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The Value of Targeted Therapies in Lung Cancer 

 

Abstract 

 

The goal of this dissertation was to examine the realized value of targeted 

therapies in routine care and to identify opportunities for improving the return on medical 

spending for these technologies. 

  Chapter 1 investigated the value of targeted therapies in lung cancer patients 

who were treated in routine care.   This observational, claims-based analysis used 

propensity score, and instrumental variable methods, combined with a Kaplan Meier 

Sample Average estimator to calculate lifetime costs and life expectancy.  An 

incremental comparison showed that the realized value of targeted therapies in routine 

care was unfavorable relative to chemotherapy treatment.  Subgroup analyses revealed 

that initial erlotinib therapy yielded effectiveness results that are substantially lower than 

efficacy survival outcomes in molecularly guided trials.   Our results indicated that in 

routine care, chemotherapy was the most cost effective strategy.  The unexpectedly low 

outcomes with first-line erlotinib suggested that some of the value of this treatment was 

not being realized in practice.     

  Chapter 2 examined the practice patterns of targeted therapies and utilization of 

predictive biomarker testing in routine care to better understand the observed gaps 

between trial-based and ‘real-world’ outcomes with these agents.   In our nationally 

representative cohort of lung cancer patients, we found that the vast majority of patients 
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did not undergo molecular testing to inform first-line therapy.    Our prediction models for 

biomarker screening and first-line treatment suggested that phenotypic enrichment 

criteria guided selection for testing and initiation of erlotinib therapy.   Since clinical 

characteristics do not adequately discriminate between mutation positive and wild type 

tumors, these practices signal the need for wider dissemination of biomarker screening 

to accurately target patients towards improving therapeutic gains with erlotinib. 

  Chapter 3 assessed the cost-effectiveness of multiplexed predictive biomarker 

screening to inform treatment decisions in lung cancer patients.  Using a micro-

simulation model to evaluate the incremental value of molecularly guided therapy 

compared to chemotherapy in unselected patients, we found that personalized therapy 

is a cost effective strategy.   Our results indicated that better value of targeted therapies 

in lung cancer is achievable through molecularly guided treatment. 
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Chapter 1  The Value of Targeted Therapy in Lung Cancer:  An Observational 
Analysis of Elderly Medicare Population 

1.1  Introduction 

The burden of lung cancer is large both in terms of its impact on those afflicted 

by the disease and in economic terms.  Lung cancer is the leading cause of cancer-

related mortality, with 160,000 deaths estimated to occur nationwide in 2014, which 

represents 27% of all cancer deaths.[1] In 2010, medical spending for cancer reached 

$125 billion, with 10% attributable to lung cancer care alone. Over the next decade, 

these costs are projected to grow by 27% taking into account only the aging of the 

population.[2]  Structural changes such as technology advances will put further 

inflationary pressure on the growing costs for cancer care.   

The introduction of targeted therapies in the treatment of advanced non-small cell 

lung cancer (NSCLC) represents an innovation that has profoundly changed the 

landscape of prognosis in select patients, but these treatments come with a high price 

tag.[3-5]  The two targeted therapies that gained approval by the Federal Drug 

Administration (FDA) for treatment of patients with locally advanced or metastatic 

NSCLC before 2013 are bevacizumab and erlotinib.  The latter is an orally administered 

epidermal growth factor tyrosine kinase inhibitor (EGFR TKI).[6]  It has demonstrated a 

remarkable efficacy in patients whose tumors harbor EGFR drug sensitizing mutations 

compared to chemotherapy alone, with median progression free survival (PFS) of 9.4 

vs. 5.2 months (p-value <0.0001).[7]  The role of EGFR mutations as a predictive 

biomarker for response to erlotinib has been clearly elucidated, but in practice, 
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molecular screening is widely underutilized.[8, 9]  Bevacizumab was approved  for 

initial treatment of advanced, non-squamous NSCLC, based on a phase III randomized 

clinical trial (ECOG 4599), which demonstrated a statistically significant but clinically 

modest median overall survival (OS) benefit of 2 months compared to chemotherapy 

alone.[10, 11]   Trial-based results, however, may not be directly generalizable to the 

majority of patients who are treated in the community, since trials are conducted under 

strictly controlled protocols to increase the internal validity of findings.  Patients treated 

in clinical trials generally constitute a highly selected, healthier and younger group 

compared to the general lung cancer population.[12, 13]  Case in point is a recent 

analysis of non-trial patients with advanced NSCLC, which compared survival 

outcomes of carboplatin and paclitaxel chemotherapy combination with and without the 

addition of bevacizumab.  Unlike the earlier ECOG trial findings, this observational 

analysis of an elderly patient cohort indicated no significant OS benefit for the 

bevacizumab combination (hazard ratio of 1.01 (95% CI, 0.89-1.16)).[11, 14]   

There is an increasing awareness among the oncology community and policy 

makers that while some targeted therapies hold the promise of substantial outcome 

improvements in cancer, they are associated with high costs.   Bevacizumab costs 

$7,400 for a 3-week cycle to treat an average patient.[15]  The corresponding cost for 

erlotinib is around $3,400.[16]  While the acquisition costs for these drugs are high,  it is 

important to examine not just the costs of the drug but also the total costs associated 

with management of patients who receive these therapies, in tandem with the 

outcomes.  Traditional economic analyses that estimate the value of medical 
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interventions to inform decision-makers have been based on efficacy data from trials.   

To date, the cost-effectiveness of both erlotinib and bevacizumab in NSCLC has been 

evaluated using these efficacy endpoints.[17, 18]    In contrast, an evaluation based on 

routine care that incorporates contemporary practice patterns and effectiveness 

outcomes may help illuminate the actual realized value of these innovations.  Such a 

population based analysis may help inform decisions surrounding translational research 

funding and coverage policies. 

To assess the value of targeted therapies in routine care, we compared the 

relative cost effectiveness of management with best supportive care (BSC) versus 

treatment with chemotherapy alone or with targeted therapy among patients with 

advanced NSCLC.  The analysis was done from a payer perspective in the United 

States using a lifetime horizon.    

1.2  Methods 

1.2.1  Data Sources 

We used data from the National Cancer Institute’s Surveillance, Epidemiology, 

and End Results (SEER) program linked to Medicare claims.  The SEER program 

collects information from 17 cancer registries, which cover  approximately 28% of the 

US population.[19]  SEER captures information on cancer sites, histology, stage, grade, 

and dates of diagnosis and death, as well as patient demographic characteristics for all 

persons diagnosed with a cancer residing in one of the cancer registries.   SEER data 

for patients with diagnoses from January 1, 2007 through December 31, 2009, matched 

to Medicare claims data from January 1, 2006, through December 31, 2010 were 
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available for patients with fee-for-service (FFS) coverage.  Information from claims for 

inpatient and outpatient hospital, skilled nursing facility, home health agency, and 

hospice care, as well as physician services, prescription drugs and durable medical 

equipment was included in the analysis.   

1.2.2  Study participants 

Patients with pathologically confirmed non-squamous, stage IV NSCLC 

diagnosed between January 1, 2007 and December 31, 2009 were included.  Stage at 

diagnosis based on the SEER derived staging algorithms was used to identify patients 

with advanced disease.  To increase the homogeneity of patients, we excluded patients 

who underwent primary cancer surgery.[20]  Patients were also excluded if they had 

other cancers diagnosed either before or after the index NSCLC diagnosis (to avoid 

chemotherapy misclassification bias).   Patients enrolled in either a health maintenance 

organization (HMO), or only in part A or B Medicare at any time during the observation 

period, starting 12 months prior to diagnosis and ending at death or last follow up, were 

excluded to ensure a complete history of claim records.  The primary comparison 

groups were based on receipt of any targeted therapy (bevacizumab, erlotinib), with or 

without chemotherapy, starting from index diagnosis (Figure 1.1).  Specifically, we 

compared three groups: 1) targeted treatment group, which comprised of patients who 

were treated with bevacizumab or erlotinib, with or without chemotherapy, at some point 

after diagnosis of stage IV NSCLC ; 2) chemotherapy group, consisting of patients who 

received chemotherapy alone and no targeted therapy at any point after diagnosis; 3) 

remaining patients  were categorized to the best supportive care (BSC) group, if there 

was no evidence of systemic therapy receipt (chemotherapy or targeted therapy).   
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Figure 1.1. Flow diagram of study cohort 

NSCLC, non-small cell lung cancer  

†targeted therapy includes bevacizumab and erlotinib 

1.2.3 Treatment Classification 

We identified systemic therapy use from Medicare claims.  Claims for individual 

drugs and therapy administration were flagged using International Classification of 

Disease Version 9 (ICD-9) diagnostic and procedure codes, and the diagnosis related 

group (DRG) codes in the inpatient hospital files.  Healthcare Common Procedure 

Coding System codes (HCPCS) and National Drug Codes (NDC) were used to identify 

systemic therapy administration in the outpatient, physician, durable medical equipment 

and Medicare Part D files using previously described methods.[21, 22]    

26	  427	  Pa.ents	  diagnosed	  with	  
non-‐squamous	  stage	  IV	  NSCLC	  

between	  2007-‐2009	  

5	  260	  managed	  with	  
best	  suppor.ve	  care	  

3	  191	  treated	  with	  	  
chemotherapy	  alone	  

1	  834	  	  treated	  with	  targeted	  
therapy	  ±	  chemotherapy†	  

16	  142	  	  	  Excluded	  
5389	  Age	  at	  diagnosis	  <66	  y	  
2225	  Not	  pathologically	  confirmed	  
2878	  Not	  eligible	  for	  Medicare	  Part	  A	  
and	  B	  
5212	  Enrolled	  in	  Medicare	  HMO	  
	  438	  	  Primary	  cancer	  surgery	  
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1.2.4  Life expectancy 

The primary health outcome was life expectancy, which was estimated from 

index diagnosis of stage IV NSCLC to date of death or censoring.  We used information 

reported in the Medicare files on death dates from any cause, which were 

administratively censored for survival outcomes on 12/31/2011.  At the end of follow up, 

only a small proportion of patients were censored, ranging from 2.1% in the BSC group 

to 6.7% in the target therapy treatment group.  Survival time after the first year from 

diagnosis was discounted using a 3% annual rate.[23] 

1.2.5  Costs 

Our economic outcome of interest was lifetime spending.  Total costs for each 

participant were calculated by summing the Medicare Part A, B and D reimbursements, 

primary insurance payments and patient-liability costs (deductibles and co-payments 

that are the patient’s responsibility).[24]  Costs were expressed in real terms, in 2013$, 

by adjustment for general price inflation using the GDP Deflator, a measure of price 

inflation over time for all goods and services in the economy.[25]  Costs incurred after 

one year from diagnosis were discounted using a 3% annual rate.[23] 

1.2.6  Phases of care 

Since costs of cancer care tend to exhibit a U shaped distribution over time 

(Appendix) and the entire cost histories are not observed for censored cases, we 

partitioned costs into three phases: initial, continuing, and terminal.  This approach 

utilizes all information for participants who contribute data for a particular period.   Thus, 

histories of long- and short-time survivors are represented in this calculation.  The 

phase-specific approach can be used to estimate lifetime costs for incident cases that 
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are cumulative from date of diagnosis to death by combining phase-specific cost 

estimates with survival models when the entire cost history is not observed.[26]   

The length of each phase was based on observed U-shaped patterns of costs 

over time (Appendix).   Accordingly, we defined the duration of the initial phase as the 

month of diagnosis and the following 2 months The terminal phase comprised the last 3 

months of life, and the continuing phase as the remainder of the time and was therefore 

of variable duration.   The initial phase captures the primary course of therapy.  The 

continuing phase includes surveillance activities for detecting and treating recurrences.  

The terminal phase applies to care received at the end of life.  Cost data were 

partitioned into 3-monthly intervals from diagnosis.  A hierarchy was used to allocate the 

observation time to costing phases.  Among patients who died, costs were first assigned 

to the terminal phase, then to the initial period, and any remaining time to the continuing 

period.  Among censored patients, costs were assigned to the initial phase first then any 

costs incurred in the remaining time were categorized as the continuing phase.   

1.2.7  Patient Characteristics 

Characteristics expected to be related to treatment selection and some that may 

also potentially affect the outcomes of interest were identified for analytic strategies to 

reduce selection bias.[27]  Socio-demographic and clinical characteristics included age, 

gender, race/ethnicity, marital status, US census tract level education and income, 

histology, presence of brain metastases, proxy indicator for acculturation using zip code 

level proportion of population who were born outside of the US, enrolment in Medicaid, 

and urban residence.  Factors that may influence access to treatment included whether 

the patient was treated in a teaching hospital, census tract-level managed care 
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penetration, hospital bed and physician density (per 100,000 inhabitants), hospital 

referral region (HRR), and year of diagnosis.   Hospital referral regions (HRR) were 

developed by Dartmouth Atlas of Health Care based on referral patterns to hospitals for 

Medicare patients.  These regions represent areas with similar practice patterns.[28]  

There are 81 HRRs represented in the SEER regions in 2007.  Patients were assigned 

to their HRR based on their residence zip code at the time of diagnosis of NSCLC.   We 

calculated a comorbidity score that combines the conditions in the traditionally 

employed Charlson and Elixhauser indices using the method described by Gagne, et 

al.[29]   We modified the score by excluding cancer conditions (Dr. Joshua Gagne, 

personal communication).  The combined score has demonstrated a higher accuracy in 

predicting mortality in elderly patients using an external validation dataset compared to 

the individual indices.  In addition, the combined score uses weights from more recent 

data and it reflects changes in prognosis of diseases stemming from improvements in 

medical care.[29] Each of the 18 conditions included in the combined score were further 

coded as indicator variables.  Proxy measures of patient health and performance status 

at baseline included inpatient length of stay within one year prior to diagnosis, use of 

skilled nursing and home health care services, use of home oxygen and activities of 

daily living (ADL) aids (walkers, wheelchairs, hospital beds), as well as pre-diagnosis 

medical costs.[30]  Claims starting from 12 months to 2 months prior to diagnosis were 

used for derivation of comorbidity scores,  pre-diagnosis costs and indicators of 

functional status.  The 2 months immediately prior to diagnosis were excluded to avoid 

including claims for treating symptoms of undiagnosed cancer.   
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1.2.8  Statistical Methods 

Propensity	  Score	  Analysis	  

To balance observed baseline characteristics across treatment groups, we 

constructed a multinomial logistic regression model by regressing treatment (categorical 

variable with 3 levels: BSC, chemotherapy, and targeted therapy) on variables that 

potentially confound the treatment and outcome pathway and baseline covariates 

associated with treatment selection.   The final model included 43 patient and provider 

characteristics.  A weight representing the inverse of the predicted probability of 

treatment (IPW) from the multivariable logistic regression model was calculated for each 

patient.  The conditional predicted probability of treatment is the propensity score (PS).  

We compared the distributions of these characteristics with and without applying IPW.   

To evaluate the quality of the PS weighting, we assessed the balance in baseline 

characteristics across treatment groups using standardized differences - the absolute 

difference in means divided by the pooled standard deviation.  By convention, 

standardized differences of 10% or less are interpreted to signal a ‘good’ balance 

across groups.[27] 

Life	  Expectancy	  

The estimation of life expectancy for the main analysis proceeded in two parts.  

First, an estimate of mean life expectancy was constructed based on the observed data 

(restricted mean).  This was accomplished using a doubly robust estimation method 

which combines inverse probability weighting by propensity score with multivariate 

nonparametric Cox proportional hazard (PH) modeling of the relationship between 

covariates and survival for each treatment group.  We checked the proportionality of 
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hazards assumption by comparing the log-cumulative hazard plots by treatment which 

confirmed that the PH assumption was not violated.  Next, because the aim of the 

analysis was to estimate mean life expectancy over a lifetime horizon and since the 

observed survival curves did not reach a survival probability of zero (albeit, the extent of 

censoring was small, ranging from 2.1% in the BSC group to 6.7% in the target therapy 

treatment group), we opted to use parametric modeling to extrapolate survival beyond 

the observation period (extended means).[31, 32]   First, we fit parametric models 

(Weibull, exponential, log-logistic, log-normal and gamma) to the IPW, adjusted survival 

curve for each treatment group.   The Akaike’s information criterion (AIC) test was used 

to select the model with the best fit.[32]  However, even the best fitting model did not 

appear suitably to fit the IPW, adjusted survival curve.  Hence, a more flexible 

parametric method was adopted.[31] Briefly, we fit piecewise exponential models to the 

IPW, adjusted survival curves for each treatment group (Appendix).  Then we examined 

the kernel-smoothed hazard functions from the Cox PH models (Appendix).  A long-

term stable hazard trend was observed in all treatment groups when the survival 

probability reached 20% and lower.  Using this cut point, the estimated hazard rates 

from the fitted piecewise-exponential models were averaged conditioning on treatment 

group.  The tails of the IPW Cox PH model based survival function were fit using an 

exponential model with the rate parameter estimated using the average hazard rates 

from the piecewise exponential models for each treatment group to project survival 

beyond the observation period (Appendix).[33]  Therefore, the extended mean life 

expectancy for each treatment group was based on a composite survival-function 
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estimator, using the IPW Cox PH based survival function and exponential parametric 

models beyond last follow up.    

Phase-‐Specific	  Costs	  

We carried out a doubly robust estimation of phase-specific costs in which 

inverse-propensity weighting was combined with regression modeling with baseline 

covariates, including HRR fixed effects, and calendar year.  We modeled phase-specific 

costs using generalized linear models (GLMs) with an Extended Estimating Equations 

(EEE) estimator.[34, 35]  Briefly, the EEE model allows estimation of a flexible mean 

and variance function based on the data, which has been shown to reduce bias and 

increase efficiency compared to user specified parameters.[34]  The semi-parametric 

EEE model can be implemented using the pglm command in STATA, which has been 

constructed by Basu.[35]  This command simultaneously estimates the link and 

variance parameters from the data along with the regression parameters.  All models 

were based on a doubly-robust estimator, with inclusion of IPW and baseline covariates. 

We used robust standard errors clustered at the patient level to account for correlation 

between cost observations for each patient.   Post-estimation procedures were used to 

generate predicted costs.  Both terminal and continuing phase costs depended on 

duration of survival, calendar year, and treatment group (Appendix).   Several functional 

forms (e.g. main effects for time trends and survival length with and without interactions) 

were fit and models were selected based on goodness of fit tests: the Pearson 

correlation test, which tests the correlation between residuals and predicted costs on 

raw scale to determine systematic bias in prediction of costs; the Hosmer-Lemeshow 

test, which evaluates the calibration of predicted means across deciles with sample 
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means.[34, 36]   The models with the best fit  for the phase specific costs had a 

Pearson correlation coefficient ranging from -0.01 to  0.01,  and no systematic patterns 

across deciles of predicted costs. 

Lifetime	  cost	  estimation	  approach	  

We combined phase-specific cost predictions with survival curves to estimate 

lifetime costs using the Kaplan-Meier Sample Average (KMSA) estimator based on a 

previously proposed approach.[26, 37]  Separate KMSA estimates were calculated for 

each treatment group.  We calculated the sum of a weighted average of predicted 3-

monthly costs over the 4-year period during which Medicare costs data was available.  

The KMSA estimator for expected total spending prior to censoring for costs (December 

31, 2010) is: 

𝐸 = 𝑝! ∗ 𝐸!
!!!

 

where:   i=3-monthly intervals from diagnosis, range: 1 up to 16, i=1 represents the first 

3 months of diagnosis, 𝑝!= doubly robust, IPW Cox PH probability of surviving to period 

i using SEER-Medicare data, 𝐸! = average modeled cost using EEE estimator incurred 

in period i among participants surviving to this time; costs for participants dying in period 

i are included; costs for participants who were censored in period i are excluded.  This 

part of the KMSA estimator constitutes the restricted mean analysis since it does not 

include extrapolation of costs beyond the date of censoring, on December 31, 2010.  

The restricted mean approach was used in sensitivity analyses to examine the impact of 

modeling specifications on the outcome of interest. 
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Since restricted means would underestimate costs for patients who were alive 

after December 31, 2010, we relied on extrapolated cost predictions to estimate the 

extended mean lifetime spending.    The KMSA estimator for extrapolated costs was 

calculated as follows: 

𝐸∗ = 𝑝!∗ ∗ 𝐸!∗

!

where: j=3-monthly period from diagnosis, range: 5 up to 26 (when <0.5% of patients 

remained alive), 𝑝!= fitted survival probability based on the composite survival-function 

estimator, 𝐸!∗  = expected expenditure in period j, s.t. 

𝐸!∗  = 𝑑!   ∗   𝑡 + (1− 𝑑!  ) * 𝑐, 

where: 𝑑!  = rate of dying in period j, 𝑡 = predicted average cost in terminal phase in 

period j , 𝑐 = predicted average cost in continuing phase in period j. 

 The KMSA estimator of expected total cumulative costs is: 

𝐸+𝐸∗ 

This extended mean estimate of lifetime costs was used in the main analysis. 

Cost	  Effectiveness	  Analysis	  

We calculated the incremental cost-effectiveness by first ranking the strategies in 

order of increasing effectiveness.  Strategies that were strongly dominated, i.e., those 

that had a lower effectiveness and higher costs, were eliminated.  Incremental cost 
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effectiveness ratios (ICERs) were calculated for each strategy in relation to the next 

best strategy.  The ICER is a ratio of the difference in lifetime mean costs divided by the 

difference in mean life expectancy.  Strategies with a higher ICER that were less 

effective than another strategy were eliminated by extended dominance.  The ICERs 

were recalculated for the remaining strategies that were not eliminated by either strong 

or extended dominance.[38]  

Subgroup	  analysis	  

To explore the value of first-line treatment with specific targeted therapies in the 

non-trial setting, we selected subgroups of patients who began targeted therapy 

treatment with first line bevacizumab combination therapy, erlotinib alone, or a doublet 

chemotherapy alone.  The date of the first systemic therapy claim within 120 days from 

diagnosis was used to define the start date of first line treatment.[14]  Cancer-directed 

treatments with dates within 29 days from initiation of therapy were flagged for the 

purpose of identifying combination therapies.[20]   We estimated the extended means 

for life expectancy and costs for each group using methods described above.  These 

estimates were adjusted for factors listed in  Table 1.1 and discounted at 3% per 

annum. 

Sensitivity	  Analyses	  

 We conducted several sensitivity analyses of lifetime cost and life expectancy 

estimation using restricted means to evaluate the influence of model specification on 

these outcomes.  These included IPW models with HRR fixed effects and IPW models 

without HRR fixed effects.   
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Instrumental	  Variable	  Methods	  

While PS methods can adjust for observed confounders that bias the 

treatment effect, these methods do not mitigate bias due to unobserved differences in 

known or unknown prognostic factors between the treated and untreated groups and 

across geographic areas.  We investigated 1-year survival probability and costs to 

compare the consistency of results using PS analytic approaches and instrumental 

variable (IV) analyses.  Consistent results across these analytic methods would signal 

that the causal effects were not influenced by omitted variables.    The intuition behind 

IV methods is to compare groups not according to treatment they received, but rather 

according to the likelihood of receiving treatment, the instrument.   The IV has to predict 

treatment choice but cannot be independently associated with the outcome, other than 

through its effect on treatment.[39]   The IV can be regarded as a randomization 

mechanism, therefore, observed and unobserved characteristics should be similar 

across levels of the instrument.  Area-level practice patterns are commonly used in IV 

approaches to adjust for selection bias in health services research.[40-42]  This 

approach accounts for differences between patients across treatment groups, but it 

makes the assumption that potential confounders are randomly distributed across the 

geographic areas.    We further account for possible unobserved confounding at the 

area level by including geographic area fixed effects.  For example, this approach would 

account for the documented significant geographic variation in smoking patterns.[43]  

Smoking not only increases the risk of mortality in cancer patients, but is also correlated 

with predictors of treatment choice and response.[8, 44]  To account for confounders 

both at the patient and area level, we used annual treatment rates within each HRR as 

the IV with fixed area effects to control for fixed unobserved differences between areas.  
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We first divided patients into quintiles according to annual rate of diffusion of 

targeted therapy in the HRR of residence, such that the number of patients in each 

quintile was approximately equal.  We repeated the process for a second IV that 

estimated the annual rate of diffusion of chemotherapy treatment alone in each HRR.   

We constructed the instruments by calculating the rate of treatment by year within each 

HRR (chemotherapy or targeted therapy).   We tested the relationship between each IV 

on each treatment type (chemotherapy and targeted therapy) using the F-test to assess 

whether each IV explained a significant portion of the variation in treatment choice.  We 

also compared baseline characteristics by quintile of treatment diffusion for each IV 

separately to examine whether patients stratified according to rate of diffusion of each 

treatment type were similar in observed characteristics.   Tests for trend were 

conducted across quintiles of adoption rates to assess whether patients were 

comparable across levels of each IV.    

We adopted the two-stage least squares (2SLS) estimation approach for our IV-

based sensitivity analysis.   The outcomes considered for our sensitivity analysis were 

survival and cumulative costs at 1 year post diagnosis.  In each stage, we included 

baseline covariates to control for residual differences between treatment groups and 

HRR fixed effects to control for area-level confounders.  First, we estimated the 

probability of receiving targeted therapy as a function of baseline characteristics, HRR 

fixed effects and targeted therapy annual adoption rate at the HRR level.  We repeated 

the prediction model for receipt of chemotherapy alone.  In the second stage, we  

included both predicted probabilities of treatment (of targeted therapy and of 

chemotherapy), baseline characteristics and HRR fixed effects as covariates to predict 
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1-year survival probabilities and cumulative costs by treatment group.   We compared 

the IV-based predicted outcomes to IPW analyses and non-weighted analyses using the 

same set of covariates. 

1.3  Results 

1.3.1 Baseline Characteristics 

A total of 10,285 patients met our eligibility criteria.  Within this cohort, 3,191 

(31%) received chemotherapy alone and for 1,834 (18%) patients treatment included a 

targeted therapy after diagnosis with Stage IV NSCLC.   Among the targeted therapy 

group, 591 (32%), 1,119 (61%) and 112 (6%) of patients received erlotinib, 

bevacizumab, or both drugs (with and without chemotherapy), respectively, during their 

course of disease.  Table 1.1 compares the patient, provider and area-level 

characteristics according to treatment group before and after weighting using the 

inverse probability of treatment (IPW, see a full list of covariates in Appendix).   As 

expected, in the unweighted comparisons there was evidence of treatment selection 

bias.  Patients who received any form of systemic therapy were more likely to be 

younger, married, have no comorbidities, and to be receiving care at a teaching 

hospital.  Treated patients had fewer proxy indicators of poor PS at baseline (requiring 

home health care and skilled nursing services, ADL aids or hospitalization) and lower  
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Table 1.1.  Baseline Characteristics. 

BSC	  	  	  	  	  	  Target	  	  	  	  Chemo	  	  
	  	  	  	  	  	  Proportion Standardized	  Difference	  

BSC	  	  	  	  	  	  Target	  	  	  	  Chemo	  	  
	  	  	  	  	  	  Proportion Standardized	  Difference	  

Characteristic	   Unweighted	   Inverse	  Probability	  of	  Treatment	  Weighted	  

Number	  of	  patients	   	  	  5,260	  	  	  	  1,834	  	   	  	  3,191	   5,260	  	  	  	  1,834	  	   	  	  3,191	  

Age	  at	  diagnosis	  
66-‐69	   	  	  	  	  0.16	  	  	  	  	  	  0.25	  	   	  	  	  0.25	  	  	  	  	   	  	  	  	  0.22†	  	  	  	  0.23‡	  	  	  	  	  	  0.01¶ 	  0.19	  	  	  	  	  	  0.20	  	  	  	  	  	  	  0.22	  	   	  	  0.07†	  	  	  	  	  0.04‡	  	  	  	  	  	  0.03¶	  	  
70-‐74	   	  	  	  	  0.22	  	  	  	  	  	  0.29	  	   	  	  	  0.30	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.20	  	   	  	  0.17	  	   	  	  0.03	   	  0.26	  	  	  	  	  	  0.27	  	  	  	  	  	  	  0.27	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.04	  	  	  	  	  	  	  0.03	  	   	  	  0.01	  
75-‐79	   	  	  	  	  0.23	  	   	  	  0.25	  	   	  	  	  0.25	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.03	  	   	  	  0.05	  	  	  	  	  	  	  0.02	  	   	  0.24	  	  	  	  	  	  0.23	  	   	  	  	  	  0.24	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.01	  	   	  	  0.02	  	   	  	  0.03	  	  
80-‐84	   	  	  	  	  0.21	  	  	  	  	  	  0.15	  	   	  	  0.16	  	   	  	  0.15	  	   	  	  0.18	  	  	  	  	  	  	  0.04	   	  0.19	  	  	   	  	  0.19	  	  	  	  	  	  	  0.17	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.05	  	   	  	  0.01	  	   	  	  0.03	  	  
85+	   	  	  	  	  0.18	  	  	  	  	  	  0.06	  	  	  	  	  	  	  0.05	  	   	  	  0.43	  	   	  	  0.38	  	   	  	  0.06	   	  0.13	  	  	  	  	  	  0.11	  	   	  	  	  	  0.10	  	   	  	  0.10	  	   	  	  0.04	  	   	  	  0.05	  	  
Female	  gender	   	  	  	  	  0.51	  	   	  	  	  0.54	  	  	  	  	  	  	  0.45	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.13	  	   	  	  0.06	  	   	  	  0.19	  	   	  0.50	  	  	  	  	  	  0.51	  	   	  	  0.49	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.04	  	   	  	  0.02	  	   	  	  0.05	  
Race/ethnicity	  
White	   	  	  	  0.79	  	  	  	  	  	  0.77	  	  	  	  	  	  	  0.83	  	   	  	  	  	  	  	  	  	  	  	  	  0.11	  	   	  	  0.05	  	   	  	  0.16	  	   	  0.81	  	  	  	  	  	  0.80	  	   	  	  	  	  0.81	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.01	  	   	  	  0.01	  	   	  	  0.02	  	  
Black	   	  	  	  0.10	  	  	  	  	  	  0.06	  	  	  	  	  	  	  0.08	  	   	  	  0.07	  	   	  	  0.15	  	   	  	  0.08	  	   	  0.08	  	   	  	  0.07	  	  	  	  	  	  	  0.09	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.02	  	   	  	  0.02	  	   	  	  0.04	  	  
Hispanic	   	  	  0.04	  	   	  	  0.05	  	  	  	  	  	  	  0.04	  	   	  	  0.03	  	  	  	  	  	  	  0.02	  	   	  	  0.05	  	   	  0.04	  	   	  	  0.05	  	  	  	  	  	  	  0.04	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.02	  	   	  	  0.03	  	   	  	  0.05	  
Other	   	  	  	  0.07	  	   	  	  0.13	  	  	  	  	  	  	  0.06	  	   	  	  0.07	  	   	  	  0.19	  	   	  	  0.25	   	  0.07	  	   	  	  0.07	  	  	  	  	  	  	  0.07	  	   	  	  	  0.02	  	   	  	  0.01	  	   	  	  0.03	  	  
Marital	  status	  
Single	   	  	  	  0.09	  	  	  	  	  	  0.09	  	  	  	  	  	  	  0.07	  	   	  	  0.06	  	   	  	  0.00	  	   	  	  0.07	  	   	  0.08	  	   	  	  0.08	  	   	  	  0.08	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.01	  	   	  	  0.01	  	   	  	  0.02	  	  
Married	   	  	  	  0.43	  	  	  	  	  	  0.58	  	   	  	  	  	  0.59	  	   	  	  0.31	  	   	  	  0.30	  	   	  	  0.01	  	   	  0.49	  	   	  	  0.49	  	   	  	  0.52	  	   	  	  0.06	  	   	  	  0.00	  	   	  	  0.06	  	  
Other	   	  	  	  0.48	  	   	  	  0.33	  	   	  	  	  	  0.35	  	   	  	  0.28	  	   	  	  0.31	  	   	  	  0.02	  	   	  0.43	  	   	  	  0.42	  	   	  	  	  	  0.40	  	   	  	  0.06	  	   	  	  0.01	  	  	  	  	  	  	  0.05	  	  
Comorbidity	  score**	  
0	   	  	  	  	  0.58	  	  	  	  	  	  0.67	  	  	  	  	  	  	  0.67	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.20	  	   	  	  0.20	  	   	  	  0.00	  	   	  	  0.61	  	  	  	  	  	  0.62	  	   	  	  	  	  0.63	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.04	  	   	  	  0.01	  	   	  	  0.03	  	  
1	   	  	  	  0.17	  	   	  	  	  0.16	  	  	  	  	  	  	  0.16	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.03	  	  	  	  	  	  	  0.03	  	   	  	  0.01	  	   	  	  0.17	  	   	  	  0.17	  	   	  	  0.17	  	   	  	  	  	  	  	  	  	  	  	  	  	  0.00	  	  	  	  	  	  0.01	  	   	  	  0.01	  	  
2	   	  	  	  0.09	  	   	  	  0.09	  	  	  	  	  	  	  0.07	  	   	  	  	  	  	  	  	  	  	  	  	  0.07	  	   	  	  0.02	  	   	  	  0.04	  	   	  	  0.09	  	  	   	  	  0.10	  	   	  	  0.08	  	  	  	   	  	  0.03	  	  	  	  	  	  0.04	  	   	  	  0.07	  	  
3+	   	  	  	  0.16	  	  	  	  	  	  0.08	  	  	  	  	  	  	  0.09	  	   	  	  0.20	  	  	  	  	  	  	  0.25	  	  	  	  	  	  0.05	  	   	  	  0.13	  	  	  	  	  	  0.12	  	   	  	  0.12	  	   	  	  0.04	  	   	  	  0.04	  	   	  	  0.00	  	  
COPD	  prior	  to	  
diagnosis	  

	  	  	  	  0.25	  	   	  	  0.21	  	   	  	  0.22	  	   	  	  0.07	  	   	  	  0.11	  	   	  	  0.04	   	  	  0.24	  	  	  	  	  	  0.24	  	  	  	  	  	  	  0.23	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.02	  	  	  	  	  	  0.01	  	  	  	  	  	  	  	  0.02	  	  

Brain	  metastases	   	  	  	  0.22	  	   	  	  0.12	  	  	  	  	  	  	  0.18	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  0.10	  	   	  	  0.28	  	   	  	  0.18	  	   	  	  0.19	  	   	  	  0.19	  	  	  	  	  	  	  0.18	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.02	  	   	  	  0.02	  	  	  	   	  	  0.01	  	  
Histology	  
Large	  cell	   	  	  	  	  0.05	  	  	  	  	  	  0.04	  	  	  	  	  	  	  0.05	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.02	  	  	  	  	  	  0.05	  	  	  	   	  	  0.07	  	   	  	  0.05	  	   	  	  0.04	  	   	  	  0.05	  	   	  	  0.01	  	   	  	  0.01	  	   	  	  0.02	  
Adenocarcinoma	   	  	  	  0.56	  	   	  	  	  0.64	  	  	  	  	  	  	  0.52	  	   	  	  0.07	  	   	  	  0.18	  	   	  	  0.25	  	   	  	  0.55	  	   	  	  0.56	  	   	  	  0.56	  	   	  	  0.01	  	   	  	  0.02	  	  	  	  	  	  	  	  0.01	  	  
BAC	   	  	  	  0.01	  	   	  	  0.03	  	  	  	  	  	  	  0.01	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.02	  	   	  	  0.12	  	   	  	  0.14	  	   	  	  0.02	  	   	  	  0.02	  	   	  	  0.02	  	   	  	  0.01	  	   	  	  0.02	  	   	  	  0.02	  
NOS	   	  	  	  0.38	  	   	  	  0.29	  	  	  	  	  	  	  0.42	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.07	  	   	  	  0.20	  	   	  	  0.27	  	   	  	  0.38	  	   	  	  0.38	  	   	  	  0.38	  	   	  	  0.01	  	   	  	  0.01	  	   	  	  0.00	  	  
Long-‐term	  care	  	   	  	  	  	  0.15	  	   	  	  0.07	  	   	  	  0.08	  	   	  	  0.24	  	   	  	  0.27	  	   	  	  0.03	  	   	  	  	  0.12	  	  	  	  	  	  0.11	  	   	  	  	  0.11	  	   	  	  0.04	  	   	  	  0.03	  	   	  	  0.01	  	  
Skilled	  nursing	  
services	  	  

	  	  	  	  0.09	  	   	  	  0.02	  	   	  	  0.03	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.28	  	   	  	  0.29	  	  	  	  	  	  	  0.02	  	   	  	  0.06	  	   	  	  0.05	  	   	  	  	  0.04	  	   	  	  0.11	  	   	  	  0.04	  	   	  	  0.08	  	  

Home	  oxygen	   	  	  	  	  0.19	  	   	  	  0.13	  	   	  	  0.16	  	   	  	  0.08	  	   	  	  0.16	  	  	  	  	  	  	  0.08	  	   	  	  	  0.17	  	  	  	  	  	  0.16	  	   	  	  	  	  0.17	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.00	  	   	  	  0.03	  	   	  	  0.03	  	  
ADL	  aids	   	  	  	  	  0.12	  	   	  	  0.08	  	   	  	  0.06	  	   	  	  0.20	  	   	  	  0.14	  	   	  	  0.06	   	  	  	  0.10	  	   	  	  	  0.09	  	  	  	  	  	  	  0.09	  	   	  	  0.05	  	   	  	  0.05	  	   	  	  0.00	  	  
Medicaid	  enrollment	   	  	  	  	  0.22	  	   	  	  0.21	  	   	  	  0.12	  	   	  	  0.27	  	   	  	  0.01	  	   	  	  0.25	   	  	  	  0.19	  	  	  	  	  	  0.18	  	   	  	  	  0.16	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.07	  	   	  	  0.01	  	   	  	  0.06	  	  
Urban	  residence	   	  	  	  	  0.90	  	   	  	  0.91	  	   	  	  0.90	  	   	  	  0.02	  	   	  	  0.02	  	   	  	  0.04	  	   	  	  0.90	  	  	   	  	  0.90	  	  	  	  	  	  	  0.90	  	   	  	  0.00	  	   	  	  0.01	  	   	  	  0.00	  	  
Teaching	  hospital	   	  	  	  	  0.00	  	   	  	  0.17	  	   	  	  0.26	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.84	  	   	  	  0.64	  	   	  	  0.23	  	   	  	  	  0.00	  	   	  	  0.12	  	  	  	  	  	  	  0.12	  	   	  	  0.52	  	   	  	  0.51	  	   	  	  0.01	  	  
College	  education	  ***	  	  
1(low)	   	  	  	  	  0.21	  	   	  	  0.16	  	   	  	  0.19	  	   	  	  0.04	  	   	  	  0.13	  	   	  	  0.09	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  	  	  	  	  0.00	  	   	  	  0.00	  	   	  	  0.00	  
2	   	  	  	  	  0.20	  	  	  	  	  	  0.20	  	   	  	  0.19	  	   	  	  0.03	  	   	  	  0.01	  	   	  	  0.02	  	   	  	  0.21	  	   	  	  0.19	  	   	  	  0.20	  	   	  	  0.02	  	   	  	  0.04	  	   	  	  0.02	  	  
3	   	  	  	  	  0.19	  	   	  	  0.19	  	   	  	  0.21	  	   	  	  0.04	  	  	  	  	  	  	  0.01	  	   	  	  0.05	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.01	  	   	  	  0.00	  	   	  	  0.01	  	  
4	   	  	  	  	  0.21	  	   	  	  0.19	  	   	  	  0.21	  	   	  	  0.01	  	   	  	  0.02	  	   	  	  0.04	  	   	  	  0.20	  	   	  	  0.21	  	   	  	  0.21	  	   	  	  0.00	  	   	  	  0.01	  	   	  	  0.00	  	  
5	  (high)	   	  	  	  	  0.19	  	   	  	  0.26	  	   	  	  0.19	  	   	  	  	  0.01	  	  	  	  	  	  	  0.16	  	   	  	  0.15	  	   	  	  0.19	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.01	  	   	  	  0.03	  	   	  	  0.02	  	  
Income***	  
1	  (low)	   	  	  	  	  0.21	  	   	  	  0.16	  	   	  	  0.19	  	   	  	  0.06	  	   	  	  0.14	  	   	  	  0.07	   	  	  0.20	  	   	  	  0.19	  	   	  	  0.20	  	   	  	  0.01	  	   	  	  	  0.02	  	   	  	  0.01	  	  
2	   	  	  	  	  0.20	  	   	  	  0.19	  	   	  	  0.19	  	   	  	  0.03	  	   	  	  0.04	  	   	  	  0.01	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.02	  	   	  	  0.00	  	   	  	  0.01	  	  
3	   	  	  	  	  0.2	  0	  	  	  	  	  0.20	  	  	  	  	  	  	  0.20	  	   	  	  0.01	  	   	  	  0.01	  	   	  	  0.00	  	   	  	  	  0.20	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.00	  	   	  	  0.00	  	   	  	  0.00	  
4	   	  	  	  	  0.20	  	   	  	  0.20	  	   	  	  0.20	  	  	  	   	  	  0.00	  	  	  	  	  	  	  0.00	  	   	  	  0.00	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.01	  	   	  	  0.01	  	   	  	  0.00	  	  
5	  (high)	   	  	  	  	  0.18	  	   	  	  0.25	  	   	  	  0.21	  	   	  	  0.08	  	  	  	  	  	  	  0.16	  	   	  	  0.08	  	   	  	  0.19	  	   	  	  0.20	  	   	  	  0.21	  	   	  	  0.04	  	   	  	  0.03	  	   	  	  0.01	  	  
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Table 1.1. (Continued) 

*Other	  covariates	  included	  in	  PS	  estimation:	  Alcohol	  abuse,	  Cardiac	  arrhythmias,	  CHF,	  Chronic

pulmonary	  disease,	  Coagulopathy,	  Complicated	  diabetes,	  Deficiency	  anemias,	  Dementia,	  Fluid	  
and	  electrolyte	  disorder,	  HIV/AIDS,	  Hemiplegia,	  Hypertension,	  Liver	  disease,	  PVD,	  Psychosis,	  
Pulmonary	  circulation	  disorder,	  Renal	  failure,	  Weight	  loss,	  hospital	  days	  for	  COPD	  prior	  to	  
cancer	  diagnosis,	  census	  tract	  level	  hospital	  bed	  and	  physician	  density,	  managed	  care	  
penetration,	  proportion	  foreign	  born,	  hospital	  length	  of	  stay	  within	  a	  year	  prior	  to	  cancer	  
diagnosis,	  hospital	  referral	  region	  not	  shown	  (see	  Appendix)	  	  **determined	  using	  Charlson	  and	  
Elixhauser	  combined	  score	  †chemotherapy vs. BSC ‡targeted therapy vs. BSC ¶targeted 
therapy vs. chemotherapy ***	  census	  tract	  quintile	  

medical costs prior to diagnosis.   Patients treated with targeted therapy compared to 

chemotherapy alone were more likely to be female, non-Hispanic, non-white, or non-

black, have a histopathologic diagnosis of adenocarcinoma and Medicaid co-insurance, 

live in areas with high managed care penetration, and areas with a highly educated and 

foreign born population.  Compared to the chemotherapy alone treatment group, those 

treated with targeted therapy were less likely to have brain metastases or to be treated 

at a teaching hospital.  In the IPW analyses, the balance in the baseline characteristics 

across the treatment groups improved considerably.  All standardized differences were 

notably smaller than 10% with the exception of a higher proportion of systemic therapy 

patients who were managed at a teaching hospital compared to the BSC group. 

BSC	  	  	  	  	  	  Target	  	  	  	  Chemo	  	  
	  	  	  	  	  	  Proportion Standardized	  Difference	  

BSC	  	  	  	  	  	  Target	  	  	  	  Chemo	  	  
	  	  	  	  	  	  Proportion Standardized	  Difference	  

Characteristic	   Unweighted	   Inverse	  Probability	  of	  Treatment	  Weighted	  
Prior	  year	  costs	  
(quintile)	  	  
1	  (low)	   	  	  	  	  0.21	  	   	  	  0.17	  	   	  	  0.20	  	   	  	  0.03	  	   	  	  0.11	  	   	  	  0.08	  	   	  	  0.20	  	   	  	  0.19	  	  	  	  	  	  	  0.20	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.00	  	   	  	  0.03	  	   	  	  0.02	  	  
2	   	  	  	  	  0.18	  	   	  	  0.22	  	   	  	  0.22	  	   	  	  0.09	  	   	  	  0.10	  	   	  	  0.01	  	   	  	  0.19	  	   	  	  0.20	  	   	  	  0.20	  	   	  	  0.02	  	   	  	  0.02	  	   	  	  0.00	  	  
3	   	  	  	  	  0.18	  	   	  	  0.23	  	   	  	  0.21	  	   	  	  	  	  	  0.07	  	   	  	  0.11	  	  	  	  	  	  	  0.04	  	   	  	  0.20	  	   	  	  0.21	  	   	  	  	  	  0.20	  	   	  	  0.01	  	   	  	  0.02	  	   	  	  0.01	  	  
4	   	  	  	  	  0.18	  	   	  	  0.23	  	   	  	  0.21	  	   	  	  0.07	  	   	  	  0.13	  	   	  	  0.06	  	   	  	  0.20	  	   	  	  0.19	  	   	  	  0.20	  	   	  	  0.02	  	   	  	  0.03	  	   	  	  0.04	  	  
5	  (high)	   	  	  	  	  0.24	  	   	  	  0.15	  	   	  	  0.16	  	   	  	  0.20	  	   	  	  0.24	  	  	  	  	  	  	  0.04	   	  	  0.21	  	   	  	  0.21	  	   	  	  0.19	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.04	  	  	  	  	  	  	  0.01	  	   	  	  0.06	  	  
Year	  of	  diagnosis	  
2007	   	  	  	  	  0.34	  	   	  	  0.34	  	   	  	  0.34	  	   	  	  0.01	  	   	  	  0.00	  	   	  	  0.01	  	   	  	  0.34	  	   	  	  0.33	  	  	  	  	  	  	  0.34	  	   	  	  0.01	  	   	  	  0.02	  	   	  	  0.01	  
2008	   	  	  	  	  0.34	  	   	  	  0.32	  	   	  	  0.34	  	   	  	  0.01	  	   	  	  0.05	  	   	  	  0.05	  	   	  	  0.34	  	   	  	  0.34	  	   	  	  0.34	  	   	  	  0.01	  	   	  	  0.01	  	   	  	  0.00	  
2009	   	  	  	  	  0.32	  	   	  	  0.34	  	   	  	  0.32	  	   	  	  0.00	  	   	  	  0.04	  	  	  	  	  	  	  0.04	  	   	  	  0.32	  	   	  	  0.33	  	   	  	  0.32	  	   	  	  0.00	  	  	  	  	  	  	  0.02	  	   	  	  0.01	  	  
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1.3.2  Life Expectancy 

Patients who were ever exposed to cancer-directed treatment during their course 

of disease with Stage IV lung cancer had a longer survival compared to those managed 

with BSC.  Based on undiscounted survival time and doubly robust, IPW Cox PH 

models, the median overall survival estimates were 2.4 (IQR, 1.3-5.2), 6.5 (IQR, 3.3-

13.1), and 9.8 (IQR, 4.7-17.2) months in the BSC, chemotherapy and targeted therapy 

groups, respectively.   Surprisingly, our subgroup analysis based on first-line therapy 

exposure, revealed that the adjusted median survival for patients selected for first line 

erlotinib therapy in routine care was only marginally longer compared to a 

counterfactual group of patients managed with BSC, 4.7 (IQR, 2.7-11.5) months vs. 2.6 

(IQR, 1.3-5.5) months.   A much longer median adjusted OS was observed for those 

treated with first line doublet chemotherapy, 8.1 months (IQR, 4.1-15.5), and for patients 

who initiated combination therapy with bevacizumab, 10.5 months (IQR, 5.6-18.3). 

Discounted mean life expectancy and lifetime costs adjusted for inflation (2013 $) 

are shown in Tables 1.2 and 1.3 by treatment ‘ever’ category and for first-line treatment 

subgroups, respectively.  These lifetime estimates are based on IPW, doubly-robust 

analyses and projections beyond last censored observation.   The largest discounted 

mean life expectancy improvement, of 5.4 months, was seen in patients ever treated 

with chemotherapy alone relative to those managed with BSC (Table 1.2).   Patients 

who received targeted therapy at some point, lived on average 2.4 months longer 

compared to cases treated with chemotherapy alone (Table 1.2).  Based on first-line 

therapy subgroup analyses (Table 1.3), the mean life expectancy increased by only 1.2 

months for treatments that combined bevacizumab with a chemotherapy doublet vs. 
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chemotherapy alone.  The mean survival associated with first line erlotinib therapy was 

substantially shorter compared to treatment with a chemotherapy doublet, 8.5 vs. 12.2 

months. 

Table 1.2.  Cost Effectiveness Analysis Results by Treatment Category ‘Ever’.  

Treatment*	   Mean	  
Lifetime	  

Cost†

Cost	  
Difference	  

Mean	  Life	  
Expectancy†	  

(months)	  

Mean	  Life	  
Expectancy	  

(years)	  

Change	  in	  
Life	  

Expectancy	  
(years)	  

ICER‡	  
($/LY)	  

BSC¶ $45,556	   5.28	   0.44	  

Any	  Chemotherapy	   $86,039	   $40,483	   10.66	   0.89	   0.45	   90,297	  

Targeted	   $125,119	   $39,080	   13.02	   1.16	   0.20	   198,712	  

Table 1.3. Cost Effectiveness Analysis Results by First-Line Therapy.

Treatment**	   Mean	  
Lifetime	  

Cost†

Cost	  
Difference	  

Mean	  Life	  
Expectancy†	  

(months)	  

Mean	  Life	  
Expectancy	  

(years)	  

Change	  in	  
Life	  

Expectancy	  
(years)	  

ICER	  
($/LY)	  

BSC¶ $47,902	   5.17	   0.43	  

Erlotinib	   $83,732	   dominated	   8.51	   0.71	   dominated	   dominated	  

Doublet	  
Chemotherapy	   $95,154	   $47,252	   12.21	   1.02	   0.59	   80,543	  

Bevacizumab	   $149,987	   $54,833	   13.43	   1.12	   0.10	   548,330	  
*patients	  grouped	  into	  treatment	  categories	  based	  on	  receipt	  of	  treatment	  anytime	  after	  diagnosis;	  based	  on	  projected	  costs	  and	  survival
beyond	  last	  observed	  data	  (extended	  means)	  
†	  based	  on	  doubly	  robust	  estimators	  (inverse	  probability	  weighting	  by	  propensity	  score	  and	  multivariate	  outcome	  regression	  models);	  models	  
were	  adjusted	  for	  age,	  race,	  gender,	  marital	  status,	  comorbidity	  score,	  individual	  comorbidities,	  histology,	  brain	  metastases,	  enrollment	  in	  
Medicaid,	  urban	  residence,	  hospital	  teaching	  status,	  pre-‐diagnosis	  costs,	  indicators	  of	  functional	  status	  prior	  to	  diagnosis	  (skilled	  nursing,	  long-‐
term	  care,	  hospital	  stays,	  use	  of	  home	  oxygen,	  ADL	  aids),	  census	  level	  college	  education,	  income,	  physician	  density,	  hospital	  bed	  density,	  
managed	  care	  penetration,	  proxy	  indicator	  for	  acculturation	  (proportion	  foreign	  born),	  year	  of	  diagnosis,	  and	  hospital	  referral	  region	  
‡ICER=incremental	  cost	  effectiveness	  ratio,	  ratio	  of	  difference	  in	  mean	  lifetime	  costs	  (2013	  $)	  	  to	  mean	  life	  years	  ;	  after	  1	  year,	  costs	  and	  
survival	  length	  discounted	  by	  3%	  per	  annum	  
¶BSC=best	  supportive	  care	  
**patients	  grouped	  into	  treatment	  categories	  based	  on	  first-‐line	  therapy	  initiation	  within	  120	  days	  from	  diagnosis	  



22	  

1.3.3  Costs 

On average, the discounted cost of medical management with BSC over a 

lifetime was $45,600 (2013 US$).  The corresponding lifetime cost estimates for the 

chemotherapy and targeted therapy groups were $86,000 and $125,100, respectively, 

or approximately $40,000 more for each technological advance (Table 1.2).    

Patients who initiated therapy with a bevacizumab-based combination treatment, 

had the highest lifetime costs of around $150,000 (Table 1.3).  Costs for those who 

were treated with first-line chemotherapy were approximately $55,000 lower over a 

lifetime compared to the first-line bevacizumab group.   

We also decomposed the cumulative medical expenditures by service type and 

into monthly spending by phase of care (Table 1.4 and 1.5).   First, we carried out a 

comparison of mean IPW monthly costs by phase of care between the BSC patients 

and each of the treatment groups prior to initiation of therapy to examine whether 

residual unobserved confounders may explain the differences in cumulative and 

monthly costs.  These analyses revealed no significant differences in monthly costs 

(data not shown), bolstering the case that group differences in cumulative and monthly 

costs arose from survival differences and treatment-related management.    

The decomposed estimates revealed that systemic therapy costs account for the 

largest proportion of medical care costs.  In the targeted therapy group, a quarter of the 

overall spending, or $32,300, was attributable to costs related to targeted treatments, 

and another 20% of total costs, approximately $25,000, was spent on chemotherapy 

(drug costs and administration costs).   Similarly, in the chemotherapy treatment only 

group, drug related costs accounted for a substantial proportion (22.0%) of the total 

expenditures (Table 1.4).   
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Table 1.4.   Costs by Category of Spending and Treatment (2013 $). 

Treatment*	   Durable	  Medical
Equipment	  

Home	  Health	  
Agency	   Hospice	   Inpatient	  Hospital	   Physician	   Outpatient	   Chemotherapy	   Target	  Therapy	   Total	  Cost	  

BSC	   $588	   1.3%
†	   $946	   2.1%	   $4,485	   9.8%	   $25,654	   56.3%	   $9,561	   21.0%	   $4,322	   9.5%	   $0	   0.0%	   $0	   0.0%	   $45,556	  

Chemo	   $1,215	   1.4%	   $2,349	   2.7%	   $3,900	   4.5%	   $32,137	   37.4%	   $18,152	   21.1%	   $9,358	   10.9%	   $18,928	   22.0%	   $0	   0.0%	   $86,039	  

Targeted	   $868	   0.7%	   $2,322	   1.9%	   $3,815	   3.0%	   $31,622	   25.3%	   $19,490	   15.6%	   $9,797	   7.8%	   $24,912	   19.9%	   $32,293	   25.8%	   $125,119	  

* using Kaplan-Meier Sample Average (KMSA) cost estimator based on doubly robust, inverse probability  of treatment
weighted (IPW) monthly costs and survival probabilities ;  propensity of receiving a treatment was estimated using 
multinomial logistic regression model with the following covariates: age, race, gender, marital status, comorbidity score, 
individual comorbidities, histology, brain metastases, enrollment in Medicaid, urban residence, hospital teaching status, 
pre-diagnosis costs, indicators of functional status prior to diagnosis (skilled nursing, long-term care, hospital stays, use of 
home oxygen, ADL aids), census level college education, income, physician density, hospital bed density, managed care 
penetration, proxy indicator for acculturation (proportion foreign born), year of diagnosis, and hospital referral region; after 
1 year, costs discounted by 3% per annum 
†percent of total cost 
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The terminal phase was the most resource intensive period.  Although the 

monthly terminal costs were comparable across all treatment groups, it is noteworth y 

that the pattern of spending did differ across the groups (Table 1.5).  For example, 

patients in the BSC group had significantly higher inpatient hospital monthly costs 

compared to patients treated with systemic therapy.  Interestingly, a large amount of

spending in the terminal phase continued to be allocated towards drug therapy for 

patients who received any form of systemic therapy (Table 1.5).  For example, in the 

targeted therapy group, 20% of terminal phase costs were attributable to drug therap y,

and a mean of $1,492 per month was spent on targeted therapy alone.   

The initial phase of treatment was also associated with high mean monthly tot al 

costs (Table 1.5). Almost 20% and 40% of the costs in the initial phase were compri sed

of drug therapy spending in the chemotherapy and targeted therapy groups, 

respectively.    The continuing phase was the least costly (total monthly cost range: 

$3,392 - $7,573), but net of drug costs, the monthly costs in this phase did not differ by

treatment group. 

1.3.4  Cost-Effectiveness Analysis 

For strategies based on treatment exposure ever, the incremental cost 

effectiveness ratios (ICERs) using a lifetime horizon were $90,300 per year of life an d

$198,700 per life-year for chemotherapy vs. BSC and targeted therapy vs. 

chemotherapy respectively (Table 1.2). 

In our subgroup analysis which compared groups according to first-line therapy, y,

tedthe erlotinib strategy was eliminated by extended dominance since the ICER 

associated with this treatment was higher compared to the ICER for first-line 

chemotherapy.
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Table 1.5.  Monthly Costs by Phase of Care and Treatment (2013 $). 

Treatmen
t*	  

Phase	   Total	  Costs	   Costs	  without	  
Drug	  Therapy	  

Inpatient	  
Hospital	  Costs	  

Outpatient	  
Costs	  

Physician	  	  
Costs	  

Hospice	  
Costs	  

Home	  
Health	  

Care	  Costs	  

Durable	  
Medical	  

Equipment	  
Costs	  

Chemother
apy	  Costs	  

Targeted	  
Therapy	  Costs	  

Mean	  (95%	  CI)	  
2013	  US	  $	  

Targeted	  
Therapy	  

Initial	  

Continuing	  

Terminal	  

11,874	  	  
(11,460-‐12,288)	  

	  	  7,573	  	  
	  (7,245-‐7,901)	  

12,015	  	  
(11,400-‐12,630)	  

	  	  7,247	  	  
(6,877-‐7,617)	  

	  	  2,927	  	  
	  (2,750-‐3,105)	  

	  	  9,619	  	  
(9,041-‐10,198)	  

3,359	  
(3,066-‐3,651)	  

907	  
(804-‐1,011)	  

5,575	  
(5,081-‐6,070)	  

1,323	  
(1,235-‐1,411)	  

583	  
(535-‐631)	  

761	  
(573-‐948)	  

2,308	  
(2,194-‐2,422)	  

1,080	  
(1,020-‐1,141)	  

1,717	  
(1,615-‐1,819)	  

14	  
(1-‐26)	  
125	  

(78-‐171)	  
1,065	  

(958-‐1,171)	  

147	  
(122-‐171)	  

149	  
(123-‐175)	  

389	  
(334-‐444)	  

97	  
(78-‐116)	  

79	  
(63-‐96)	  

113	  
(99-‐127)	  

1,902	  	  
(1,724-‐2,080)	  

2,058	  	  
(1,867-‐2,249)	  

	  	  	  903	  	  
(797-‐1,009)	  

2,726	  	  
(2,542-‐2,909)	  

2,587	  	  
(2,396-‐2,779)	  

1,492	  	  
(1,362-‐1,623)	  

Chemothe
rapy	  

Initial	  

Continuing	  

Terminal	  

10,168	  	  
	  (9,847-‐10,490)	  

	  	  5,139	  	  
	  (4,897-‐5,381)	  

11,850	  	  
(11,444-‐12,257)	  

	  	  8,329	  	  
	  (8,009-‐8,650)	  

	  	  3,190	  	  
	  (2,992-‐3,389)	  

10,685	  	  
(10,283-‐11,088)	  

3,820	  
(3,553-‐4,087)	  

1,169	  
(1,032-‐1,305)	  

6,351	  
(5,993-‐6,708)	  

1,555	  
(1,481-‐1,629)	  

594	  
(554-‐634)	  

785	  
(736-‐835)	  

2,717	  
(2,622-‐2,811)	  

1,084	  
(1,014-‐1,154)	  

2,046	  
(1,958-‐2,133)	  

11	  
(5-‐17)	  
122	  

(89-‐154)	  
1,034	  

(961-‐1,107)	  

143	  
(120-‐166)	  

143	  
(123-‐163)	  

360	  
(329-‐390)	  

84	  
(76-‐93)	  

82	  
(71-‐94)	  

110	  
(101-‐119)	  

1,839	  
	  (1,745-‐1,933)	  

1,949	  
	  (1,812-‐2,086)	  

1,165	  	  
(1,090-‐1,240)	  

n/a	  

BSC	  

Initial	  

Continuing	  

Terminal	  

	  	  8,493	  	  
	  (8,074-‐8,913)	  

	  	  3,392	  	  
(3,106-‐3,678)	  

12,711	  	  
	  (12,351-‐
13,071)	  

	  	  8,493	  	  
(8,074-‐8,913)	  

	  	  3,392	  	  
	  (3,106-‐3,678)	  

12,711	  
	  (12,351-‐
13,071)	  

4,759	  
(4,412-‐5,106)	  

1,027	  
(863-‐1,191)	  

8,203	  
(7,876-‐8,531)	  

1,192	  
(1,040-‐1,345)	  

636	  
(542-‐730)	  

633	  
(597-‐668)	  

2,079	  
(1,984-‐2,174)	  

1,071	  
(912-‐1,230)	  

2,049	  
(1,984-‐2,115)	  

222	  
(188-‐256)	  

420	  
(334-‐505)	  

1,469	  
(1,409-‐
1,529)	  

158	  
(138-‐178)	  

123	  
(101-‐144)	  

261	  
(243-‐280)	  

83	  
(73-‐93)	  

81	  
(67-‐94)	  

90	  
(83-‐97)	  

n/a	   n/a	  

*estimates based on inverse probability  of treatment weighted (IPW) monthly costs;  propensity of receiving a treatment
was estimated using multinomial logistic regression model with the following covariates: age, race, gender, marital status, 
comorbidity score, individual comorbidities, histology, brain metastases, enrollment in Medicaid, urban residence, hospital 
teaching status, pre-diagnosis costs, indicators of functional status prior to diagnosis (skilled nursing, long-term care, 
hospital stays, use of home oxygen, ADL aids), census level college education, income, physician density, hospital bed 
density, managed care penetration, proxy indicator for acculturation (proportion foreign born), year of diagnosis, and 
hospital referral region

25	  
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  The first-line chemotherapy strategy compared to BSC yielded an ICER of$80,500 

per additional life year (Table 1.3).  Relative to first-line chemotherapy, the addition 

of bevacizumab to first-line therapy resulted in a cost of almost $550,000 pe life year 

gained (Table 1.3). 

1.3.5  Sensitivity Analyses 

We conducted several sensitivity analyses to test the effects of modeling 

assumptions and potential omitted variable bias on our results.   In table 1.6, we present

the results of several modeling approaches that were done using restricted mean 

outcomes (without extrapolation beyond observed period).   Not accounting for selection

bias based on observed confounders resulted in a more favorable ICER for 

chemotherapy, at around $85,000 per year of life, and for targeted therapy, at $160,000

per year of life, compared to the next best strategy.  Our base case analysis, IPW 

multivariate models adjusted for residual confounding including fixed HRR effects, 

produced an ICER for targeted therapy in mid-range of other modeling approaches, 

$91,700 and $184,400 per life year for chemotherapy and targeted therapy, 

respectively.  Without the doubly-robust estimation, IPW weighted analyses with HRR

fixed effects yielded slightly lower ICERs and those without HRR fixed effects produced

a higher ICER for targeted therapy.  These results suggest some residual confounding

by baseline characteristics and HRR residence, albeit to a small extent, compared to

analyses that were based on IPW estimation alone.    
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Table 1.6.  Sensitivity Analyses. 

Models	   Treatment	   Mean	  
Cost	  

Cost	  
Difference	  

Mean	  Life	  
Expectancy	  
(months)	  

Mean	  Life	  
Expectancy	  

(years)	  

Change	  in	  
Life	  

Expectancy	  
(years)	  

ICER†	  
($/LY	  

gained)	  

Unadjusted	  
BSC‡

Chemotherapy	  
Target	  Therapy	  

$45,391	  
$89,456	  

$142,233	  
$44,065	  
$52,777	  

5.10	  
11.35	  
15.32	  

0.43	  
0.95	  
1.28	  

0.52	  
0.33	  

84,740	  
159,930	  

Doubly	  
robust**,¶

BSC	  
Chemotherapy	  
Target	  Therapy	  

$45,410	  
$85,355	  

$124,377	  
$39,945	  
$39,022	  

5.24	  
10.47	  
13.01	  

0.44	  
0.87	  
1.08	  

0.44	  
0.21	  

91,652	  
184,356	  

IPW	  with	  
HRR	  fixed	  
effects	  **,††

BSC	  
Chemotherapy	  
Target	  Therapy	  

	  	  $45,865	  
$85,328	  

$126,445	  
$39,463	  
$41,117	  

5.40	  
10.95	  
13.77	  

0.45	  
0.91	  
1.15	  

0.46	  
0.24	  

85,789	  
171,321	  

IPW	  without	  
HRR	  fixed	  
effects ¶¶,‡‡

BSC	  
Chemotherapy	  
Target	  Therapy	  

$46,080	  
$87,507	  

$130,735	  
$41,427	  
$43,228	  

5.44	  
11.21	  
13.79	  

0.45	  
0.93	  
1.15	  

0.48	  
0.22	  

86,306	  
196,491	  

*based	  on	  observed	  data	  (restricted	  means)
†	  ICER=incremental	  cost	  effectiveness	  ratio,	  ratio	  of	  difference	  in	  mean	  lifetime	  costs	  (2013	  $)	  to	  mean	  life	  years	  ;	  	  
after	  1	  year,	  costs	  and	  survival	  length	  discounted	  by	  3%	  per	  annum	  
‡BSC=best	  supportive	  care	  
¶based	  on	  doubly	  robust	  estimators	  (inverse	  probability	  weighting	  by	  propensity	  score	  and	  multivariate	  outcome	  regression	  models);	  	  
models	  were	  adjusted	  for	  age,	  race,	  gender,	  marital	  status,	  comorbidity	  score,	  individual	  comorbidities,	  histology,	  brain	  metastases,	  enrollment	  
in	  Medicaid,	  urban	  residence,	  hospital	  teaching	  status,	  pre-‐diagnosis	  costs,	  indicators	  of	  functional	  status	  prior	  to	  diagnosis	  (skilled	  nursing,	  
long-‐term	  care,	  hospital	  stays,	  use	  of	  home	  oxygen,	  ADL	  aids),	  census	  level	  college	  education,	  income,	  physician	  density,	  hospital	  bed	  density,	  
managed	  care	  penetration,	  proxy	  indicator	  for	  acculturation	  (proportion	  foreign	  born),	  year	  of	  diagnosis,	  and	  hospital	  referral	  region	  fixed	  
effects	  
**propensity	  of	  receiving	  a	  treatment	  was	  estimated	  using	  multinomial	  logistic	  regression	  model	  with	  the	  following	  covariates:	  age,	  race,	  
gender,	  marital	  status,	  comorbidity	  score,	  individual	  comorbidities,	  histology,	  brain	  metastases,	  enrollment	  in	  Medicaid,	  urban	  residence,	  
hospital	  teaching	  status,	  pre-‐diagnosis	  costs,	  indicators	  of	  functional	  status	  prior	  to	  diagnosis	  (skilled	  nursing,	  long-‐term	  care,	  hospital	  stays,	  use	  
of	  home	  oxygen,	  ADL	  aids),	  census	  level	  college	  education,	  income,	  physician	  density,	  hospital	  bed	  density,	  managed	  care	  penetration,	  proxy	  
indicator	  for	  acculturation	  (proportion	  foreign	  born),	  year	  of	  diagnosis,	  and	  hospital	  referral	  region	  
††	  Kaplan-‐Meier	  Sample	  Average	  (KMSA)	  included	  estimates	  from	  models	  with	  inverse	  probability	  of	  treatment	  weights	  (IPW)	  and	  HRR	  fixed	  
effects	  
‡‡	  Kaplan-‐Meier	  Sample	  Average	  (KMSA)	  included	  estimates	  from	  models	  with	  inverse	  probability	  of	  treatment	  weights	  (IPW)	  	  
¶¶propensity	  of	  receiving	  a	  treatment	  was	  estimated	  using	  multinomial	  logistic	  regression	  model	  with	  the	  following	  covariates:	  age,	  race,	  
gender,	  marital	  status,	  comorbidity	  score,	  individual	  comorbidities,	  histology,	  brain	  metastases,	  enrollment	  in	  Medicaid,	  urban	  residence,	  
hospital	  teaching	  status,	  pre-‐diagnosis	  costs,indicators	  of	  functional	  status	  prior	  to	  diagnosis	  (skilled	  nursing,	  long-‐term	  care,	  hospital	  stays,	  use	  
of	  home	  oxygen,	  ADL	  aids),	  census	  level	  college	  education,	  income,	  physician	  density,	  hospital	  bed	  density,	  managed	  care	  penetration,	  proxy	  
indicator	  for	  acculturation	  (proportion	  foreign	  born),	  and	  year	  of	  diagnosis	  
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1.3.6  Instrumental Variable Analysis 

The instruments using HRR-by-year rates of the adoption of targeted therapy and 

chemotherapy significantly predicted the likelihood of lung cancer treatment choices (F 

= 147 and 125, p-value <.001, respectively for targeted therapy and chemotherapy).    

The likelihood of receiving treatment was significantly associated with the quintile of the 

instruments - chemotherapy receipt increased from 17.8% to 45.0% and targeted 

therapy ranged from 6.3% to 30.5% from the lowest quintile to the highest quintile of the 

instruments.  Patient characteristics according to the lowest and highest quintile of each 

instrument were reasonably balanced across the quintiles of the instruments (see 

Appendix).  Residual differences were controlled for in the doubly-robust estimation.    

The instrumental variable analyses indicated that the incremental 6-month and 12-

month differences between strategies in overall survival and cumulative costs were not 

significantly different from differences estimated by the doubly-robust IPW approach.   

1.4  Discussion 

We performed a cost-effectiveness analysis of targeted therapies outside the 

clinical trial setting in a population-based study of elderly patients with Stage IV NSCLC. 

Our results indicate that targeted therapy given in routine care generates a modest 

survival benefit compared to chemotherapy alone.  Unlike most cost-effectiveness 

analyses, which are based on decision analytic models with efficacy inputs from 

selected clinical trial participants, we based our study on the real-world setting to reflect 

effectiveness and expenditure outcomes using contemporary practice patterns.  Our 
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results suggest that the incremental cost-effectiveness ratio for targeted therapy of 

$198,700 per additional life year exceeds the WHO acceptable willingness to pay 

threshold for a cost-effective intervention of $150,000 per life year.[45]  In a subgroup 

analysis, we found that initiation of bevacizumab in combination with chemotherapy 

yielded an ICER of almost $550,000 per life-year.  First-line erlotinib therapy was a 

dominated strategy since it resulted in an ICER that was higher than that for first-line 

doublet chemotherapy, yet its effectiveness in terms of life expectancy was lower, 8.5 

months vs. 12.2 months, respectively.    

Our results for first-line bevacizumab-based therapy are consistent in value with 

an economic analysis which used efficacy outcomes from the landmark trial (ECOG 

4599) comparing carboplatin and paclitaxel with and without bevacizumab that yielded 

an ICER of $309,000 per life year from the US payer perspective.[18, 46]  Both, our 

observational study and the trial-based cost-effectiveness analysis suggest that 

bevacizumab treatment is associated with a low economic value.  The survival 

outcomes observed in our study among patients who were treated with bevacizumab in 

the first line setting were comparable to those reported by Zhu, et al.[14]   In that 

observational study of patients aged 65 years or older, the median OS for bevacizumab 

in combination with carboplatin and paclitaxel was 9.7 months and the 1-year survival 

probability was 39.6%, outcomes that were not significantly different from carboplatin 

and paclitaxel combination therapy alone.  More careful selection of patients in a trial 

setting yielded results for overall survival that ranged from non-significant to a 2-month 

significant benefit in the ECOG 4599 trial for bevacizumab combination therapy 

compared to chemotherapy alone.[11, 47, 48]  In contrast to the known predictive 
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biomarkers which correlate with response to erlotinib, factors predictive of response or 

toxicity with bevacizumab in non-squamous cell tumors are yet to be elucidated.[49]  

Future research should focus on identifying predictive markers to guide bevacizumab 

therapy towards subgroups of patients who are more likely to benefit from addition of 

bevacizumab to first-line chemotherapy. 

Our finding of a surprisingly low adjusted median OS of 4.7 months for patients 

selected for first line erlotinib therapy in routine care compared to a counterfactual group 

of patients treated with first line doublet chemotherapy of 8.1 months warrants a closer 

examination of treatment prescribing patterns.  In a companion observational analysis of 

elderly lung cancer patients, we found that only 5.2% of Stage IV non-squamous 

NSCLC patients had a claim for a molecular test prior to initiation of first-line therapy.(ref 

3rd paper)   This finding is corroborated by another study which also reported that 

biomarker screening is underutilized in routine care.  In that study, only 12% of US 

acute-care hospitals ordered the EGFR assay in 2010, which represented 5.7% of 

guideline-directed patients.[9]   Yet, outcomes with erlotinib therapy are correlated with 

EGFR mutation status and therefore dependent on molecular testing.  While unselected 

patients with advanced NSCLC have response rates of 8% to 9% and median 

progression-free survival (PFS) of 3.4 months with erlotinib, those whose tumors 

harbour drug sensitizing EGFR mutations have response rates of 68% and median PFS 

of 12 months on erlotinib.[8]  In a recent trial of first line erlotinib therapy in patients with 

tumors positive for the EGFR drug sensitizing mutations, median overall survival was 

19.3 months.[7]  The lower median OS found in our observational cohort compared to 

the results in that trial may be due, in part, to differences in age and functional status.  
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Still, a three-fold difference in median OS, coupled with the low proportion of patients 

with evidence of molecular testing suggest that molecularly guided therapy is 

underutilized in routine practice.   One way to optimize the value of erlotinib therapy is to 

condition its use on EGFR positive status.  Commercial EGFR mutation assays were 

first marketed in 2005 and many laboratory-developed tests (LDTs) for EGFR mutations 

are available, providing ready access to EGFR testing.[9]    In addition,  ascertainment 

of predictive biomarker status prior to selection of TKI therapy in all patients with non-

squamous, advanced stage NSCLC has been endorsed by professional societies 

including the American Society for Clinical Oncology (ASCO),  the College of American 

Pathologists (CAP), the International Association for the Study of Lung Cancer (IASLC),  

the Association for Molecular Pathology (AMP), as well as NCCN.[8, 50, 51] 

Evidence suggests that better value for EGFR TKIs, in terms of return on medical 

spending, is achievable through universal molecular testing of guideline-recommended 

patients.   Handorf et al. conducted a cost effectiveness analysis of EGFR mutation 

testing to inform first-line treatment in patients with stage IV NSCLC in the United 

States.  Compared to standard of care with carboplatin and paclitaxel combination 

chemotherapy, testing followed by erlotinib treatment in EGFR mutation positive tumors, 

or chemotherapy in wild type tumors yielded ICERs in the range of $110,600 to 

$122,200 per QALY.  Compared with carboplatin, pemetrexed and bevacizumab as the 

standard of care, the testing strategy had ICERs of $25,500 to $44,000 per QALY.[17]   

In a separate analysis, we also found that EGFR mutation and anaplastic lymphoma 

kinase (ALK) rearrangement guided therapy in non-squamous, Stage IV NSCLC 

patients yields good value with an ICER of $150,000 per QALY compared to cisplatin-
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pemetrexed treatment in unselected patients.(ref 1st paper)    The effect of EGFR 

mutation guided therapy on the health care budget appears to have a small impact.  In a 

plan of 500,000 members, the budget impact did not exceed $0.019 per member per 

month in one analysis.[52]  Taken as a whole, the return on medical spending for 

erlotinib would be improved by better targeting of patients most likely to benefit from this 

TKI through molecular testing.  

The limitations of our study need to be considered in the interpretation of our 

findings.  We relied on observational data in our analysis, which is subject to selection 

biases.  We mitigated the imbalance between treatment groups with the use of doubly 

robust methods, which included propensity score estimation with 43 potential 

confounders of treatment selection and outcomes.  We included proxy indicators of 

known predictors of therapy choice, such as performance status, and smoking history, 

as well as phenotypic characteristics that have been shown to correlate with EGFR drug 

sensitizing mutations.[8, 30]   We further adjusted for residual confounding and 

unobserved area-level confounders by using a doubly robust estimator, including fixed 

HRR effects.  Still, propensity score methods will estimate a causal effect that is 

unbiased to the extent that there are no omitted variables which confound the 

relationship between treatment and the outcome.   To account for potential omitted 

variable bias, in our sensitivity analyses, we conducted instrumental variable analyses.  

All results yielded consistent findings.  

From an external validity standpoint, the results of our analysis are generalizable 

to most elderly patients (65 years of age and older) who are managed in the community 

setting.  The SEER population is generally representative of the US population.[53]   
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The median age of NSCLC patients at diagnosis is 71 years and two thirds of NSCLC 

patients are 65 or older at the time of diagnosis.[54]   In addition, our analysis is based 

mainly on  patients who were not enrolled in a clinical trial, thus the results are 

generalizable to the majority of patients afflicted by this disease.  However, our analysis 

does not reflect treatment patterns and costs in managed care populations, who have 

been shown to differ systematically from FFS beneficiaries.[55]  Furthermore, the 

results are restricted to direct medical costs and thus do not include time costs, or costs 

due to lost productivity.  These metrics were outside the scope of the present analysis.  

In an era of a growing cost burden of cancer care, the cost of targeted therapies 

has come under increased scrutiny mostly as a response to the sticker shock from drug 

prices.[3-5, 16, 56]   Based on  treatment patterns in routine care, the economic value 

generated by targeted therapies in the setting of advanced NSCLC is unfavorable 

relative to conventional benchmarks.  Improvements in cost-effectiveness may be 

possible using predictive molecular marker testing to identify patients with drug 

sensitizing mutations that predispose to a favorable response to therapy.  Future policy 

efforts aimed at incentivizing molecularly guided therapy should be evaluated towards 

broader implementation of screening for genetic markers.  Such policies may include 

value-based benefit designs that reduce patient cost-sharing with accompanying 

evidence of positive results for EGFR drug sensitizing mutations, or reference pricing 

whereby reimbursement level for targeted therapies to providers is made contingent on 

the evidence base, or guideline recommendations (e.g., with higher reimbursement in 

cases of guideline-concordant care).   
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1.5  Appendix 

Figure 1.A.1. Hazard functions by treatment group.  The vertical lines correspond to the 
cut-point on the K-M survival curve where probability of survival is 20% or less. 
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Figure 1.A.2. Doubly robust survival curves and piecewise exponential model 
calibration. 
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 Table 1.A.1.  Predicted Survival According to Treatment for Unadjusted, Doubly-Robust and Instrumental Variable 
Results.

OLS	   Delta	  
(95%	  CI)	  

IPW,	  doubly	  
robust,	  HRR	  
fixed	  effects	  

Delta	  
(95%	  CI)	  

IPW,	  doubly	  
robust,	  HSA	  
fixed	  effects	  

Delta	  
(95%	  CI)	  

Original	  HRRs	  
for	  local	  area	  
treatment	  
pattern	  IV	  
2SLS	  -‐	  	  
XTIVREG	  code	  

Delta	  
(95%	  CI)	  

Original	  HSAs	  
for	  local	  area	  
treatment	  
pattern	  IV	  
2SLS	  -‐	  	  
XTIVREG	  code	  

Delta	  
(95%	  CI)	  

Predicted	  6-‐month	  survival	  
BSC	   0.223	   .226	   .225	   .201	   .195	  
Chemotherapy	   0.535	   .312	  

(.290,	  .334)	  
.528	   .302	  

(.277,	  .327)	  
.528	   .303	  

(.278,	  .328)	  
.495	   .294	  

(.077,	  .512)	  
.548	   .353	  

(.189,	  .517)	  
Targeted	   0.701	   .166	  

(.140,	  .192)	  
.680	   .152	  

(.119,	  .185)	  
.681	   .153	  

(.120,	  .186)	  
.832	   .337	  

(.130,	  .544)	  
.765	   .217	  

(.040,	  .394)	  
Predicted	  12-‐month	  survival	  
BSC	   .113	   .112	   .112	   .092	   .083	  
Chemotherapy	   .291	   .178	  

(.158,	  .197)	  
.284	   .172	  

(.150,	  .194)	  
.283	   .171	  

(.150,	  .193)	  
.264	   .172	  

(-‐.022,	  .367)	  
.293	   .210	  

(.064,	  .358)	  
Targeted	   .432	   .141	  

(.118,	  .164)	  
.418	   .134	  

(.102,	  .166)	  
.418	   .135	  

(.103,	  .168)	  
.541	   .277	  

(.092,	  .462)	  
.515	   .222	  

(.063,	  .380)	  
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Table 1.A.2.  Predicted Costs According to Treatment for Unadjusted, Doubly-Robust and Instrumental Variable Results. 

Mean	  Predicted	  
6-‐month	  cost	  

OLS	   Delta	  
(95%	  CI)	  

IPW,	  
doubly	  
robust,	  

OLS,	  
HRR	  
fixed	  

effects	  

Delta	  
(95%	  CI)	  

IPW,	  
doubly	  
robust,	  

OLS,	  
HSA	  
fixed	  

effects	  

Delta	  
(95%	  CI)	  

Original	  
HRRs	  for	  
local	  area	  
treatment	  
pattern	  IV	  

2SLS	  -‐	  	  
XTIVREG	  

code	  

Delta	  
(95%	  CI)	  

Original	  
HSAs	  for	  
local	  area	  
treatment	  
pattern	  IV	  

2SLS	  -‐	  	  
XTIVREG	  

code	  

Delta	  
(95%	  CI)	  

Mean	  Predicted	  6-‐month	  cost	  
BSC	   36,703	   36,533	   36,562	   36,523	   35,421	  
Chemotherapy	   49,834	   13,131	  

(11,671,	  
14,591)	  

49,533	   13,000	  
(11,474,	  14,526)	  

49,437	   12,875	  
(11,354,	  14,397)	  

52,562	   16,039	  
(1,526,	  30,552)	  

55,818	   20,397	  
(9,299,	  31,494)	  

Targeted	   62,932	   13,098	  
(11,367,	  
14,829)	  

60,528	   10,995	  
(9,027,	  12,964)	  

60,380	   10,943	  
(8,919,	  12,967)	  

58,702	   6,140	  
(-‐7,688,	  19,968)	  

57,019	   1,202	  
(-‐10,815,	  
13,219)	  

Mean	  Predicted	  12-‐month	  cost	  
BSC	   41,621	   41,395	   41,376	   40,625	   41,612	  
Chemotherapy	   65,456	   23,835	  

(21,973,	  
25,812)	  

65,051	   23,656	  
(21,443,	  25,	  869)	  

64,968	   23,591	  
(21,355,	  25,828)	  

69,411	   28,785	  
(9,723,	  47,847)	  

71,309	   29,698	  
(15,147,	  44,248)	  

Targeted	   94,268	   28,812	  
(26,395,	  
30,946)	  

89,818	   24,767	  
(21,652,	  27,883)	  

89,933	   24,966	  
(21,781,	  28,151)	  

90,243	   20,832	  
(2,670,	  38,995)	  

85,400	   14,091	  
(-‐1,666,	  29,847)	  
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2.1 Abstract 

Purpose 

Patients who test positive for epidermal growth factor receptor (EGFR) somatic 

alterations derive significant clinical benefits from erlotinib, but the extent to which 

individual lung cancer patients undergo molecular testing in routine care is not known. 

Prevalence and factors associated with testing in routine care were determined in 

elderly patients with stage IV NSCLC from SEER-Medicare. 

Patients and Methods 

We identified patients with squamous- and non-squamous-cell diagnosis of Stage IV 

NSCLC occurring between 2007 and 2009.  The main outcome, molecular testing, was 

identified with relevant medical billing codes.  Multivariable logistic regression was used 

to assess characteristics that independently determine the choice of molecular testing. 

Results 

Among 7,678 patients, only 4.9% underwent a molecular test.  The strongest predictor 

of molecular testing was treating physician affiliation with a NCI cancer center (adjusted 

proportion: 9.9% at NCI cancer centers vs. 4.7% outside).  Among the minority of 

patients who were tested, molecular testing was independently associated with 

phenotypic enrichment using known correlates of EGFR mutations (female gender, East 

Asian origin, non-squamous-cell histology, no history of COPD which was a proxy for 

being a non-smoker).  Older age, enrollment in Medicaid, and admission to hospice 

decreased the likelihood of testing but increased the probability of first-line erlotinib 
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therapy.  Among the 6.5% of patients who were treated with first-line erlotinib, only 8.9% 

of patients were tested prior to erlotinib initiation. 

Conclusion 

During the study period, the vast majority of lung cancer patients did not undergo 

molecular testing in routine care.  Actions towards population-wide dissemination of 

molecular testing through provider education and payer mandates to submit molecular 

test results prior to reimbursement for targeted therapies may encourage adoption of 

these technologies.   
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2.2  Introduction 

Treatment outcomes in advanced lung cancer have plateaued at a median 

overall survival (OS) of 10 to 12 months with traditional chemotherapy combinations, but 

targeted treatment innovations are changing the landscape of prognosis in lung cancer. 

The burden of lung cancer is substantial.  It is the leading cause of cancer related 

mortality, representing 27% of all cancer deaths.  In the United States alone, 

approximately 160,000 patients will die from this disease in 2014.1  Evidence points to 

significant clinical benefits from therapies that target molecular pathways in patients 

who test positive for oncogenic driver mutations, but the extent to which individual lung 

cancer patients undergo molecular testing in routine care is not known.2,3 

Patients whose tumors are identified to carry epidermal growth factor receptor 

(EGFR) somatic alterations and who are treated with erlotinib have shown remarkable 

improvements in median progression free survival (PFS) compared to chemotherapy 

alone, 9.4 vs. 5.2 months.2   On the other hand, controlled trial-based evidence 

suggests that conventional chemotherapy confers better outcomes in patients with 

EGFR wild type tumors compared to EGFR TKI therapy.3-6   EGFR gene mutations are 

more prevalent in non-squamous tumors, women, patients of East Asian origin and in 

those with no history of smoking.4  While phenotypic characteristics associated with 

these gene mutations have been elucidated, these attributes do not adequately 

discriminate between EGFR mutation positive and wild type tumors.  There is a general 

consensus that phenotypic characteristics should not be used to select or exclude 

patients for treatment or molecular testing.4  By 2007, the National Comprehensive 

Cancer Network (NCCN) Lung Cancer guidelines acknowledged the predictive value of 
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EGFR gene mutations for response to erlotinib.10  Beginning in 2010, guideline 

recommendations endorsed population-wide molecular screening for EGFR gene 

mutations in all advanced non-squamous, stage IV NSCLC cases to inform treatment 

choices.4,7,8   

In this analysis, our goal was to estimate the prevalence of molecular screening 

in routine care and to assess factors that determine the choice to conduct molecular 

testing in a nationally representative cohort of elderly patients with stage IV NSCLC. 

2.3 Methods 

2.3.1 Study Participants 

We identified patients with pathologically confirmed squamous cell and non-

squamous cell incident diagnosis of Stage IV NSCLC occurring between January 1, 

2007 and December 31, 2009.   We used data from the National Cancer Institute’s 

Surveillance, Epidemiology, and End Results (SEER) program linked to Medicare Part 

A, B and D claims.  The SEER program collects information from 17 cancer registries, 

which cover approximately 28% of the US population.9  

To ascertain comorbidity burden and pre-diagnosis medical costs at baseline and 

to determine lung cancer treatment practice patterns after diagnosis, patients who were 

continuously enrolled in Medicare Part A and B beginning eight months prior to 

diagnosis and those who were also eligible for Parts A, B and D one year post diagnosis 

were included.   To ensure completeness of claim history, patients who were in a health 

maintenance organization (HMO) plan at any point during the observation period were 

excluded.  In addition, patients were excluded if they had other concurrent cancers 
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diagnosed either before or after the index NSCLC diagnosis.  In the primary analysis, 

we compared patient groups according to whether or not they underwent a molecular 

test after diagnosis and prior to treatment initiation (Figure 2.1).   In a secondary 

analysis in which we examined determinants of first-line therapy, we classified patients 

into three groups based on first-line treatment initiation within 120 days of diagnosis: 1) 

erlotinib group;  2) chemotherapy group, which comprised of patients who were treated 

with chemotherapy, with or without bevacizumab; 3) remaining patients  were 

categorized to the best supportive care (BSC) group, if there was no evidence of 

systemic therapy receipt (chemotherapy or targeted therapy) within 120 days from 

diagnosis.   

Figure 2.1. Flow diagram of study cohort 

33	  068	  	  PaQents	  diagnosed	  with	  first	  and	  only	  
cancer;	  	  

Stage	  IV	  NSCLC	  between	  2007-‐2009	  	  	  

377	  with	  a	  molecular	  test	  7	  301	  with	  no	  molecular	  test	  

25	  390	  Excluded	  
6	  420	  Age	  at	  diagnosis	  <66	  y	  
2	  039	  Not	  pathologically	  confirmed	  
5	  340	  Not	  enrolled	  in	  Medicare	  Part	  A	  
and	  B	  
6	  308	  Enrolled	  in	  Medicare	  HMO	  
5	  283	  No	  Medicare	  Part	  D	  Coverage	  
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2.3.2  Molecular Test Identification 

During the observation period between 2007 and 2010, a unique Healthcare 

Common Procedure Coding System (HCPCS) code to allow identification of EGFR 

mutation testing did not exist.  Instead, providers deferred to a ‘stacking’ method to bill 

for EGFR gene mutation analysis using HCPCS codes that represented the steps and 

techniques used in performing a molecular pathology test.  We used the Genzyme 

Genetics (the sole distributor of the commercial EGFR assay in 2010) test stack of 

HCPCS codes to identify any claim in the outpatient file with at least one of these codes 

(see Appendix).  Even in 2010, the vast majority of laboratories (99%) were not 

accredited by the Clinical Laboratory Improvement Amendments (CLIA) program to 

conduct cytogenetic testing and ordered molecular testing through commercial 

reference laboratories.10  Those that were accredited and conducted EGFR mutation 

analysis with laboratory developed tests (LDTs) also used the ‘stacking’ method for 

billing purposes with a combination of the HCPCs codes outlined in the 

Appendix.(personal communication: J. Fahey, December 2013).   We also flagged 

HCPCS code 83912  (‘Interpretation and report’) in the physician claims file, as an 

indicator of a molecular test.  This code corresponds to the professional component of 

the molecular test bill and appears in the physician file irrespective of whether the test 

was conducted as part of an inpatient or an outpatient encounter. (personal 

communication: J.Fahey, December 2013)   Therefore, while a specific molecular test, 

such as KRAS or EGFR gene mutation analysis, could not be identified in the claims 

during the index period, performance of any molecular test was identifiable.  The index 

period for molecular test classification encompassed claims with dates ranging from 45 

days prior to diagnosis through 30 days after the start of first line therapy, or 150 days 
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after diagnosis for patients who were managed with BSC.  Both the index period and 

the composition of our analytic cohort, which comprised newly diagnosed stage IV 

NSCLC patients with lung cancer being the first and only cancer, mitigated 

misclassification bias of a molecular test order for other conditions.  

2.3.3  First-line Treatment Classification 

We identified cancer directed systemic therapy use from Medicare claims.  

Claims for individual drugs were flagged using HCPCS codes and National Drug Codes 

(NDC) in the outpatient, physician, durable medical equipment and Medicare Part D 

files using previously described methods.11,12 The date of the first systemic therapy 

claim within 120 days from diagnosis was used to define the start date of first line 

treatment.13    

 2.3.4  Patient and Practice Characteristics 

We identified several potential factors that may impact decisions surrounding 

molecular testing and first line treatment choice.  These spanned phenotypic 

characteristics that are correlated with presence of drug sensitizing EGFR gene 

mutations in NSCLC - race, female gender, histology, and smoking history using 

presence of COPD as a proxy indicator.  Additional characteristics included: age; 

ethnicity; comorbidity score; hospice enrollment after diagnosis; marital status; presence 

of brain metastases; enrollment in Medicaid; sample acquisition method (histology, 

cytology); urban residence; US Census tract level household income, college education; 

year of diagnosis and SEER Region. 14  A proxy measure of poor performance status 

(PS) prior to diagnosis was also included based on bills starting from 8 months prior to 

diagnosis.  Services typically associated with poor functional status were coded as 
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dummies (inpatient or skilled nursing facility stay, home health visit, use of home 

oxygen, or ADL aids (any bill for equipment such as walkers, hospital beds, 

wheelchairs), personal communication: E. Lamont, November, 2013).15  These 

indicators were summed up as a count (0, 1, 2+) to derive the proxy PS index.  

Furthermore, we summed up medical spending for the eight-month period prior to 

diagnosis as another proxy indicator of health status (excluding 2 months most proximal 

to diagnosis to exclude costs related to cancer diagnosis and staging).  Practice 

characteristics, namely National Cancer Institute (NCI) cancer center designation, 

cooperative group affiliation, and hospital teaching status, were also included. 

2.3.5  Statistical Methods 

Bivariate analyses using the χ2 test were conducted to compare the distributions 

in baseline characteristics according to molecular test status.   Next, we used logistic 

regression to identify patient and practice characteristics associated with a molecular 

test order.    Included in the model were variables with a p-value <0.20 on bivariate 

testing.   Marginal, adjusted probabilities were calculated for each variable in the 

multivariable model.    A parallel method was used to construct a multivariable model 

using multinomial logistic regression to identify patient, disease and practice 

characteristics associated with first line treatment (erlotinib, chemotherapy, BSC; see 

Appendix).   We also conducted survival analyses to explore the relationship between 

time to hospice admission from initiation of first-line therapy and molecular testing.  

Kaplan-Meier survival curves were generated and subgroups were compared using the 

log rank test.  All analyses were conducted using SAS, version 9.2. 
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2.4  Results 

2.4.1  Baseline Characteristics 

Among 7,678 incident cases diagnosed with Stage IV non-squamous and 

squamous cell NSCLC between 2007 and 2009, who met our inclusion criteria (Figure 

2.1), only 377 (4.9%) underwent a molecular test.  Table 2.1 summarizes patient and 

practice characteristics according to whether or not a molecular test was performed.  

Among patients who were tested compared to those who were not, a higher proportion 

were females (58.4% vs. 51.2%), of East Asian origin (11.4% vs. 7.2%), with no history 

of COPD (a proxy indicator of smoking, 84.9% vs. 71.5%) and had non-squamous cell 

tumors (88.6% vs. 76.3%).  In addition, younger patients, those with no proxy indicators 

of poor PS, and no comorbidities had a higher likelihood of being tested.  Hospice 

admission after diagnosis and enrollment in Medicaid were both associated with a lower 

probability of a molecular test.  Persons treated at NCI designated cancer centers and 

at practices with a cooperative group affiliation were also more likely to undergo 

molecular testing (10.1% vs. 2.0%, and 30.8% vs. 16.1%, respectively).   A higher 

proportion of patients who received any systemic cancer-directed therapy (7.8%) 

underwent a molecular test compared to those managed with BSC (1.7%), but 

unadjusted prevalence of testing was low across all treatment categories.   
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Table 2.1. Characteristics according to molecular testing status. 

Characteristic* Molecular Test 
(n=377) 

No Molecular Test 
(n=7,301) 

Age at diagnosis, years           66-69 
70-74 
75-79 
80-84 

85+ 

107 (28.4) 
104 (27.6) 
90 (23.9) 
59 (15.7) 
17 (4.5) 

1,636 (22.4) 
1,950 (26.7) 
1,697 (23.2) 
1,257 (17.2) 
761 (10.4) 

Gender              Female 220 (58.4) 3,737 (51.2) 
Race        White 

Black 
East Asian 

Other 

314 (83.3) 
14   (3.7) 
43 (11.4) 
6   (1.6) 

5,951 (81.5) 
753 (10.3) 
525   (7.2) 
72   (1.0) 

Ethnicity Hispanic 19 (5.0) 414   (5.7) 
Baseline PS indicator, count 0 

1 
2+ 

220 (58.4) 
100 (26.5) 
57 (15.1) 

3,141 (43.0) 
2,186 (29.9) 
1,974 (27.0) 

Marital Status       Married 206 (54.6) 3,256 (44.6) 
Comorbidity Index  0 

1 
2 

3+ 

262 (69.5) 
59 (15.7) 
28   (7.4) 
28   (7.4) 

4,210 (57.7) 
1,314 (18.0) 
682   (9.3) 

1,095 (15.0) 
COPD Yes 

No 
57 (15.1) 

320 (84.9) 
2,079 (28.5) 
5,222 (71.5) 

Histology Non-squamous cell 
Squamous cell 

334 (88.6) 
43 (11.4) 

5,573 (76.3) 
1,728 (23.7) 

Sample acquisition method  Histology 
Cytology 

309 (82.0) 
68 (18.0) 

5,440 (74.5) 
1,861 (25.5) 

Brain Metastases Present 69 (18.3) 1,296 (17.8) 
Hospice admission               Yes 149 (39.5) 4,370 (59.9) 
Prior Year Medicaid Yes 72 (19.1) 2,617 (35.8) 
First-line Treatment                                                Erlotinib 43 (11.4) 457  (6.3) 

Chemotherapy with/without bevacizumab 270 (61.7) 3,244 (44.4) 
Best supportive care 64 (17.0) 3,600 (49.3) 

Urban Residence Yes 355 (94.2) 6,299 (86.3) 
Cooperative Group affiliation          Yes 116 (30.8) 1,175 (16.1) 
NCI Cancer Center Yes 38 (10.1) 146   (2.0) 
Teaching Hospital Yes 102 (27.1) 1,053 (14.4) 

College education (census tract quintile) 1 (low) 
2 
3 
4 

5 (high) 

34   (9.0) 
58 (15.4) 
80 (21.2) 
77 (20.4) 

128 (34.0) 

1,733 (23.7) 
1,551 (21.2) 
1,354 (18.6) 
1,350 (18.5) 
1,309 (17.9) 

Income (census tract quintile)              1 (low) 
2 
3 
4 

5 (high) 

40 (10.6) 
54 (14.3) 
79  (21.0) 
78  (20.7) 
126 (33.4) 

1,784 (24.4) 
1,573 (21.5) 
1,381 (18.9) 
1,320 (18.1) 
1,239 (17.0) 

1-yr Cost pre diagnosis (quintile) 1 (low) 
2 
3 
4 

5 (high) 

63 (16.7) 
87 (23.1) 
92 (24.4) 
70 (18.6) 
65 (17.2) 

1,176 (16.1) 
1,436 (19.7) 
1,460 (20.0) 
1,583 (21.7) 
1,646 (22.5) 

Year of diagnosis               2007 
2008 
2009 

40 (10.6) 
88 (23.3) 

249 (66.1) 

2,538 (34.8) 
2,447 (33.5) 
2,316 (31.7) 

Region Northeast 
South 

Midwest 
West 

122 (32.4) 
52 (13.8) 
35 (9.3) 

168 (44.6) 

1,321 (18.1) 
2,123 (29.1) 
1,155 (15.8) 
2,702 (37.0) 
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2.4.2  Predictors of Molecular Testing 

Table 2.2 summarizes the significant characteristics, which determined the 

decision to perform a molecular test.  First, the strongest independent predictor of 

molecular testing was affiliation with a NCI cancer center (adjusted proportion: 9.9% at 

NCI cancer centers vs. 4.7% outside).  Second, the multivariable prediction model 

suggested that molecular testing was also associated with phenotypic enrichment using 

known correlates of EGFR mutations.  The adjusted predicted probabilities of 

undergoing a molecular test by phenotype were: 5.5% for females vs. 4.3% for males; 

3.3% for non-squamous cell vs. 2.3% for squamous cell histology; 8.0% for East Asian 

vs. 3.1% for Black racial origin for example; and 5.3% for no COPD (a proxy indicator of 

smoking status) vs. 3.4% for COPD, respectively (p-values <0.01).  Notably among all 

gender-race groups, East Asian, female patients had the highest probability of being 

tested and also of initiating first-line erlotinib therapy (Figure 2.2).  But, even among this 

patient subgroup, the adjusted proportions with testing and TKI treatment were only 

8.9% and 14.2%, respectively.  As expected, histological tissue samples were 

associated with a higher probability of molecular testing than cytological samples 

(adjusted proportions: 5.4% vs. 3.4%).   
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Table 2.2. Predictors of molecular testing 

Characteristic Odds Ratio (OR) 95% CI for OR P-value 

Adjusted 
Probability of a 

Molecular Test (%) 
Gender 

Male 
Female 

Reference 
1.35 

Reference 
1.08, 1.69 <0.01 

4.3 
5.5 

Age at diagnosis, years 
66-69 
70-74 
75-79 
80-84 

85+ 

Reference 
0.82 
0.80 
0.68 
0.35 

Reference 
0.61, 1.11 
0.59, 1.09 
0.48, 0.96 
0.20, 0.60 

0.20 
0.16 
0.03 

<0.01 

6.1 
5.3 
4.6 
4.0 
3.4 

Race 
White 
Black 

East Asian 
Other 

Reference 
0.61 
1.91 
1.33 

Reference 
0.35, 1.08 
1.28, 2.85 
0.53, 3.37 

0.10 
<0.01 

0.55 

4.8 
3.1 
8.0 
6.5 

Baseline PS indicator 
0 
1 

2+ 

Reference 
0.82 
0.70 

Reference 
0.63, 1.06 
0.50, 0.96 

0.13 
0.03 

5.4 
4.8 
3.7 

Histology 
Non-squamous cell 

Squamous cell 
Reference 

0.47 
Reference 
0.34, 0.66 <0.01 

3.3 
2.3 

COPD 
Yes 
No 

Reference 
1.71 

Reference 
1.26, 2.33 <0.01 

3.4 
5.3 

Sample acquisition method 
Histology 
Cytology 

Reference 
0.58 

Reference 
0.43, 0.77 <0.01 

5.4 
3.4 

Prior year, Medicaid 
Yes 
No 

Reference 
2.07 

Reference 
1.52, 2.82 <0.01 

3.0 
5.8 

Income (census tract quintile) 
1 (Low) 

2 
3 
4 

5 (High) 

Reference 
1.28 
1.71 
1.53 
2.31 

Reference 
0.83, 1.97 
1.13, 2.58 
1.00, 2.34 
1.53, 3.47 

0.26 
0.01 

<0.05 
<0.01 

3.4 
4.0 
4.7 
5.5 
6.3 

NCI Cancer Center 
No 

Yes 
Reference 

2.59 
Reference 
1.62, 4.12 <0.01 

4.7 
9.9 

Cooperative Group Affiliation 
No 

Yes 
Reference 

1.39 
Reference 
1.05, 1.84 0.02 

4.6 
6.1 

Hospice 
No 

Yes 
Reference 

0.49 
Reference 
0.39, 0.62 <0.01 

6.5 
3.6 

Region 
Northeast 

South 
Midwest 

West 

Reference 
0.41 
0.39 
0.69 

Reference 
0.28, 0.59 
0.26, 0.59 
0.52, 0.91 

<0.01 
<0.01 

0.01 

7.0 
3.3 
3.1 
5.3 

Year of diagnosis 
2007 
2008 
2009 

Reference 
2.44 
7.03 

Reference 
1.66, 3.59 
4.97, 9.95 

<0.01 
<0.01 

1.6 
3.7 
9.0 
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Patient characteristics that are not correlated with EGFR mutation status, namely 

younger age and better baseline PS, also affected the likelihood of molecular testing.   

For example, the youngest patients in our cohort (aged 66 to 69 years) were more likely 

to have a molecular test (6.1%) compared to the age group 80 to 84 years (4.0%).  

Interestingly, an opposite relationship emerged between age and the likelihood of 

receipt of first-line erlotinib (Figure 2.2).  Older age was associated with a higher 

probability of treatment with the oral TKI (adjusted proportion: 3.8% for age group 66 to 

69 years vs. 9.0% for age group 80 to 84 years).  Persons with no indicators of a poor 

PS had a 5.4% adjusted probability of testing compared to 3.7% in those with 2 or more 

indicators of poor PS.   Controlling for age, indicators of a poor PS, and other significant 

characteristics, admission to a hospice after diagnosis of NSCLC was a strong 

determinant of both molecular testing and initiation of first-line erlotinib therapy.  

Patients who enrolled in hospice care had a significantly lower likelihood of undergoing 

molecular testing (adjusted proportion: 3.6% with vs. 6.5% without hospice admission, 

p-value <0.01), but a significantly higher likelihood of initiating first-line erlotinib therapy 

(7.2% with vs. 5.6% without hospice admission, p-value <0.01).    

NCI Cancer Center designation notwithstanding, other practice characteristics 

that independently determined testing included Medicaid enrollment and cooperative 

group affiliation.  Notably, Medicaid enrollment was a negative independent predictor of 

molecular testing (adjusted proportion: 3.0% with Medicaid vs. 5.8% without), but it was 

a positive predictor of first-line erlotinib therapy (adjusted proportion: 7.4% with 

Medicaid vs. 6.1% without, Figure 2.2).   
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Figure 2.2.  Adjusted relationships between patient and practice characteristics and 
receipt of first-line erlotinib therapy (yello bars) and undergoing a molecular test (blue 
bars) for Stage IV NSCLC.  Proportions are the average predicted probabilities adjusted 
for other covariates in regression models (Table 2.2 and Appendix).  

0%	   2%	   4%	   6%	   8%	   10%	  12%	  14%	  16%	  

East	  Asian/
Female	  

East	  Asian/
Male	  

White/
Female	  

Black/
Female	  

White/Male	  

Black/Male	  

0%	   2%	   4%	   6%	   8%	  10%	  12%	  14%	  16%	  

Squamous	  Cell	  

Non-‐squamous	  Cell	  

COPD	  

No	  COPD	  

0%	   2%	   4%	   6%	   8%	   10%	  12%	  14%	  16%	  

85+	  

80-‐84	  

75-‐79	  

70-‐74	  

66-‐69	  

adjusted	  proporQon	  receiving	  intervenQon	  

0%	   2%	   4%	   6%	   8%	  10%	  12%	  14%	  16%	  

NCI	  Cancer	  Center	  

non-‐NCI	  Cancer	  
Center	  

CooperaQve	  Group	  

non-‐CooperaQve	  
Group	  

Medicaid	  

No	  Medicaid	  

adjusted	  proporQon	  receiving	  intervenQon	  

1st-‐line	  
Erlo-nib	  
Molecular
Test	  



61	  

 Likewise, more patients treated at practices with a cooperative group affiliation 

underwent molecular testing (adjusted proportion: 6.1% vs. 4.6%), but fewer were 

treated with first-line erlotinib (adjusted proportion: 6.8% vs. 7.2%) compared to patients 

from other centers.   Furthermore, some regions appeared to be earlier adopters of 

molecular testing in lung cancer, albeit the rates of utilization were low across all 

regions.   For instance, in the Northeast, which ranked highest in molecular test 

adoption rates, the adjusted proportion was only 7.0%.  Although we did observe a 

significant time trend for molecular testing after controlling for other predictors, still only 

9.0% of patients were tested in 2009, from a low of 1.6% in 2007.    

Given that hospice admission emerged as a significant indicator of both 

molecular testing and of first-line erlotinib therapy initiation, we explored the association 

between the start of treatment and time to admission to a hospice and according to 

whether or not molecular testing was performed (Figure 2.3).  Among patients who 

received hospice care, the median time to hospice admission was 3.3 months after start 

of first-line erlotinib and 6.6 months after initiation of chemotherapy-based treatment (p-

value<0.0001).  The median time to hospice admission from start of first-line erlotinib 

was 3.2 months among persons who did not undergo molecular testing (n=310) and 8.9 

months among those who were tested (n=20), p-value=0.03.   Twenty-five percent of 

patients who did not have molecular testing were admitted to a hospice approximately 

within one month (35 days) after starting first-line erlotinib compared to 2.8 months if 

they were tested (Figure 2.3).   
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Figure 2.3.  Kaplan-Meier curves depicting time to hospice admission from initiation of 
first line therapy among Stage IV NSCLC patients admitted to a hospice.   

A B 

(A) Time from first-line erlotinib initiation (blue curve, n=330) and from first-line 

chemotherapy initiation (red curve, n=2304) to hospice admission.  (B) Time from first-

line erlotinib initiation among patients with a molecular test (red curve, n=20) and those 

without a molecular test (blue curve, n=310) to hospice admission. 



63	  

2.5  Discussion 

Molecularly guided therapy has revolutionized the prognosis of lung cancer.  

Using the SEER-Medicare linked data, we evaluated practice patterns of molecular 

testing in routine care among patients with stage IV NSCLC diagnosed between 2007 

and 2009.  In our population-based study, only 4.9% of eligible patients underwent 

molecular testing.   The determination to conduct molecular testing was influenced by 

phenotypic characteristics that are correlated with EGFR mutations, younger age, and 

better performance status.  Patients enrolled in Medicaid and those admitted to hospice 

after diagnosis were significantly less likely to undergo molecular testing, but had a 

higher likelihood of initiating first-line erlotinib therapy.  The strongest predictor of having 

a molecular test was receipt of care at an NCI designated cancer center.  

Corroborating evidence of the underuse of predictive biomarker screening in lung 

cancer comes from a hospital-level analysis by Lynch et al.10  In that paper, the authors 

estimated that in 2010, only 12% of US acute care hospitals ordered an EGFR assay, 

which represented 5.7% of newly diagnosed lung cancer patients.  From our analysis of 

individual patients, the adjusted proportion of patients diagnosed in 2009 who had any 

type of molecular test was 9.0%.  This estimate may include non-EGFR molecular tests, 

such as KRAS gene mutation testing.  Still, it appears that molecular testing is 

performed in a minority of patients who are treated in routine care.  Even at centers of 

excellence, the NCI cancer centers, the adjusted proportion of patients who were tested 

was only 9.9%. These findings call for a closer examination of the barriers to 

dissemination of molecular testing.  For example, new evidence suggests that 
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physicians may have a low confidence in genomic knowledge.16  These knowledge 

gaps may signal important patient-access barriers at the provider level.  

Our results further indicate that in routine care clinical enrichment criteria were 

used to select patients for molecular testing.  All clinical characteristics associated with 

EGFR mutations (female gender, smoking history, East Asian race) were independent 

predictors of molecular testing.   Such clinical enrichment practices do not have 

adequate discriminatory power as a pre-screening tool.4  One study reported that 

basing molecular screening on clinical enrichment criteria may lead to undiagnosing 

over half of patients who carry drug sensitizing mutations.17 With the advent of 

multiplexed test platforms, population-wide screening for predictive biomarkers in lung 

cancer followed by molecularly guided therapy is a cost effective approach 

(D.Romanus, Cost-Effectiveness of Multiplexed Predictive Biomarker Screening in Non-

Small Cell Lung Cancer. Manuscript submitted for publication).   At the payer level, 

payment for targeted therapies with identifiable predictive molecular markers could be 

made contingent on evidence of test results to encourage molecularly guided therapy.   

First-line therapy with erlotinib in patients harboring EGFR sensitizing mutations 

is the accepted standard of care.7,18   Utilization of first-line TKI therapy in unselected 

patients is controversial.3 In our analysis, only 8.6% of patients had a molecular test 

prior to initiation of first-line erlotinib.  Among patients on first-line erlotinib, 66% were 

admitted to a hospice.  In unselected patients, the median time to hospice admission 

was 3 months and a quarter of patients were admitted within approximately one month 

from initiation of first-line erlotinib.  First-line treatment with erlotinib in unselected 
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patients and its value in the setting of an imminent hospice admission warrant closer 

examination in future research.   

Several limitations need to be taken into account when interpreting our results.  

We were unable to categorize tests by specific molecular markers due to the lack of 

billing codes that would identify each genetic mutation tested.   We flagged any code 

that was part of the stack of codes used for billing for an EGFR gene mutation test 

during the period we analyzed to indicate that a molecular test was conducted.  Even if 

our estimates represent the upper bound of EGFR mutation testing to inform first line 

therapy, our results suggest a gross underutilization of molecularly guided therapy.  This 

analysis was based on a cohort of elderly patients with fee-for-service (FFS) and 

Medicare Part D benefits.  While two-thirds of lung cancer patients are older than 65 at 

time of diagnosis, beneficiaries of FFS and Medicare D coverage may differ 

systematically from those in Medicare Advantage.19,20  

Using the most recent SEER-Medicare data, we found that molecularly guided 

therapy was underutilized in routine care of patients diagnosed with advanced NSCLC 

between 2007 and 2009.  The minority of patients who did undergo molecular testing 

(4.9%) appeared to be selected for testing based on clinical enrichment criteria and 

nonmedical factors, such as practice setting and socioeconomic status.  Actions 

towards population-wide dissemination of molecular testing through provider education 

and payer mandates to submit molecular test results prior to reimbursement for targeted 

therapies may encourage adoption of these technologies.  Future studies should be 

conducted to evaluate the impact of recent guideline recommendations for population-
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wide EGFR mutation screening on the dissemination of genomic testing and molecularly 

guided therapy.4,7 
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2.7  Appendix 

Table 2.A.1. Codes Used in Defining Molecular Tests. 

CARRIER	  CLAIMS	  

83912 MOLECULAR	  DIAGNOSTICS;	  INTERPRETATION	  AND	  REPORT 

OUTPATIENT	  CLAIMS	  

83890 MOLECULAR	  DIAGNOSTICS;	  MOLECULAR	  ISOLATION	  OR	  EXTRACTION,	  EACH	  NUCLEIC	  ACID	  TYPE	  (IE,	  DNA	  OR	  
RNA) 

83891 MOLECULAR	  DIAGNOSTICS;	  ISOLATION	  OR	  EXTRACTION	  OF	  HIGHLY	  PURIFIED	  NUCLEIC	  ACID,	  EACH	  NUCLEIC	  
ACID	  TYPE	  (IE,	  DNA	  OR	  RNA) 

83892 MOLECULAR	  DIAGNOSTICS;	  ENZYMATIC	  DIGESTION,	  EACH	  ENZYME	  TREATMENT 

83894 MOLECULAR	  DIAGNOSTICS;	  SEPARATION	  BY	  GEL	  ELECTROPHORESIS	  (EG,	  AGAROSE,	  POLYACRYLAMIDE),	  
EACH	  NUCLEIC	  ACID	  PREPARATION 

83896 MOLECULAR	  DIAGNOSTICS;	  NUCLEIC	  ACID	  PROBE,	  EACH 

83898 MOLECULAR	  DIAGNOSTICS;	  AMPLIFICATION,	  TARGET,	  EACH	  NUCLEIC	  ACID	  SEQUENCE 

83900 MOLECULAR	  DIAGNOSTICS;	  AMPLIFICATION,	  TARGET,	  MULTIPLEX,	  FIRST	  2	  NUCLEIC	  ACID	  SEQUENCES 

83901 MOLECULAR	  DIAGNOSTICS;	  AMPLIFICATION,	  TARGET,	  MULTIPLEX,	  EACH	  ADDITIONAL	  NUCLEIC	  ACID	  
SEQUENCE	  BEYOND	  2	  (LIST	  SEPARATELY	  IN	  ADDITION	  TO	  CODE	  FOR	  PRIMARY	  PROCEDURE) 

83902 MOLECULAR	  DIAGNOSTICS;	  REVERSE	  TRANSCRIPTION 

83903 MOLECULAR	  DIAGNOSTICS;	  MUTATION	  SCANNING,	  BY	  PHYSICAL	  PROPERTIES	  (EG,	  SINGLE	  STRAND	  
CONFORMATIONAL	  POLYMORPHISMS	  [SSCP],	  HETERODUPLEX,	  DENATURING	  GRADIENT	  GEL	  
ELECTROPHORESIS	  [DGGE],	  RNA’ASE	  A),	  SINGLE	  SEGMENT,	  EACH 

83904 MOLECULAR	  DIAGNOSTICS;	  MUTATION	  IDENTIFICATION	  BY	  SEQUENCING,	  SINGLE	  SEGMENT,	  EACH	  
SEGMENT 

83907 MOLECULAR	  DIAGNOSTICS;	  LYSIS	  OF	  CELLS	  PRIOR	  TO	  NUCLEIC	  ACID	  EXTRACTION	  (EG,	  STOOL	  SPECIMENS,	  
PARAFFIN	  EMBEDDED	  TISSUE),	  EACH	  SPECIMEN 

83909 MOLECULAR	  DIAGNOSTICS;	  SEPARATION	  AND	  IDENTIFICATION	  BY	  HIGH	  RESOLUTION	  TECHNIQUE	  (EG,	  
CAPILLARY	  ELECTROPHORESIS),	  EACH	  NUCLEIC	  ACID	  PREPARATION 

83914 MUTATION	  IDENTIFICATION	  BY	  ENZYMATIC	  LIGATION	  OR	  PRIMER	  EXTENSION,	  SINGLE	  SEGMENT,	  EACH	  
SEGMENT	  (EG,	  OLIGONUCLEOTIDE	  LIGATION	  ASSAY	  [OLA],	  SINGLE	  BASE	  CHAIN	  EXTENSION	  [SBCE],	  OR	  
ALLELE-‐SPECIFIC	  PRIMER	  EXTENSION	  [ASPE]) 

83912	   MOLECULAR	  DIAGNOSTICS;	  INTERPRETATION	  AND	  REPORT	  
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Table 2.A.2. Predictors of first line erlotinib therapy. 

Variable 
OR** 

95% CI 
for OR 

Gender Male 
Female 

Reference 
2.16 

Reference 
1.72, 2.70 

Age at diagnosis, years  66-69 
70-74 
75-79 
80-84 

85+ 

Reference 
1.36 
2.28 
4.35 
9.08 

Reference 
0.96, 1.92 
1.63, 3.19 
3.09, 6.14 

6.01, 13.73 
Race White 

Black 
East Asian 

Other 

Reference 
0.98 
4.50 
2.44 

Reference 
0.63, 1.52 
3.26, 6.22 
1.01, 5.88 

Comorbidity Index  0 
1 
2 

3+ 

Reference 
1.20 
1.18 
1.27 

Reference 
0.91, 1.59 
0.82, 1.71 
0.90, 1.80 

Baseline PS indicator 0 
1 

2+ 

Reference 
1.01 
1.25 

Reference 
0.79, 1.29 
0.95, 1.64 

Histology Non-squamous cell 
Squamous cell 

Reference 
0.56 

Reference 
0.42, 0.75 

Brain metastases  No 
Yes 

Reference 
1.37 

Reference 
1.04, 1.81 

COPD No 
Yes 

Reference 
1.16 

Reference 
0.89, 1.50 

Molecular test prior to treatment  No 
Yes 

Reference 
1.22 

Reference 
0.84, 1.77 

Prior year, Medicaid Yes 
No 

Reference 
0.60 

Reference 
0.47, 0.76 

Marital status  Not married 
Married 

Reference 
0.97 

Reference 
0.77, 1.21 

Income (census tract quintile)    1 (Low) 
2 
3 
4 

5 (High) 

Reference 
1.15 
1.21 
1.23 
1.32 

Reference 
0.83, 1.60 
0.86, 1.69 
0.88, 1.73 
0.93, 1.86 

NCI Cancer Center          No 
Yes 

Reference 
1.15 

Reference 
0.53, 2.47 

Cooperative Group Affiliation             No 
Yes 

Reference 
0.25 

Reference 
0.18, 0.34 

Hospice  No 
Yes 

Reference 
1.79 

Reference 
1.42, 2.26 

Region Northeast 
South 

Midwest 
West 

Reference 
0.85 
0.67 
0.90 

Reference 
0.60, 1.18 
0.45, 0.99 
0.67, 1.22 

*multivariable, multinomial logistic model controlled for all variables in the table
** compared to first line chemotherapy 
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3.1  Abstract 

Purpose 

Population-wide screening for epidermal growth factor receptor (EGFR) mutations and 

anaplastic lymphoma kinase (ALK) gene rearrangements to inform cancer therapy in 

non-small cell lung cancer (NSCLC) is recommended by guidelines.  We estimated 

cost-effectiveness of multiplexed predictive biomarker screening in metastatic NSCLC 

from a societal perspective in the US. 

Patients and Methods 

We constructed a microsimulation model to compare the life expectancy and costs of 

multiplexed testing and molecularly guided therapy vs treatment with cisplatin-

pemetrexed (CisPem).  All testing interventions included a two-step algorithm of 

concurrent EGFR mutation and ALK overexpression testing with immunohistochemistry 

(IHC) followed by ALK rearrangement confirmation with a fluorescence in situ 

hybridization (FISH) assay for IHC positive results.  Three strategies were included:  

‘Test-treat’ approach, where molecularly guided therapy was initiated after obtainment 

of test results; ‘Empiric switch therapy’, with concurrent initiation of CisPem and testing 

and immediate switch to test-result conditional treatment after one cycle of CisPem; and 

‘Empiric therapy’ approach in which CisPem was continued for four cycles before start 

of a tyrosine kinase inhibitor (TKI).   

Results 

The incremental cost-effectiveness ratio (ICER) for ‘Test-treat’ compared to treatment 

with CisPem was $150,000 per quality-adjusted life year (QALY) gained.  Both empiric 



74	  

treatment approaches had less favorable ICERs.  ‘Test-treat’ and ‘Empiric switch 

therapy’ yielded higher expected outcomes in terms of QALYs and life-years (LYs) than 

‘Empiric therapy’.  These results were robust across plausible ranges of model inputs. 

Conclusion 

From a societal perspective, our cost-effectiveness results support the value of 

multiplexed genetic screening and molecularly guided therapy in metastatic NSCLC. 
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3.2 Introduction 

The expansion of targeted therapeutic options for metastatic NSCLC is a 

welcome advance in a disease that historically has been resistant to treatment.  Of the 

estimated 230,000 incident lung cancer cases annually, approximately 85% are 

diagnosed with NSCLC.[1, 2]   Most patients present with advanced disease, and 

adenocarcinoma is the most common histologic subtype. [2]   Somatic mutations in 

EGFR and ALK gene rearrangements are found in 9.5% and 3.9% of unselected 

NSCLCs, respectively.[3]   Patients whose tumors carry a sensitizing mutation of EGFR 

or ALK gene rearrangements experience higher response rates, longer progression-free 

survival (PFS), and improved quality of life when treated with a TKI compared to 

platinum-based doublet chemotherapy.[6-7]  Guidelines recommend the ascertainment 

of EGFR and ALK mutational status to help guide first-line systemic therapy in all 

patients with non-squamous, advanced NSCLC.[8]  According to these 

recommendations, over 130,000 newly diagnosed NSCLC patients each year should 

undergo predictive biomarker screening.[9]  But, biomarker screening appears to be 

underutilized in routine care.  Only 12% of acute-care hospitals in the US used the 

EGFR assay in 2010, which represented only 5.7% of guideline-directed patients. [8, 9]  

Even among patients whose tumors are tested for predictive biomarkers, 

uncertainty surrounding the optimal timing of TKI therapy initiation adds to the 

complexity of treatment decision-making.[10]  The time required to perform molecular 

tests with sufficient tissue for analysis may tip the scale towards commencing empiric 

treatment with chemotherapy.  Once test results reveal the presence of an actionable 

mutation after empiric therapy is begun, indirect evidence suggests that continuation of 
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chemotherapy for four to six cycles before switching to a TKI may optimize 

outcomes.[10, 11] In the present analysis, we compared a number of TKI initiation 

strategies.   

Additionally, turn-around-time (TAT), the time from tissue sample acquisition to 

reporting of test results, and tissue sample adequacy are important considerations in 

patients with metastatic NSCLC.   Multiplex detection of mutations has the advantage of 

tissue preservation and faster TAT. To date, economic analyses of screening for drug 

sensitivity biomarkers in lung cancer have restricted their focus on single 

biomarkers.[12-21]   We examined two molecular markers, EGFR mutations and ALK 

rearrangements, for which the evidence is sufficiently mature to support population-wide 

screening.[8] The goal of this paper was to assess the cost-effectiveness of multiplexed 

predictive biomarker screening from a societal perspective in patients newly diagnosed 

with metastatic NSCLC living in the US.  

3.3 Methods 

3.3.1. Model and Treatment Strategies 

We constructed a microsimulation, state-transition model to estimate the life 

expectancy and costs of four strategies:  a ‘No Test’ approach, treatment with cisplatin-

pemetrexed chemotherapy and no biomarker testing; two different empiric treatment 

strategies in which cisplatin-pemetrexed was initiated with concurrent biomarker testing. 

In one, the ‘Empiric therapy’ strategy, chemotherapy was continued for four cycles 

followed by TKI maintenance treatment in mutation-positive patients. In the other, the 

‘Empiric switch therapy’, patients initiated first-line chemotherapy and those with 
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mutation positive tumors switched to a TKI immediately upon return of test results; and 

finally, the ‘Test-treat’ strategy, in which treatment was initiated only after results of 

testing became available.  The simulated study population comprised of newly 

diagnosed stage IV NSCLC patients with non-squamous histology.  

Figure 3.1 depicts the structure of the model.  For all testing strategies, patients 

entered the model in the prescreen state on the day the test was ordered.  If the sample 

was suitable for testing, the patient transitioned to the test sequence health states.  With 

a daily cycle length, we were able to model wait times for test results prior to initiation of 

therapy.  Patients with insufficient tumor samples from initial diagnostic samples 

transitioned to the rebiopsy prescreen state to account for elapsed time in determining 

appropriateness for a rebiopsy and for performing the procedure.   Patients who did not 

undergo a rebiopsy, or whose rebiopsy samples were inadequate for testing, 

transitioned to the treatment states.  Multiplexed molecular testing proceeded according 

to a two-step test sequence: concurrent EGFR mutation and ALK overexpression 

assays followed by ALK FISH confirmation for ALK IHC positive results (1+, 2+, or 

3+).[8]  Mortality risk in the above health states was modeled based on the natural 

history of advanced NSCLC for the ‘Test-treat’ approach, and first-line cisplatin-

pemetrexed therapy for the empiric treatment strategies.   

Patients in the ‘No test’ strategy entered the model in the first-line cisplatin-

pemetrexed treatment state (Figure 3.1). Upon progression on each therapy, patients 

transitioned to the next line of therapy based on treatment conditional disease risk of 

progression.  Treatment sequences for the other strategies (Table 3.1) followed the 

same model structure.   



78	  

Figure 3.1.  Model structure depicting health states and transitions. 
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Table 3.1 Strategies. 

*CisPem therapy was administered for up to 4 cycles; upon progression on CisPem,
patients transitioned to the next line of therapy 
†TKI maintenance treatment was initiated in presence of drug-sensitizing mutations 
upon completion of 4 cycles of CisPem 
¶Patients with drug-sensitizing mutations switched to a TKI at time of test results after 
receiving one cycle of empiric CisPem therapy 

Abbreviations: CisPem, cisplatin and pemetrexed doublet; Pem, pemetrexed; DTX, 
docetaxel; Erlot, erlotinib; BSC, best supportive care; Criz, crizotinib; ALK, anaplastic 
lymphoma kinase; IHC, immunohistochemistry; FISH, fluorescence in situ hybridization; 

For the main analysis, we chose a time horizon of two years to capture the major 

health and economic consequences in metastatic NSCLC.  This duration obviated the 

need for projecting survival outcomes beyond the primary clinical trial data.[22]  Benefits 

Strategy Test Treatment 

No test None CisPem* ► Pem ► DTX ► Erlot ►BSC 

Empiric 
therapy† 

EGFR/ALK IHC ► 
ALK FISH for ALK IHC 1-3+ 

Empiric CisPem x 4 cycles ► test result conditional treatment: 
   EGFR +:    Erlot ► DTX ► BSC 
   ALK +:       Criz  ► DTX ► BSC 
   Other:        CisPem* ► Pem ► DTX ► Erlot ►BSC 

Empiric- 
switch 
therapy¶

EGFR/ALK IHC ► 
ALK FISH for ALK IHC 1-3+ 

Empiric CisPem x 1 cycle ► test result ► test result 
conditional treatment: 
  EGFR +:    Erlot ► CisPem* ► DTX ► BSC 
  ALK +:       Criz  ► CisPem* ► DTX ► BSC 
  Other:       CisPem* ► Pem ► DTX ► Erlot ►BSC 

Test-
treat 

EGFR/ALK IHC ► 
ALK FISH for ALK IHC 1-3+ 

EGFR +:  Erlot ► CisPem* ► DTX ►BSC 
ALK +:     Criz  ► CisPem* ► DTX ►BSC 
Other:      CisPem* ► Pem ► DTX ►Erlot ► BSC 
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and costs were discounted at 3% per annum. Analyses were performed in TreeAge Pro 

2013 (TreeAge Software, Inc.; Williamstown, MA). 

3.3.2. Natural History 

We used data from Surveillance, Epidemiology, and End Results (SEER)-

Medicare to model the natural history of untreated, metastatic NSCLC for simulated 

patients who were awaiting molecular test results. Predicted probabilities from a Cox 

proportional hazards (PH) model for incident SEER cases with Stage IV NSCLC and a 

pathologic diagnosis of non-squamous histology, aged 66-69 years old with diagnoses 

between 2007 and 2009, who were managed with BSC were generated.  The model 

was weighted using the inverse conditional probability of exposure to chemotherapy to 

balance observable covariates between treatment naïve and chemotherapy treated 

patients.  Time dependent transitional probabilities for the simulation model were 

calibrated to the predicted survival probabilities from the Cox PH model using a 

piecewise-exponential approach. 

3.3.3. Clinical Outcomes 

Randomized trials (RCTs) for initiation and maintenance therapy with erlotinib 

and crizotinib in EGFR mutation and ALK rearrangement positive patients, respectively, 

were identified for calculating treatment-conditional progression and survival estimates.  

Efficacy data for other therapies were pulled from RCTs that enrolled molecularly 

unselected patients. The trial-based median estimates for treatment-specific overall 

survival (OS) and PFS were used as calibration targets.  Transition probabilities were 

calculated using a constant hazard assumption.  
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3.3.4. Quality of Life 

We estimated utilities based on a mixed model, which included parameters for 

best tumor response and toxicities commonly encountered with chemotherapy 

treatments in NSCLC (neutropenia, febrile neutropenia, fatigue, diarrhea, nausea and 

vomiting, rash and hair loss).[23]  We used rates for best tumor response, and grade 3 

and 4 adverse drug events (ADEs) from RCTs to calculate treatment-specific utilities 

based on the mixed model (Table 3.2).[23]  Disutilities for ADEs were incorporated in 

the first month of therapy.[14, 24] 

3.3.5. Genomic Markers 

Prevalence rates of biomarkers were drawn from a population-based registry 

(Table 3.2) of 10,000 NSCLC patients who were enrolled for routine screening of 

predictive biomarkers.[3] The cumulative TAT for test results is congruent with 

guidelines, which recommend that EGFR and ALK testing both be completed within 10 

working days of receiving the specimen in the laboratory.[8]  

We estimated that 30% of patients would undergo a rebiopsy and 85% of repeat 

biopsies would yield adequate samples for molecular testing.[13]  The distribution of 

repeat biopsy techniques (bronchoscopic, or transthoracic needle aspiration of primary 

cancer, and metastatic site needle aspirations) and pneumothorax complication rates 

were based on a prior analysis.[13]   

We used ALK FISH positivity as the reference standard for presence of ALK 

rearrangements.[7, 8]   Estimates for IHC test performance were taken from the largest 

published case series evaluating a novel 5A4 monoclonal antibody (Table 3.2). [25]  
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Table 3.2 Model parameters and ranges for sensitivity analyses. 

Variable Base Case Low High Source 
Overall survival, months 

Cisplatin plus pemetrexed 
Pemetrexed  
Docetaxel  
Erlotinib  (1st line) 
Erlotinib (maintenance)* 
Crizotinib  
Erlotinib (3rd line) 
Best supportive care  

Progression-free survival, months 
Cisplatin plus pemetrexed 
Pemetrexed  
Docetaxel  
Erlotinib (1st line) 
Erlotinib (maintenance) 
Crizotinib  
Erlotinib (3rd line) 

11.8 
13.9 
8.0 

19.3 
24.0 
20.3 
6.7 
4.5 

5.3 
4.1 
3.3 
9.7 

10.3 
7.7 
2.2 

10.4 
12.8 
6.4 

14.7 
19.2 
18.1 
5.5 
4.3 

4.8 
3.2 
2.6 
8.4 
8.2 
6.0 
1.9 

13.2 
16.0 
9.6 

26.8 
28.8 
26.8 
7.8 
4.9 

5.7 
4.6 
4.0 

12.3 
12.4 
8.8 
2.8 

[37] 
[38] 
[16] 
[39] 
[40] 

[7] 
[41] 

SEER-
Medicare 

[37] 
[38] 
[16] 
[39] 
[40] 

[7] 
[41] 

Health State Utilities  
With best response and adverse events 

Cisplatin plus pemetrexed 
Pemetrexed  
Docetaxel  
Erlotinib (1st line) 
Erlotinib (maintenance) 
Crizotinib  
Erlotinib (3rd line) 
No treatment   

With best response and no adverse 
events 

Cisplatin plus pemetrexed 
Pemetrexed  
Docetaxel  
Erlotinib (1st line) 
Erlotinib (maintenance) 
Crizotinib  
Erlotinib (3rd line) 

0.59 
0.60 
0.48 
0.64 
0.66 
0.64 
0.56 
0.46 

0.62 
0.60 
0.57 
0.65 
0.66 
0.66 
0.59 

0.51 
0.54 
0.37 
0.58 
0.61 
0.58 
0.49 
0.36 

0.56 
0.55 
0.51 
0.60 
0.61 
0.60 
0.53 

0.66 
0.65 
0.59 
0.70 
0.71 
0.70 
0.64 
0.55 

0.67 
0.66 
0.64 
0.71 
0.71 
0.71 
0.65 

[23, 37] 
[23, 38] 
[16, 23] 
[23, 39] 
[23, 40] 

[7, 23] 
[23, 41] 

[23] 

[23, 37] 
[23, 38] 
[16, 23] 
[23, 39] 
[23, 40] 

[7, 23] 
[23, 41] 

Probabilities (%) 
EGFR mutation positive 
ALK rearrangement positive 
Inadequate tissue – initial 
biopsy 
Re-biopsy  
Inadequate tissue - re-biopsy 
ALK IHC specificity 
ALK IHC sensitivity 

9.5 
3.9 

37.7 
30 
15 
96 

100 

8.9 
3.5 
26 
15 
10 
95 

100 

10.7 
4.3 
49 
45 
25 

100 
100 

[3] 
[3] 

[42] 
Expert opinion 

[13] 
[25] 
[25] 
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Table	  3.2 (continued)	  

*probability of survival = 0.6; median survival probability not reported
†includes time for delivery of tissue sample to the laboratory 

 Abbreviations: ALK, anaplastic lymphoma kinase; IHC, immunohistochemistry; FISH, fluorescence in situ 
hybridization; EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; FISH, fluorescence in situ 
hybridization; TAT, turnaround time from receipt of specimen to report of test results. 

Turnaround time (TAT), days† 
With no re-biopsy 
With re-biopsy 

12 
24 

7 
13 

16 
34 

[8],Expert 
Opinion 

Costs, 2013 US$ 
EGFR mutation assay 
ALK IHC assay 
ALK FISH assay 

Cisplatin and pemetrexed 
Drug acquisition  (per 21 day cycle) 
Premedication  
Administration, monitoring 
Adverse drug event treatment 

Pemetrexed maintenance 
Drug acquisition  (per 21 day cycle) 
Premedication  
Administration, monitoring 
Adverse drug event treatment 

Docetaxel 
Drug acquisition  (per 21 day cycle) 
Premedication  
Administration, monitoring 
Adverse drug event treatment 

Erlotinib 
Drug acquisition  (per 21 day cycle) 
Premedication  
Administration, monitoring 
Adverse drug event treatment 

1st line 
3rd line 
Maintenance 

Crizotinib 
Drug acquisition  (per 21 day cycle) 
Premedication  
Administration, monitoring 
Adverse drug event treatment 

Disease progression, per month 
Patient time, per hour 
Travel, per 30 mile round trip 

$201 
$136 
$489 

$5,721 
$254 
$446 
$760 

$5,689 
$6 

$276 
$304 

$937 
$8 

$329 
$2,525 

$3,982 
$0 

$165 

$358 
$727 
$358 

$8,041 
$0 

$165 
$550 

$5,457 
$19 
$15 

$201 
$136 
$489 

$4,577 
$203 
$357 
$608 

$4,551 
$5 

$221 
$243 

$750 
$6 

$263 
$2,020 

$3,186 
$0 

$132 

$286 
$582 
$286 

$6,433 
$0 

$132 
$440 

$5,283 
$10 
$8 

$718 
$217 
$598 

$6,865 
$305 
$535 
$912 

$6,827 
$7 

$331 
$365 

$1,124 
$10 

$395 
$3,030 

$4,778 
$0 

$198 

$430 
$872 
$430 

$9,649 
$0 

$198 
$660 

$5,605 
$29 
$23 

[43, 44] 
[43, 44] 
[43, 44] 

[45] 
[45, 46] 
[43, 44] 
[43-47] 

[45] 
[45, 46] 
[43, 44] 
[43-47] 

[45] 
[45, 46] 
[43, 44] 
[43-47] 

[46] 
[45, 46] 
[43, 44] 

[43-47] 
[43-47] 
[43-47] 

[46] 
[45, 46] 
[43, 44] 
[43-47] 

[26] 
[48] 
[49] 
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3.3.6. Costs 

Cancer-related medical costs, costs of travel and patient time spent seeking 

medical care were included in the model (Table 3.2).   We used the Centers for 

Medicare and Medicaid Services (CMS) reimbursement rates for each biomarker assay 

in our base case analysis, and for other direct medical costs, including drug 

administration, imaging and ADEs.   Costs for treatment specific ADEs were assumed 

to accrue in the first month of therapy.[14, 24]   The average sale price (ASP) and 

average wholesale price (AWP) were used to value injectable and orally administered 

drugs, respectively.   With the exception of cisplatin-pemetrexed chemotherapy, which 

was administered up to four cycles, patients were assumed to accrue drug-related costs 

up to the time of progression.  Costs for rebiopsy and related complications were 

derived from the analysis by Handorf, et al.[13] The cost for treating progressive 

disease was based on lung cancer attributable costs in the last year of life.[26]  All costs 

in the model were adjusted to 2013 values using the GDP deflator series.[27]   

3.3.7. Cost Effectiveness Analysis 

We calculated the incremental cost-effectiveness by ranking the strategies in 

order of increasing effectiveness.  Strongly dominated strategies, those that had a 

lower, or equal effectiveness and higher costs, were eliminated.  Incremental cost 

effectiveness ratios (ICERs) were calculated for each strategy in relation to the next 

best strategy.  The ICER is a ratio of the difference in mean costs divided by the 

difference in mean QALYs.  Strategies with a higher ICER that were less effective than 
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another strategy were eliminated by extended dominance.  The ICERs were 

recalculated for the remaining non-dominated strategies.[28]  

3.3.8. Sensitivity Analyses 

We conducted sensitivity analyses to evaluate which parameters were most 

influential on model results.  Where available, the ranges used for the parameters 

corresponded to the 95% CIs (Table 3.2).  Costs were varied ±20% and plausible 

ranges for TATs were used based on expert opinion.   We also simulated the lifetime (5 

year) costs and effectiveness where prognosis beyond trial observation period was 

modeled using exponential distributions.  Additionally, model outputs were generated 

based on commercial prices for molecular assays.  Finally, we ran a sensitivity analysis 

for the transition probability of dying while awaiting test results based on treatment 

naïve patients who were randomized to best supportive care (BSC) in a RCT.[29] 

3.4 Results 

Multiplexed testing approaches of ‘Test-treat’ and ‘Empiric switch’ were most 

effective (Table 3.3).  Both yielded an average life expectancy of 0.97 life years (LY), 

and 0.56 QALYs.  The ‘Empiric therapy’ approach, in which chemotherapy was 

continued for four cycles before initiation of molecularly guided therapy, was less 

effective (0.95 LY and 0.55 QALYs). Because the ‘Empiric switch’ approach was more 

expensive than the ‘Test-treat’ strategy (but equally effective), it was ruled out by strong 

dominance.  The ‘Empiric therapy’ approach was eliminated by extended dominance 

since it was associated with a higher ICER than the ‘Test-treat’ approach.  Compared 

with the ‘No test’ strategy, the ‘Test-treat’ approach of concurrent EGFR mutation and 

ALK IHC testing followed by ALK FISH confirmation prior to initiation of any therapy  
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Table 3.3  Cost Effectiveness Results. 

Abbreviations: LYs, life-years; QALYs, quality-adjusted life-years; ICER, incremental cost 
effectiveness ratio;  

*costs and life expectancy outcomes discounted at 3% annual rate   †2013 $US

yielded an ICER of $150,000 per additional QALY.  Without adjustment for quality of life, 

the ‘Test-treat’ approach had an ICER of $98,000 per LY gained compared to the ‘No 

test’ strategy. 

3.4.1. Sensitivity Analyses 

Changing the parameters values over ranges listed in Table 3.2 did not impact 

the rank order of the strategies.  Also, both empiric treatment strategies remained 

dominated.  A comparison of the non-dominated strategies revealed that the most 

influential parameters were utilities and acquisition costs for TKIs (Figure 3.2).  We 

found that the ICER for the ‘Test-treat’ approach compared to the ‘No test’ strategy 

ranged from $138,000 to $171,000 per additional QALY, with high and low utility values, 

respectively; and from $97,000 to $204,000 per QALY gained when the TKI acquisition 

costs were varied by minus and plus 20%, respectively.  In all other scenarios, the ICER 

for ‘Test-treat’ compared to ‘No test’ ranged from $120,000 to $160,000 per QALY.  

Strategy* LYs QALYs Cost† 
ICER 
($/LY) 

ICER 
($/QALY) 

Standard Care: No test, 
chemotherapy alone 0.93 0.53 $79,331 - - 

Empiric Therapy 0.95 0.55 $82,762 Extended 
Dominance 

Extended 
Dominance 

Empiric Switch Therapy 0.97 0.56 $86,645 Dominated Dominated 

Test-Treat 0.97 0.56 $83,413 98,000 150,000 
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Figure 3.2.  Sensitivity analyses.  Tornado diagram of influential parameters on the 
incremental-cost effectiveness ratio (ICER) of ‘Test-treat’ vs. ‘No Test’ strategies.   

Test-treat vs. Test 

ICER ($/QALY) 

TKI, tyrosine kinase inhibitor; ALK, anaplastic lymphoma kinase rearrangement; EGFR, 

epidermal growth factor drug sensitizing mutation; TAT, turn-around time; BSC, best-

supportive care; IHC, immunohistochemistry; QALY, quality-adjusted life year. 

80,000  100,000  120,000  140,000  160,000  180,000  200,000  220,000  

Probability of rebiopsy 

ALK IHC test specificity 

Cost of BSC 

TAT 

EGFR mutation frequency 

Probability of adequate initial tissue sample 

Discount rate 

ALK rearrangement frequency 

Probability of progression and mortality with 
therapy 

Utilities 

TKI price 
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Commercial prices for assays had a small effect on the ICER ($167,000 per 

QALY for the ‘Test-treat’ vs. ‘No test’ strategy).  Extrapolation of long-term survival 

lowered the ICER for ‘Test-treat’ to $148,000 compared to ‘No Test’.  With a trial-based 

mortality risk in the pre-treatment health states (using a piecewise exponential model 

with survival probabilities of 97% and 90% at 1 and 2 months after diagnosis, 

respectively), the same dominance pattern was observed and the ICER remained stable 

for the ‘Test-treat’ strategy compared to ‘No Test’ ($153,000/QALY).[29]  

Varying the proportion of patients for whom multiplexed molecular testing is 

ordered showed that decreasing this proportion to 5%, from 100% in the base-case 

analysis, would lower the outcomes in terms of expected QALYs to 0.54 for all testing 

strategies.  Both empiric treatment strategies would still be dominated, and the ICER for 

‘Test-treat’ compared to the ‘No test’ strategy would be $166,000/QALY.[9]  

3.5 Discussion 

Concurrent EGFR mutation and ALK IHC testing with ALK FISH confirmation for 

tumors that overexpress the ALK protein prior to initiation of therapy yielded an ICER of 

$150,000 per QALY gained compared to no testing and treatment with chemotherapy 

alone.   Whether or not an ICER of $150,000 provides good value is contingent upon 

the willingness-to-pay threshold, which serves as a guide of how much society is willing 

to pay for an additional QALY. The World Health Organization (WHO) defines 

interventions with ICERs within three times the GDP per capita as being cost effective 

($155,000 in the US). [30]    Others posit that a threshold of $200,000 per QALY may be 

more appropriate based on empirical data of ICERs for commonly used 

interventions.[31, 32]  Using these benchmarks, our results suggest that multiplexed 
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testing followed by molecularly guided therapy in metastatic NSCLC provides good 

value from a societal perspective. 

Our simulation study confirms that waiting for test results prior to initiation of 

treatment optimizes outcomes in newly diagnosed patients with metastatic NSCLC.[10]  

While empiric therapy in which chemotherapy is initiated concurrently with testing for 

mutations, followed by an immediate switch to molecularly guided therapy at the time 

test results become available yielded the same life expectancy as the test then treat 

approach, the former strategy was dominated since it was more expensive.  

Continuation of empiric chemotherapy for four cycles before switching to test-result 

conditional treatment yielded less favorable outcomes than the above two approaches, 

both in terms of QALYs and LYs.  This strategy was eliminated by extended dominance. 

These results were robust to variations over plausible ranges of model parameters. 

In sensitivity analyses, the ICER was highly sensitive to drug acquisition costs.  

At lower TKI prices, (80% of brand name product price), the ICER for the ‘Test-treat’ 

strategy decreased to $97,000/QALY compared to standard treatment with 

chemotherapy.  Over time, once generic versions of TKIs become available, these 

innovations will confer even better value.  The optimal price point that maximizes social 

welfare, while minimizing the impact on technological innovation, is outside the scope of 

this analysis.  However, growing concerns over the increasing cost burden of these 

innovations on patients deserve scrutiny.[33-35]  Patient access to these drugs may be 

impeded by onerous out of pocket costs.  One way to attenuate the impact of cost 

sharing may be through value based benefit design.  Arguably, breakthrough therapies 

that offer substantial improvement in outcomes and are placed into lower cost sharing 
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tiers would benefit society as a whole from healthier patients who remain productive, as 

they are able to access these beneficial treatments.   

We were unable to identify published economic analyses that examined 

multiplexed testing in advanced NSCLC. Handorf, et al. evaluated the cost effectiveness 

of molecularly guided first-line therapy using EGFR mutation testing in the US from a 

payer perspective. The ICERs for testing with and without rebiopsy and EGFR mutation 

guided treatment ranged from $110,644 to $122,219 per QALY gained compared to 

treatment with a carboplatin-paclitaxel doublet.[13]   Similar to our analysis, the cost-

effectiveness results from that study support the value of molecularly guided therapy.  

Another recently published study examined the cost-effectiveness of ALK 

rearrangement testing alone prior to first-line crizotinib treatment in ALK-positive tumors 

or cisplatin-gemcitabine combination chemotherapy in wild type tumors.[21]  From a 

Canadian public health perspective, that analysis generated an ICER of $255,970 per 

additional QALY for molecularly guided therapy compared to chemotherapy.  The 

authors concluded that genetic testing and treatment with molecularly guided therapy 

was not cost-effective.  Several differences between our analysis and the Canadian 

study are worth noting.  First, we combined multiplexed testing in our analysis, which de 

facto produces better outcomes for the molecular testing strategy since more patients 

benefit from testing.  Second, in our analysis, the mean life expectancy with doublet 

chemotherapy using a lifetime horizon was 12.2 months, an estimate that is identical to 

a separate analysis we conducted based on SEER-Medicare patients with newly 

diagnosed Stage IV NSCLC (data not shown).  On the other hand, Djalalov et al. 

reported a mean life expectancy of 7.4 months in patients who initiated therapy with 
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first-line cisplatin and gemcitabine.[21]  Third, our utility weights were appreciably higher 

for crizotinib and some other overlapping treatments, such as third-line erlotinib therapy. 

These differences in part explain the disparities in our respective studies.  

Our results are subject to modeling assumptions and need to be interpreted in 

this context.   For example, due to treatment crossover after progression and lack of 

direct comparisons in RCTs, we relied on single-arm data for our parameters.  

Furthermore, we used data from PROFILE 1007, a phase 3 RCT of second-line 

crizotinib, to inform hazard rates in our model for OS and PFS.[7] These estimates 

apply to a small subset of patients in our model, those with ALK rearrangement positive 

status.  Any bias introduced into the model would thus be marginal given the size of this 

subgroup.[36]   Overall, varying the hazard rates for treatment effects in sensitivity 

analyses revealed that the base case results were robust to these assumptions.  Also, 

we used Medicare reimbursements as a proxy for the societal costs of test assays.  

However, the true costs of the tests may vary across providers.  But even with 

commercial test prices, the ICER for the ‘Test-treat’ compared to the ‘No test’ strategy 

increased to $167,000 per additional QALY, which is still below commonly acceptable 

willingness-to-pay thresholds.[31] 

In summary, our analysis suggests that multiplexed testing for EGFR mutations 

and ALK overexpression with an IHC assay followed by ALK rearrangement 

confirmation with FISH for IHC positive results and biomarker conditional treatment is a 

cost effective strategy compared to treatment with chemotherapy and no testing in 

metastatic NSCLC.   Empiric cisplatin-pemetrexed therapy for four cycles with 

concurrent molecular testing prior to initiation of TKI maintenance therapy generated 
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inferior outcomes compared to waiting for test results before treatment, and compared 

to ‘Empiric switch therapy’ in which chemotherapy initiated treatment was immediately 

switched to molecularly guided therapy when test results became available. 
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3.7 Appendix 

3.7.1 Natural History 

To model the natural history of untreated advanced NSCLC while simulated 

patients were awaiting molecular marker test results and for those in the BSC strategy, 

we used the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked 

database to identify incident cases of advanced NSCLC patients with pathologic 

diagnosis of non-squamous histology, aged 66-69 years old, who were diagnosed 

between 2007 and 2009.  The SEER population-based registries, which represent 28% 

of the US population, provide a rich repository of data related to tumor characteristics 

and prognosis.[7] The patient-level linked Medicare data (CMS) provide claims 

information for fee-for-service (FFS) coverage for services provided in hospitals, 

outpatient clinics, physician encounters, durable medical equipment, hospice, home 

health care and prescription medications covered by Medicare Part D plans.   We used 

predicted probabilities from a Cox model probability weighted using the inverse 

conditional probability of exposure to systemic therapy to balance observable covariates 

between treatment naïve and treated patients.  Time dependent transitional probabilities 

for the simulation model were calibrated to the predicted survival probabilities from the 

Cox model using a piecewise-exponential approach. 

Patients with Stage IV NSCLC who were diagnosed during 2007-2009 were 

identified form the SEER database.  Further inclusion criteria included: age 66 to 69 (the 

ages were selected to parallel the median ages reported in the clinical trials which were 

used for treatment efficacy estimates); non-squamous histology (adenocarcinoma, large 

cell, NOS; BAC histology was excluded from the analysis); first and only cancer 
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diagnosis; continuous enrollment in FFS.  The minimum follow up was 12 months after 

diagnosis.  Classification into the systemic treatment group was based on any claim for 

systemic therapy (in hospital, physician, outpatient, Medicare D, home health care and 

durable equipment claims files) within 60 days of diagnosis.   To ensure that patients 

included in the analysis were representative of those who would be candidates for 

systemic therapy, we matched patients based on 39 characteristics, which included 

proxy indicators for performance status at diagnosis (2 variables: claims for home 

oxygen therapy and claims for activity of daily living aids).  (We would like to thank Dr. 

Lamont for providing us with the algorithm for the performance status indicators).   

A propensity score logistic regression model was estimated, using receipt of 

systemic therapy as the outcome variable and the above variables that may affect 

treatment selection as the covariates.  Inverse propensity score weighting (IPW) was 

used to assess the balance in baseline characteristics.  All standardized differences for 

IPW weighted analyses of each covariate between the treatment groups were less than 

0.10 indicating the groups were well balanced on baseline characteristics (Table 3.A.1) 

across treatment groups among the 11,443 included patients.   
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Table  3.A.1. Baseline characteristics among Stage IV NSCLC patients by treatment 
group. 

Unweighted means Weighted means 
Systemic 
therapy 
N=5050 

% 

BSC 
N=6393 

% 

Standardized 
Difference 

Systemic 
Therapy 
N=5050 

% 

BSC 
N=6393 

% 

Standardized 
Difference 

Female 48 51 0.057 50 50 0.001 
Age 

66-69 
70-74 
75-79 
80-84 

85+ 

25 
30 
25 
15 

5 

17 
23 
23 
21 
16 

0.208 
0.171 
0.035 
0.154 
0.381 

21 
26 
24 
18 
11 

20 
26 
24 
18 
11 

0.004 
0.006 
0.001 
0.003 
0.006 

Race 
Hispanic 

White 
Black 

Other race 

4 
82 

7 
8 

4 
80 

9 
7 

          0.017 
0.050 
0.081 
0.023 

4 
80 

8 
8 

4 
80 

8 
7 

0.004 
0.005 
0.003 
0.008 

Marital status 
Single 

Married 
Unknown 

7 
58 
35 

9 
44 
47 

0.060 
0.284 
0.255 

8 
51 
42 

8 
51 
41 

0.005 
0.000 
0.003 

Median household income in census tract $50,515 $48,105 0.107 $49,067 $49,066 0.000 
Proportion with college degree in census 
tract 25.3 24.1 0.072 24.5 24.6 0.047 
Gagne comorbidity score 

0 
1 
2 

3+ 

67 
16 

8 
9 

59 
17 

9 
15 

0.184 
0.035 
0.038 
0.201 

62 
17 

8 
13 

62 
17 

8 
12 

0.012 
0.000 
0.000 
0.018 

Histology 
Adenocarcinoma 

Large cell 
BAC 
NOS 

56 
5 
2 

37 

56 
5 
2 

37 

0.004 
0.020 
0.001 
0.013 

56 
5 
2 

37 

56 
5 
2 

37 

0.003 
0.000 
0.002 
0.003 

Brain metastases 16 21 0.137 19 19 0.002 
MDs in county, (per 100,000) 238.5 240.1 0.012 238.1 239.5 0.081 
Hospital beds in county, (per 100,000) 320.9 322.2 0.006 323.7 320.2 0.131 
Managed care penetration (%) 19.7 20.6 0.071 20.2 20.3 0.020 
Foreign born (%) 13.0 12.9 0.009 13.0 12.9 0.038 
Hospital days pre dx  3.0 4.8 0.224 4.3 4.1 0.108 
Home health care enrolment pre dx 8 14 0.217 12 11 0.021 
SNF enrolment pre dx 3 8 0.233 6 6 0.002 
Pre-diagnosis costs, within 1 year of 
diagnosis, mean (SD) $6,884 $10,053 0.172 $8,985 $8,752 0.080 
State buy-in 16 21 0.133 19 19 0.004 
Alcohol abuse 0 1 0.037 1 1 0.000 
CHF 9 13 0.136 11 11 0.016 
Cardiac arrhythmias 11 15 0.115 14 13 0.014 
Chronic pulmonary disease 22 25 0.083 24 24 0.009 
Coagulopathy 2 2 0.005 2 2 0.014 
Complicated diabetes 5 6 0.048 6 6 0.008 
Deficiency anemias 11 14 0.089 13 12 0.009 
Dementia 1 3 0.153 2 2 0.007 
Fluid and electrolyte dis 4 8 0.140 7 6 0.012 
HIV/AIDS 0 0 0.003 0 0 0.008 
Hemiplegia 0 1 0.064 0 0 0.005 
Hypertension 53 52 0.023 53 52 0.010 
Liver disease 13 15 0.037 14 14 0.009 
Peripheral vascular disor 11 15 0.129 13 13 0.011 
Psychosis 2 3 0.077 3 2 0.005 
Pulmonary circulation dis 1 2 0.043 1 1 0.001 
Renal failure 4 7 0.123 6 6 0.013 
Weight loss 0 1 0.092 1 1 0.031 
COPD ER/hosp prior to diagnosis 2 3 0.081 2 2 0.011 
Home Oxygen Therapy Aids 15 18 0.076 18 17 0.016 
ADL Aids 7 11 0.141 10 10 0.016 
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3.7.2 Survival Analysis 

Non-parametric Kaplan-Meier survival curves are useful in characterizing the 

survival function and do not require any distributional assumptions, however, 

adjustment for confounding using IPW is not feasible with this approach.  We thus 

pursued both semi-parametric models (Cox model) and parametric models (exponential, 

Weibull, generalized gamma, log-logistic and log-normal) to adjust for IPW.  Models 

were fit with treatment indicator as the sole covariate and weighted using the IPW.  All 

models were analyzed using SAS (version 9.3).  Goodnness-of-Fit statistics using the 

corrected Akaike information criterion (AICc) were used to compare the fit of the hazard 

function across models.   The Cox model was associated with the lowest AICc value 

and was thus deemed to have the best fit to the data. 

Furthermore, to attenuate survivor treatment selection bias, we opted to express 

the treatment variable as a time-dependent covariate in the Cox PH model. (6)  The 

predicted survival probabilities from the Cox PH models and the calibrated probabilities 

from the simulation model are shown below.  Time dependent transitional probabilities 

for the simulation model were calibrated to the Cox predicted survival probabilities using 

a piecewise-exponential approach. 
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Figure 3.A.1. Natural history model calibration. 

 

Top panel: The overall predicted survival probabilities from Cox PH models for systemic therapy and 
treatment naïve groups (green and blue lines, respectively) are shown.  Predictions from separate 
specifications of Cox PH models are shown: solid lines correspond to estimates  with treatment as a fixed 
covariate; dashed lines correspond to time-varying treatment covariate specification.  Bottom panel: Red 
curve represents the calibrated survival probability curve from the simulation model; dashed blue line 
corresponds to the predicted survival probabilities for treatment naïve group with chemotherapy as a 
time-varying covariate; grey curves correspond to the 96% CI.  All Cox PH model results are inverse 
probability weighted for propensity to receive systemic therapy within 60 days from diagnosis.	  
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3.7.3 Treatment Conditional Outcomes 

The model simulated progression-free and overall treatment conditional survival 

using exponential models.  Studies that met inclusion criteria for estimation of these 

efficacy parameters comprised of phase 3 randomized trials. With the exception of first-

line crizotinib and switch maintenance erlotinib, we were able to identify studies for all 

other lines of treatment that met the inclusion criteria.  The PROFILE 1007 trial 

evaluated the efficacy of crizotinib in the second line treatment.[9]  The PROFILE 1014 

trial is currently enrolling patients in the first line setting, but the results will not be 

available for some time (personal communication, Dr. Shaw).   There is an ongoing 

debate about the consistency of outcome results with targeted therapies between first 

and second line therapy given no direct comparisons of the two approaches.[10]  

Indirect comparisons suggest relatively better outcomes in first line setting compared to 

second line, but the evidence is based on retrospective analyses or small sample sizes. 

The use of PROFILE 1007 results in the first line setting in our model  applies to a small 

subset of patients with ALK rearrangement positive status (<5%).  Any bias introduced 

into a model would thus be marginal given the size of the subgroup and it would be in 

favor of the standard care strategy. 

The median estimates from trials were used as the calibration targets.  The 

hazard rates were changed iteratively to approximate the arm-specific median survival 

estimates from eligible trials.   
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Table 3.A.2. Calibration results of simulation model parameters compared with 

randomized trials. 

Variable Trial Simulation 
Overall survival, months 

Cisplatin plus pemetrexed 11.8 11.8 
Pemetrexed 13.9 13.9 

Erlotinib  (1st line) 19.3 19.3 
Erlotinib (maintenance) 24.0 23.8 

Crizotinib 20.3 20.2 
Erlotinib (3rd line) 6.7 6.6 

Docetaxel 8.0 7.9 
Best supportive care (4th 

line) 
4.6 4.6 

Progression-free survival, months 
Cisplatin plus pemetrexed 5.3 5.3 

Pemetrexed 4.1 4.1 
Erlotinib  (1st line) 9.7 9.6 

Erlotinib (maintenance) 10.3 10.3 
Crizotinib 7.7 7.6 

Erlotinib (3rd line) 2.2 2.2 
Docetaxel 3.3 3.4 
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Figure 3.A.2.  Calibration of treatment conditional survival curves.   
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Figure 3.A.2.  (continued) 
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Figure 3.A.2.  (continued) 

Model predicted survival probabilities (grey curves) are juxtaposed with survival 

probabilities from randomized clinical trials included in the model (diamonds).    Non-

solid curves correspond to model predictions that extend beyond the analytical time.  
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3.7.4  Best Response and Adverse Drug Event Rates 

Best response rates (CR/PR, SD, PD) were pulled from the randomized trials 

that we included for efficacy endpoints.  Prevalence of grade 3 and 4 adverse drug 

events (ADE) were obtained from the same trials (Table 3.A.3).  ADE and best 

response frequencies were assumed to be fixed in our model. 

Table 3.A.3.  Best response and adverse event probabilities by treatment. 

3.7.5 Utilities 

Treatment specific utilities were calculated based on the prediction model 

reported by Nafees et al. (Table 3.A.4).[11]  Time spent in each health state was 

weighted by a utility for that state to estimate QALYs.  Utilities were drawn from a 

community-based study in advanced NSCLC from the UK.[11] The authors elicited 

societal based utility values from 100 participants of the general community using the 

standard gamble approach.  The predictive model for health state utilities generated by 

the authors is shown in Table 3.A.4.  The model was a function of tumor progression 

Therapy* Erlotinib 
1st line 

Crizotinib Erlotinib 
maintenance 

Cisplatin/ 
pemetrexed 

Pemetrexed Erlotinib 
3rd line 

Docetaxel 

Source EURTAC PROFILE SATURN Scagliotti PARAMOUNT BR21 meta 

Best 
response 

CR/PR** 0.58 0.66 0.55 0.31 0.03 0.09 0.09 

PD** 0.07 0.06 0.00 0.23 0.28 0.38 0.46 

Grade 3/4 
ADE 

Neutropenia 0.00 0.13 0.00 0.15 0.04 0.00 0.32 

Febrile 
Neutropenia 

0.00 0.01 0.01 0.01 0.01 0.00 0.06 

fatigue 0.06 0.02 0.00 0.07 0.04 0.16 0.28 

N&V 0.00 0.02 0.00 0.13 0.01 0.00 0.26 

diarrhea 0.05 0.00 0.02 0.00 0.00 0.11 0.12 

hair loss 0.00 0.00 0.00 0.12 0.00 0.00 0.38 

rash 0.13 0.00 0.09 0.00 0.00 0.16 0.07 
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state (CR/PR, SD, PD) and grade 3-4 toxicities associated with treatment (neutropenia, 

febrile neutropenia, fatigue, diarrhea, nausea and vomiting, rash and hair loss), domains 

which demonstrated an impact on HRQOL in prior studies.   We calculated utilities 

based on the Nafees model and trial-based best response rates (CR/PR, SD, PD) and 

prevalence rates of grade 3 and 4 adverse drug events (ADEs) (Table 3.A.3).  ADE and 

best response frequencies were treated as fixed values.   Consistent with other reports, 

disutilities for ADEs were incorporated for the first month of therapy while remaining 

months on therapy were weighted using weights calculated using best response rates 

only.[12]  All patients in the BSC health state were assumed to be in the progressive 

state with no additional disutilities based on symptoms. 

Table 3.A.4.  Predictive model of utilities in lung cancer based on best response to 

therapy and adverse events. 

Utility Base 
case 

estimate 

Standard 
error 

Source 

Intercept 0.6532 0.02223 Nafees 2009 
PD -0.1798 0.02169 Nafees 2009 
CR/PR 0.0193 0.006556 Nafees 2009 
Neutropenia -0.08973 0.01543 Nafees 2009 
FN -0.09002 0.01633 Nafees 2009 
Fatigue -0.07346 0.01849 Nafees 2009 
N&V -0.04802 0.01618 Nafees 2009 
Diarrhea -0.0468 0.01553 Nafees 2009 
Alopecia -0.04495 0.01482 Nafees 2009 
Rash -0.03248 0.01171 Nafees 2009 
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