD 

brain where there is excessive amounts of oxidative and other cellular stresses.     

F. Speculation on how increased neuronal genes may lead to the development of AD 

We were very surprised when we analyzed the first neural progenitor microarray data to 

see such a strong increase in neuronal genes in the SAD neurons.  Since AD is a 

neurodegenerative disorder, we expected to see decreased capability to form functional neurons.  

This hypothesis was supported by much of the AD brain microarray data published at that point, 

which had showed a substantial decrease in genes related to neuronal functions, such as synapses 

(Berchtold et al 2013, Colangelo et al 2002, Ginsberg et al 2000).  The 6-week SAD neurons 

express many genes in a direction that is the opposite the changes seen in the later AD brain.    

One gene that is differentially expressed is FGF2.  FGF2 and its receptor, FGFR, are 

down-regulated in our 6-week neurons and predicted to be highly inactivated by Ingenuity 

Pathway Analysis.  However, FGF2 levels have been widely shown to be higher in the AD brain 

(Gomez-Pinilla et al 1990).  Additionally, we see a highly robust increase of RELN expression in 

three of the SAD lines, but reelin protein and mRNA are decreased in AD brains (Herring et al 

2012).  Many groups have seen an increase of cell cycle genes in the AD brain, whereas we see a 

decrease in genes that support cell cycle progression, such as CCND2 (Nagy et al 1997).   

Therefore, there is a large dichotomy between what is occurring at the later stages of the 

disease once neurodegeneration has started and what is occurring in the culture dish in neurons 
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from AD patients.  One strength of our approach is that we are looking specifically at gene 

expression of neuronal cells, the cells most vulnerable to AD pathology, whereas many studies of 

the AD brain are complicated by the presence of other cell types, such as astrocytes, microglia, 

and oligodendrocytes.  Furthermore, the later studies are complicated by the stress caused by the 

neurodegeneration which can greatly affect gene and protein expression due to increases in 

inflammation and oxidative stress.  Thus, by modeling sporadic Alzheimer’s disease in 

developing neurons using the induced pluripotent stem cell technology, we may be gaining 

insight into the upstream pathologies that lead to AD that can never be visualized in the human 

brain due to the lack of outward manifestations.   

I will explore two hypotheses of how the premature differentiation seen in the SAD cells 

could be the causative factor for the development of AD: 1) by increasing neuronal activity 

levels or 2) by affecting adult neurogenesis.     

G. How increased neuronal activity could lead to AD 

First, I have not fully established that the NL neurons reach the same level of neuronal 

function as the SAD neurons.  At six weeks, the SAD neurons have more synapses and although 

all lines are able to eventually form action potentials, there may be a difference in the amplitude 

and frequency of the spike trains with the SAD neurons showing greater activity of ion channels.  

This is supported by the increased expression of sodium and potassium channel genes in the 

SAD 6-week neurons.  If this increased neuronal excitability was maintained in the adult brain, it 

could cause later neurodegeneration.   

This hypothesis is supported by the gene expression changes seen in mild cognitive 

impairment, rather than the later stages of AD (Berchtold et al 2014).  Berchtold et al found that 

gene expression changes that increased synaptic excitability and plasticity were associated with a 
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lower MMSE, while gene changes that inhibited plasticity were associated with a higher MMSE 

score.  They hypothesized that the up-regulation of these neuronal genes could be leading to up-

regulated baseline processing and thus an inability to encode new information.   

Using fMRI, multiple groups have shown hyperactivity in the hippocampus during mild 

cognitive impairment, especially in the dentate gyrus (Dickerson et al 2005, Hamalainen et al 

2007, Putcha et al 2011).   Patients that generate more activity in the hippocampus to perform a 

task have a faster rate of cognitive decline and tend to develop AD (Vannini et al 2007).  

Inhibition using an antiepileptic drug that reduces hippocampal activity to a level similar to that 

seen in unaffected patients improved cognitive function, showing that the increased activation in 

MCI is dysfunctional (Bakker et al 2012).  Some authors speculated whether the increased 

activity was a compensatory response to the damage already occurring in the brain, but this 

increase in hippocampal activity is also seen in cognitively normal offspring of sporadic AD 

patients who may have an increased genetic risk of developing AD (Bassett et al 2006, Yassa et 

al 2008).   

The formation of amyloid plaques and neurofibrillary tangles is a part of normal aging, 

yet only some individuals go on to develop Alzheimer’s disease (Price & Morris 1999).  The rate 

of cognitive decline can be directly correlated to the amount of activation in the hippocampus 

(Vannini et al 2007), therefore a possible model is that the increased expression of neuronal 

genes in the SAD patient neurons causes hyperexcitability.  Increased activity would results in 

increased metabolic demands and increased production of oxidative species.  Excessive 

glutamate in the extracellular space could cause excitotoxicity and neuronal cell loss and then the 

loss of neuronal cells and synapses would set off the vicious cycle of increasing pathology and 

increasing cellular stress which leads to the neurodegeneration spreading through the brain. In 



189 
 

support of the hypothesis for changes in glutamatergic dynamics, a recent meta-analysis of 

GWAS studies found that genetic variance of glutamate signaling network genes was 

overrepresented in AD (Perez-Palma et al 2014) 

The difference in excitability in SAD neurons could be a baseline increase or it could also 

be induced by the pathologies associated with aging, such as Aβ accumulation and 

neurofibrillary tangles and the resulting stress.   

H. How modulations in adult neurogenesis could lead to AD 

However, we see the most robust difference in the SAD and NL gene and protein 

expression at the neural progenitor stage with many of the neuronal genes, such as MAPT and 

SNAP25 becoming more variable and less significant with differentiation, particularly in the 

larger cohort including iPSC lines derived in different laboratories.  The functional differences 

are also stronger at the neural progenitor stage with a significant increase in Aβ production and 

decrease in cell proliferation rates.  Therefore, we hypothesize that aberrant transitioning from 

neural progenitors to neurons could lead to the development of AD. 

There is some evidence that AD could have a developmental component.  In the Nun 

study, analysis of autobiographies written by the subjects at the average of 23 years old had an 

inverse correlation between idea density and Alzheimer’s disease pathology, indicating that there 

are cognitive differences even in the young brain (Snowdon et al 2000).  However, most 

cognitive changes are not diagnosable until many decades later therefore processes that happen 

in the adult brain are also of utmost importance in the progression of AD.   

The neuronal culture system developed in this thesis seems to most closely follow the 

patterns of neurogenesis seen in the subgranular zone (SGZ) in the dentate gyrus.  High levels of 

ASCL1 expression, such as in the SAD neural progenitors are specific to the maturation of 



190 
 

neurons in the subgranular zone and is not seen during fetal corticogenesis (Hodge et al 2008).   

The tandem increase of ASCL1 and DCX seen in the SAD neural progenitors is typical of the 

neurogenesis process that occurs at the subgranular zone in which after the cell leaves a 

quiescent state expressing GFAP, it transitions into a nestin- and SOX2-expressing progenitor 

similar to the cells in our neural progenitor culture.  As it matures, the progenitor will start to 

express ASCL1 and DCX and lose its nestin expression.  When the cell is only DCX- and not 

nestin-positive, it is considered a type 3 neuroblast and will migrate out of the SGZ and 

differentiate into a glutamatergic dentate granule cell, similar to the cells we’ve generated in 

culture (Hodge et al 2008, Kempermann et al 2004).  Therefore, the differentiation protocol used 

in this thesis may be the best for modeling adult neurogenesis rather than neurogenesis that 

occurs in development. 

  Adult neurogenesis occurs in two regions in the adult brain, the subventricular zone 

which generates GABAergic neurons and feeds into the olfactory bulb and the SGZ which feeds 

glutamatergic neurons into the dentate gyrus and hippocampus, the regions most affected during 

Alzheimer’s disease.  Using incorporation of 14C due to nuclear bomb tests to measure the rate of 

new neuron creation, Spalding et al (2013) estimated that one third of hippocampal neurons are 

subject to exchange and that the annual turnover rate is 1.75%.  It is thought to play an important 

role in learning and memory (Deng et al 2010).  Interestingly, in addition to the dentate gyrus 

and hippocampus, the olfactory bulb is also affected in early stages of Alzheimer’s disease, 

leading to the well-established loss of olfactory ability (Kovacs et al 2001).   

It is not clear from our data if the increase in neuronal gene expression would increase or 

decrease the amount of neurogenesis in the AD brain.  In support of increased neurogenesis, the 

increased expression of neuronal genes might induce more precursors to differentiate into 



191 
 

neurons.  However, increased neurogenesis could also exhaust the progenitor pool when the 

progenitors differentiate into neurons rather than self-renew and produce more progenitors.    

In Alzheimer’s disease, there are mixed data on changes in neurogenesis.  In the human 

brain, Jin et al (2004) showed increased staining for doublecortin and other early neuronal 

markers TUC-4 and NCAM and another group showed a more measured increase of DCX 

expression, significant only in the dentate gyrus granule layer of the AD brain (Perry et al 2012).  

Results in mouse models of Alzheimer’s disease, which model the familial form of Alzheimer’s 

disease, not the sporadic, are more mixed with increased hippocampal neurogenesis shown in an 

APP/PSEN1 double transgenic mouse model, but impaired neurogenesis in a triple transgenic 

(APP, PSEN1, and MAPT) model of Alzheimer’s disease (Rodriguez et al 2008, Yu et al 

2009b).  In a APP/PSEN1 mouse, Aβ42 treatment induces the proliferation of neural precursor 

cells and adult neurogenesis, however after 12-months the progenitors were no longer 

responsive, possibly due to depletion of the progenitor pool (Sotthibundhu et al 2009).   

Therefore, two different models are possible.  In the first, an increase in SAD 

neurogenesis depletes the neural progenitor pool and at advanced age the SAD hippocampus is 

no longer receiving new neurons, disrupting learning and memory.  This loss of incoming cells 

leads to network disruption, synaptic loss, and the start of Alzheimer’s disease 

neurodegeneration.  In the second model, the SAD SGZ has pathologically high levels of 

neurogenesis, possibly induced by a stress such as the nearby formation of plaques or tangles.  

This increase of cells in the hippocampus also disrupts the networks, leading to cellular 

dysfunction and Alzheimer’s disease progression.  This model is supported by a recent paper 

from Akers et al (2014) in which high levels of hippocampal neurogenesis was found to induce 

forgetting.   
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I. Conclusion 

In this thesis, we show a robust and surprising up-regulation of neuronal differentiation 

genes and resulting neuronal function in neuronal cells derived from SAD patients.  Although we 

cannot definitively suggest a mechanism for the development of sporadic AD, this suggests 

alternative pathways to the classic amyloid cascade hypothesis in sporadic AD.  It also suggests 

that sporadic AD may develop by a mechanism distinct from FAD, at least from the L286V 

mutation, since the FAD line recapitulated some, but not all of the SAD phenotypes and the SAD 

lines showed no relative increase in Aβ42 production.  Finally, this thesis supports the use of 

induced pluripotent stem cells and similar technologies to model sporadic disease since we found 

a shared phenotype in cells derived from patients who had already developed Alzheimer’s 

disease.   
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