
 

Exploring Cancer's Fractured Genomic Landscape: Searching for
Cancer Drivers and Vulnerabilities in Somatic Copy Number

Alterations

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation No citation.

Accessed February 17, 2015 1:07:07 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13065031

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/13065031&title=Exploring+Cancer%27s+Fractured+Genomic+Landscape%3A+Searching+for+Cancer+Drivers+and+Vulnerabilities+in+Somatic+Copy+Number+Alterations
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13065031
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA




	
  



sTitle 
 

Exploring cancer's fractured genomic landscape: Searching for cancer drivers 
and vulnerabilities in somatic copy number alterations 

 
A dissertation presented 

 by  
 

Travis Ian Zack 
 

to 
 

The committee on Higher Degrees in Biophysics 
 

in partial fulfillment of the requirements 
for the degree of 

 
Doctor of Philosophy 

 
in the subject of  

 
Biophysics 

 
 
 
 
 
 

Harvard University 
Cambridge, Massachusetts 

 
 

July 2014 
 
 
 
 
 
 
 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2014 Travis Zack 
All rights reserved. 

 
 

 
  



iii 
 

Thesis Advisor: Rameen Beroukhim     Travis Zack 

Exploring cancer's fractured genomic landscape: Searching for cancer drivers 
and vulnerabilities in somatic copy number alterations 

Abstract 

 

Somatic copy number alterations (SCNAs) are a class of alterations that lead to 

deviations from diploidy in developing and established tumors. A feature that 

distinguishes SCNAs from other alterations is their genomic footprint. The large 

genomic footprint of SCNAs in a typical cancer’s genome presents both a challenge 

and an opportunity to find targetable vulnerabilities in cancer. Because a single event 

affects many genes, it is often challenging to identify the tumorigenic targets of 

SCNAs. Conversely, events that affect multiple genes may provide specific 

vulnerabilities through “bystander” genes, in addition to vulnerabilities directly 

associated with the targets. 

 We approached the goal of understanding how the structure of SCNAs may lead 

to dependency in two ways. To improve our understanding of how SCNAs promote 

tumor progression we analyzed the SCNAs in 4934 primary tumors in 11 common 

cancers collected by the Cancer Genome Atlas (TCGA). The scale of this dataset 

provided insights into the structure and patterns of SCNA, including purity and ploidy 

rates across disease, mechanistic forces shaping patterns of SCNA, regions 

undergoing significantly recurrent SCNAs, and correlations between SCNAs in regions 

implicated in cancer formation.  
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In a complementary approach, we integrating SCNA data and pooled RNAi 

screening data involving 11,000 genes across 86 cell lines to find non-driver genes 

whose partial loss led to increased sensitivity to RNAi suppression. We identified a 

new set of cancer specific vulnerabilities predicted by loss of non-driver genes, with 

the most significant gene being PSMC2, an obligate member of the 26S proteasome. 

Biochemically, we found that PSMC2 is in excess of cellular requirement in diploid 

cells, but becomes the stoichiometric limiting factor in proteasome formation after 

partial loss of this gene.   

In summary, my work improved our understanding of the structure and patterns 

of SCNA, both informing how cancers develop and predicting novel cancer 

vulnerabilities. Our characterization of the SCNAs present across 5000 tumors 

uncovered novel structure in SCNAs and significant regions likely to contain driver 

genes. Through integrating SCNA data with the results of a functional genetic screen, 

we also uncovered a new set of vulnerabilities caused by unintended loss of non-

driver genes.  
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Motivation 

Over 100 years ago Hansemann, and subsequently Boveri, described abnormal 

numbers and shapes of chromosomes as a distinguishing feature of cells derived from 

cancerous neoplasms1,2. As our understanding of chromosomes and their role in 

genetics has grown, this observation on the fundamental relationship between DNA and 

cancer has only been strengthened. It was not until 1960, that the first specific genetic 

defect associated with cancer was discovered, a chromosomal translocation in chronic 

myelogenous leukemia (CML)3. In the next couple decades, several genes responsible 

for driving tumor formation were slowly elucidated4-7. As genetic techniques became 

more refined, especially with the completion of the human genome project, the number 

of documented cancer genes and alterations has exploded8‐10.  

The idea of cancer as an evolutionary process originating from a single cell is 

well established and has changed little in 30 years11,12. As in other evolutionary 

processes within finite populations, cancerous (or precancerous) cells acquire random 

genetic or epigenetic alterations, which may have beneficial, detrimental, or neutral 

effects on cellular fitness.   Alterations that are strongly beneficial to cell survival and 

proliferation (driver alterations) may lead to expansion of the corresponding cell 

throughout the population (selective sweep). However, neutral or detrimental alterations 

present in the cell prior to these selective sweeps will also be present in the tumor 

(passenger alterations). Through this process, the genetic alterations observed at the 

time of diagnosis and/or tumor resection consist of some combination of driver and 

passenger alterations. 
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Early therapies postulated that known cytotoxic agents, such as mustard gas, 

would have similar effects on the unrestrained proliferation of cancer cells8‐11,13,14. While 

cytotoxic agents are still frequently applied in cancer treatment, recent advances in 

genetics have introduced the promise of “targeted therapies”: treatment designed to 

target vulnerabilities caused by specific alterations present in cancer cells, but not 

normal tissue. While the basic concept of exploiting phenotypic differences between 

cancer and normal cells directly related to a genotype is a very general aim, in practice 

these efforts have focused on driver alterations directly involved in tumorigenesis. 

Because driver alterations are directly responsible for facilitating malignancy 

progression, it is reasonable to assume many may be required for tumor maintenance, 

and thus would represent a cancer-specific dependency.  

Since the elucidation of the human genome, much of the research in cancer 

genetics can be broken down into three distinct pursuits: 

1. Discovering driver alterations: Because we expect driver alterations to be 

preferentially maintained during the course of evolution, this often entails looking 

for alterations that recur in primary tumors more often than we would expect given 

our understanding of the background rate of the alteration. 

2. Understanding how a driver alteration promotes or maintains cancer development: 

This step often involves experimental techniques to elucidate exactly how a 

genetic alteration alters cellular biology in a way that promotes tumorigenesis or 

tumor maintenance. Benchwork often represents both the backbone and a 

bottleneck of cancer discovery and has provided numerous insights not just into 

tumor formation, but basic cell biology and human physiology15,16.  
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3. Therapeutic development: Once the biology of a specific driver alteration is 

understood, therapies (often small molecule inhibitors) are developed to exploit 

predicted dependencies based on this alteration. While the initial phase of this 

step is often carried out at academic institutions, much of the time and cost of this 

step involves molecular optimization and toxicity profiling, often at pharmaceutical 

companies.   

Each patient’s cancer likely has a small handful of alterations driving tumor 

development17,18, meaning each patient presents with a very limited set of opportunities 

for driver-directed targeted therapy. While research in the causes and progression of 

cancer has led to innumerable advances in the understanding of cellular biology writ 

large19‐22, targeted therapies based on certain classes of driver alterations (such as 

tumor suppressors or transcription factors) have not always been easy to design or to 

implement successfully23‐25. This leads to many patients in which we can identify the 

events that caused tumor formation, but cannot yet leverage this genomic information 

toward effective treatment. However, cancer dependencies predicted by driver 

alterations may only be a small subset of potential therapeutic targets. For example, 

driver alterations likely represent a small portion of all genetic differences between 

cancer and normal cells. By widening the search for cancer specific vulnerabilities 

beyond driver alterations, we may be able to open new therapeutic doors in targeted 

therapeutics.   

One of the many forms of genetic alterations in cancer cells is changes in DNA 

copy number, which are collectively termed Somatic Copy Number Alterations (SCNAs). 

While typical mammalian somatic tissue is diploid (two copies of each gene), many 
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cancers exhibit wide deviations from this norm, ranging from complete loss (zero 

copies) of some regions to amplifying other regions hundreds of times. SCNAs affect a 

larger fraction of the genome in cancers than do any other type of somatic genetic 

alteration26‐28. SCNAs can be caused by numerous distinct mechanisms, including 

multiple classes of errors in break repair and mitotic segregation29‐32.  SCNAs play 

critical roles in activating oncogenes and inactivating tumor suppressors28,33‐37 and 

understanding the biological and phenotypic effects of SCNAs has led to substantial 

advances in cancer diagnostics and therapeutics38‐41. 

The following research focuses on uncovering contributions of SCNAs to cancer 

development and novel cancer dependencies. We have employed two complementary 

techniques. In the first, we used a large collection of primary tumors to characterize the 

patterns of SCNA across cancer and implicate specific regions likely to contain driver 

genes. In the second, we used an in vitro screen of gene dependencies to find genes 

that directly lead to cancer vulnerability when lost through SCNAs, regardless of 

whether they are driver or passenger alterations.  
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Chapter 1: Introduction 

 

1. The analysis of copy number change 

Introduction: Patterns of genetic alterations as a window into cancer biology 
 

While a connection between certain behaviors and environmental conditions had 

been understood for centuries42,43, it took until 1937 for scientist to prove a specific 

environmental toxin to be carcinogenic, with the exposure of mice to benzanthracenes, 

an element of coal tar. Concurrently, evidence arose of X-rays causing cancer44 in 

addition to the (re-)discovery of cancer causing-viruses in the 1970s45,46. Combined with 

growing evidence of causative nature of these agents in genetic alterations47,48 and 

ingenious work to show that cancers were derived from clonal expansion of a single 

somatic cell49, it became evident that cancer was a disease of somatic, genetic 

alterations.  

Therefore, a primary challenge in cancer biology is to distinguish the genetic 

alterations that allow clonal expansion and contribute to oncogenesis and cancer 

progression from the passenger events that are acquired during cancer evolution but do 

not contribute towards it50‐52.  The basic assumptions behind this pursuit are two-fold. 

The first element is that neoplasia is the result of a single-cell, evolutionary process that 

undergoes one or more clonal expansions. In such processes, genetic alterations that 

greatly improve fitness will be selected for and be enriched in subsequent 

measurements of the population (tumor biopsies, for example). The second assumption 

is that cancer biology remains relatively consistent across patients, meaning the same 

alteration may be selected for independently across multiple patients within a 
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population, and therefore would recur more frequently across biological samples than 

alterations with no selective advantage. These basic assumptions have, for the most 

part, proven fundamentally sound and have led to many breakthroughs in cancer, even 

before the introduction of high-throughput genetic techniques. 

Without modern genetic techniques, early studies relied on qualitative visual 

analysis of chromosomal number and shape in neoplastic cells arrested in metaphase 

with colchicine53,54. While crude by today’s standards, observation of static mitotic 

divisions allowed quantification and characterization of the chromosomal content, 

including “marker chromosomes” that were only observed neoplastic cells55‐57. The 

principle finding in these early studies is summarized succinctly by Wakonig-Vaartaja58 

 

“(a) neoplasia begins in a few or, more likely, in one cell, at least in certain types of 

neoplasia; (b) autonomous tendencies can be inherited from a cell to its descendants; 

(c) leukaemia, even with almost simultaneous symptoms in several tissues may 

originate at one site; from this it may spread through metastasis; (d) the majority of the 

cells in certain neoplasms are changed irreversibly, and not temporarily due to 

stimulation from other cells (physiological theories), otherwise the proportions of marked 

cells belonging to one clone would have been smaller; (e) the varying incidence of 

aneuploidy in the different sites, in spite of the same clonal origin of their cells, 

demonstrates genetic plasticity and random somatic evolution in neoplasms” 

 

 While less common, some “marker” chromosomes were observed repeatedly in 

patients of a particular disease, suggesting a role for these specific events in disease 
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formation56,59.  However, identification of recurrent genetic alterations was limited by an 

inability to reliably distinguish between different chromosomes. 

By 1970, experiments began to use quinacrine as a label for DNA regions for 

guanine-rich regions60‐62 and Giemsa staining for thymine-rich regions63‐66. This, and 

other advances in cytogenetics, precipitated a series of conferences on cytogenetic 

nomenclature, culminating in the Paris conference of 1971, which set in place the basic 

nomenclature we use today67, and led to a rapid increase in the discovery of DNA 

elements correlated with disease.  

Besides more accurately describing previously discovered malignancy-

associated alterations3,4,68,69, the ability to accurately distinguish chromosome regions 

led to associations between specific regions and malignancy in a wide variety of 

disease states, even if the functional cause was as yet undetermined70‐74.  

In parallel, the ability to laboriously sequence DNA75 and amino acids76, led to the 

discovery of many disease associated genes, with their genomic location often identified 

subsequently77‐80. By studying tumor-associated viruses, researchers were able to 

isolate endogenous protein associated with transformation through biochemical 

isolation81‐83 or isolation of human homologues of viral proteins through transformation 

assays7,83‐86. However, these discoveries were tethered to the relative simplicity of the 

viral genome, and the identification of human homologues, as well as their locations, 

was very tedious. Regardless, these first studies into the functional elements that lead 

to malignancy are responsible for discovery of many of the most well recognized tumor-

inducing agents, including tumor suppressor genes(RB1, TP53)22,87,88, oncogenes(Myc, 

EGFR)89,90, viral components (hepatitis B, human papillomavirus)91,92   and bacteria (H. 
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pylori)93. Again, in virtually all these cases, driver gene discovery was relatively 

opportunistic, discovering genetic elements through biochemical isolation or qualitative 

observation of highly recurrent genetic alteration.   

A complementary approach, originally termed “reverse genetics” or positional 

cloning, attempted to map the gene responsible for a disease trait to its genetic location 

prior to evaluation of gene product biochemistry or physiologic function94,95. While 

traditional approaches strove to first isolate and characterize proteins associated with a 

phenotype, subsequently identifying its amino-acid and DNA sequence, these 

approaches involved challenging isolation and biochemistry techniques and often 

required model systems that adequately recapitulated the phenotype of interest. As an 

alternative, early genomics pioneers attempted to associate DNA regions with 

inheritance of a specific disease phenotype, slowly narrowing the phenotype-associated 

region down to a single genetic element either through comparison of the affected 

region in diseased versus normal cells96‐99 or through amplification and segmentation of 

the region through the use of a library of recombinant DNA vectors100‐102. In this 

approach, only after a correlated genetic element is identified are experimental studies 

done to determine a mechanism behind its causal role. While also successful in 

mapping many human disease traits, the tedious nature of this approach precipitated 

the push for a complete mapping of the human genome94,103, as well as new techniques 

for precise characterization of genetic differences between samples. One of the most 

influential characterization techniques was the DNA microarray. 

 

History of DNA microarray analysis 
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The next big step towards large scale cancer genome characterization was the 

DNA microarray104,105. A microarray is the ordered, precision placement of many 

microscopic elements that allows segregation of signal or information in a very small 

system. For DNA microarrays, the segregated elements are DNA fragments (“target 

set”), covalently bonded to a solid support and then used to measure the amount of 

complementary DNA sequence that is fluorescently labeled in a small volume fluid 

sample (“probe set”). The advantage of this approach for interrogation of biological 

samples is multifaceted. A microscopic platform requires much less source material, 

while the high specificity of DNA to its complimentary sequence provides high signal to 

noise in a complicated sample, eliminating the need for step-wise sample simplification.  

The first described DNA microarrays were developed in the early 1990s105‐107, 

and can be separated into 3 approaches, based on the construction of the “target” 

library.  

In an early paper, cDNA was created from an Arabidopsis sp., and a small set of 

putative genes were independently PCR amplified105. Small volumes of these PCR 

products were spotted in an ordered fashion onto a poly-L-lysine coated microscope 

slide107.  After a chemical and heat treatment, the DNA probes were bonded to the slide 

surface and probed with fluorescently labeled mRNA samples.  More generally, this 

approach used cDNA to construct Expressed Sequence Tag (EST) target libraries. 

While it is easy to interpret the direct readout from these cDNA libraries, they suffered 

from tedious library construction and selection bias against low abundance mRNA.  

Regardless, this approach was successfully used to measure gene expression in many 

systems105,108,109. In cancer, the ability to monitor changes in gene expression across a 
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large portion of the genome allowed diagnosis and classification of disease state based 

on broad patterns of expression110,111. 

A separate approach created target libraries by spotting cosmid or Bacterial 

Artificial Chromosomes (BAC) libraries onto a microarray112. They improved on some 

spatial resolution and quantification issues of previous approaches and were able to 

quantitatively assess levels of human DNA spiked into a full human genome, as well as 

high resolution comparison of chromosome 20 in normal and breast tumor lines112.  

These libraries were also laborious to curate and maintain. 

Photolithographic synthesis of unique polymers in parallel directly on a solid state 

support113,114 solves these problems of library creation and maintenance, by “printing” 

an array of short synthetic nucleotides of any conceivable sequence without need for an 

initial biological sample isolations step. Often termed “in-situ” DNA microarrays, this 

principle was demonstrated early in DNA microarray development115, but the precise 

control over short target sequence made these arrays much better suited for sequence-

identity questions116‐118 or discovery of disease associated single nucleotide 

variation119,120. Nucleic acid quantification was demonstrated with synthetic arrays in 

1996121.  

While the utility of microarrays became obvious, the technical aspects and start-

up cost of individual investigator-based microarray creation severely limited the wide-

spread use of the technology initially. Because it was still impossible to characterize a 

whole genome on a single array, commercialization of microarray system led to 

individual development of target libraries, and microarray designs, which could be 

combined to answer specific biological questions (reviewed in Bowtell, 1999)106  
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Microarrays and copy number alterations. 

Though now nearly universally performed with microarrays, comparative genome 

hybridization (CGH) was originally developed as a cytogenetic technique122 in parallel to 

microarrays. Tumor DNA labeled with biotin was combined with normal genome 

reference DNA labeled with digoxigenin in equimolar amounts. This solution was then 

hybridized to metaphase spreads of normal cells, and the fluorescent signal intensities 

derived from each sample (tumor vs. normal) at each locus along the chromosome was 

used to determine relative copy number at these loci123. As signal was derived directly 

from condensed chromatin, resolution was limited124 and gene identification again 

required subsequent, more narrow genetic interrogation125,126. In addition, accessibility 

and hybridization efficiency vary widely across the genome during metaphase leading to 

interpretation difficulties. But the idea behind CGH transferred very well to discovering 

copy number abnormalities using microarrays. Initial array-based CGH112,127 were based 

on BAC (or similarly constructed) target libraries and improved the resolution of 

traditional CGH techniques enormously.  Subsequently, EST libraries were used to 

probe cancer copy number changes104 but in both cases, copy number analyses had 

difficulty replicating the success of EST-based mRNA expression studies, as copy 

number changes are typically more subtle, and thus harder to detect, than the changes 

frequent in expression patterns, which can often span orders of magnitude.  

The application of synthetic oligonucleotide technology to array CGH would only 

come after the human genome project128,129. Agilent Technologies used the consensus 

sequence to create an array of over 20,000 60-mer oligonucleotides that tiled 4 
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chromosomes130. While this platform still had a low signal to noise ratio, the high density 

of probes in each region allowed for signal intensity across adjacent probes to be 

averaged, improving resolution to the 50-100kb range and leading to more accurate 

interpretation of copy number changes.  

While homozygous loss is a common method of tumor suppressor inactivation, 

loss of heterozygosity (LOH) can also inactivate tumor suppressors131,132  if the 

remaining allele is rendered non-functional by some other means. While early aCGH 

techniques may not have been sensitive enough to accurately distinguish between one 

and two DNA copies, Mei et al133 and Lindblad-Toh et al134 both realized one could take 

advantage of single heterozygous single nucleotide polymorphisms (SNPs) to increase 

the information from each oligonucleotide and more easily locate regions of the genome 

that had suffered LOH134,135. These methods improved as more germline SNPs were 

identified and added to microarray detection136,137, eventually allowing for quantitative 

models of copy number change detection138,139.  

 

Microarray information processing 
 

While powerful, microarrays are subject to a number of different sources of error, 

and the algorithms used to determine somatic copy number changes from microarray 

platforms have continued to improve. Systematic noise in microarray experiments is 

primary derived from two sources, the first relating to the target library and the second 

relating to the probe set140. DNA hybridization relies on the high specificity of 

complementary DNA sequences to bind one another, even in a complex solution. Each 

unique sequence represents a different chemical reaction, with different reaction rates, 

12



specificities, and equilibria. As such, signal comparison across different targets on the 

microarray is very challenging. From the perspective of sample processing, most DNA 

samples require PCR amplification prior to genomic analysis. PCR amplification comes 

with the same set of chemical biases between reactions as the target sequences. 

However, because amplification is done over multiple cycles in series, errors and 

sequence biases are propagated and amplified with each reaction, leading to huge 

artifacts in analyses if not properly accounted for140. While gene expression arrays 

experience these sources of noise as well, the basic goal of gene expression analysis is 

to quantify the same molecule (mRNA species) across different samples. Differences in 

chemistry across different molecules are therefore only of secondary concern. In 

contrast, in DNA copy analysis, we wish to use signals from multiple target sequences, 

all derived from proximal areas of the genome, to inform the total copy level at that 

locus. This requires comparison of different chemical reactions, and therefore requires 

more sophisticated analyses.  

For a single target sequence, we would expect a linear relationship between the 

amount of complementary DNA in a sample and intensity of signal from that location on 

the microarray. This is indeed the case for moderate levels of copy level change (0-5) 

138,139, while fluorescence saturation is observed for very high levels of copy number 

amplification (>100)138.  

In the initial analysis of tumors, correlation between adjacent genomic markers 

within a given sample was low. In Bignell, 2004138, rather than providing relative 

genome-wide copy level, copy level determination was restricted to either small areas 

with multiple and concordant, unlikely intensities, or to very large areas with unlikely 
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average intensities. They found 24 regions with at least three consecutive SNPs with 

outlier intensity values when compared to a diploid sample, suggesting high level copy 

number change (putative regions of high level amplification or homozygous deletion). 

For more subtle copy number changes, averages of fluorescent intensity over large 

regions were able to predict whole chromosome changes to a limited degree.  

Around a similar time, Zhao, 2004139 developed more sophisticated data 

analyses of copy number change providing better opportunities to recognize CNA. They 

modeled the signal derived from the array as a Hidden Markov Model (HMM), with each 

target sequence informing the probability of a real copy level change in neighboring 

targets.  In brief, the proportion of the genome at a given copy level is initially based on 

heuristics (~90% diploid, with more extreme copy levels progressively less likely). The 

HMM then tried to determine where copy level changes occur (and hence the copy level 

at each locus), with transition probabilities based on both these proportions and the 

relative genomic spacing of target sequences. Finally, this process is repeated with new 

estimates for the proportion of the genome at each copy level to refine transition and 

copy level probabilities.  Using this more quantitative assessment of copy level 

changes, they were able to find smaller regions of subtle copy level change in many cell 

lines, as well as high level gains in many known oncogenes.  

These initial efforts at signal detection recognized that even if large portions of 

the genome are affected by copy number change, transitions between different copy 

levels are relatively rare. This means that signal from adjacent sequences reinforce 

each other, and utilizing this increases signal to noise. Going further, a systematic 

method for noise averaging that leads to an estimated copy number value at each 
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locus, as well as the most likely genomic position that signifies the start of copy number 

change (often referred to as copy number breakpoints) serves as a foundation for 

finding significant recurrence of copy number alterations. Circular binary segmentation 

(CBS) does this by taking each segment (starting with the whole chromosome) and 

recursively asking if there is likely to be a copy number breakpoint within that 

segment141,142. After finding the most likely breakpoints, it then averages intensity values 

across each segment to create segment-level data. 

To improve resolution, commercial arrays were developed to contain both 

common SNPs and additional synthetic oligonucleotides tiled across the genome (copy 

number probes) 143,144. The sequence of complementary sample DNA is (presumably) 

homogenous for these target sequences, therefore leading to different signal models.  

As projects moved to these platforms, decreasing cost and increasing reproducibility, 

algorithms were created and refined to integrate information from both SNP and copy 

number targets145  

Analyzing DNA derived from sampling a continuously evolving, heterogeneous 

population comes with its own complications. As primary solid tumor samples are 

traditionally derived from biopsies or resected tumors, DNA derived from all cells in 

these samples not only can mask tumor heterogeneity, because samples invariably 

have some mix of tumor and somatic tissue, normal cells can dampen tumor signal. 

Interpretation can also be complicated by large deviations from diploidy. Because cell 

number is not assessed prior to sample processing, a perfectly tetraploid cell would look 

identical to a diploid cell from a microarray’s perspective. These two confounders (tumor 

purity and ploidy) limited copy number determination to assessing relative changes 
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across loci, and complicated comparison across samples. Recently, several 

algorithms146,147 have attempted to use concordance in copy level across segments to 

infer tumor purity and ploidy and obtain the clonal number of DNA copies of each locus. 

ASCAT146 was the first method introduced for predicting purity and ploidy. It does so by 

looking for the best solution that explains the total copy ratio and relative ratio of the A/B 

allele outputs at each locus, using purity and allelic ploidy as parameters. Then, to find a 

solution for purity that minimizes these local solutions globally, they find the purity value 

that minimizes the overall distance between the copy number of each segment and its 

nearest, non-negative integer. The ABSOLUTE method used a similar underlying 

model, with improvements by allowing the flexibility of taking in other information, such 

as subclonality, somatic point mutations, and karyotypic probability based on previously 

characterized tumors147.  

 

SCNA structure in cancer 
 

Cancer genomes arise through a diverse set of permanent (or semi-permanent) 

alterations that can be separated into broad categories: sequence alterations, balanced 

structural rearrangements, copy number alterations, and epigenetic modifications. 

Sequence alterations are somatic changes in DNA sequence and include single base 

substitutions as well as small insertions and deletions that affect a few nucleotides. In 

contrast, epigenetic modifications, which encompass DNA methylation and histone 

modifications, are changes relative to the natural state of the cell of origin. As the 

precise cell of origin, much less its epigenetic state, can be difficult to determine, 

epigenetic modifications can be difficult to interpret148. Finally, structural rearrangements 
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and copy number alterations are reorganizations of the DNA content in a given cell, 

which can lead to changes in sequence (as disparate DNA elements are joined 

together) as well as changes total number of copies of affected regions33,149.  

 

Mitosis associated copy number alteration 

Whole chromosome instability (W-CIN) is generally thought to arise from either 

errors in the centrosome duplication cycle, leading to multiple centrosomes during 

mitosis150, or errors in spindle assembly checkpoint, which can allow progression of 

anaphase even without a full complement of kineticore attachment151.  The centrosome 

is the organelle responsible for organizing and anchoring chromosomes involved in 

mitotic DNA segregation, and as such, its replication is intimately connected to the cell 

cycle and start of DNA replication152. Cell cycle components, particularly CDK2 and Rb, 

are important in the initiation of centrosome duplication and are also frequently 

dysregulated during cancer development. Errors in centrosome duplication can be a 

byproduct of driver gene activation or inactivation of these cell cycle components153‐155. 

Over-duplication of centrosomes may also occur after abortion of normal cell division, 

followed by aberrant re-entry into S-phase through inactivation of the p53-mediated 

checkpoint pathway156. Unlike the first mechanism, this route will lead to coinciding 

duplication in DNA for the cell and its progeny (tetraploidy). While there are 

mechanisms in the cell to prevent mis-segregation when microtubules from multiple 

centrosomes bind a single kineticore157, these mechanisms get overwhelmed in the 

case of over-duplication of centrosomes and can lead to subsequent aneuploidy158.  
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Whole chromosome instability is also frequently the result of errors in the spindle 

assembly checkpoint (SAC). While this checkpoint is active, a single unattached 

kineticore is enough to prevent initiation of anaphase159. Perhaps because loss of many 

of the genes in the complex directly responsible for this delay160 is embryonic lethal161‐

163, they are infrequently mutated in cancer164. However, dysregulation of this 

checkpoint through other means is fairly common, such as alterations in APC165 which 

can stabilize microtubules and REST166 and VHL167, which regulate components of the 

checkpoint complex. More recently, recurrent alterations have been observed in the 

Protein phosphatase 2 complex168, which regulates the attachment of the anaphase-

promoting complex to the mitotic spindle169.  

In addition to chromosomal mis-segregation, which has been well documented 

from the beginning of cancer cell biology170, breakage-fusion-bridge cycles (BFB) and 

chromothripsis represent processes that result in sub-chromosomal alterations that are 

believed to be associated with anaphase in mitosis30,171.  BFB cycles are thought to 

originate from an initial dsDNA break during anaphase, leading to loss of the telomeric 

region172.  After subsequent replication, the corresponding sister chromatids both lack 

telomeres, leading to fusion of the two strands and a “bridge” between them during 

anaphase. This bridge is only resolved when the centromeres of the sister chromatids 

are pulled to opposite ends of the dividing cell, leading to a mechanical break and again 

revealing chromosome ends uncovered by telomeres173.  This leads to a series of 

telomere bounded amplifications or deletions. Chromothripsis is a recently described 

phenomenon where a single chromosome undergoes dozens of genomic 

rearrangements, including the inversion or deletion of many regions of DNA, in a single 
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complicated event174,175. Though the mechanism of chromothripsis remains unclear, it 

has been postulated to occur while the chromosome is condensed during mitosis, either 

through temporary chromosomal isolation, mechanical stress during anaphase, or 

external mutagens, such as ionizing radiation30.  

 

Mechanisms of copy number alterations during DNA replication and break repair 

Common features of cancer cells include DNA damage and dysregulation of cell 

cycle processes17. As replicative stress can cause frequent dsDNA breaks during 

progressing replication forks, both of these processes lead to increased requirement for 

DNA break repair. Errors in the repair of these dsDNA breaks can lead to local changes 

in DNA copy number, through either homologous or non-homologous recombination176.  

Homologous Repair (HR) is the less error prone of the two repair pathways and requires 

long tracts of sequence homology near the breakpoint to be repaired177. The repair 

process involves invasion of the homologous sequence with a single strand of the 

broken DNA, and uses it as a template to extend beyond the break. Conversely, non-

homologous repair is relied upon when extensive sequence homology cannot be found 

as a template. This process relies on micro-homology, if available, or can continue with 

no homologous region at all and, theoretically, is much more likely to lead to copy 

number changes.  

As its name suggests, homologous recombination requires a template strand 

with significant local homology to the double stranded break. If both sides of the DSB 

are present (3’ and 5’), repair can pass through either a double Holliday junction 

intermediate, or through synthesis dependent strand annealing (SDSA). In the former, 
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template strand invasion is followed by resolution of a double Holliday junction, which 

can lead to allelic crossing over176. Even if alleles are correctly paired during HR 

through Holliday junctions, crossing over events can lead to loss of heterozygosity 

(LOH) if chromatids carrying the same allele segregate together during mitosis. 

Alternatively, while SDSA also involves template strand invasion, the ssDNA molecule 

from the DSB strand is separated from the template and re-ligated to a newly uncovered 

3’ overhang from its original DSB partner, preventing the possibility of a crossing over 

event178. If HR incorrectly pairs two regions of homology (not directly opposed alleles), 

crossing over can lead to inversion of duplication, depending on the orientation of the 

homologous regions. 

If a DSB occurs during replicative fork propagation, resulting in only a single 

DSB, repair proceeds through the Break-Induced Replication (BIR) pathway178. This 

pathway proceeds through a series of strand invasions, separations, and extensions 

until a high processivity replication is formed to continue DNA replication. While this 

process is immune to crossing over, LOH can occur if the DSB strand invades the 

homologous chromosome instead of the sister chromatid.   If HR takes place across two 

non-allelic homologous regions, it can lead to translocations179 and potentially other 

copy number changes.  

Non-homologous end-joining (NHEJ) and microhomology mediated end joining 

(MMEJ) are the two main repair pathways that do not require long sequences of sister-

strand homology. Without this strict template strand requirement, these can often lead 

to copy number alterations180,181. As its name implies NHEJ attempts to relegate two 

DSB; errors can often lead to micro-deletions or insertions. Alternatively, MMEJ tries to 
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find small regions of homology (5-25 nucleotides) near the DSB by resection to expose 

ssDNA until a region of microhomology between the two dsDNA elements are found, 

followed by ligation and synthesis. This process can lead to deletions of variable length, 

and potentially translocations if DSB are prevalent in the nucleus.  

 As many putative mechanisms for copy number alteration are known, there have 

been many efforts to identify mechanistic correlates of SCNA. One of the more 

important revelations from such studies has been the role genome architecture has in 

observed structural rearrangements and copy number changes182. Spatial organization 

during interphase seems to be related to frequent individual translocations183,184, though 

whether this is due to increased likelihood of cross-over errors after DSB or due to 

similar times in DNA replication remains unclear185,186.  

 
Significance analysis in somatic copy number change 
 

Having characterized many independent cancer genomes, an important goal is to 

discover recurrent alterations that lead to tumor formation, ideally taking into account 

what we know about the mechanism of their generation. The tools to do this are 

constantly evolving. In many of the first genetic abnormalities identified, an alteration is 

so ubiquitous across a particular disease, its significance can be determined 

qualitatively3,187,188. Unfortunately, in most solid tumor types, a ubiquitous alteration, 

pointing to a specific and unique cause for malignancy, is lacking. This, combined with 

the large portion of the genome altered in each sample, made a statistical approach 

towards the discovery of recurrent alterations a necessity to discover the vast majority 

of cancer genes.  
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In copy number analysis using DNA microarrays, initial methods for identification 

of significant regions were straightforward. One such approach involved finding the 

minimal common region of overlap between copy number changes in different samples, 

then refining the list of interesting regions through heuristics189. Unfortunately, the 

results of early methods designed to discover regions containing potential driver genes 

were very dissimilar, even in parallel datasets within the same disease50,137,189.   To 

address this, multiple groups undertook projects designed to improve our ability to 

identify regions likely to contain driver alterations50,190‐192 (reviewed in [Rueda 2010]193).  

The main advantage of these techniques over the initial attempts was 

propositioning a background rate of SCNA and using this proposed distribution to find 

regions with more alterations than expected. For example, the approach developed by 

our laboratory, Genomic Identification of Significant Targets In Cancer (GISTIC) creates 

a score for each locus by averaging the copy level at each locus across samples, then 

determines the probability of obtaining that score assuming a random distribution of 

copy levels within each sample50.  RAE190 applied a similar method, with the addition of 

a noise model of each individual tumor sample and boundaries.  

Building on its immediate predecessor50, GISTIC 2 recognized that most loci 

affected by copy number alterations are from chromosome-level changes and 

specifically looked to separate the significance of chromosome-level SCNAs from 

shorter “focal” SCNAs1,2,26. Unfortunately, the frequency and extent of chromosomal 

alterations often obscures recurrence of focal copy number alterations. To resolve this 

issue, GISTIC 2 introduced an algorithm that attempts to separate chromosome level 

events (“broad” events) from focal events, and assess the regions of significant 
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recurrence for each of these events separately3,194. Assigning significance between 

broad and focal events independently was a great leap forward in the discovery of driver 

SCNAs, leading to its broad implementation across the field.  

The biological complexity of primary tumor samples can complicate copy number 

analyses using DNA arrays. DNA microarrays measure the amount of DNA at a given 

locus, relative to the total amount of DNA extracted from the sample, providing 

information about “relative” copy number changes. For example, the microarray signal 

from a clonal population of diploid cells would be identical to one of tetraploid cells. This 

means there is potential for lost information, even in clonal populations. Moreover, the 

ideal case of an entire sample of clonal tumor cells is rare. Instead, tumor samples often 

contain large amounts of normal somatic tissue, such as infiltrating inflammatory cells or 

cells from the host organ. In addition, as a continuing evolutionary process, the cancer 

cell population is inherently heterogeneous. All these genetic backgrounds are 

homogenized and placed on the array simultaneously, which obscures the signal of 

clonal events.  Carter et al.147 designed a series of algorithms to address these issues 

by modeling the most likely values of tumor purity, ploidy and heterogeneity to lead to 

the observed data. 

 
Using genetic patterns to imply functionality  
 

Even once a region is determined to be significant for SCNA recurrence, the 

challenge of elucidating the functional unit responsible for this significance is often only 

partially complete. Unlike many other somatic alterations, the genetic footprints of 

SCNAs vary widely, from small regions of a single gene, up through whole 

chromosomes (100s to 1000s of genes). This means that even if we identify a specific 
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region as being recurrently affected, the genetic target of these alterations may remain 

ambiguous without additional information. There are many potential approaches 

towards removing this ambiguity.  

In traditional approaches, functional consequences of copy number change are 

assessed for each element within the region through molecular biology, such as in vitro 

or in vivo ORF and shRNA transformation or viability assays. While experimental 

approaches are, in some ways, the gold standard, the process can be very low 

throughput, with each gene having to be independently tested. In addition, each 

experimental system comes with its own caveats. Assays are designed to test for 

specific tumor-promoting properties, such as transformation195 or invasion196. Using the 

incorrect assay, could therefore lead to a false negative result for driver genes with an 

untested tumorigenic function. Even if the correct test is run, many tumor-promoting 

effects require a specific genetic context to lead to tumor promotion. These contexts can 

be difficult to predict and/or replicate in a laboratory setting197. Finally, some driver 

alterations, such as TP53 or BRCA1, will not transform cells in isolation because they 

disable growth checkpoints or increase the likelihood of other driver alterations, working 

indirectly to promote tumorigenesis198,199.  

For these reasons, using the genetic context of a driver alteration to both limit the 

number of hypothesis and refine the functional question can be very useful. For 

example, positive correlations with other genetic events may indicate functional 

synergies, where one is beneficial only in the context of the other. Alternatively, 

anticorrelations may indicate functional redundancies as redundant events would not be 
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required in the same primary tumor.  Several approaches have been developed to 

determine functional effects of genetic events based on anticorrelation patterns. 

In the past, using correlative structure in the genetic alterations of cancer could 

be separated into two distinct goals. In the first, the goal is to use biological pathway 

information, combined with genetic correlations, to improve our power to detect cancer-

driver genes. In the second, the goal is to leverage genetic correlations between known 

driver alterations to inform function.  

Examples of the first approach are exemplified by work form the Rafael lab200,201.  

In this approach, rather than identify significantly mutated genes, investigators identify 

significantly mutated subnetworks and the genes involved in them. In this way, they 

choose not just genes that are frequently mutated, but a set of genes that are both 

frequently altered AND that tend to be more mutually exclusive than expected by 

chance (and hence potentially explain more tumorigenesis).  

The second approach looks to inform functionality of known driver alterations by 

looking at their patterns of mutual exclusivity202. Standard tests of mutual exclusivity 

have proven inadequate for significance analysis in alteration datasets. Developing 

more sophisticated algorithms have led to interesting biological relationships203. 

 However, these techniques have not been systematically tested and 

implemented in the setting of SCNAs, where the structure and patterns of alterations 

may provide unique challenges. While permutation analyses are a standard approach 

for data that does not adhere to canonical distributions, SCNAs, unlike other alterations, 

often span large and overlapping regions, making a permutation analyses that 

maintains event structure challenging.  
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Cancer discovery as a collaborative goal 
 

Competition can be a great motivator of progress and discovery204 and the turn of 

this century saw multiple, parallel initiatives designed to collect and analyze collections 

of primary tumors from the same disease. It was recognized that, while these were very 

successful independently, collectivizing efforts and datasets would lead to more power 

in pattern detection and, ultimately, disease understanding205. In 1997, Vice President 

Albert Gore announced the Cancer Genome Anatomy Project (CGAP) website206,207, 

with the goal of making public 1. a large, standardized collection of genetic data derived 

from primary tumors and 2. state of the art technological tools to analyze this dataset. 

As the majority of this project took place prior to the completion of the human genome, 

early results focused on cytogenetics and gene expression profiling205,208, with whole 

genome structural information integrated subsequently209. Subsequently, The Cancer 

Genome Atlas (TCGA) was a collaborative effort instituted by the NIH to provide a 

comprehensive genomic characterization of 20 of the most common cancers in the 

United States, as well as smaller characterization projects in many, less common 

diseases. This initiative has been widely successful and already produced landmark 

papers in a number of common diseases5,6,210 9,10,211 11,12,168,212. Within the TCGA, the 

Pan-Cancer project was a collaboration to characterize and compare 11 of the most 

common diseases with the aim to identify patterns across all cancer subtypes, as well 

as distinguishing features of each disease.  
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2. Non-driver dependencies as a means of cancer therapy 

While cancers arise from the accumulation of somatic genetic only a subset of 

these alterations (“driver events”) promote malignant transformation by activating 

oncogenes or inactivating tumor suppressor genes. Many somatic genetic alterations 

are the consequence of increased genomic instability that occurs in cancer but do not 

contribute to tumor development (“passenger events”). Even among events that 

promote tumor development, many of these alterations, specifically SCNAs, affect 

multiple genes simultaneously, with presumably a limited number of affected genes 

driving cancer (“driver genes”) while the rest are simply tolerated by the now more 

genetically fit cell (bystander genes). 

The demonstration that cancers are often dependent on specific driver 

oncogenes has stimulated efforts to find and exploit these targets therapeutically. By 

definition, driver events promoted cancer cell growth or development at some point 

during evolution, so expecting many of them to be specific cancer dependencies at the 

end stage of disease is a logical hypothesis that has proved successful therapeutically. 

For example, cancers that harbor translocations such as BCR-ABL or EML4-ALK, or 

mutations such as EGFR or BRAF, well proven transformative alterations, have been 

shown to depend on the activity of these gene products for tumor maintenance213‐215. 

Indeed these alterations have been successfully targeted in the development of novel 

targeted inhibitors in a number of cancers including leukemia, lung cancers and 

melanoma216-218. Therefore, the presence of such an alteration often predicts response 

to drugs that inhibit the function of these proteins38,217‐219.  
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However, the focus on driver alterations as therapeutic targets presents some 

limitations. For one, many driver alterations belong to classes that have been very 

difficult to target with small molecule inhibitors, such as transcription factors or loss of 

function alterations in tumor suppressors220,221. As most primary tumors may be 

dependent on only a small handful of driver alterations222‐225, focusing solely on driver 

vulnerabilities leaves each patient with just a few opportunities for targeted therapy, 

even in the most ideal case.   

An alternative strategy to target cancers is to target genes that are not 

oncogenes, but which cancers require to withstand cancer-specific stress226,227. In 

comparison to normal cells, cancer cells rely inordinately on pathways that abrogate a 

variety of cancer related stressors, including DNA damage replication stress, 

proteotoxic stress, mitotic stress, metabolic stress, and oxidative stress228. Even though 

proteins within these pathways may be essential in all cells, pharmacologic inhibition 

may create a therapeutic window as a result of a cancer-specific stresses. 

While looking for pathways under increased cellular requirement in cancer is one 

approach at the discovery of non-driver dependencies, another is to look for 

dependencies caused by the large-scale rate of genetic alterations in cancer. For 

example, the majority of human cancers harbor copy-number alterations involving the 

loss or gain of broad chromosomal regions and these may be either driver or passenger 

events. As each chromosome arm can contain hundreds to thousands of functional 

elements, even driver chromosomal SCNAs affect a large number of bystander genes. 

In fact, the idea of chromosomal aberrations that drive cancer while affecting bystander 
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genes was recognized 100 years ago this year, in the original paper linking 

chromosomal aneuploidy to cancer1:  

 
“Another possibility is that there is a specific inhibitory mechanism in every normal cell 

that only permits cell division to take place when this mechanism is overcome by some 

special stimulus. It would accord with our basic concept if one assumed that there were 

specific chromosomes that inhibited cell division. If their inhibitory effect were transitorily 

overcome, then cell division would resume. A tumor cell that proliferated without 

restraint would be generated if these `inhibitory chromosomes' were eliminated. In this 

case, the tumor cell would also lose all the attributes that were located exclusively in the 

same chromosome as the inhibitory factors. 

However, the hypothesis that there are chromosomes that stimulate cell 

multiplication is also compatible with our proposal. In this view, cell division would take 

place when the operation of the stimulatory region of the chromatin, normally too weak, 

is enhanced by some active agent. The unrestrained proliferation of malignant tumour 

cells would then be due to a permanent excess of these stimulatory chromosomes.” 

  

A dependency induced by the loss of such passenger and bystander genes in 

primary tumors was postulated 20 years ago as potential indirect vulnerability in cancer 

cells229. The hypothesis postulated that random passenger alterations would lead to 

decreased abundance of certain essential proteins, which would render cancer cells 

highly vulnerable to further suppression or inhibition of those genes. 

In contrast to driver events, vulnerabilities associated with passenger or 

bystander alterations are much more difficult to detect through genetic enrichment 
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alone. As driver alterations promote tumorigenesis, they are likely to recur across 

multiple samples, and are more likely to predict dependency in samples in which they 

do occur. Incidental alterations, on the other hand, must be well tolerated, or at most, 

only slightly deleterious. However, in the absence of a positive selective pressure there 

would be very little evidence for dependency on bystander alterations in genetic data 

alone. An exception to this would be relative genomic integrity at a given locus, 

suggesting negative selection in cells harboring this alteration. Unfortunately, this would 

correspond to dependencies in a very small subset of patients (as the alteration is even 

rarer than the expected rate). Thus, ideally we are looking for passenger alterations that 

predict dependencies, yet do not lead to significant decreases in fitness at the time they 

are acquired.  

3. shRNA screens to discover cancer dependencies on non-driver SCNAs 

Expanding cancer genomics with functional screens 
 

While genetic analysis of primary tumors can elucidate a lot about a cancer’s 

evolutionary history, it has its limitations. For most datasets, primary tumors represent a 

window into the state of a tumor at one point in time. Although factors such as genetic 

context can provide clues as to the functional consequences of these alterations, these 

are best examined with direct experimentation.  

High-throughput screens of cancer cell lines can directly ascertain the functional 

consequences of genetic or environmental perturbations. These can complement 

genetic analysis as a hypothesis-generating tool for discovery of cancer dependencies. 

The most common screens involve small molecule perturbations, phenotypic 

perturbations, or genetic perturbations230‐232. One example, Project Achilles, was 
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developed to discover novel cancer dependencies by leveraging the full power of RNAi 

in a carefully constructed high-throughput system designed to assess relative gene 

dependency across a large panel of well-characterized cancer cell lines. In brief, this 

projected attempted to assess cell viability in 100 cell lines after suppression of over 

11,000 individual proteins using a pooled library of shRNA lentiviral vectors (with each 

clone harboring an identifying barcode)233. To generate the shRNA library, a set of rules 

curated from the literature were implemented to improve knock-down efficiency and 

avoid obvious off-target effects234. Cell culture techniques and data processing are also 

outlined in Cheung et al233. 

The raw result of this large project is relative viability of cells infected with a 

specific shRNA, as compared to cells containing other shRNA in the lentiviral pool, as 

measured by relative abundance of a corresponding DNA barcode after a long period of 

cell growth. Given the efficacy and off-target concerns outlined below, interpretation of 

this data is challenging. In anticipation of these concerns, a level of redundancy was 

engineered in the screen, with each gene being targeted by at least three independent 

shRNA sequences, with a median number of five shRNAs per gene. This increases the 

chance that multiple shRNAs will effectively knock down the target allowing us to 

separate microRNA (miRNA) mediated off-target effects, which would likely be unique 

to each shRNA, from on-target responses, which would likely be shared across all 

effective shRNAs targeting a given gene [discussed below]. Separating these two 

effects has been accomplished a number of different ways and is a continually evolving 

problem.  

 
shRNA: power and cautions in high-throughput screens 
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Over the past 10 years, the use of short interference RNA (siRNA) to suppress 

translation of specific proteins has become a powerful tool in molecular biology. 

Originally discovered as an external modulator of gene regulation in Caenorhabditis 

elegans235, and subsequently extended to higher organisms236,237, this system uses 21-

23 nucleotides of double stranded RNA (siRNA) to target and eliminate longer strands 

of RNA (typically mRNA) containing the same base pair sequence238. In vitro RNAi can 

be utilized by either transfected double stranded RNA fragments, or transduced cells 

expressing an RNA hairpin which functions in the same manner (shRNA). In cells 

transduced with dsDNA, the mRNA product forms a looped secondary structure 

between complementary sequences that is cleaved by Dicer before being loaded onto 

the RNA-Induced Silencing Complex (RISC)239. Double stranded RNA is unwound into 

a passenger strand (which is degraded) and a guide strand, which is incorporated into 

RISC. RISC then uses the loaded guide strand to locate and target complementary 

mRNA for degradation, using its intrinsic Argonaute component237,240. 

The exogenous addition of siRNA/shRNA to suppress specific protein function is 

widely used, but its use is not without caveats. These can broadly be classified as 

shortcomings in either efficacy or precision.  Both the siRNA sequence and the location 

of that sequence in the target mRNA can greatly affect the efficiency of translational 

suppression. Most mRNAs are composed of hundreds of base pairs, offering a large 

number of potential siRNA designs. However, as this technique has progressed, it has 

become increasingly clear that a significant percentage of siRNAs designed to suppress 

a given protein will fail to do so to any appreciable degree241,242. A set of “guidelines” 

have been discovered that improve the chances of a designed siRNA having a 
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suppressive effect, but these methods do not guarantee functionality243‐245. With this in 

mind, validation of efficacy in each experimental system, by western blot or similar 

procedures, is a requirement for the use of siRNA. While this is straightforward during 

low-throughput experimentation, the variability in efficacy between different siRNA is a 

primary challenges in design and interpretation of hypothesis generating high-

throughput RNAi screens.     

In addition to issues with efficacy, siRNAs frequently generate many unintended 

cellular perturbations, or “off-target” effects246. The easiest off-target effect to 

understand, predict, and avoid is siRNA-mediated decay of mRNA sequentially similar 

to the target. This can be predicted based on BLAST alignment and avoided by careful 

selection of the target region, avoiding sequences that are shared with other functional 

elements of the genome. However, the siRNA pathway shares many elements with a 

similar, yet distinct, pathways of RNA-mediated translational regulation termed micro-

RNA (miRNA)247. Rather than recognizing an exact sequence, the miRNA pathway 

recognizes imperfect homology between the 3’UTR of an mRNA and a “seed region” on 

the dsRNA247. This allows a single endogenous miRNA to regulate multiple mRNA 

containing slightly different sequences, which is great for biological efficiency, but 

complicates interpretation for many carefully designed experiments. The target and 

strength of these off-target effects can be very challenging to predict246,248,249 or even 

determine experimentally241. In a low-throughput setting, a causative relationship 

between suppression of the target protein and an observed phenotype is verified using 

a series of well-established controls, including multiple target sequences, scrambled 

sequences, and rescue experiments. Unfortunately, as in efficacy issues, these simple 
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controls in a low throughput setting quickly become challenging in the setting of a high-

throughput screen. 

The high potential for false positives and low signal to noise means the design 

and execution of a high-throughput RNAi screen is only half the battle. Careful quality 

control, thoughtful data analysis, and experimental validation of individual results are 

just as important. 

 

Generating high-confidence gene-dependency scores from shRNA pooled 
screening data across a large panel of cell lines. 
 

Given a set of cell lines and data on relative viability for each cell line in response 

to numerous conditions, one standard hypothesis is that functional dependency can be 

predicted by a specific genetic alteration. In this case, by segregating cancer cell lines 

into two categories based on presence of the genetic alteration in question, you can 

look for functional perturbations, such as effect of gene suppression or drug tolerance, 

that best separate these two classes from one another.  

Besides allowing us to start with a testable hypothesis, pooling samples we 

expect to exhibit the same phenotype renders our hypothesis less susceptible to 

experimental and biological variation, allowing us to spot trends in viability that may 

point to underlying biology. Because most “normal” somatic tissue does not grow in 

vitro, susceptibilities found in this assay use a large panel of genetically diverse cancer 

cell lines as controls and allow us to immediately discount dependencies shared by all 

cells. 

 Finding gene dependencies using shRNA in the two-class comparison setting 

has been accomplished in a number of different ways. Most importantly, each method 
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must account for both the efficacy and the off-target effects described above, and does 

so by integrating information from all shRNA designed to target a gene. The most basic 

method frequently used is the “second best” shRNA approach250,251. In this approach, 

we score genes by the second most effective shRNA in differentially separating the two 

groups. This accounts for the possibility that the effect of the strongest shRNA may be 

miRNA mediated, while also realizing that the number of ineffective shRNA (#s 3-X) 

may vary across genes. However, this incorporates very little information about the 

distribution of all shRNA for a given gene. RNAi Gene Enrichment Ranking 

(RIGER)250,252 ranks each gene by enrichment of its shRNAs towards differential 

susceptibility between the altered and unaltered groups for each shRNA. While RIGER 

combines information from all shRNA in the screen, it systematically penalizes genes 

with multiple ineffective shRNA, even if they also have multiple effective shRNA 

providing good signal.   

 Shao et al.253 developed an algorithm to analyze pooled shRNA data that 

improves on the shortcomings of the previous two approaches. The basics of this 

approach are illustrated outlined in [Shao et al.]253. If the viability changes in response to 

two independent shRNA sequences are related to the same gene, we would expect 

these changes to track similarly across cell lines within our dataset. This idea of 

searching for similar patterns in shRNA targeting the same gene would theoretically 

ignore ineffective shRNA, while simultaneously removing shRNAs whose effects are 

dominated by the off-target miRNA pathway. This approach removes these shRNAs to 

create a “gene-dependency” score based on corroborating shRNA targeting a gene and 

removes genes that are not represented by multiple consistent shRNAs.  
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Chapter 2: Structure of somatic copy number alterations 

Section Goals 
Determining the patterns of somatic copy-number alterations (SCNAs) and how 

they promote cancer is important to understanding the disease. We characterized 

SCNA patterns among 4934 cancers from The Cancer Genome Atlas Pan-Cancer 

dataset and have integrated rigorous statistical approaches into these analyses, 

including absolute allelic copy-number profiling, as well as novel computational tools to 

determine individual SCNA events and their temporal ordering from these profiles. 

Whole-genome doubling, observed in 37% of cancers, was associated with higher rates 

of every other type of SCNA, with most of these events occurring subsequent to 

genome duplication.  SCNAs that were internal to chromosomes tended to be shorter 

than telomere-bounded SCNAs, suggesting different mechanisms of generation. Finally, 

we developed a method for predicting chromothripsis using SNP6.0 arrays alone and 

found that specific chromosomes and diseases, including chromosome 9 and 12 in 

glioblastoma multiforme, were significantly enriched for these events. We present this 

dataset and analyses as a foundation for further analyses.  

Methods 
 
1. Event Decomposition 

We deconstructed each chromosome individually in two sequential steps: 

1. Find a set of the most parsimonious arrangements of copy levels on the two 

parental alleles (allelic partitioning). 

2. Find the most likely set of SCNA events that would give rise to these copy-

number profile (allele deconstruction). 
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Allelic partitioning 

Our data consist of integer copy-numbers of each allele at each locus. The data 

are segmented, with infrequent changes in copy-number between adjacent markers on 

the array (fewer than one breakpoint per 1000 markers). We start with no information 

about which copy levels or breakpoints belong on the same allele. The purpose of this 

section is to find a set of the most parsimonious partitions of copy levels between the 

two alleles. 

There is some information inherent in the structure of the segmentation. Since 

breakpoints are rare, our model should minimize the number of breakpoints and remove 

those that are not necessary to explain our observation.  These breakpoints are 

common in situations where a deletion preceded amplification. The first step of our 

algorithm is to remove such unnecessary breakpoints. Once unnecessary breakpoints 

are removed, there remains ambiguity about the segmentation of each allele. 

There are two situations that lead to ambiguity in segment partitioning between 

the two alleles: 1) the two alleles are at the exact same copy level at a particular locus, 

or 2) both alleles have a breakpoint at the exact same SNP marker. The first situation is 

common, with the second being much rarer. However, in either case we lose the ability 

to say whether segments preceding that position occurred on the same or opposite 

allele as segments subsequent to this position. We call these loci “flex-points” as we are 

free to swap segments between the two alleles only in these regions. We label regions 

between adjacent flex-points “contigs”, as the partitioning of these segments relative to 

one another is fixed.  The total number of possible arrangements of a given 

chromosome is 2f-1 where f is the number of flex-points on the chromosome.  
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If there are nine or fewer flex-points on a given chromosome, we enumerate all 

possible permutations of the contigs across the two alleles (256 different arrangements) 

and test each of them against each other in event deconstruction (below). This 

accounted for 98.8% of all chromosomes and removes the complication of allelic 

ambiguity by brute force. If there are nine or more flex-points, such enumeration is 

computationally prohibitive, and we focus on the most likely allelic partitions.  

To choose a set of partitions to test in deconstruction, we group segments by 

their copy level and chose a set of allelic phases based on assigning a priority to each 

set of copy level segments.  For each assignment of copy number priority, we took the 

copy level of highest priority and found the allelic structure that assigned as many 

segments of that copy level to the same allele. We then fixed these segments and 

applied the same technique to the copy level of the second priority, recognizing that 

optimization of the second copy level can be constructed on either allele. Of the 1.2% of 

chromosomes in which we could not enumerate all potential phasings, 77% had less 

than 7 unique copy levels (excluding the zero level) and in such cases, we permuted the 

priority structure of every copy level present on the chromosome. In cases where there 

were 7 or more unique copy levels, we assumed the most likely partitions would tend to 

assign unlikely copy-levels (which are rare across the set overall) to the same allele, so 

that they could be accounted for by a single event rather than requiring separate 

unlikely events on each allele. In this case, we ranked each copy level based on the log-

likelihood of all segments at that copy level across both alleles, assuming each segment 

is a different event.  This created a rank priority structure for each copy level. We then 
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only permuted the 7 copy levels with the highest priority structure in order to maintain 

reasonable potential deconstructions. 

 

Allele Deconstruction 

Once the segments have been fixed to each allele, SCNA determination is 

performed in similar fashion to methods described previously1,75, which identify the 

combination of SCNAs that would result in the observed copy-number profile and have 

maximum likelihood of having occurred.  The likelihood of an SCNA occurring is 

estimated according to the observed frequencies of SCNAs with similar lengths and 

amplitudes of copy-number change across the entire dataset. In contrast to the previous 

implementation of this algorithm, we consider discrete copy-number values, whereas 

prior methods focused on continuous total copy ratios.  The simplified, discrete data 

allowed for added complexity when testing the for the MLE solution of chromosome 

deconstruction. Specifically, the added precision allows confidence about the euploid 

level (allelic copy level=1 for most samples) as well as loci that have been deleted 

(allelic copy level =0) and we take advantage of this to search for deconstructions with 

potentially higher log-likelihoods (LL). 

One improvement was directly testing for deletions followed by amplifications 

over the affected region. For each chromosome, we attempted a deconstruction (as 

done previously) as well as one where the deleted regions are assessed, then removed 

prior to chromosome deconstruction (simulating deletion followed by further 

aneuploidy). Secondly, a necessary heuristic in the previous algorithm created a 

maximum of two independent sections on the chromosome (a left and a right) and 
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deconstructing each of these independently. This may lead to an overabundance of 

telomere bounded events, as events that actually start internal to the chromosome may 

be end up in a solution that forces them to start on the telomere, followed by a SCNA 

that reverses the copy level change. To avoid these artifacts, we also tested 

deconstructions that started internal to the chromosome in the case of a euploid 

telomere, or if both telomeres are at the sample copy level. To more accurately 

distinguish SCNA likelihoods, we separated our dataset into two populations based on 

whether they had undergone whole genome doubling (called by absolute) and ran each 

set independently.  

2. SCNA timing relative to WGD and chromosome duplication 

We determined the temporal relations of individual SCNAs to WGD using 

different approaches for deletions and amplifications. 

We considered deletions that involved a change from two copies to zero copies 

of an allele in WGD samples to have likely occurred prior to WGD. Similarly, deletions 

that involved a change from two copies to one copy of an allele were considered to 

have occurred after WGD.  Other deletions were left uncalled because of ambiguities 

introduced by surrounding alterations. When determining timing of genome doubling, we 

did not include arm level or whole chromosome events, as the events of this size are 

too common to rule out two sequential events that appear to have the same 

breakpoints.  

Amplifications are more ambiguous than deletions because the extra copies of 

DNA may end up elsewhere in the genome and be affected by subsequent events in 

those regions. However, because WGD affects the whole genome simultaneously, we 
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expect estimates of WGD timing based on amplifications to be similar overall to 

estimates based on deletions. We called events with an even total copy change as 

occurring prior to WGD and events with odd copy change as occurring after WGD.  

The same metrics were used to determine events before or after chromosome 

duplication. Again, amplifications are more uncertain than deletions because they may 

involve disparate regions of the genome. 

 

3. Chromothripsis detection  

Chromothripsis results from different mechanisms to most focal events, and has 

a very different distribution across lineages254. We identified chromothripsis events in 

diploid samples based on three features that are observable in copy-number profiles 

and which have been associated with chromothripsis previously174:  

 

1. A single chromosome exhibits an unexpectedly large number of SCNAs given 

the observed frequency of SCNAs within the sample. 

2. SCNAs on this chromosome tend to be more  closely spaced than we would 

expect by chance. 

3.  The SCNAs are non-overlapping (because they occurred simultaneously) and 

lead to copy-number changes of +1 or -1.   

 

Prior estimates of rates of chromothripsis have been complicated by uncertainty 

as to the absolute numbers of copies of change. In our application of these criteria, we 

evaluated the absolute allelic copy-number data to identify chromosomes that contained 
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more non-overlapping SCNAs that involved a single-copy change than we would expect 

by chance, given the number of SCNAs within the sample and using the binomial 

distribution. From these chromosomes, we applied the additional criterion that these 

SCNAs should be more tightly distributed within the chromosome than we would expect 

given a random selection of non-overlapping SCNAs within our dataset. If this criterion 

was not met, we applied a recursive algorithm to remove the SCNA furthest from the 

centroid location of the SCNAs potentially derived from chromothripsis, and recomputed 

these two statistics. 

4.  Generation of relative copy-number profiles 

The pipeline used to generate relative copy-number estimates is attached as 

Appendix 1 (a more complete description is to be published separately; Tabak et al, in 

preparation). In brief, probe-level signal intensities from Affymetrix SNP6 .CEL files 

were normalized to a uniform brightness across arrays and merged to form intensity 

values for each probeset using SNPFileCreator, a Java implementation of dChip255,256.  

These intensities were mapped to copy-number levels using Birdseed145 in the case of 

SNP markers, and on the basis of experiments with cell lines with varying dosage of X 

in the case of copy-number markers1.  Recurrent germline copy-number variations 

(CNVs) were identified across all DNA samples from normal tissue and markers within 

these regions (representing ~15% of all markers) were removed from further analysis 

(Appendix 1).  Noise was further reduced by application of Tangent normalization 

(Appendix 1) followed by Circular Binary Segmentation141,142. Quality control metrics 

were applied at various stages in the pipeline (Appendix 2), resulting in the removal of 
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data representing 23 cancers out of 4957 primary cancers that had been profiled by 

SNP6 arrays. 

HAPSEG257 and ABSOLUTE147, running on FireHose258, were applied to data 

from 4870 of these cancers, including both the SNP6 data and, when available, whole-

exome sequencing data from the same cancers (1069 samples). Of these, purity and 

ploidy estimates and genome-wide absolute allelic copy-numbers were called in 3847 

cancers (Table 1). The 200 acute myeloid leukemia samples were not called by 

ABSOLUTE because they exhibited copy-number alterations across small fractions of 

their genomes, resulting in insufficient data for accurate calls by the algorithm. 

 

 
Author contributions 

The author, Steven Schumacher, Gordan Saksena, and Andrew Cherniack were 

responsible sample curation and quality control, with support from Rameen Beroukhim, 

Matthew Meyerson, and Gad Getz.  

The author, Steven Schumacher, Andrew Cherniack, and Scott Carter were 

responsible for implementation of the Absolute workflow and manual review through 

Firehose. 

The author was responsible for SCNA deconstruction, WGD timing, and 

chromothripsis algorithm development and implementation, with advice from Scott 

Carter, Rameen Beroukhim and Matthew Meyerson.  

Results 
Cancer purities, ploidies, and rates of copy-number alteration within and across 
cancer types 

We analyzed the copy-number profiles of 4934 primary cancer specimens across 

11 cancer types (minimum 136 for bladder cancer; maximum 880 samples for breast 
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cancer; colon and rectal adenocarcinomas were combined; Table 1). In each cancer, 

we determined copy-numbers at each of 1,559,049 loci relative to the median copy-

number genome-wide, using Affymetrix SNP6 arrays and previously described 

algorithms20,22,192. For 3847 cancers, we also determined the purity, ploidy, and absolute 

allelic copy-number profiles23‐25,147 of the malignant cells using SNP6 array data and, in 

1069 cases, matched whole-exome sequencing data (Table 1). In the other 1087 

cases, purity and ploidy estimates were ambiguous and left uncalled. This included all 

cases of acute myeloid leukemias [AMLs], which exhibit very few SCNAs. 

We then inferred the sequence of somatic copy-alteration (SCNA) events that led 

to each copy-number profile, using the most parsimonious set of SCNAs that could 

generate the observed absolute allelic copy-numbers. Using a maximum likelihood 

approach, we reported the most likely series of SCNAs that led to the copy-number 

profiles generated by ABSOLUTE for each homologous chromosome (henceforth, 

“allele”). Each SCNA was characterized by its length, amplitude, genomic position, and, 

when determinable, allele and the timing of its generation relative to neighboring 

segments (Methods, Fig. 1a,b). We identified a total of 202,244 SCNAs, a median of 39 

per cancer sample, comprising six categories: focal SCNAs that were shorter than one 

chromosome arm (a median of 11 amplifications and 12 deletions per sample); arm-

level SCNAs that were chromosome-arm length or longer (a median of three 

amplifications and five deletions per sample); copy-neutral loss-of-heterozygosity events 

(cnLOHs), in which one allele had been deleted and the other amplified coextensively (a 

median of one per sample); and whole-genome duplications (WGDs, in 37% of 
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Figure 1: 
(a) Schematic indicating procedure to determine SCNAs.  Absolute allelic copy-numbers 
generated by ABSOLUTE (left panel) are partitioned with the lowest copy-numbers on one allele 
(blue) and the higher copy-numbers on the other (red).  We repartition the copy-numbers between 
alleles to test all possibilities if computationally efficient, or the most likely possibilities if not 
(middle panel).  The most likely set of SCNAs generating each copy-number profile is then 
determined (right panel).  Regions in red are amplifications; regions in blue are deletions.  The 
black lines in allele 2 indicate deletions that preceded an amplification, so that segments that 
appear discontinuous on the reference genome were amplified in a single event. (b) Schematic 
indicating temporal order of SCNAs determined in (a). In this example, deletions followed by a 
chromosome level amplification can account for the copy-number profiles in (a).  For the same 
profile to be generated by amplifications followed by deletions, either the deletions would have to 
remove two copy-levels, requiring sequential deletions with identical boundaries, or multiple 
neighboring, non-contiguous amplifications would be required in addition to multiple, non-
contiguous deletions.  We assume both of these possibilities are unlikely. (c) Sample purities (top 
panel) and ploidies (bottom panel) across lineages (see Supplementary Table 1 for a list of 
lineage abbreviations).  Near-diploid samples are designated in purple; cancers that have 
undergone one or more than one WGD event are designated by green and red, respectively.  
Summarized data across all lineages are indicated on the right. 
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cancers). By amplifications and deletions, we refer to copy-number gains and losses, 

respectively, of any length and amplitude. 

Estimated purities and ploidies per cancer varied substantially within and across 

diseases (Fig. 1c). The purity estimates correlated with estimates derived from 

measurements of leukocyte and lymphocyte contamination using DNA methylation data 

from the same cancers (Fig. 2a) (Shen et al, unpublished data), but tended to indicate 

lower purity, consistent with the presence of non-hematopoietic contaminating normal 

cells.  

Average ploidies within diseases mirrored their frequencies of WGD (Fig. 1c). 

The average estimated ploidy within samples that had undergone a single WGD was 

3.31 (not four), suggesting that WGD events are associated with large amounts of 

genome loss. By contrast, samples that had not undergone WGD had an average 

estimated ploidy of 1.99.  

Compared to the near-diploid cancers within each disease, cancers with WGD 

had higher rates of every other type of SCNA (Fig. 2b) and twice the rate of SCNAs 

overall. Across diseases, overall SCNA rates largely reflected rates of WGD (2c).  

In cancers with WGD, most other SCNAs occurred after WGD (Fig. 2d, see 

Methods). The fractions of amplifications and deletions that were estimated to occur 

prior to WGD were highly correlated across diseases (R=0.64, Fig. 2d), indicating a 

consistent estimate for the timing of WGD with respect to other SCNAs. WGD was 

inferred to occur earliest relative to focal SCNAs among diseases where WGD was 

common (ovarian, bladder, and colorectal cancers), and after most focal SCNAs in 
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Figure 2 
(a) Estimates of purity according to ABSOLUTE (y-axis) against estimates of 
purity according to a lymphocyte/leukocyte DNA methylation signature (x-axis) 
across 3735 cancers. The estimate from the lymphocyte/leukocyte DNA 
methylation signature tended to provide higher purity estimates, suggesting 
other types of normal cells may contribute to impurities detected by 
ABSOLUTE.  (b) Numbers of arm-level (top) and focal (bottom) amplifications 
(left) and deletions (right) across lineages.  For each lineage, near-diploid and 
WGD samples are indicated by bars on the left and right, respectively; events 
among WGD samples are resolved according to their timing relative to WGD. 
(c) Number of SCNA events in samples with WGD (y-axis) against number of 
SCNAs in near-diploid samples (x-axis) across diseases. Most diseases show 
a greater than 2:1 ratio (red line) between the average number of events 
observed in WGD samples versus their near-diploid counterparts. (d) Fraction 
of focal amplifications (red) and deletions (blue) occurring prior to WGD by 
disease. The fractions of amplifications and deletions that occur prior to WGD 
within each disease are highly correlated and vary across diseases. The 
amplifications estimate carries greater ambiguity because amplifications 
involve DNA being placed in disparate regions of the genome.  SCNAs whose 
timing relative to WGD are ambiguous were omitted. 
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diseases in which WGD was least common (glioblastoma and kidney clear cell 

carcinoma). 

 

SCNA lengths suggest varied mechanisms of generation 
Focal SCNAs for which one boundary is the telomere (telomere-bounded) tend to 

be longer than SCNAs in which both boundaries are internal to a chromosome (median 

SCNA length: amplifications 19.6 Mb versus 0.9 Mb; deletions: 22.7 Mb versus 0.7 Mb, 

for telomere-bounded and internal events respectively). These differences reflect 

differences across the entire length distributions of internal and telomere-bounded 

events. Focal internal SCNAs were observed at frequencies inversely proportional to 

their lengths (Fig. 3a-b), as noted previously26. However, telomere-bounded SCNAs 

tend to follow a superposition of 1/length and uniform length distributions. These 

distributions are the same whether measuring distance by kb, number of array markers, 

or number of genes, indicating that they do not result from variations in array resolution 

or gene density genome-wide (data not shown). Focal, telomere-bounded SCNAs also 

accounted for more SCNAs (12% and 26% of focal amplifications and deletions, 

respectively) than expected assuming random SCNA locations (p<0.0001). Both 

telomere-bounded and internal SCNAs are more likely to end within the centromere 

than expected given the centromere’s length (Fig. 3c), but the differences in their length 

distributions remain when centromere-bounded events are excluded. Differences 

between telomere-bounded and internal SCNAs are even more marked for cnLOH 

events (Fig. 3d). 

We detected chromothripsis in 5% of samples, ranging from none of head and 

neck squamous cell carcinomas to 16% of glioblastomas (Fig. 4a; see Methods). The 
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Figure 3: SCNA length distribution 
(a) Frequencies of all amplifications (green) and amplifications that begin at the telomere (blue) or 
are internal to the chromosome (red) against amplification length.  We used a fixed number of 
events per bin as opposed to a fixed bin size to compute our least squared fit because there were 
many fewer long events. The frequencies of amplifications that are greater than 400 kb and less 
than a chromosome arm in length follow a power law f(L) = 1/Lβ , where for all events, β = 1.05 
and r2=0.99; for telomeric events β = 0.45 and r2=0.90; and for internal events, β = 1.12 and 
r2=0.97 (b) The distribution of lengths of SCNAs originating at telomeres (black line) compared to 
SCNAs that are internal to the chromosome. (c) Number of amplification (red, top) and deletion 
(blue, bottom) endpoints in chromosome arms (colored regions) and centromeres in metacentric 
chromosomes (black regions) for telomere-bounded SCNAs (left panels) and internal SCNAs 
(right panels).  SCNAs are more likely to end within the centromere than expected given the 
centromere’s length for both telomeric and internal SCNAs (p<0.0001 in both cases).  In the case 
of telomeric events, this tendency results in a propensity for SCNAs to be arm-level events 
involving precisely one chromosome arm and suggests that focal telomeric SCNAs are generated 
by similar mechanisms to such arm-level events. Note that centromeres often span large regions 
without SNP array markers, preventing detection of many SCNA endpoints in these regions. The 
width of each region reflects the size of its genomic locus. (d) Rates of cnLOH events that were 
internal to chromosomes (y-axis) against rates of cnLOH events that were telomere-bounded (x-
axis) across diseases. Only 2% of focal SCNAs were cnLOH, and these events had more 
pronounced differences between telomeric and internal events than did amplifications and 
deletions. Most cnLOHs (58%) involved either whole chromosomes or exactly one chromosome 
arm, compared to an 18% rate of arm- and chromosome-level events for other SCNAs (p < 
0.0001). Internal cnLOHs were typically much smaller than other focal internal SCNAs (median 
0.2 Mb vs 0.8 Mb, Mann-Whitney (MW) p < 0.0001), whereas telomeric cnLOHs were much 
larger than other telomeric SCNAs (median 82Mb vs 27.2Mb, p<0.0001). Rates of telomeric and 
internal cnLOH show no correlation across diseases, suggesting the processes that lead to these 
events may be distinct. 
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Figure 4-Chromothripsis across cancer 
(a) Rates of chromothripsis across lineages. (b) Rates of chromothripsis across 
chromosomes.  Chromothripsis events that involved peak regions of amplification 
and deletion (see below) are indicated in blue (dark blue: amplifications >4.4 
copies or deletions<-1; light blue: low-level events involving smaller changes); 
events that do not involve peak regions are indicated in grey. 
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rate of chromothripsis was not related to overall rates of SCNA (r=0.13, p=0.3). As 

previously reported259, samples with chromothripsis were more likely to have 

chromothripsis on more than one chromosome (14/122 samples with chromothripsis 

had two to three such events, p=0.003). Many chromothripsis events were concentrated 

in a few genomic regions, often associated with known driver events (Fig. 4b). In 

glioblastomas, chromothripsis events were concentrated in chromosomes 9 and 12 and 

corresponded respectively to homozygous loss of CDKN2A (20/22 samples) and 

coamplification of discontinuous regions containing CDK4 and MDM2 (9/12 samples). 

Across all cancers, 72% of chromothripsis events included a GISTIC peak region (see 

below). 

 

Discussion 
Comprehensive analysis of SCNA across human tumors 

This study represents the largest analysis to date of high-resolution copy-number 

profiles generated using a single platform, and the largest analysis of absolute allelic 

copy-number data across cancer types. The TCGA Pancancer project was designed to 

combine the efforts of many individuals and institutions and comprehensively 

characterize a large, well annotated collection of primary tumors. Cataloging and 

analyzing the SCNAs in this set is an integral part of this endeavor and will be a 

foundation for future studies such as those described in Chapter 3.   

Assessing sample purity and its importance on primary tumor analysis 

As current genetic analysis techniques involve interpretation of bulk tumor 

samples, purity of the tumor within the biopsy, and overall ploidy of the cancer cells can 

confound both detection of SCNAs and significance analyses. Even worse, driver 
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alterations, such as BRAF-V600E260 status or TP53 inactivation261 may correlate with 

purity or ploidy, biasing the significance we assign to important steps in cancer 

development. Besides allowing us to reject impure samples, we can build models that 

correct for these confounders both in current and future significance studies. We found 

that purity and ploidy varied greatly both within and across disease, with lung and head 

and neck cancers being the most impure tumors, and GBM and ovarian being relatively 

pure. Outside of SCNA analysis, these purity values should be utilized in other analyses 

of TCGA data, including expression, DNA methylation, and mutational analyses. 

Selective pressures. 

A primary challenge in the analysis of somatic genetic data is distinguishing 

between patterns of alteration that reflect the mechanism by which those alterations are 

generated, from those that represent selection, specifically positive selection.  An 

underlying assumption of our current analyses is that patterns of alteration that are 

observed across all chromosomes are likely to reflect mechanistic biases, whereas 

deviations from these patterns at individual loci are likely to reflect selective pressures. 

However, cancer is a complicated evolutionary process and improving our 

understanding of the background rate of alteration will improve current and future 

significance models.  

We identified common patterns of SCNA across cancer types, including a 

tendency for telomeric events to be longer and more frequent than SCNAs within 

chromosomes. The differences between telomere-bounded and internal SCNAs across 

all chromosomes suggest different mechanisms underlie their generation. Internal 

SCNAs have been proposed to occur as a result of apposition of their two breakpoints 
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in three-dimensional space. Chromatin is arranged as a “fractal globule” during 

interphase262,263, during which time the likelihood that two breakpoints would be 

apposed decreases proportionally to the linear distance between them, implying a 

1/length distribution. Conversely, SCNAs that start on the telomere may be related to 

telomere shortening and telomere crisis, and associated with a single double-strand 

break that could occur anywhere within the chromosome264. These, and other185,265, 

mechanistic disparities should be accounted for in the background model of SCNA 

significance analyses and we are currently in the process of designing new significance 

tests that have the flexibility to do so. 

 Negative selection is another factor that significantly shapes the cancer genome. 

In our data, for example, homozygous deletions was detected in around 0.04% of 

markers, far below what is expected rate (0.2%, excluding the possibility of homozygous 

arm-level loss). The inability to tolerate the deletion of essential genes can directly affect 

significance analysis by highlighting regions unaffected by negative selection (such as 

gene poor regions), as potentially important. For example, proximity to an essential 

gene may alter the observed events leading to tumor suppressor inactivation. Finally, 

events during cancer evolution may increase tolerance for deletion, such as our finding 

that duplications of large regions of the genome (through WGD or polysomy) tend to 

lead to subsequent increases in numbers of SCNAs (especially deletions) in the 

duplicated regions. Moving forward, whole-genome sequencing data can indicate the 

specific rearrangements that contributed to each SCNA266,267, and assessment of 

genetic heterogeneity within tumors can also distinguish early from late events147,268. 
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Both of these are approaches are likely to inform the mechanisms by which SCNAs are 

generated and the selective pressures that shape them. 

 Chromothripsis is a relatively new mechanism for somatic copy number change, 

and its mechanism is still not fully understood. The large-scale structural 

rearrangements present in this event make whole genome sequencing the ideal 

technique for their identification. However, we currently have many thousands more 

primary tumors analyzed by microarray technology than by WGS, so an algorithm that 

can identify patterns of chromothripsis without the aid of sequencing technology would 

be useful. We found rates of chromothripsis did not track with rates of other SCNAs, 

with rates specifically higher in GBM. Further refinement of this technique in WGD 

samples may allow us to determine whether rates of chromothripsis change after WGD. 
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Chapter 3: Significance of recurrent, focal SCNAs across 

disease 

Section Goals 
 

A primary challenge in understanding SCNAs is to distinguish the driver events 

that contribute to oncogenesis and cancer progression from the passenger SCNAs that 

are acquired during cancer evolution but do not contribute towards it50,190,269,270.  

Positively selected SCNAs will tend to recur across cancers at elevated rates191,254,271. 

However, SCNAs may also recur in the absence of positive selection due to increased 

rates of generation or decreased negative selection272,273.  For this reason, it is 

important to understand how mechanisms of SCNA generation, their temporal ordering, 

and negative selection shape the distribution of SCNAs genome-wide268,272,273. 

A second challenge is to identify the oncogene and tumor suppressor gene 

targets of the driver SCNAs (which often encompass many genes) and elucidate the 

SCNA’s functional roles. The context of the SCNA can be informative. Positive 

correlations with other genetic events may indicate functional synergies, while 

anticorrelations may indicate functional redundancies because redundant events would 

not be required by the same cancer.  Several approaches have been developed to 

determine functional effects of genetic events based on anticorrelation patterns200,202,274. 

Here, we address these challenges through analyses of the 4934 cancer copy-

number profiles described in Chapter 2.  These profiles, spanning 11 cancer types and 

assembled through The Cancer Genome Atlas Project Pan-Cancer effort, enable 

sensitive determination of significant regions of copy-number change both within and 
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across cancer types.  We have also developed new approaches to identify functionally 

relevant correlations between SCNAs. Among these are correlates with WGD, including 

TP53 mutations, CCNE1 amplifications, and alterations of the PPP2R complex. Finally, 

we used SCNA timing relative to WGD to identify regions of LOH that occur early in 

tumor evolution, allowing us to separate potential initiating regions of significant deletion 

from those that may be the result of increased rate of generation.  

Methods 
1. Impurity-corrected GISTIC 

The less pure a sample, the less signal is derived from the somatic alterations 

present in the tumor, which will decrease its contribution in recurrence analyses. In 

cases where we were able to estimate purity and ploidy from ABSOLUTE, we 

“corrected” total copy-ratios for signal dampening due to cancer cell impurity (i.e. 

contamination with normal DNA).  We called this In-Silico Admixture Removal (ISAR).  

The observed copy-ratio R(x) at locus x is a function of the purity α, cancer cell ploidy 

τ (representing the average copy-number genome-wide), and integer copy-number (in 

the cancer cells) q(x)147  

 

 R(x) = (α q(x) + 2 (1- α)) / D , 

 

where D represents the average ploidy across all cells in the cancer: 

 

D = α τ + 2 (1 - α). 
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From this, we can determine q(x): 

 

 q(x) = D R(x) / α – 2 (1 - α) / α . 

 

We assume that the functionally relevant number is the copy-ratio within cancer cells, 

representing the integer number of copies q(x) divided by the overall ploidy of the cell τ: 

 

 R’(x) = q(x) / τ = R(x) / α – 2 (1 - α) / (α τ) . 

 

Use of R’(x) has the effect of amplifying the signal from low purity samples to be 

equivalent to higher purity samples.  For samples for which ABSOLUTE calls were not 

available, we used R(x).  

To determine significantly recurrent regions of SCNA, we used GISTIC 2.075 

applied to the transformed copy-number data. We used a noise threshold of 0.3, a 

broad length cutoff of 0.5 chromosome arms, a confidence level of 95%, and a copy-

ratio cap of 1.5. 

For some lineage-specific analyses, dozens of regions on a single chromosome 

arm were identified as significant peaks due to the presence in many samples of 

discontinuous SCNAs (such as chromothripsis) on those chromosome arms.  This 

phenomenon has been observed previously271.  We narrowed these regions by applying 

in all lineage-specific analyses an “arm-level peel-off” correction that considers all 

SCNAs on a chromosome arm in a single sample to be part of a single event when 
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determining whether multiple significantly recurrent events exist on that chromosome 

arm.  This approach has also been used in prior analyses275. 

The genes listed in each peak region include all protein-coding genes and 

microRNAs and additional non-coding RNAs as listed in the files refGene.txt, refLink.txt, 

refSeqStatus.txt, and wgRna.txt from the UCSC Golden Path database 

(ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/) as of 27 February 2012. 

 

2. Significance of chromatin modifying genes among peak regions of 

amplification without known driver genes  

To determine whether epigenetic regulators were enriched in peak regions, we 

compared the number of regions with epigenetic regulators (using a published list276) to 

permuted datasets in which each gene in each region was replaced by a gene randomly 

selected from elsewhere in the genome. 

 

3. Correlation analysis 

To determine the significance of correlations and anticorrelations between pairs 

of SCNAs, we compared the observed rate of co-occurrences to the rate of co-

occurrences in 5000 permuted copy-number profiles for which we had randomized the 

sample assignment for each chromosome, while maintaining genomic position and 

lineage and sub-lineage assignments.  We only considered SCNAs in different 

chromosomes to avoid confounding due to geographic proximity.  

To control for variable rates of genomic disruption across samples, we modified 

the permutations so that they maintained both the numbers of amplified and deleted 
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markers A0
j and D

0
j in each sample j.  After randomizing sample assignments for each 

chromosome as described above, we applied simulated annealing277,278 in which we 

picked a chromosome at random and swapped it between two randomly chosen 

samples within the same lineage at each step, and accepted the step with a probability 

1- Etot, where: 

 

௧௢௧ܧ ൌ ௔ܶ௠௣ ∗෍
ሺܣ௝

௧ାଵ െ	ܣ௝
଴ሻ

௝ܣ
଴ ൅ 1

൅ ௗܶ௘௟ ∗	
௝

෍
ሺܦ௝

௧ାଵ െ	ܦ௝
଴ሻ

௝ܦ
଴ ൅ 1

௝

 

 

and At
j and Dt

j represent the numbers of amplified and deleted markers in sample j and 

step t.  Tamp and Tdel are temperature factors that were slowly increased during the 

annealing, and the 1 in the denominator of each value is to avoid dividing by 0 in 

samples without any events. This procedure was applied in two separate analyses: one 

in which we looked at all SCNAs that passed the noise thresholds we used for our 

GISTIC significance analyses (above), and one in which we only considered loci with 

copy-number <-1 or >4.4. The second analysis we termed our “high-level” analysis. 

 

4. Intersection between mutual exclusivity network and Dapple network 

To validate the functionality of our network, we looked at the overlap between our 

network and DAPPLE, a curated dataset of protein-protein interactions279 (PPIs). Of the 

>400,000 PPI pairs, we took only pairs with a score equal to 1 (indicating highest 

confidence). Two peak regions had an edge between them in the PPI network under 

two conditions; 
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1. A protein within the first peak was a direct interactor with a protein in the second 

peak. 

2. A protein in the first peak had at least three distinct paths of length 2 in the PPI 

network to a protein in the second peak. 

To improve specificity, we only tested regions containing fewer than 25 genes. 

We determined whether the similarity between the PPI network and the anticorrelation 

network was significant by comparing the extent of overlap to permutations in which the 

edges in the anticorrelation network were randomly reassigned while maintaining the 

overall connectivity of the graph (see Results). By comparing both observed and 

anticorrelation networks to the same PPI network, we controlled for the propensity of 

regions with many genes to map to more PPIs. 

 

5. Somatic genetic correlates with WGD 

To determine which of the 200 most significant somatic mutations correlate with 

WGD, we used the permmatswap function in the R280 package “vegan”281 with the 

“quasifit” handle34 to produce a series of independent assignments for mutations on 

each gene within each sample. This function maintained the number of mutations per 

gene per lineage, as well as the number of the number of mutations per sample.  

To determine which of the peak regions had SCNAs that correlate with WGD, we 

compared the number of times each SCNA was observed in WGD samples in our 

observed data to the number of times the SCNA was observed in WGD samples in the 

permutations created by our simulated annealing approach above.  

 

63



6. Overlap of peak regions of SCNA 

Two regions were considered to overlap if their 95% confidence intervals 

intersected. To determine significance of overlap, we compared the number of peak 

regions that overlapped across at least two lineages in the observed data to 100,000 

permutations in which the locations of each peak region were randomly shuffled within 

its chromosome arm (disallowing extension past the telomere or centromere). 

 

7. GRAIL analysis 

We used GRAIL282 (www.broadinstitute.org/mpg/grail/) to find common functional 

terms in the literature for the genes in peak regions of SCNA. We used only PubMed 

abstracts through December 2006. We removed the following non-informative keywords 

from those GRAIL found most significant: "growth", "cancer", "cancers", "tumor", 

"tumors", "proliferation", "suppressor", "factors", "loss", "like", "rich", "cel", "cells", 

"yeast", "system", "family", "repeat", "deletions", "elegans", "national". 

 
Author Contributions 

The author was responsible for event and significance analyses of relative data 

and development of Correlation analysis with support and advice from Steven 

Schumacher, Rameen Beroukhim, Matthew Meyerson, and Gad Getz. 

 
 

Results 

Significant regions of Somatic Copy Number Alteration 
We identified 70 recurrently amplified and 70 recurrently deleted regions in a 

unified “Pan-Cancer” analysis across all lineages (Fig. 5a, Table 2). SCNAs involving 
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Figure 5- Pancancer significance analysis 
(a) Significance of focal SCNAs.  GISTIC q-values (x-axis) for deletions (left, blue) and 
amplifications (right, red) are plotted across the genome (y-axis).  Candidate gene targets within 
each peak are indicated for the 25 most significant peaks; in cases where no clear candidate was 
identified, the cytoband was indicated.  Values in parentheses indicate the number of genes in 
each peak.  Green lines indicate the significance threshold (q=0.25). (b) Frequencies of 
amplification minus frequencies of deletion (red and blue indicated propensity to amplifications 
and deletions, respectively) across lineages (x-axis; see Supplementary Table 1 for a list of 
lineage abbreviations) for all 84 significant peak regions of SCNA, arranged in order of 
significance (y-axis). The ordering of lineages reflects the results of unsupervised hierarchical 
clustering of these data.  Magnified views of the values for the ten most significant amplification 
and deletion peaks, respectively, are shown to the right, alongside candidate targets for these 
regions. Criteria for selecting the indicated candidates are described in the Methods. (c) 
Associated terms in literature in peak regions containing fewer than 25 genes, according to a 
GRAIL analysis of (top) all peak regions and (bottom) peak regions without known cancer genes 
or large genes. 
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Table 2: Pan-cancer regions of significant SCNA

A) Amplification

Peak Name Rank Genomic 
location

Peak region GISTIC q-
value

Gene 
count

Target(s) Frequently mutated genesB

CCND1 1 11q13.3 chr11:69464719-69502928 2.05E-278 2 CCND1K CCND1 = 6.6e-08
EGFR 2 7p11.2 chr7:55075808-55093954 2.30E-240 1 EGFRK EGFR = 2.2e-15
MYC 3 8q24.21 chr8:128739772-128762863 6.50E-180 1 MYCK

TERC 4 3q26.2 chr3:169389459-169490555 5.40E-117 2 TERC P

ERBB2 5 17q12 chr17:37848534-37877201 1.59E-107 1 ERBB2K ERBB2 = 1.3e-06
CCNE1 6 19q12 chr19:30306758-30316875 4.77E-90 1 CCNE1K

MCL1 7 1q21.3 chr1:150496857-150678056 1.25E-80 6 MCL1K

MDM2 8 12q15 chr12:69183279-69260755 2.59E-62 2 MDM2K

INTS4 9 11q14.1 chr11:77610143-77641464 1.01E-54 1 INTS4
WHSC1L1 10 8p11.23 chr8:38191804-38260814 3.43E-46 2 WHSC1L1E, LETM2M

CDK4 11 12q14.1 chr12:58135797-58156509 5.14E-41 5 CDK4K CDK4 = 0.0048
KAT6A 12 8p11.21 chr8:41751300-41897859 2.97E-39 2 KAT6AP,E, IKBKB**

SOX2 13 3q26.33 chr3:181151312-181928394 1.21E-38 2 SOX2K

PDGFRA 14 4q12 chr4:54924794-55218386 1.08E-37 3 PDGFRAK

BDH1 15 3q29 chr3:197212101-197335320 1.21E-31 1 BDH1M

1q44 16 1q44T chr1:242979907-249250621 4.48E-31 83
MDM4 17 1q32.1 chr1:204367383-204548517 1.98E-29 3 MDM4K

TERT 18 5p15.33 chr5:1287704-1300024 9.34E-27 1 TERTK

KDM5A 19 12p13.33T chr12:1-980639 1.59E-25 11 KDM5AE

MYCL1 20 1p34.2 chr1:40317971-40417342 3.99E-25 2 MYCL1K

IGF1R 21 15q26.3 chr15:98667475-100292401 8.62E-25 9 IGF1RK

PARP10 22 8q24.3 chr8:144925436-145219779 5.44E-20 15 PARP10P,E, CYC1M

G6PD 23 Xq28 chrX:153760870-153767853 3.66E-19 1 G6PD
PHF12 24 17q11.2 chr17:27032828-27327946 1.75E-16 21 PHF12E, ERAL1M

20q13.33 25 20q13.33 chr20:62187847-62214354 2.96E-16 2
PAF1 26 19q13.2 chr19:39699366-39945515 1.66E-15 13 PAF1P,E IL28A=0.021, SUPT5H=0.084

BCL2L1 27 20q11.21 chr20:30179028-30320705 2.85E-15 4 BCL2L1K

TUBD1 28 17q23.1 chr17:57922443-57946458 7.19E-15 1 TUBD1 TUBD1 = 0.009
[ZNF703] 29 8p11.23 chr8:37492669-37527108 2.44E-14 0

1q23.3 30 1q23.3 chr1:160949115-161115281 7.73E-13 9
8q22.2 31 8q22.2 chr8:101324079-101652657 4.22E-11 3 SNX31 = 0.015
BRD4 32 19p13.12 chr19:15310246-15428182 5.04E-10 3 NOTCH3P, BRD4P,E

KRAS 33 12p12.1 chr12:24880663-25722878 9.47E-10 7 KRAS K KRAS = 1.5e-14

NKX2-1 34 14q13.2 chr14:35587755-37523513 1.33E-09 14 NKX2-1K
NFKBIA=0.0098, 
RALGAPA1=0.027

NFE2L2 35 2q31.2 chr2:178072322-178171101 5.48E-09 5 NFE2L2 NFE2L2 = 3.9e-14
ZNF217 36 20q13.2 chr20:52148496-52442225 5.83E-08 1 ZNF217K ZNF217 = 0.0082
13q34 37 13q34T chr13:108818892-115169878 6.28E-08 45 ING1 = 0.00026

KAT6B 38 10q22.2 chr10:76497097-77194071 1.41E-07 9 KAT6BE, VDAC2M

NSD1 39 5q35.3 chr5:176337344-177040112 1.75E-06 22 NSD1E, PRELID1M NSD1 = 4.9e-10
FGFR3 40 4p16.3 chr4:1778797-1817427 2.14E-06 2 FGFR3P, LETM1M FGFR3 = 0.00018
9p13.3 41 9p13.3 chr9:35652385-35739486 2.55E-06 8
COX18 42 4q13.3 chr4:73530210-74658151 2.68E-06 7 COX18M

7q36.3 43 7q36.3T chr7:153768037-159138663 3.19E-06 30 PTPRN2 L, DPP6 L

18q11.2 44 18q11.2 chr18:23857484-24119078 3.83E-06 2
SOX17 45 8q11.23 chr8:55069781-55384342 2.02E-05 1 SOX17 SOX17 = 0.00092
11q22.2 46 11q22.2 chr11:102295593-102512085 0.00015337 3
CBX8 47 17q25.3 chr17:77770110-77795534 0.00023029 1 CBX8E

AKT1 48 14q32.33 chr14:105182581-105333748 0.00028451 7 AKT1K AKT1 = 1.1e-14
CDK6 49 7q21.2 chr7:92196092-92530348 0.00069831 3 CDK6K

6p21.1 50 6p21.1 chr6:41519930-44297771 0.0010459 70
EHF 51 11p13 chr11:34574296-34857324 0.0011002 1 EHF
6q21 52 6q21 chr6:107098934-107359899 0.0011806 4

19q13.42 53 19q13.42T chr19:55524376-59128983 0.0013319 138 ZNF471 = 5.4e-05
17q21.33 54 17q21.33 chr17:47346425-47509605 0.0025775 2

BPTF 55 17q24.2 chr17:65678858-66288612 0.0028375 11 BPTF E

E2F3 56 6p22.3 chr6:19610794-22191922 0.0033658 7 E2F3K

19p13.2 57 19p13.2 chr19:10260457-10467501 0.0038041 12 MRPL4M DNMT1 = 0.099
17q25.1 58 17q25.1 chr17:73568926-73594884 0.012337 2
KDM2A 59 11q13.2 chr11:67025375-67059633 0.012445 3 KDM2AE

8q21.13 60 8q21.13 chr8:80432552-81861219 0.020548 6 MRPS28M

2p15 61 2p15 chr2:59143237-63355557 0.021056 25 XPO1 = 1.1e-05
14q11.2 62 14q11.2T chr14:1-21645085 0.027803 57
NEDD9 63 6p24.2 chr6:11180426-11620845 0.082606 2 NEDD9K

5p13.1 64 5p13.1 chr5:35459650-50133375 0.094657 61
SLC1A3=0.0021, 

IL7R=0.0021
LINC00536 65 8q23.3 chr8:116891361-117360815 0.095294 1 LINC00536

10p15.1 66 10p15.1 chr10:4190059-6130004 0.10391 21
22q11.21 67 22q11.21 chr22:18613558-23816427 0.13213 105

PHF3 68 6q12 chr6:63883156-64483307 0.17851 4 PHF3E, EYSL PHF3 = 0.051
PAX8 69 2q13 chr2:113990138-114122826 0.19717 2 PAX8K

9p24.2 70 9p24.2T chr9:1-7379570 0.20405 45
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Table 2- B) Deletions Continued

Peak Name Rank Genomic 
location

Peak region GISTIC q-
value

Gene 
count

Target(s) Frequently mutated genesB

CDKN2A 1 9p21.3 chr9:21865498-22448737 0 4 CDKN2AK CDKN2A = 4.4e-15
STK11 2 19p13.3 chr19:1103715-1272039 1.46E-238 7 STK11K STK11 = 2.5e-13
PDE4D 3 5q11.2 chr5:58260298-59787985 2.02E-143 3 PDE4DL

PARK2 4 6q26 chr6:161693099-163153207 5.85E-137 1 PARK2L,K

LRP1B 5 2q22.1 chr2:139655617-143637838 4.25E-107 1 LRP1BL

CSMD1 6 8p23.2 chr8:2079140-6262191 2.39E-96 1 CSMD1L

1p36.23 7 1p36.23 chr1:7829287-8925111 1.23E-93 8
ARID1A 8 1p36.11 chr1:26900639-27155421 5.74E-87 2 ARID1AK ARID1A = 1.5e-14

PTEN 9 10q23.31 chr10:89615138-90034038 1.12E-79 2 PTEN K PTEN = 2.2e-15
WWOX 10 16q23.1 chr16:78129058-79627770 8.14E-76 1 WWOXL WWOX = 0.092

RB1 11 13q14.2 chr13:48833767-49064807 3.88E-75 2 RB1K RB1 = 1.7e-13
FAM190A 12 4q22.1 chr4:90844993-93240505 9.26E-75 1 FAM190AL

2q37.3 13 2q37.3T chr2:241544527-243199373 1.77E-70 29 ING5E

22q13.32 14 22q13.32T chr22:48026910-51304566 8.20E-65 45 BRD1E, HDAC10E

11p15.5 15 11p15.5T chr11:1-709860 1.02E-62 34 SIRT3E, PHRF1E HRAS = 7.8e-13
LINC00290 16 4q34.3 chr4:178911874-183060693 1.21E-55 1 LINC00290

FHIT 17 3p14.2 chr3:59034763-61547330 3.01E-55 1 FHITL

RBFOX1 18 16p13.3 chr16:5144019-7771745 1.00E-45 1 RBFOX1L

PTPRD 19 9p24.1 chr9:8310705-12693402 3.24E-38 1 PTPRDL

18q23 20 18q23T chr18:74979706-78077248 1.69E-37 12
FAT1 21 4q35.2 chr4:187475875-188227950 6.81E-36 1 FAT1K FAT1 = 2.4e-15

MPHOSPH8 22 13q12.11T chr13:1-20535070 2.57E-31 10 MPHOSPH8E

15q15.1 23 15q15.1 chr15:41795901-42068054 2.71E-29 4 MGA = 0.0083, RPAP1=0.035
11q25 24 11q25T chr11:133400280-135006516 4.93E-26 14
1p13.2 25 1p13.2 chr1:110048528-117687124 1.69E-25 100 TRIM33E NRAS=1.8e-13, CD58=0.079
NF1 26 17q11.2 chr17:29326736-29722618 6.59E-23 5 NF1K NF1 = 3.3e-13

MACROD2 27 20p12.1 chr20:14302876-16036135 9.00E-19 3 MACROD2L

7p22.3 28 7p22.3T chr7:1-1496620 1.04E-17 18
6p25.3 29 6p25.3 chr6:1608837-2252425 3.01E-17 2
21q11.2 30 21q11.2T chr21:1-15482604 2.34E-14 14
9p13.1 31 9p13.1 chr9:38619152-71152237 9.75E-14 48

ZNF132 32 19q13.43T chr19:58661582-59128983 3.77E-13 24 TRIM28E, ZNF132

5q15 33 5q15 chr5:73236070-114508587 8.15E-13 156 APCK, CHD1E APC=2.6e-13, RASA1=0.0029
MLL3 34 7q36.1 chr7:151817415-152136074 9.26E-13 1 MLL3K,E MLL3 = 1.1e-05

19q13.32 35 19q13.32 chr19:47332686-47763284 2.38E-12 10
15q12 36 15q12T chr15:1-32929863 3.40E-11 155 OTUD7A = 0.027

12q24.33 37 12q24.33T chr12:131692956-133851895 1.24E-10 27
POLE=3.9e-05, 
PGAM5=0.038

10q26.3 38 10q26.3T chr10:135190263-135534747 2.09E-10 14

6q21 39 6q21 chr6:86319089-117076132 4.56E-10 141

PRDM1E, HDAC2E, 

PRDM13E PRDM1 = 0.00054
PPP2R2A 40 8p21.2 chr8:25896447-26250295 1.78E-09 1 PPP2R2A

IKZF2 41 2q34 chr2:211542637-214143899 3.24E-09 4 IKZF2K, ERBB4L ERBB4 = 0.00058
CNTN4 42 3p26.3T chr3:1-3100786 6.44E-09 3 CNTN4L

3p12.2 43 3p12.2 chr3:75363575-86988125 1.22E-07 12 ROBO1L, CADM2L

RAD51B 44 14q24.1 chr14:68275375-69288431 1.38E-07 2 RAD51BL ZFP36L1 = 0.0016

11q23.1 45 11q23.1 chr11:105849158-117024891 5.31E-07 84 ATMK
ATM=1.4e-06, 

POU2AF1=0.082
IMMP2L 46 7q31.1 chr7:109599468-111366370 5.74E-07 2 IMMP2LL

NEGR1 47 1p31.1 chr1:71699756-74522473 7.25E-07 2 NEGR1L

BRCA1 48 17q21.31 chr17:41178765-41336147 7.25E-07 2 BRCA1K BRCA1 = 3.5e-08

9q34.3 49 9q34.3 chr9:135441810-139646221 8.73E-06 94

NOTCH1K, BRD3E, 

GTF3C4E

NOTCH1=1e-08, RXRA=2.1e-
05, COL5A1=0.0022, 

TSC1=0.012
ANKS1B 50 12q23.1 chr12:99124001-100431272 8.73E-06 2 ANKS1BL

DMD 51 Xp21.2 chrX:30865118-34644819 5.15E-05 4 DMDL

ZMYND11 52 10p15.3T chr10:1-857150 7.12E-05 4 ZMYND11E

PRKG1 53 10q11.23 chr10:52644085-54061437 9.79E-05 3 PRKG1L

FOXK2 54 17q25.3 chr17:80443432-80574531 0.00019271 1 FOXK2
AGBL4 55 1p33 chr1:48935280-50514967 0.000219 2 AGBL4L

CDKN1B 56 12p13.1 chr12:12710990-12966966 0.00035777 5 CDKN1BK CDKN1B = 2.2e-06

14q32.33 57 14q32.33T chr14:94381429-107349540 0.00074358 227 SETD3E, TDRD9E
AKT1=2.1e-13, TRAF3=9.7e-

05
14q11.2 58 14q11.2T chr14:1-30047530 0.0010181 162 PRMT5E, CHD8E CHD8 = 0.034
2p25.3 59 2p25.3T chr2:1-20072169 0.0011137 86 MYCNK MYCN=0.068

5q35.3 60 5q35.3T chr5:153840473-180915260 0.0028515 212 NSD1E, ODZ2L

NPM1=3.5e-13, NSD1=1.9e-
09, ZNF454=0.0019, 

UBLCP1=0.03, 
GABRB2=0.07

PTTG1IP 61 21q22.3 chr21:46230687-46306160 0.012227 1 PTTG1IP
22q11.1 62 22q11.1T chr22:1-17960585 0.020332 15
SMAD4 63 18q21.2 chr18:48472083-48920689 0.036866 3 SMAD4K SMAD4 = 6.6e-15
17p13.3 64 17p13.3T chr17:1-1180022 0.040814 16
4p16.3 65 4p16.3T chr4:1-1243876 0.056345 27
9p21.2 66 9p21.2 chr9:27572512-28982153 0.091742 3

10q25.1 67 10q25.1 chr10:99340084-113910615 0.11879 137 HPSE2L, SMNDC1E
SMC3=0.00031, 
GSTO2=0.086

SMYD3 68 1q44 chr1:245282267-247110824 0.15417 8 SMYD3E

8p11.21 69 8p11.21 chr8:42883855-47753079 0.17382 4
Xp22.33 70 Xp22.33T chrX:1-11137490 0.21462 52 MXRA5 = 0.031
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Table 2-Notes Continued
BGENE = p-value from [Lawrence et al. upublished data] corrected to FDR within peak
KKnown frequently amplified oncogene or deleted TSG
PPutative cancer gene
EEpigenetic regulator
MMitochondria-associated gene
**Immediately adjacent to peak region
TAdjacent to telomere or centromere of acrocentric chromosome
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these regions included 21% of all focal amplifications and 23% of all focal deletions. 

Focal SCNAs within peak regions tended to be shorter than focal SCNAs elsewhere on 

the chromosome (median 12.2 Mb in peak regions vs 19.4 Mb genomewide, p<0.0001), 

and were more often high-amplitude events (p<0.0001). The number of focal SCNAs 

involving peak regions per sample tracked the total number of SCNAs (r=0.84, 

p<0.0001), ranging from 0.4 focal SCNAs in the typical acute myeloid leukemia to 12.3 

focal SCNAs in the typical ovarian cancer (mean 5.2).   

Tissue types of similar lineages tended to have similar rates of amplification and 

deletion in peak SCNA regions (Fig. 5a). We observed clusters of squamous cell 

carcinomas (head and neck squamous cell carcinoma, lung squamous cell carcinoma 

and bladder cancer) and reproductive cancers (ovarian and endometrial cancer) with 

breast cancer. 

The 70 peak regions of amplification contain a median of three genes each 

(including microRNAs), with 60 peaks containing fewer than 25 genes.  Twenty-four of 

these peak regions contain an oncogene known to be activated by amplification (Table 

2), including seven of the top ten regions (CCND1, EGFR, MYC, ERBB2, CCNE1, 

MCL1, and MDM2). The ninth and tenth most significant regions (11q14.1 and 8p11.23, 

respectively) do not contain known oncogenes, but the latter contains the histone 

methyltransferase WHSC1L1 and is 18 kb away from the known amplified oncogene 

FGFR1. The fourth most significantly amplified peak region (3q26.2) contained TERC, 

which encodes the RNA substrate for the known oncogene TERT, which is itself in a 

peak region of amplification (5p15.33).  Another peak with eight genes (9p13.3) contain 

RMRP, another TERT-associated RNA14,283. 
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The 70 peak regions of deletion contain a median of four genes (including 

microRNAs), with 52 peaks containing fewer than 25 genes. Twenty-two of these 

regions contain one of the 100 largest genes in the genome and 12 contain known 

tumor suppressors (Table 2; two additional large regions contain the known tumor 

suppressors ATM and NOTCH1). Four others each contain a single gene (PPP2R2A, 

PTTG1IP, FOXK2, and LINC00290). We discuss PPP2R2A and its binding partner 

PPP2R1A (which is significantly mutated in the same set of cancers19,26‐28 284 in greater 

detail below. LINC00290 is a long non-coding RNA, a group whose role in cancer is 

increasingly being appreciated29‐32,285,286. Two other regions contain suspected tumor 

suppressors (ERRFI128,33‐37,287, and FOXC138‐41,288).  

The features most associated with genes in the amplification and deletion peak 

regions are known to be associated with cancer (Fig. 5c). We applied GRAIL50‐52,289, 

which uses literature citations to find common features of genes in selected regions of 

the genome.  We considered amplifications and deletions separately, and only peaks 

with fewer than 25 genes. 

Among the 37 peak regions of amplification with fewer than 25 genes and without 

known targets (Table 2), the most associated features were related to epigenetic and 

mitochondrial regulation: “Histone”, “Cytochrome”, “Mitochondrial”, and 

“Acetyltransferase” (Fig. 5c). Thirteen of these 37 regions contain chromatin-state and 

histone-modifying genes (Table 2), reflecting significant enrichment (p<0.0001)40. 

Among these, five (BRD4, KAT6A, KAT6B, NSD1, and PHF1) are subject to recurrent 

rearrangements in leukemias, sarcomas, and midline carcinomas26,191,290‐295.  The BRD4 

peak also contains NOTCH3, another potential oncogene3,296. Two others, KDM2A and 
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KDM5A, are reported to regulate the activity of TP53 and RB1, respectively104,105,297,298. 

The finding that multiple peak regions of amplification contain epigenetic regulators is 

consistent with growing evidence suggesting epigenetic alterations and chromatin 

remodeling plays a critical role in many forms of cancer147,299‐301. Ten regions contain 

genes encoding mitochondria-associated proteins (Table 2); none of these are subject 

to recurrent rearrangements in cancer. The 21 peak regions of deletion with fewer than 

25 genes and without known tumor suppressor or large genes were most associated 

with “Pten”, “Phosphatase”, “Leucine”, and “Prostate”. 

Fifty of the 140 peak regions contain a significantly mutated gene, including 23 

regions without known oncogene or tumor suppressor gene targets and 32 regions with 

fewer than 25 genes (Table 2). We calculated the significance of mutations (including 

both point mutations and small insertion-deletion events identified in the paired 

sequencing data) for each gene in each region using the methods of 19,189,284,302 and 

corrected for multiple hypotheses reflecting the number of genes in the region. In three 

cases, there were two significantly mutated genes per peak, for a total of 35 significantly 

mutated genes. These 35 genes included eight of the 23 known amplification-activated 

oncogenes and all of the 12 known tumor suppressor genes in these peak regions 

(Table 2).  An additional two of the 35 genes (both in amplification peaks) are 

oncogenes known to be activated by mutations but not by amplifications. 

Frame-shift and nonsense mutations that are likely to cause loss of function were 

significantly enriched in genes in deleted regions (p=0.0002), accounting for 19% of 

these mutations compared to 12% of mutations found in genes in amplified regions. We 

excluded regions with known oncogenes or tumor suppressor genes or more than 25 
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genes from this analysis.  These findings are consistent with the prediction that deleted 

regions without known tumor suppressors are enriched for novel tumor suppressors or 

genes whose functions are non-essential.  

Most peak regions in lineage-specific analyses intersected peak regions in other 

lineages, and indeed in the Pan-Cancer analysis (Fig. 6).  We obtained a median of 74 

peak regions for each lineage (ranging from 25 in acute myeloid leukemia to 95 in 

endometrial cancer; 42% were amplification peaks and 58% were deletion peaks), 

resulting in a total of 770 peak regions. Of these, 84% intersected peak regions in at 

least one other lineage (p<0.0001), and 65% intersected peak regions in the Pan-

Cancer analysis. Peak regions tended to be larger in the lineage-specific than the Pan-

Cancer analyses (1.4 vs 0.7 Mb), indicating the improved resolution of the Pan-Cancer 

analysis. 

Nevertheless, some significant SCNAs were identified in lineage-specific but not 

the Pan-Cancer analysis.  Across all lineages, we identified 229 peaks not present in 

the Pan-Cancer analysis, including amplifications of the known amplified oncogenes 

MET, CCND2, ERBB3, and MYCN and deletions of the known tumor suppressor genes 

TP53 and CDKN2C. 

 

Correlations reflect overall levels of genomic disruption 

For each pair of peak regions, we looked for positive and negative correlations 

between focal SCNAs involving these regions (Fig. 7a). We compared the number of 

samples with SCNAs involving both regions between observed data and permuted data 

in which SCNAs were randomly assigned to samples while maintaining genomic 
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analysis SCNAs  
(a) Illustration of question, displaying a heatmap of copy-
number profiles across 4934 cancers (x-axis), arranged in 
order of increasing genomic disruption. (b) Fraction of region 
pairs exhibiting significant positive correlation (left), negative 
correlation (right), or neither (middle), using standard analysis 
techniques (top) and after controlling for variations in genomic 
disruption (bottom). (c) Fraction of genome involved in focal 
SCNAs in samples displayed in panel (a) among observed 
data (red line), permutations generated by standard 
techniques (blue line) and permutations that maintain levels of 
genomic disruption (black dashed line). 
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positions and SCNA structure. We only permuted SCNAs within lineages (and sub-

lineages when available) to avoid lineage-dependent confounders, and evaluated 

correlations between regions on different chromosomes to avoid correlations due to 

chromosomal structure (see Methods).  We focused on peak regions with less than 25 

genes. 

We identified significant positive correlations (q<0.25) between 53% of region 

pairs, but no significant anticorrelations (Fig. 7b). The high rate of positive correlations 

results from widely differing levels of genomic disruption across samples, which are not 

maintained in permuted datasets (Fig. 7c).  Similar results are obtained with other 

standard statistical approaches such as Fisher’s exact tests (data not shown). These 

findings indicate that varying levels of overall genomic disruption confound analyses of 

functionally relevant correlations between SCNAs. 

We therefore re-evaluated correlations between SCNAs after controlling for 

genomic disruption, by maintaining in the permuted data the fractions of the genome 

affected by each of amplifications and deletions in each sample (Fig. 7c, Fig. 8a-d; 

Methods). We performed the analysis in two ways: evaluating all SCNAs, and 

evaluating only high-level amplifications and homozygous deletions (Table 3; see 

Methods).  In many cases, high-level amplification or homozygous deletion may be 

necessary to activate an oncogene or inactivate a tumor suppressor gene50,137,189,303 and 

in such cases, correlated features may be masked by noise in lower level events. 

When evaluating all SCNAs, we identified significant positive correlations 

between <1% of region pairs (40 interactions) and anticorrelations between 7% of 

region pairs (396 interactions, Fig. 7b). Correcting for genomic disruption altered the 
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(a-d) Comparison of random permutation and controlled 
permutation in recapitulating observed distribution of SCNAs. 
Each plot compares the number of samples (y-axis) against 
fraction of genome amplified. Red dots signify observed 
distribution and blue box plots represent permutations of this 
data. (a) and (b) illustrated random permutations of 
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lineage. (c-d) represent our simulated annealing approach. 
(e) A comparison of p-values obtained from the lineage-
controlled standard analysis of correlations (y-axis) and an 
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(x-axis). Although the p-values tend to correlate, the ranking 
is not the same, and many interactions that appear 
significant in one test are not significant in the other.  Most 
interactions appear significant in the standard analysis. 
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Table 3: high level correlations
p_value peak1 peak2 q_value peak1 peak2

0.00012 14 11 0.066707 PDGFRA CDK4
0.000122 2 71 0.066707 EGFR CDKN2A
0.000482 57 110 0.175743 19p13.2 PPP2R2A
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Table 3: high level anticorrlations Continued
p peak1 peak2 q peak1 peak2

0.00012 22 6 0.044472 8q24.3 CCNE1
0.000122 11 71 0.044472 CDK4 CDKN2A

0.00012 14 2 0.044472 PDGFRA EGFR
0.000241 1 27 0.052723 CCND1 BCL2L1
0.000241 8 71 0.052723 MDM2 CDKN2A
0.000361 21 5 0.056489 IGF1R ERBB2
0.000361 65 9 0.056489 LINC00536 INTS4
0.000482 1 21 0.058581 CCND1 IGF1R
0.000482 71 81 0.058581 CDKN2A RB1
0.000964 12 28 0.062027 KAT6A TUBD1
0.000723 7 29 0.062027 MCL1 [ZNF703]
0.000843 22 32 0.062027 8q24.3 BRD4
0.000843 3 1 0.062027 MYC CCND1
0.000964 1 6 0.062027 CCND1 CCNE1
0.000964 29 5 0.062027 [ZNF703] ERBB2
0.000723 2 8 0.062027 EGFR MDM2
0.000723 110 79 0.062027 PPP2R2A PTEN
0.001687 29 58 0.090902 [ZNF703] 17q25.1

0.00241 13 58 0.090902 SOX2 17q25.1
0.001566 6 25 0.090902 CCNE1 20q13.33
0.002289 22 1 0.090902 8q24.3 CCND1
0.001928 41 1 0.090902 RMRP CCND1
0.002289 65 1 0.090902 LINC00536 CCND1
0.002289 2 11 0.090902 EGFR CDK4
0.002289 30 71 0.090902 1q23.3 CDKN2A
0.001807 4 71 0.090902 TERC CDKN2A

0.00241 19 5 0.090902 KDM5A ERBB2
0.002169 15 8 0.090902 BDH1 MDM2
0.002169 76 79 0.090902 CSMD1 PTEN
0.002771 1 58 0.101052 CCND1 17q25.1
0.002892 3 118 0.102044 MYC BRCA1
0.003012 21 6 0.102974 IGF1R CCNE1
0.003373 12 54 0.108547 KAT6A 17q21.33
0.003373 30 2 0.108547 1q23.3 EGFR
0.003614 6 36 0.112978 CCNE1 ZNF217
0.003976 22 8 0.117558 8q24.3 MDM2
0.003976 4 8 0.117558 TERC MDM2
0.004096 38 6 0.117933 KAT6B CCNE1
0.004458 63 1 0.118948 NEDD9 CCND1
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Table 3: high level anticorrlations Continued
p peak1 peak2 q peak1 peak2

0.004458 28 6 0.118948 TUBD1 CCNE1
0.004337 55 6 0.118948 BPTF CCNE1
0.004699 10 19 0.119546 WHSC1L1 KDM5A
0.004699 3 88 0.119546 MYC RBFOX1

0.00506 59 6 0.12302 KDM2A CCNE1
0.00506 7 10 0.12302 MCL1 WHSC1L1

0.006506 10 47 0.15473 WHSC1L1 CBX8
0.007229 30 29 0.158169 1q23.3 [ZNF703]
0.007108 10 55 0.158169 WHSC1L1 BPTF
0.006988 9 21 0.158169 INTS4 IGF1R
0.006988 17 89 0.158169 MDM4 PTPRD
0.007831 8 6 0.164759 MDM2 CCNE1
0.007831 63 9 0.164759 NEDD9 INTS4
0.008554 3 136 0.166493 MYC 9p21.2
0.008313 22 9 0.166493 8q24.3 INTS4
0.008072 13 8 0.166493 SOX2 MDM2
0.008675 17 10 0.166493 MDM4 WHSC1L1
0.008434 3 36 0.166493 MYC ZNF217
0.009277 4 11 0.17202 TERC CDK4
0.009157 4 80 0.17202 TERC WWOX
0.009759 29 54 0.175023 [ZNF703] 17q21.33
0.009759 10 28 0.175023 WHSC1L1 TUBD1
0.010241 30 1 0.177835 1q23.3 CCND1
0.010241 65 33 0.177835 LINC00536 KRAS
0.010723 7 1 0.180475 MCL1 CCND1
0.010723 13 3 0.180475 SOX2 MYC
0.011084 11 136 0.183731 CDK4 9p21.2
0.012169 10 58 0.185243 WHSC1L1 17q25.1
0.012169 20 22 0.185243 MYCL1 8q24.3
0.012289 12 55 0.185243 KAT6A BPTF
0.011928 15 71 0.185243 BDH1 CDKN2A
0.011687 35 71 0.185243 NFE2L2 CDKN2A
0.012048 1 91 0.185243 CCND1 FAT1

0.01253 32 23 0.185243 BRD4 G6PD
0.01241 3 9 0.185243 MYC INTS4

0.012892 14 6 0.185571 PDGFRA CCNE1
0.012771 13 36 0.185571 SOX2 ZNF217
0.013253 13 92 0.185882 SOX2 MPHOSPH8
0.013133 34 71 0.185882 NKX2-1 CDKN2A
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Table 3: high level anticorrlations Continued
p peak1 peak2 q peak1 peak2

0.013494 15 9 0.186866 BDH1 INTS4
0.014096 74 71 0.190388 PARK2 CDKN2A
0.014096 9 36 0.190388 INTS4 ZNF217
0.014819 20 15 0.192283 MYCL1 BDH1

0.01494 65 32 0.192283 LINC00536 BRD4
0.014819 20 32 0.192283 MYCL1 BRD4
0.014699 3 124 0.192283 MYC FOXK2
0.016867 71 114 0.21457 CDKN2A RAD51B
0.017711 56 1 0.217704 E2F3 CCND1
0.017711 3 11 0.217704 MYC CDK4
0.017349 49 10 0.217704 CDK6 WHSC1L1
0.018916 71 137 0.22539 CDKN2A 10q25.1
0.020602 22 54 0.22539 8q24.3 17q21.33
0.020361 3 54 0.22539 MYC 17q21.33
0.019518 9 28 0.22539 INTS4 TUBD1
0.018795 15 55 0.22539 BDH1 BPTF

0.02 86 71 0.22539 LINC00290 CDKN2A
0.020482 12 21 0.22539 KAT6A IGF1R
0.019759 10 21 0.22539 WHSC1L1 IGF1R
0.019759 13 19 0.22539 SOX2 KDM5A

0.02012 71 79 0.22539 CDKN2A PTEN
0.019277 4 88 0.22539 TERC RBFOX1
0.021084 69 13 0.22614 PAX8 SOX2
0.021084 30 10 0.22614 1q23.3 WHSC1L1
0.021325 12 36 0.226504 KAT6A ZNF217
0.021687 3 8 0.228128 MYC MDM2
0.023373 3 59 0.24353 MYC KDM2A
0.024217 71 123 0.246528 CDKN2A PRKG1
0.024337 13 71 0.246528 SOX2 CDKN2A
0.024217 4 72 0.246528 TERC STK11
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estimated significance of these interactions and also changed the rank ordering of those 

significance estimates (Fig. 8e). High-level amplifications and homozygous deletions 

are relatively rare, limiting our power to detect anticorrelations in the high-level analysis. 

Among the 1094 interactions we were powered to detect, we observed positive 

correlations between <1% of region pairs (3 interactions, Table 3) and anticorrelations 

between 10% of region pairs (108 interactions, Fig. 9a, Table 3). The three correlations 

included deletions of CDKN2A with amplifications of EGFR, amplifications of PDGFR 

with amplifications of CDK4, and deletions of PPP2RA with amplifications of 19p13.2. 

We predicted that anticorrelated SCNAs would often indicate functional 

redundancies, and therefore genes in the affected regions would often be in similar 

pathways and interact physically.  We tested this hypothesis by comparing networks 

representing significantly anticorrelated SCNAs (“anticorrelation networks”) with 

DAPPLE, a set of curated protein-protein interactions (PPIs)50,191,192,279 (see Methods). 

Networks formed by our anticorrelations analyses and by PPIs significantly 

overlapped (p<0.0001 and p=0.006 for all-SCNA and high-level analyses, respectively, 

Fig. 9b-c).  For example, in the analysis of all SCNAs, we observed 100 overlapping 

edges, a 2-fold increase over the 43.4 overlapping edges expected by chance.  This 

significance was not observed for correlated events (p=1 for both all-SCNA and high–

level analyses). These results suggest that the observed anticorrelations are related to 

biological interactions. 

The anticorrelations networks were enriched for both isolated nodes and highly 

connected “hub” regions (Fig. 9d). To analyze the structure of these networks, we 

generated control anticorrelation networks representing the most significant edges from 
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Figure 9 – Biological redundancies suggested by 
mutual exclusivity 
(a) Genetic interactome map for high-level SCNAs. Nodes 
represent peak regions with fewer than 25 genes and are 
connected by edges if focal high-level SCNAs 
(amplifications to >4.4 copies and deletions to <1 copy) are 
significantly anticorrelated. (b-c) The number of significant 
anticorrelations that overlap known protein-protein 
interactions in the observed genetic interactome network 
(red arrow) and permuted networks (blue bars).  These 
results are from the analysis of all SCNAs, and high-level 
SCNAs, respectively (d) Distribution of connectivity values 
(number of nodes to which each node is connected) for the 
observed genetic interactome network (red dots) and 
permuted networks (box plots) in the all-SCNAs analysis. 
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permuted data in which we had randomized the SCNA sample assignments within 

lineage. In the all-SCNA analysis, 28 regions were anticorrelated with fewer than three 

other regions, relative to three isolated nodes in the average permutation (p<0.01).   

The isolated nodes in the all-SCNA analysis were enriched for regions containing 

large genes (including 10 of 28 such regions; p=0.004). Conversely, they trended 

toward excluding regions with known oncogenes or tumor suppressors (five of 35 such 

regions; p=0.06). Most peak regions exhibit fewer anticorrelations in the high-level 

analysis, possibly due to decreased power.  The most extreme exception was CDKN2A, 

which anticorrelated with 14 regions in the high-level analysis and only nine regions in 

the all-SCNA analysis. Consistent with these findings, CDKN2A is often inactivated by 

homozygous deletions. 

Whole genome doubling: correlates and consequences on cancer evolution   

We applied a similar analysis to identify events associated with WGD.  We 

included both SCNAs and mutations, using the 200 most significantly mutated genes 

across the TCGA Pan-Cancer dataset284,302. Three SCNA peak regions and two 

significantly mutated genes correlated with WGD (Table 4). TP53 mutations and 

CCNE1 amplifications correlated with WGD; both have been functionally associated 

with tolerance of tetraploidy in experimental models304‐306. Our findings indicate these 

associations apply to human tumors across multiple lineages. We also found that 

deletions of PPP2R2A and mutations of its binding partner PPP2R1A were correlated 

with WGD. These two genes belong to phospho-protein phosphatase complex 2 

(PPP2), which regulates mitotic spindle formation and can lead to chromosomal 

missegregation and abnormal mitoses when depleted307,308.      
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Table	
  4:	
  Correlates	
  with	
  WGD

putative	
  gene Rank p_value

Anticorrelations	
  with	
  WGD
Amplications

MYC 3 0.0065
8q24.3 22 0.0007

Deletions
CDKN2A 1 0
PTEN 9 0

10q25.1 67 0.0016
NF1 26 0.0053
DMD 51 0

Mutations
PIK3CA 2 0.002
CTCF 28 0.004

MAP3K1 45 0.004
ATM 68 0.006

putative	
  gene Rank p_value
Correlations	
  with	
  WGD
Amplications

CCNE1 6 0.00012

Deletions
CSMD1 6 0.00012
PPP2R2A 40 0.00012

Mutations
TP53 1 <0.001

PPP2R1A 84 0.008
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Eleven genetic events anti-correlated with WGD, including two amplifications, 

five deletions and four mutations (Table 4).  The deletions included CDKN2A, PTEN, 

and NF1, and three of the four mutations also involved genes known as or proposed to 

be tumor suppressors (CTCF309, MAP3K1310, and ATM). The anticorrelations of these 

tumor suppressors may result from a greater difficulty in biallelically inactivating tumor 

suppressors in samples with extra copies subsequent to WGD147. 

We can use the unique signature that WGD places on the cancer genome to 

determine when specific regions were lost during cancer development. A loss of 

heterozygosity (LOH) deletion in WGD samples will appear to be a single event of 

amplitude two (going from two copies to zero copies). We hypothesized that TSGs 

important to tumor initiation are more likely to occur prior to WGD. Conversely, the 

timing of LOH in peaks whose significance may be derived from increased SCNA 

generation would be similar to timing of events observed throughout the rest of the 

genome. We looked at what fraction of focal LOH on each significant peak occurred 

prior to WGD and compared these numbers to overall fraction of LOH observed prior to 

WGD.   

We found that LOH in well-studied TSGs occurred relatively early in cancer 

development, whereas many significant regions thought to be caused by fragile sites or 

lack of negative selection were not significantly different from background (Table 5). 

These groups were evenly distributed across significant region list when sorted by 

GISTIC significance (Kolmogorov-Smirnov test, p=0.27 and 0.86 for TSGs and large 

genes, respectively). However, regions that were more likely to occur prior to WGD 

were significantly enriched for known TSGs (one-sided KS test, p = 0.007), with the top 
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Table 5: LOH timing relative to WGD
Peak Name GISTIC Rank Genomic location GISTIC q-value Gene count Target(s) Frequently mutated genesB wgd timing q 

value
CDKN2A 1 9p21.3 0 4 CDKN2AK CDKN2A = 4.4e-15 2.85E-15
CSMD1 6 8p23.2 2.39E-96 1 CSMD1L 9.23E-14

PPP2R2A 40 8p21.2 1.78E-09 1 PPP2R2A 6.55E-09
FOXK2 54 17q25.3 0.00019271 1 FOXK2 1.08E-05
BRCA1 48 17q21.31 0.000000725 2 BRCA1K BRCA1 = 3.5e-08 0.0002
15q15.1 23 15q15.1 2.71E-29 4 MGA = 0.0083, RPAP1=0.035 0.0005
9p21.2 66 9p21.2 0.091742 3 0.0014

RB1 11 13q14.2 3.88E-75 2 RB1K RB1 = 1.7e-13 0.0059
NF1 26 17q11.2 6.59E-23 5 NF1K NF1 = 3.3e-13 0.0059

PTEN 9 10q23.31 1.12E-79 2 PTEN K PTEN = 2.2e-15 0.0174
7p22.3 28 7p22.3T 1.04E-17 18 0.0196
21q11.2 30 21q11.2T 2.34E-14 14 0.0196
RAD51B 44 14q24.1 0.000000138 2 RAD51BL ZFP36L1 = 0.0016 0.0196
19q13.32 35 19q13.32 2.38E-12 10 0.0248

STK11 2 19p13.3 1.46E-238 7 STK11K STK11 = 2.5e-13 0.0276
PTPRD 19 9p24.1 3.24E-38 1 PTPRDL 0.032
SMAD4 63 18q21.2 0.036866 3 SMAD4K SMAD4 = 6.6e-15 0.0462

CDKN1B 56 12p13.1 0.00035777 5 CDKN1BK CDKN1B = 2.2e-06 0.0468
IMMP2L 46 7q31.1 0.000000574 2 IMMP2LL 0.1279

MACROD2 27 20p12.1 9E-19 3 MACROD2L 0.1378
18q23 20 18q23T 1.69E-37 12 0.1431
MLL3 34 7q36.1 9.26E-13 1 MLL3K,E MLL3 = 1.1e-05 0.1431

ANKS1B 50 12q23.1 0.00000873 2 ANKS1BL 0.1431
FHIT 17 3p14.2 3.01E-55 1 FHITL 0.1721

10q26.3 38 10q26.3T 2.09E-10 14 0.1721
3p12.2 43 3p12.2 0.000000122 12 ROBO1L, CADM2L 0.1721
11q25 24 11q25T 4.93E-26 14 0.179

ZNF132 32 19q13.43T 3.77E-13 24 TRIM28E, ZNF132 0.179
PTTG1IP 61 21q22.3 0.012227 1 PTTG1IP 0.179

IKZF2 41 2q34 3.24E-09 4 IKZF2K, ERBB4L ERBB4 = 0.00058 0.2653
RBFOX1 18 16p13.3 1E-45 1 RBFOX1L 0.3041

ZMYND11 52 10p15.3T 0.0000712 4 ZMYND11E 0.3402
17p13.3 64 17p13.3T 0.040814 16 0.3431
PARK2 4 6q26 5.85E-137 1 PARK2L,K 0.4359
PDE4D 3 5q11.2 2.02E-143 3 PDE4DL 0.4561
22q11.1 62 22q11.1T 0.020332 15 0.7488
WWOX 10 16q23.1 8.14E-76 1 WWOXL WWOX = 0.092 0.8334
SMYD3 68 1q44 0.15417 8 SMYD3E 0.8334
1p36.23 7 1p36.23 1.23E-93 8 0.8611

FAT1 21 4q35.2 6.81E-36 1 FAT1K FAT1 = 2.4e-15 0.8869
CNTN4 42 3p26.3T 6.44E-09 3 CNTN4L 0.8869
8p11.21 69 8p11.21 0.17382 4 0.8869
NEGR1 47 1p31.1 0.000000725 2 NEGR1L 0.9142
6p25.3 29 6p25.3 3.01E-17 2 0.9275
ARID1A 8 1p36.11 5.74E-87 2 ARID1AK ARID1A = 1.5e-14 0.9326

FAM190A 12 4q22.1 9.26E-75 1 FAM190AL 0.9326
MPHOSPH8 22 13q12.11T 2.57E-31 10 MPHOSPH8E 0.9326

LRP1B 5 2q22.1 4.25E-107 1 LRP1BL 0.9604
LINC00290 16 4q34.3 1.21E-55 1 LINC00290 0.9604

PRKG1 53 10q11.23 0.0000979 3 PRKG1L 0.9604
AGBL4 55 1p33 0.000219 2 AGBL4L 0.9604
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10 most significant regions including RB1, CDKN2A, NF1, PTEN, and BRCA1 (Table 

5). This enrichment was not observed for significant regions containing large genes 

(p=0.94). PPP2R2A, whose deletion was found to correlate with WGD above, was the 

second most significant region with respect to early LOH (FDR p-value 9x10-14). The 

sixth most significant peak in this analysis (FDR p-value = 5x10-4) contains 4 genes, 

including Max-gene associated protein (MGA), which is also significantly mutated 

across the same dataset.  

 

Discussion 

Significant regions of SCNA in the Pancancer dataset 

Using current significance techniques, correcting for sample purity and ploidy, we 

found 140 significant regions in the Pan-Cancer analysis, only 35 of which contained 

known amplified oncogenes or tumor suppressor genes.  As mentioned above, some of 

the remaining regions may be false positive SCNAs and some of the remaining regions 

may recur because these regions are subject to relatively small amounts of negative 

selection or due to mechanistic biases favoring the generation of SCNAs in these 

regions.  Indeed, we found that SCNAs involving large genes (potentially less negative 

selection) or significant regions near telomeres (mechanistic bias) often did not 

anticorrelate with any other genetic events, suggesting the genes in these regions may 

have limited functional roles in oncogenesis.  However, it remains likely that many 

additional oncogenes and tumor suppressor genes are within these regions. Moreover, 

these 140 regions and the additional 229 peak regions identified in the lineage-specific 

analyses are likely to compose a subset of the regions that are significantly altered in 
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cancer.  Analyses of other cancer types have identified additional peak regions, and the 

limited resolution of the array platform may have obscured detection of some SCNAs. 

Varying levels of genomic disruption across cancers are likely to engender 

biases in analyses of correlations not only between SCNAs, but also between SCNAs 

and other features of these cancers.  For example, increased genomic disruption has 

been associated with poor prognosis in multiple cancer types253.  Poor prognosis is 

therefore likely to be associated with increased rates of SCNA across much of the 

genome.  Controlling for this tendency is required to correctly identify SCNAs that are 

functionally associated with progression.  It will also be important to account for other 

possible confounders, such as mechanistically linked events (e.g. chromothripsis or 

SCNAs that encompass multiple peak regions). Unlike other analysis, our method 

controls for the background rate of SCNAs in each sample and does not depend on 

previous determination of significant regions or genes, which should increase the 

stability of our results202,261.  

WGD frequency and timing.  

Besides TP53, we found four genetic events that correlated with WGD. The exact 

role of WGD in cancer progression, as either a driver event or a frequent consequence 

of an unstable genome, is still poorly understood, but these correlates may provide 

clues as to potential causes of WGD. The PPP complex role in tumor suppression has 

been suggested previously, and having two components in the 5 genes the correlate 

with WGD suggests its role in guiding and stabilizing mitosis may explain how loss of 

function can lead to tumor formation. 
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 While SCNAs on many tumor suppressors tended to anti-correlate with WGD, 

using the timing of SCNAs in relation to the WGD event could be a useful tool in 

identifying significant regions likely involved early in tumor development. Using the 

WGD to temporally sequence events in this manner could be incorporated in specific 

significance analyses, with earlier events providing more evidence of a “tumor initiator” 

role for a given alteration. We found that events on well-studied TSG genes frequently 

occurred early in cancer development compared to other genes, whereas many regions 

whose significance may be due to mechanism where not temporally biased. This 

analysis identified a couple peaks that exhibited patterns more closely associated with 

known tumor suppressors, suggesting a potential role in tumor formation.  
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Chapter 4: The discovery of non-driver cancer dependencies 

using high-throughput shRNA pooled screens. 

Section goals 
 

 While finding specific vulnerabilities of primary tumors through identifying the 

drivers of cancer evolution has been remarkably successful, comprehensive, 

personalized medicine may require a more inclusive approach to identifying therapeutic 

targets. Most cancer malignancies are thought to be the result of a small handful of 

driver alterations that together overcome the many barriers to unrestrained growth. 

Focusing therapies only on driver alterations may mean that, for each patient, we will 

have a small handful of opportunities to find specific vulnerabilities that are a direct 

response of these driver alterations. Many driver alterations, such as amplifications of 

transcription factor or inactivation of tumor suppressor genes, have proven refractory to 

current techniques of small molecule inhibition, raising the possibility that some cancers 

will not have driver alterations that expose tractable therapeutic targets.  Expanding the 

universe of potential therapeutic targets is therefore a worthwhile endeavor. The goal of 

this section was to discover vulnerabilities predicted by passenger alterations by 

integrating an RNAi pooled screen across many cell lines with genome-wide SNP6.0 

array SCNA data to determine if partial copy-number loss of specific genes renders 

cells highly dependent on the remaining copy. We identified a class of genes that render 

cells that harbor copy-number loss highly dependent on the expression of the remaining 

copy. These were enriched for cell essential genes, most predominantly components of 

the proteasome, spliceosome, and ribosome. 
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Methods 
 
Copy-number and High Methylation analysis of Tumor Samples 

Copy-numbers were determined for 3,131 cancer samples using Affymetrix 250K 

SNP array data as previously described311. Marker and gene locations were based on 

the hg18 genome build. We considered markers with relative log2 copy number ratios 

less than -0.1 to be affected by partial copy number loss, and markers less than -1.28 

as homozygous deletions26. Copy-number profiles, and the locations, lengths, and 

amplitudes of the amplification and deletion events underlying these profiles, were 

determined as previously described311. We determined the significance of depletion of 

homozygous deletions among candidate CYCLOPS genes by comparing observed 

rates of homozygous deletion to the distribution of rates after permutation of gene 

names. DNA methylation state Beta-values were collected for 601 ovarian tumors from 

the TCGA web portal. Gene level Beta values > 0.7 were considered high DNA 

methylation.  

 

Copy number analysis of cancer cell lines from CCLE 

For each sample, we created a 100 bin histogram of copy number values for all 

markers, and then used a 5-bin moving average to smooth this distribution. This 

procedure typically yielded 2-5 well-separated peaks (local maxima with height as 

measured from local max to surrounding local minima >2% of genome), presumably 

corresponding to integer level copy loss and gains. Based on these peaks, samples 

were separated into one of two categories for classification. If a sample contained one 

peak between log2 copy number -0.05 and 0.05, with a second peak between -0.05 and 
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-0.4, the first peak was defined as copy neutral, and the second peak as partial copy 

loss. In this case, the cutoff for copy loss was set at 95% upper bound of the second 

peak, and the cutoff for copy neutral was set at 95% lower bound of the first peak. If 

there were no peak that met our height criteria within these regions in a given sample, 

markers <-0.4 were considered copy loss while markers >-0.2 were considered copy 

neutral. In either case, markers that lay between our two cutoffs were left uncalled and 

genes with these copy numbers were excluded from further analysis. Markers with log2 

copy number ratios ≤ -1.28 were considered homozygous loss and genes with these 

copy numbers were also removed from further analyses.  We used the Kolmogorov-

Smirnov test to determine enrichment of the CYCLOPs genes identified in our original 

analysis among the most significant genes in our analysis of the Validation dataset. 

 

Analysis of copy number and expression correlations 

Quantized normalized expression data was obtained from the CCLE 

(www.broadinstitute.org/ccle) and TCGA (https://tcga-data.nci.nih.gov/tcga/ ) portals. 

Enrichment of Pearson correlation coefficients among CYCLOPS candidates and 

pathways was determined by permuting gene names. A similar analysis was used to 

determine significance of correlation between Bortezomib logIC50 data for 133 cancer 

cell lines collected from Sanger center Cancer Genome Project 

(http://www.sanger.ac.uk/genetics/CGP/) portal and the expression patterns for these 

lines from the CCLE (www.broadinstitute.org/ccle).   

 

CYCLOPS analysis 
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For each cell line, we classified each gene as intact (no copy-number loss), 

partial loss, or to be excluded (for genes undergoing homozygous loss or with 

ambiguous data) based on thresholds determined using the distribution of relative copy-

numbers generated from analysis of SNP array data for that cell line. Gene dependency 

scores were determined using the ATARiS algorithm253. The statistical significance of 

the difference in mean gene dependency scores between “intact” and “partial loss” cell 

lines was determined by comparing the observed data to data representing 50,000 

random permutations of class labels, each maintaining the number of cell lines and 

lineage distribution in each class. Multiple hypotheses were corrected using the FDR 

framework. 

 
Author contributions:  

The author was responsible for the data curation, quality control, and analysis, 

with advice from Deepak Nijhawan, William Hahn and Rameen Beroukhim.  

 

Results 
By analyzing copy-number profiles from 3,131 cancers across a wide diversity of 

cancer types26, we found that most cancers exhibit relative copy-number loss affecting 

at least 11% of the genome and that many cancers exhibit much more extensive loss of 

genetic material (Fig. 10a). Here we note that the phenotypic effects of SCNA may be 

dosage dependent, such that a single gain or loss may represent a larger deviation from 

“balance” in a diploid cell (2n) than cells with higher ploidy. With this in mind, we used 

data with DNA intensity normalized to the total DNA content of the sample. Much of this 

widespread genomic disruption is due to copy-number alterations involving whole 

chromosomes or chromosome arms, presumably due to mechanisms that favor the 
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Figure 10- Characteristics of genomic loss in cancer: 
(a) The percentage of the cancer genome involved in 
copy-number loss. (b) The fraction of deleted regions 
associated with deletion events of varying lengths. (c) 
Frequency of copy number loss across the genome 
among 3,131 cancers. The total frequency (purple, left 
panel) and frequencies due to focal (blue) and arm-level 
(teal) events (right panel) are shown. (d) Biallelic 
inactivation of a tumor suppressor is often associated with 
a focal alteration of one copy (red bar) and hemizygous 
loss of all genes on the chromosome arm containing the 
other copy. (e) Number of genes affected by copy loss 
events that include prominent tumor suppressor genes. 
For each sample where the indicated tumor suppressor 
gene underwent copy number loss, we calculated the 
number of genes affected by the largest copy loss event 
affecting that gene. The results are plotted as a 
histogram. 

95



generation of such large events (Fig. 10b). As a consequence, most genes undergo 

copy-number loss in a substantial fraction of cancers (average 16.2, range 3.7-40.2%; 

Fig. 10c). A subset of the genes affected by recurrent copy-number alterations 

contribute to cancer development as tumor suppressor genes; however, a substantial 

fraction of these genes are recurrently lost due to passenger events or because of their 

proximity to a frequently deleted tumor suppressor gene (Fig. 10d-e). We hypothesized 

that for a subset of non-driver genes, hemizygous loss may be tolerated and frequent 

but complete loss would lead to cell death. In some of these cases, hemizygous loss 

might lead to sensitivity to further inhibition of the gene relative to cells that harbor two 

copies of these genes. 

To identify genes whose loss correlated with a greater sensitivity to further gene 

suppression, we integrated gene dependencies and copy-number data from 86 cancer 

cell lines (Table 6) in Project Achilles, described above. Out of the 111 lines available in 

the Achilles dataset, 101 of the barcode arrays passed internal quality control, and 86 of 

those also contained Affymetrix SNP 6.0 array data from the Cancer Cell Line 

Encyclopedia (CCLE) 233,312. For 7,250 of these genes, the Ataris algorithm253 

determined there were multiple shRNAs that had comparable effects across cell lines, 

suggesting their effects were due to suppression of the intended target and used these 

shRNAs to construct composite “gene dependency scores”. For each gene, we first 

classified each cell line by whether or not it had copy-number loss in that gene and then 

calculated the mean gene dependency score among cell lines in each class. We then 

determined the difference in mean scores between the copy-loss and copy-neutral 

classes and rated the significance of this difference by permuting class labels (Fig. 11). 
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Table 6-Cell Lines used in Achilles CYCLOPS analysis

Cell line Tissue of Origin Cell line Tissue of Origin
786O kidney HEC1A endometrium
A2780 ovary COLO741 skin
OVCAR4 ovary KYSE510 esophagus
L33 pancreas LS411N large intestine
HS944T skin KYSE150 esophagus
CAOV3 ovary KYSE450 esophagus
HT29 large intestine LOVO large intestine
NCIH1975 lung KYSE30 esophagus
A549 lung AGS stomach
NCIH196 lung U251MG cns
PANC0327 pancreas MIAPACA2 pancreas
IGROV1 ovary NCIH2122 lung
OVCAR8 ovary KMS12BM leukemia
TOV21G ovary OV90 ovary
KM12 large intestine NCIH2171 lung
OE33 esophagus DLD1 large intestine
MDAMB453 breast HL60 leukemia
HLF liver HEYA8 ovary
SJSA1 bone TYKNU ovary
LS513 large intestine EFO21 ovary
HCC827 lung RMGI ovary
COV362 ovary BXPC3 pancreas
NCIH661 lung EFO27 ovary
CFPAC1 pancreas ASPC1 pancreas
HPAC pancreas RT112 urinary tract
SKCO1 large intestine A2058 skin
NCIH82 lung KURAMOCHI ovary
OVISE ovary SW480 large intestine
OVMANA ovary IGR39 skin
NCIH1650 lung CAOV4 ovary
NIHOVCAR3 ovary COLO205 large intestine
KP4 pancreas C2BBE1 large intestine
HUG1N stomach SNUC1 large intestine
TE9 esophagus SNUC2A large intestine
COV504 ovary PANC0813 pancreas
HCC70 breast RKO large intestine
NCIH508 large intestine SU8686 pancreas
TE15 esophagus GP2D large intestine
A204 soft tissue SW48 large intestine
QGP1 pancreas COV434 ovary
TT esophagus HUTU80 small intestine
JHOC5 ovary LN229 cns
SNU840 ovary RKN ovary
CAOV4 ovary
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Figure 11- Analysis to find cancer 
vulnerabilities predicted by partial loss: 
Schematic describing the approach to identifying 
CYCLOPS genes. For each gene, we separated 
cell lines with and without loss of the gene and 
compared their dependency on that gene by 
permuting class labels. 

Table 7 - Top Genes from CYCLOPS analysis

CYCLOPS Analysis of 5312 genes (6085 Gene Dependence Solutions)
Gene cyto band # of loss lines # of neutral lines p value

PSMC2 7q22.1 11 73 0.00002
EIF2B2 14q24.3 17 68 0.00002
EEF2 19p13.3 35 48 0.00002

PHF5A 22q13.2 24 62 0.00002
HPGD 4q34.1 34 48 0.00004
RPS15 19p13.3 33 50 0.00004
SNRPB 20p13 10 74 0.00004
POLR2F 22q13.1 22 63 0.00004
USPL1 13q12.3 27 58 0.00008
SMC2 9q31.1 19 67 0.00012
SMU1 9p13.3 27 57 0.00014
PUF60 8q24.3 10 75 0.00016
RPS11 19q13.33 16 70 0.0002
POLG 15q26.1 18 67 0.00022

ZNF583 19q13.43 12 74 0.00022
CPT1B 22q13.31 23 61 0.00022
BMP8A 1p34.2 9 77 0.00024

TIE1 1p34.2 7 78 0.00028
SF3A2 19p13.3 34 49 0.00028

SNRNP70 19q13.33 17 69 0.0003
RBM17 10p15.1 21 60 0.00032
PCNA 20p12.3 10 73 0.00032

PSMA4 15q25.1 20 64 0.00036
LSM4 19p13.11 21 62 0.00036

EEF1A1 6q13 20 66 0.00048
FBXO6 1p36.22 13 73 0.00052
ASCL3 11p15.4 30 53 0.00056

PGF 14q24.3 17 68 0.00056
ETV2 19q13.12 12 74 0.00056

PAFAH1B1 17p13.3 31 55 0.00068
UBA52 19p13.11 20 63 0.00068
OBP2A 9q34.3 11 74 0.00074

PABPN1 14q11.2 18 67 0.00076
NUPL1 13q12.13 29 55 0.00078
CEBPG 19q13.11 14 72 0.00082
PSMC4 19q13.2 10 75 0.0009
PARK7 1p36.23 15 71 0.00096
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To minimize the confounding effect of lineage, all permutations maintained the initial 

lineage distribution within each class. We also restricted these analyses to the 5,312 

genes for which each class contained at least seven cell lines. We identified 56 

candidate genes with False Discovery Rate (FDR)192 p-values less than 0.25 (Table 7) 

and named them “CYCLOPS” genes (Copy-number alterations Yielding Cancer 

Liabilities Owing to Partial losS).  

Recently, RNAi pooled screens have come under fire for the discordance 

between individual experiments, as well as potential domination of signal from off-target 

effects relating to miRNA313. To assess how much of our CYCLOPS signal could be 

attributed to on-target activity, we looked to see how the correlation between a gene’s 

dependency score and copy number compared to correlations with copy number of 

other genes. We found significantly more genes with positive correlation between copy 

number and dependency score than when we performed the same test with scrambled 

gene labels (Pearson’s correlation, 71 observed genes with FDR p<0.25, scrambled set 

mean = 1.42, sd = 1.91, p<0.0001) This suggests the correlation between copy number 

and gene dependency we observe is unlikely to be observed by chance, if, for example, 

our data was driven solely by off-target effects. In addition, we validated the CYCLOPS 

vulnerabilities using an alternative RNAi dataset (shRNA Activity Rank Profile, or 

shARP)312 representing consequences of expressing 78,432 shRNAs targeting 16,056 

genes on the proliferation of 72 breast, ovarian, or pancreatic cancer cell lines. We 

applied the same analysis pipeline, constrained to the “Validation Set” of 47 cell lines for 

which we had copy-number data and the 6,574 genes for which at least seven cell lines 

were in each class (copy-loss and copy-neutral). These genes included 3,282 of the 
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genes that underwent full analysis in the Achilles dataset and 40 of the CYCLOPS 

candidates identified in that analysis. Although the lineage distribution was markedly 

different between the Validation and Achilles datasets (breast and pancreatic cancers 

made up 90% of the cell lines in the Validation set but only 15% in Project Achilles), the 

40 CYCLOPS candidates identified in the Achilles analysis tended also to be highly 

enriched for relative sensitivity after partial loss in the shARP analysis (KS statistic, 

p=2x10-9).  

   

Features of CYCLOPS genes 

In copy-number analyses collected from 3,131 tumor samples and cancer cell 

lines314, each CYCLOPS candidate was found to undergo hemizygous loss in an 

average of 18.5% of samples (range 8%-33%), which was as common as for the other 

5,256 genes in the analysis (average 17.7%, range 4%-34%; two tail p=0.17). In 

contrast, CYCLOPS genes exhibited much lower rates of homozygous deletion (p=0.02) 

and DNA methylation (p=0.0045) (Fig. 12a). This observation suggested that CYCLOPS 

genes are enriched for genes required for cell proliferation or survival. Indeed, we used 

the set of genes found to be essential in S. cerevisiae315 to identify 1,336 homologous 

human genes and found that CYCLOPS genes are not only highly enriched (p<0.0001) 

in this group of essential genes but show comparable rates of genetic and epigenetic 

alterations (Table 8).  
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Figure 12- Characteristics of CYCLOPS genes: 
(a) Frequency of hemizygous deletion, homozygous 
deletion, or DNA methylation of CYCLOPS and other 
genes. Data are presented as averages ± S.E.M. (b) 
Strength of correlation between copy number and 
mRNA expression level across genes profiled in the 
CCLE and TCGA ovarian cancer datasets. Results 
represent Pearson correlation coefficients between 
log2 copy number levels and quantile normalized 
mRNA levels for 16,767 genes across 806 cell lines 
in the CCLE (Barretina et al., 2012) and 11,119 
genes across 429 ovarian tumors from the TCGA 
(Bell et al., 2011). (c) Strength correlation between 
copy number and expression in genes categorized 
by their expression across multiple tissues. Genes 
were separated into two categories based on 
expression patterns in 6 immortalized cell lines, as 
determined by RNA-seq. Genes with RPKM vales 
were greater than 0.1 for all samples were 
considered “ubiquitously expressed” (blue) versus all 
other genes assayed were (red).  
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Table 8 - rates of loss in essential genes  
Copy Number and Methylation Frequencies for Essential Genes 
Essential Genes Analyzed (n=1277)  
Control set (n=20,597)   
 Essential Control 
Homozygous Deletion 
Frequency 

0.0077% +/- 
.00168% 0.015798% +/- 0.00122% 

Partial Genomic Loss 
Frequency 15.63% +/- 0.19% 15.74% +/- 0.04765% 
   
   
Essential Genes Analyzed (n=963)  
Control set (n=18800)   
Hypermethylation 5.59% +/- 0.64% 11.96% +/- 0.2% 

 

A pathway enrichment analysis of CYCLOPS candidates showed the 

spliceosome, proteasome, and ribosome were the most highly enriched pathways (KS 

statistic FDR p = 1.4x10-8, 2.7x10-5, and 1.8x10-4 respectively, Table 9, Methods). 

These pathways were 

also the most 

significantly enriched 

in our analysis of the 

Validation set (spliceosome FDR=3.1x10-15; proteasome FDR=1.5x10-12; ribosome 

FDR=2.3x10-17). Taken together, these observations indicate that CYCLOPS genes are 

a unique subset of cell essential genes for which partial but not complete suppression is 

compatible with cancer cell viability. 

These observations lead us to hypothesize that copy-number loss might unveil 

vulnerabilities in CYCLOPS genes through decreased gene expression. We therefore 

evaluated the relation between copy-number loss and expression using integrated SNP 

Table 9 - KEGG pathway enrichment among CYCLOPS 
candidates 

KEGG pathway FDR value # of CYCLOPS genes 
Spliceosome 1.40E-08 9 
Proteasome 2.70E-05 3 
Ribosome 1.80E-04 4 
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and expression data for 16,767 and 11,118 genes respectively in two panels of 

samples: the Cancer Cell Line Encyclopedia (CCLE) of 805 cell lines across 24 cancer 

types316, and 429 ovarian cancers profiled by The Cancer Genome Atlas Project317. In 

consonance with prior reports from other datasets318, the correlation between copy-

number and expression revealed that genes fall into one of two classes: a class in 

which mRNA levels are relatively independent of copy-number (CCLE: modal r = 0.05; 

TCGA: modal r = 0.07), and a second class in which copy-number and gene expression 

are more closely correlated (CCLE: modal r = 0.49; TCGA: modal r = 0.61; Fig. 12b). 

We found that CYCLOPS candidates were enriched in the latter class (CCLE p = 

0.0004; TCGA p = 0.04), and indeed the average strength of correlation between copy 

loss and mRNA expression was significantly higher for CYCLOPS candidates than for 

the other genes in our analysis (CCLE r = 0.39 vs 0.26, p < 0.0001; TCGA, r = 0.44 vs 

0.34, p = 0.0017). Notably, amongst all 158 KEGG pathways, the three pathways most 

enriched in CYCLOPS candidates also have significant correlations between copy-

number and expression: spliceosome (CCLE r = 0.46, FDR=2.2x10-5; TCGA r = 0.56, 

FDR = 3.9 x 10-5), proteasome (CCLE r= 0.52, FDR= 2.2x10-5; TCGA r= 0.60, FDR= 3.9 

x 10-5) and ribosome (CCLE r=0.44, FDR=2.2x10-5; TCGA r=0.47, FDR=1.1x10-4).  

This bimodal distribution of associations between copy-number and expression 

appears to reflect two classes of genes: those that are ubiquitously expressed, and 

those that are selectively expressed.  We used RNA-seq data from 7 cell lines across 

multiple lineages (GM12878 Lymphoblasts, K562 AML,H1HESC human embryonic 

stem cells, HSMM_human skeletal muscle, HUVEC human vascular epithelium, HMEC 

breast normal, HCC1954 breast cancer) and classified genes as either being 
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ubiquitously expressed (RPKM >0.1 for all cell lines) our selectively expressed (RPKM 

for at least one cell line). We favored RNA sequencing over array based expression 

platforms because the former are more reliable for comparisons across genes319. The 

ubiquitous vs. selective expression classification is strongly associated with the bimodal 

distribution we observe in correlation between copy number and expression in the 

CCLE (t-test p=0; Fig. 12c).  These observations indicate that mRNA expression of 

essential and ubiquitously expressed genes, and CYCLOPS genes in particular, is 

reduced as a result of copy loss. 

 

Discussion 
Discovery of new vulnerabilities due to genomic disruption in cancer 

Advances in cancer therapeutics benefit from our ability to identify vulnerabilities 

predicted by genomic features that are unique to cancer cells. Indeed, the inhibition of 

recurrent activating mutations in proto-oncogenes has led to several new cancer 

treatments. The cancer-specific vulnerabilities we have identified herein are the 

consequence of alterations in genes affected by genomic disruption that may have no 

consequences to the process by which the cell transformed or continues to proliferate. 

These genomic alterations are more frequent than most known driver alterations, occur 

across lineages, and could theoretically be targeted in a large number of patients. 

CYCLOPS genes as synthetic lethal targets 

CYCLOPS genes represent a specific form of synthetic lethality. Several studies 

have investigated synthetic lethality with activation of pathways that drive cancer but 

that cannot themselves be easily targeted. For example, synthetic lethality is one 

approach to targeting inactivated tumor suppressor genes, whose functions cannot 
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easily be reconstituted. This approach has had success in breast and ovarian cancers 

that have BRCA1 or BRCA2 loss, and as a result lack the homologous recombination 

DNA repair pathway, making them exclusively depend on the nucleotide excision DNA 

repair pathway (Bryant, 2005; Farmer, 2005). Targeting CYCLOPS genes represents a 

different approach to synthetic lethality, in which the intervention is synthetic lethal with 

a genetic event independent of the effects that event has on the pathways that drive 

cancer. 

Cancer heterogeneity, evolution, and passenger alterations. 

One concern raised with targeting passenger alterations is the emergence of 

resistant clones and their implications on long-term therapeutic efficacy. Unlike driver 

alterations, cancers are not dependent on the specific alteration for tumor maintenance, 

but instead are vulnerable based on their specific evolutionary trajectory. One may 

imagine that overcoming this vulnerability would be easier than finding new ways to 

replicate the function of targeted driver alterations. While this assumption is reasonable, 

it is still worthwhile to pursue expansion of therapies to non-driver targets. 
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Chapter 5: The proteasome and PSMC2 as a Cyclops target 

Section goals 

Having isolated a set of potential cancer vulnerabilities predicted by partial loss in 

a panel of cancer cell lines, the goal of this section was to determine the mechanism of 

vulnerability for one of these candidates.  We chose PSMC2 for two reasons. First, it 

was the highest-ranked CYCLOPS candidate in our original analysis, and was also 

significant in the validation RNAi screen320.  Second, it is a member of the proteasome, 

whose components were more generally enriched among CYCLOPS genes, and which 

already serves as a therapeutic target in cancer.  

The proteasome is the primary complex responsible for protein degradation. 

Proteins are constantly being produced and degraded in living cells321, and much of the 

early work on protein degradation elucidated energy independent enzymes such as 

trypsin and other proteases. However, experiments using labeled amino acids in the 

1950s discovered that the majority of amino acids released from organ-derived samples 

was inhibited under anaerobic conditions and cyanide addition, suggesting that this was 

an energy dependent process322. While it was understood that protein turnover is a 

constant process, Goldberg discovered that puromycin-induced early termination of 

polypeptides led to their being more rapidly degradation323, suggesting that protein 

folding can affect in vivo stability324.  The proteasome was the primary organelle 

involved in this process, and was found to be an ATP-dependent protease325 

responsible for both mis-folded protein degradation326 and regulation of active protein 

levels through programmed degradation. This is directed by covalently linking targeted 
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proteins with a small, repeat peptide named ubiquitin, a process whose elucidation was 

awarded the Nobel prize327,328.    

The term “proteasome” applies to a set of similar, large (over 2.5 megadaltons) 

complexes all involved in protein degradation. The 28 proteins in common to all 

proteasome assemblies are collectively referred to as the 20S proteasome, to which 

multiple independent regulatory complexes may be attached, each imparting different 

functionality329. Production of this large and intricate machine takes place in a highly 

coordinated and reproducible procedure, with the construction and attachment of each 

subcomplex occurring in a precise order330‐333. Additionally, because individual proteins 

non-functional in isolation, and are required in specific stoichiometric amounts during 

complex formation, most of the subunits are under tight transcriptional control through a 

negative feedback loop involving a single transcription factor334‐337. While this 

coordination is presumably efficient in regulating levels of proteasome in response to 

cellular requirement, it may make it more challenging for the cell to respond to 

deficiency in a single subunit of the complex, such as that generated by genetic loss in 

cancer. 

The 19S proteasome is the most abundant subassembly to co-complex with the 

20S proteasome, forming the 26S proteasome, which is the fundamental complex 

responsible for ubiquitin mediated protein degradation338.  PSMC2 is a ATPase subunit 

of the 19S complex that catalyzes the unfolding and translocation of substrates into the 

20S proteasome330.   

Direct inhibition of the proteasome is a vulnerability in multiple myeloma due to 

the specific cellular requirements of these cells. Multiple myeloma is a malignancy 
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derived from plasma cells and their aberrant production of a large amount of 

immunoglobulin may lead to heavy reliance on the unfolded protein response (UPR) 

system339‐341.  Even though proteasome function is necessary for eukaryotic cellular 

survival, proteasome inhibitors, which block the UPR pathway and lead to apoptosis, 

were found to be well-tolerated in clinical trials342 and bortezomib is now considered a 

first-line therapy for multiple myeloma343. The clinical success of bortezomib, which 

targets an essential cellular component, opens the doors for other therapies that look for 

a therapeutic window between cancer and normal cells, even in pan-essential 

pathways.  

Methods 
Cell Culture 

Cancer cell lines were obtained from the Cancer Cell Line Encyclopedia. The 

generation of immortalized ovarian surface epithelial cells was previously described344. 

TYKNU and HEYA8 were cultured in DMEM supplemented with 10% Fetal bovine 

serum and 2mM L-Glutamine and all the remaining cell lines were cultured in RPMI 

1640 supplemented with 10% Fetal bovine serum.  

Lentiviral production  

Lentiviruses were produced for expression constructs or shRNA constructs in 

293T cells cultured in DMEM with 10% FBS supplemented with 4 mM L-Glutamine 

using the three-vector system as described344. The virus was diluted (1:10) and added 

to 2 x 105 cells in a 6 well plate containing 8 µg/ml of polybrene (Sigma). Plates were 

centrifuged for 15 min, 1126 X g at room temperature. For selection of virally infected 

cells 24 h post infection 2 µg/ml of Puromycin (LKO.1) or 10 µg/ml of Blasticidin 
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(LEX303) was added.  Where applicable, lysate was collected and protein levels were 

analyzed 5 d after infection.    

Competition Assays using shRNA constructs 

We found that a single lentiviral integrant expressing either shRNA-1 or shRNA-3 

was sufficient to suppress PSMC2 levels in PSMC2Neutral cells relative to cells that 

express shLacZ (Fig. 13c); competition assays were therefore performed at a 

multiplicity of infection of 1. To perform competition assays, PSMC2 shRNA-3, PSMC2 

shRNA-4, and PSMC2 shLacZ in pLKO.1 were modified by inserting GFP into the 

puromycin cassette (BamHI/Kpn1) to yield pLKO GFP constructs that expressed these 

shRNAs. Cells were infected with lentivirus that contained the indicated shRNA in 

pLKO.1 GFP and treated for 24 h with three fold dilutions of virus according to protocols 

for lentiviral infection. At 48 h, the cells were analyzed using a BD LSR II flow cytometry 

system (BD Biosciences) for GFP+ cells. The well in which the viral titer resulted in 

approximately 50% of GFP+ cells was then cultured for 21 d. Using FACS, we analyzed 

these cell populations for GFP+ cells on days 7, 14, and 21 and recorded the 

percentage of GFP+ cells normalized to the day 0 time point. 

PSMC2 shRNA inducible system 

The following sense-antisense oligonucleotides (IDT) were annealed and then 

cloned into Tet-pLKO-neo (Addgene #21916) (AgeI/EcoRI).  
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Plasmid sequences were confirmed by sequencing. Lentivirus generated using 

these constructs was used to infect either OVCAR8 or A2780 cells. Stably infected cells 

were selected with Geneticin (500 ug/ml) (Sigma). Cells were treated with 100 ng/ml of 

doxycycline unless otherwise indicated (Sigma).  Beginning 4 d after the addition of 

doxycycline, OVCAR8 cells begin to die.  Therefore, to assess the level of PSMC2 

suppression in OVCAR8 cells, we collected cells 3 d after the addition of doxycycline.  

Since the proliferation and viability of A2780 cells, in contrast, are not affected by the 

addition of doxycycline, we collected cells 4 d after the addition of doxycycline at which 

point PSMC2 levels had achieved a new steady state.  All proliferation or viability 

studies on both cell lines were conducted 7 d after the addition of doxycycline.  Lysates 

from cells using this system were made in Buffer A for all immunoblots except for 

Ubiquitin immunoblots, which were made in Buffer B.  

Ectopic V5-PSMC2 expression 

PSMC2 was engineered with a V5 sequence at the N terminus and cloned into 

pLEX303. To minimize a second translation initiation site that used the endogenous 

ATG, we amplified PSMC2 using a 5’ primer that contained a sequence that would code 

for the V5 epitope and also mutated the endogenous methionine to a threonine. The 

sequence of the exogenous construct added the following amino acids to the N-

shRNA Sense Antisense 

PSMC2 
shRNA-2 

5’CCGGGCCAGGGAGATTGGATAGAAACTC
GAGTTTCTATCCAATCTCCCTGGCTTTTTG 

5’AATTCAAAAAGCCAGGGAGATTGGATAGAAA
CTCGAGTTTCTATCCAATCTCCCTGGC 

PSMC2 
shRNA-3 

5’CCGGGCCTGCCTTATCTTCTTTGATCTCG
AGATCAAAGAAGATAAGGCAGGCTTTTTG 

5’AATTCAAAAAGCCTGCCTTATCTTCTTTGATCT
CGAGATCAAAGAAGATAAGGCAGGC 

PSMC2 
shLacZ 

5’CCGGTGTTCGCATTATCCGAACCATCTC
GAGATGGTTCGGATAATGCGAACATTTTTG 

5’AATTCAAAAATGTTCGCATTATCCGAACCATC
TCGAGATGGTTCGGATAATGCGAACA 
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terminus (MGKPIPNPLLGLDST) where the final T (Threonine) is in place of the 

endogenous methionine. No modifications were made to the C-terminus. OVCAR8 or 

IOSE cells were serially infected with lentivirus containing either pLEX303 GFP 

(obtained from the TRC) or pLEX303 V5-PSMC2.  Repeat infections were performed 

with respective constructs until the expression of ectopic V5-PSMC2 (as measured by 

western blot) was comparable to the endogenous protein. OVCAR8 cells that expressed 

either V5-PSMC2 or GFP were infected with lentivirus that express PSMC2 shRNA-1 or 

PSMC2 shLacZ in pLKO.1. 5 d after infection, the cells were analyzed by immunoblot 

and 7 d after infection, in triplicate the cells were analyzed for total ATP content 

(Promega). Relative ATP content was normalized to the cells infected with shLacZ.   

Finally, cell lines used for orthotopic xenograft tumors were engineered to express firefly 

luciferase. Lentivirus made from vectors containing the luciferase gene (LEX301) and 

obtained from the TRC was used to infect the indicated cell lines.    

Cellular Protein Lysate 

All cells were first harvested and pelleted in cold PBS. All subsequent procedures 

were performed at 4°C.  For lysate generated in “Buffer A”, the cell pellet was 

resuspended in 10% Glycerol, 25mM Hepes pH 7.4, 10mM MgCl2, 1mM ATP, 1mM 

DTT, and phosphatase and protease inhibitors without EDTA (Roche). Sonication was 

performed at low intensity using a micro-tip on ice for 1 min (50% cycle). The resulting 

cell mixture was centrifuged at 13000 X g for 15 min at 4°C. The supernatant was 

collected and centrifuged at 100,000 X g for 60 min. The subsequent supernatant was 

collected and used in future studies as lysate. Protein amount was normalized using the 

Bradford reagent (Bio-Rad). For lysate generated in “Buffer B”, the cell pellet was 
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resuspended in 20 mM Tris-HCL pH 7.5, 150mM NaCl, 10% Glycerol, 1% Triton-X, 0.2 

mM DTT, 250 ug/ml NEM supplemented with protease inhibitors (Roche) and 

Phosphatase Inhibitors (PhosStop -Roche).  Samples were incubated for 15 min and 

supernatants were collected after centrifugation at 15,000 X g. Finally, for lysate 

generated in “RIPA”, the cell pellet was resuspended in 1X RIPA buffer (Boston 

Bioproducts) that was supplemented with protease inhibitors with EDTA (Roche) for 15 

min.  The supernatant was collected after centrifugation at 15,000 X g for 15 min. 

Protein lysates made in RIPA or Buffer B were normalized with THERMO BCA 

normalization kit (Bio-Rad), using a BSA standard curve.   Lysate analysis of 26S 

proteasome components across ovarian cancer cell lines and PSMC2 levels following 

shRNA expression were generated in RIPA buffer.  For all experiments that involved 

native analysis of the proteasome, lysate was made in Buffer A and then analyzed 

either in non-denaturing or denaturating (SDS loading buffer) conditions.  

Purification of ComplexPSMC2 and the 26S proteasome 

Continuous glycerol gradients (from 10%-40%) were made in 25mM Hepes pH 

7.4, 10mM MgCl2, 1mM ATP, 1mM DTT. 18 mg of lysate (Buffer A) was loaded at the 

top of a 14 ml gradient and centrifuged for 20 hours at 195,000 x g. Fractions were 

removed from top of each gradient in 1 ml increments. Native PAGE described above 

was used to determine which fractions contained Band A or 26S proteasome and the 

indicated pooled fractions were then pooled and incubated with Anti-V5 agarose 

conjugates. Immunoprecipitates were eluted and analyzed by immunoblot.  

26S proteasome activity  
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In vitro, we measured excitation-emission spectra (360 nm to 430 nm) during 

incubation at 37°C every 30 sec for 1 h for a 100 μl solution containing 5 μl of lysate 

(Buffer A) in 50mM Tris-HCl pH 8.0, 40mM KCl, 5mM MgCl2, 1mM ATP, 1mM DTT, and 

100μM Sucrose-LLVY-AMC (Bachem). We converted these measurements to amount 

of peptide cleavage using a standard curve generated from the excitation-emission 

spectra of AMC (Bachem). Samples were tested in triplicate with and without the 

addition of 1 μM bortezomib. The average value of peptide cleavage in the bortezomib 

sample was subtracted to determine 26S proteasome activity. 

Native gel analysis for proteasome content or proteasome activity 

10 μg of lysate (Buffer A) was loaded onto 3-8% Tris-Acetate PAGE (Invitrogen) 

and run in Tris-Glycine at 4°C and 60V for 17 h. Gels were transferred to nitrocellulose 

membranes in Tris-Glycine at 70V for 4 h for immunoblotting or in gel peptidase activity. 

The latter was performed by incubating with gentle agitation in 50mM Tris-HCl pH 8.0, 

5mM MgCl2, 1mM ATP, 1mM DTT, and 50μM Suc-LLVY-AMC (Bachem) at 37°C for 30 

min. Gels were visualized under UV transillumination. Following photography of 26S 

proteasome activity, gels were incubated for another 45 minutes at 37°C in the same 

buffer with the addition of 0.2% SDS and re-analyzed by UV transillumination to assess 

20S peptidase activity. 

Immunoprecipitation of ComplexPSMC1/PSMC2 and the 26S proteasome 

Immunoprecipitation was performed by incubating fractions with 50 μl of Anti-V5 

agarose conjugated beads (Sigma) and rotating for 16 h at 4°C. Each wash step began 

with centrifugation at 1000 X g for 3 min, removal of the supernatant, and resuspension 

in 1 ml of buffer A. Three washes were completed and the samples were then incubated 
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in 100 μl of 20 μM V5 peptide (Sigma) in buffer A. Equal volumes were then denatured 

in SDS loading buffer and analyzed by immunoblot.  

PSMC2 mRNA levels determination 

Cells were harvested and pelleted in PBS. RNA was extracted from cell pellets 

and resuspended in Trizol Reagent (Invitrogen) according to manufacturer’s protocol. 

The precipitated total RNA was then resuspended in 0.1 ml of a 1x TurboDNase buffer 

with 2U of DNase (Ambion) and incubated at 37°C for 15 min. RNA was then purified 

using the Qiagen RNEasy kit according to manufacturer’s instructions for “RNA Clean 

Up”. 1 μg of RNA was used to generate cDNA using the M-MLV Reverse Transcriptase 

kit (Invitrogen) according to the recommended protocol. PCR reactions were performed 

in replicates of five using SybR PCR master mix (Applied Biosystems) and Ct values 

were automatically determined using Applied Biosystems 7300 System software. The 

resulting data were normalized to housekeeping genes and analyzed using the delta-

delta Ct method for fold difference between control and test samples. Unless otherwise 

indicated PGK1 was used as an internal control.   Primers used in quantitative RT-PCR 

are as follows:  PGK1 (5’AGAGGGAGCCAAGATTGTCA, 

5’GGTATGCCAGAAGCCACAGT), Tubulin (5’TCTGTTCGCTCAGGTCCTTT, 

5’TGTGTCCTTGCACCCAAATA), and PSMC2 

(5’TCCACCCGGTACAGGCAAGACACT, 5’CGAGCCCCCTCACCGACGTA) 

PSMC2 siRNA experiments in A2780 cells 

5 x 105 cells were plated in 10 cm plates on Day 0. Each plate was transfected 

with a total of 500 pmol of siRNA and 20μL lipofectomine RNAi Max (Invitrogen) using 

the manufacturer’s recommended procedure. Three pre-annealed PSMC2 siRNAs were 
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obtained from IDT DNA and pooled in equimolar ratios:  siRNA-1 (5’-

GCUGUAAAUAAGGUCAUUAAGUCTT, 5’-AAGACUUAAUGACCUUAUUUACAGCUU), siRNA-2 (5’-

AGAUAAUCAAUGCUGAUUCGGAGGA, 5’-UCCUCCGAAUCAGCAUUGAUUAUCUUU), siRNA-3 (5’-

CCCACAUAUUUAAGAUUCACGCUCG, 5’-CGAGCGUGAAUCUUAAAUAUGUGGGUC). The 

concentration of the pool was varied and the difference was made up with control siRNA 

(Ambion). 24 hours after transfection, 2.5 x 105 viable cells (determined by trypan blue) 

were plated in duplicate for a six-day proliferation assay. The remaining cells were 

plated and harvested for lysate (RIPA) 3 d after transfection.  

PSMC2 siRNA experiments in A2780-Dox cells 

1.5 x 106 of A2780-Dox-shLacZ and A2780-Dox-shRNA-2 cells were plated in 10 

cm plates on Day 0, two for each cell line. On Day 1, the media from one plate of each 

cell line was replaced with media containing 100 ng/ml of doxycycline. On day 2, these 

cells were passaged into 96 well plates at 2,500 cells/well, as well as a single 10 cm 

plate (to be used for RNA) for each condition and cell line. On Day 3, these cells were 

transfected with 0.2 mM lipofectomine RNAi Max (Invitrogen) along with siRNA at a total 

concentration of 20 nM, with varying levels of siRNA specific for either PSMC2 or 

PSMC5 using the manufacturer’s recommended procedure. PSMC2 siRNA are listed 

above, with additional PSMC5 siRNAs obtained from IDT DNA predesigned siRNA 

(Catalog # HSC.RNAI.N002803.12.1,  HSC.RNAI.N002803.12.2, 

HSC.RNAI.N002803.12.3) and pooled in equimolar ratios. The concentration of the pool 

was varied and the difference was made up with control siRNA (Ambion). Proliferation 

was measured by cell titer glo, and qRT-PCR data was used to determine 

concentrations where siPSMC2 (2.5 nM) and siPSMC5 (5 nM) led to similar levels of 

suppression of their respective targets. 
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PSMC2 and Control siRNA nanoparticle siRNA sequences 
Gene Sense Strand Antisense Strand 

siRNA-1 5’- GCUGUAAAUAAGGUCAUUAUU 5’- UAAUGACCUUAUUUACAGCUU 

siRNA-2 5’- GCCAGGUGUACAAAGAUAAUU 5’- UUAUCUUUGUACACCUGGCUU

siRNA-3 5’- GGACCCACAUAUUUAAGAUUU 5’- AUCUUAAAUAUGUGGGUCCUU
GFP 5’-GGCUACGUCCAGGAGCGCA	 5’-UGCGCUCCUGGACGUAGCC 
Bortezomib sensitivity experiments 

Throughout the experiment, A2780 cells engineered in the PSMC2 shRNA 

inducible system were either treated with vehicle or 30 ng/ml of doxycycline.  

Doxycycline treatment was started on Day 0.  On day 4, cells were plated at 2000 cells/ 

well in a 96 well plate.  The following day, the cells were treated with varying 

concentrations of bortezomib or vehicle.  Total ATP levels were measured by Cell Titer 

Glo (Promega) 72 h after adding bortezomib.  The data was normalized to the vehicle 

treated sample.  Graphpad was used to determine the IC50 by constructing a non-linear 

regression with a four-parameter variable slope.   

Cell Cycle and Apoptosis Assays using the PSMC2 shRNA inducible system 

We cultured either A2780 or OVCAR8 cells engineered with our PSMC2 shRNA 

inducible system in the presence or absence of doxycycline (100 ng/ml) and collected 

them for analysis after 3 d. We used the BrdU Flow Kit (BD Pharmigen) according to 

manufacturer’s protocol to determine the percentage of cells in each phase of the cell 

cycle 72 h after the addition of doxycycline. At the same time point, we independently 

determined the number of cells undergoing apoptosis by FACS analysis of Annexin-5 

according to the manufacturers recommended procedure (Invitrogen).  

Generation of PSMC2 and Control siRNA nanoparticles 

The generation of tumor-penetrating nanocomplexes carrying PSMC2-siRNA 

(Dharmacon) and measurement of their uptake and effects on cellular proliferation was 
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performed as described345. The p32-receptor specificity of cellular uptake was probed 

by applying a monoclonal antibody directed against p32 (100 ug/mL) to cells 1 h prior to 

the addition of TPN. More information about the reagents, chemicals and siRNA 

sequences can be found in the Extended Experimental Procedures. 

Generation of orthotopic xenografts and nanoparticle administration 

106 OVCAR8 cells, 0.5106 OVCAR8 cells expressing V5-PSMC2, or 0.2106 

A2780 cells expressing doxycycline-inducible shRNA against PSMC2 were implanted 

intraperitoneally in 4-6-week-old NCr/nude mice (Charles River). Once tumors were 

established and confirmed by bioluminescence imaging, animals were treated 

intraperitoneally with nanoparticles carrying GFP-specific siRNA (TPN/siGFP), or TPN 

containing PSMC2-specific siRNA (1 mg siRNA/kg/injection) every 3 d for 21 d as 

described345. Mice bearing A2780 tumors expressing the doxycycline-inducible 

shPSMC2 were continuously fed with doxycycline-containing diet (2000 mg/kg) 

beginning two days after tumor cell injection. Mice were sacrificed and tumors harvested 

at the end of the experiment or when the tumor burden resulted in a failure to thrive 

according to institutional recommendations. Tumor lysates were made by homogenizing 

tumors using an eppendorf micropestle in RIPA buffer supplemented with protease 

inhibitors. We restricted analyses of PSMC2 expression to tumors that were relatively 

devoid of mouse tissue. 

Author Contributions 

The author, in collaboration with Deepak Nijhawan and Matt Strickland, were 

responsible for viral production, transfections, infections, in vitro western blots and cell 

culture maintenance.  
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The author was responsible for native gel western blotting and peptidase 

cleavage, siRNA experiments, qPCR analysis, glycerol gradients, and 

Immunoprecipitation of proteasome complexes, with assistance from Deepak Nijhawan 

and Matt Strickland. 

The author and Rebecca Lamothe were responsible for western blots and qPCR 

on samples derived from in vivo models. 

 

Results 

To test the possibility that our observations were the result of a confounding 

genetic alteration, we determined whether expression and copy-number levels of every 

other gene for which we had expression or copy-number data significantly correlated 

with PSMC2 sensitivity. Low PSMC2 expression (FDR < 0.017) and PSMC2 copy loss 

(FDR < 0.008) were the features most significantly correlated with PSMC2 sensitivity 

genome-wide. Conversely, among the 7,250 genes in our Achilles analysis, only 

sensitivity to PSMC2 correlated with PSMC2 copy loss (FDR < 0.25). In particular, 

amongst all 47 other proteasome components surveyed, neither expression levels nor 

copy-number status significantly correlated with PSMC2 sensitivity. Suppression of the 

29 proteasome components in the Achilles data also did not specifically inhibit 

proliferation of cell lines with PSMC2 copy loss. The association between PSMC2 copy 

loss and PSMC2 sensitivity also remained significant when cells with PSMC2 copy-

number gains were excluded from the analysis (p=0.0006). 

Since partial copy loss of cell essential genes, like PSMC2, might afford only 

small differences in sensitivity to suppression between different cells, we also compared 
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the effects of PSMC2 suppression to that observed when we suppressed the 

oncogenes KRAS, PIK3CA, and BRAF. These oncogenes are associated with some of 

the most specific known cancer dependencies through “oncogene addiction”346. In 

consonance with prior studies, suppression of these oncogenes inhibited proliferation of 

cells harboring mutated and constitutively active oncogenes compared to cells 

expressing wild type proto-oncogenes (p<2x10-5 in each case) (Fig. 13a). However, the 

difference in PSMC2 dependency scores between cell lines with and without PSMC2 

copy loss (PSMC2Loss and PSMC2Neutral, respectively) was greater than for any of these 

three models of oncogene addiction (Fig. 13a).  

We confirmed the vulnerability of PSMC2Loss lines to PSMC2 suppression in a 

direct competition assay by comparing the proliferation rate of uninfected cells to cells 

that co-express GFP and either shLacZ or a PSMC2 shRNA in six ovarian cell lines 

over 21 days. The expression of shLacZ or PSMC2 shRNAs failed to induce significant 

changes in the proliferation of PSMC2Neutral cells, including two ovarian cancers and one 

non-transformed Immortalized Ovarian Surface Epithelial cell (IOSE) cell line344. In 

contrast, expression of PSMC2 shRNAs reduced the proliferation rate by at least 50% in 

all three PSMC2Loss ovarian cancer cell lines within 7 days (Fig. 13b-d). 

To confirm that these observed effects were due to the suppression of PSMC2, 

we expressed an N-terminal V5-epitope tagged form of PSMC2 (hereafter referred to as 

V5-PSMC2) in OVCAR8, a PSMC2Loss cell line. V5-PSMC2 expression was unaffected 

by an shRNA that targets the 3’ UTR of endogenous PSMC2, and rescued the 

proliferation of OVCAR8 cells that express this shRNA (Fig. 13d). 

PSMC2 levels and survival in PSMC2Loss cell lines 
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Figure 13- PSMC2 as a CYCLOPS gene: (a) Comparison of gene dependence 
between three models of oncogene addiction and PSMC2. Cell lines were classified by 
mutation status for PIK3CA, BRAF, or KRAS (n=102 in each case) or PSMC2 copynumber 
(n=84). For each class, gene dependency scores reflect the sensitivity to the 
gene on which the categorization was based. Solid bars represent average scores. (b) 
The effect of PSMC2 suppression on the proliferation of six ovarian cell lines. (c-d) PSMC2 
suppression in ovarian cell lines. We individually expressed all four PSMC2 shRNAs 
and a control shRNA, shLacZ. Among the four PSMC2 shRNAs, PSMC2 shRNA-2, 3, 
and 4 were used by ATARiS to calculate the PSMC2 dependency score and exhibited 
consistent suppression of PSMC2. (e) PSMC2 levels (top) and relative proliferation rates 
(bottom) among cells expressing different combinations of PSMC2 shRNA targeting the 3’ 
UTR and ectopic V5-PSMC2 expression. Data are presented as averages ± S.D. 
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The increased vulnerability of PSMC2Loss lines correlated with both PSMC2 copy 

loss and lower PSMC2 mRNA expression (FDR p-value<0.05 for both). Expression and 

copy-number of PSMC2 are also correlated in both the CCLE (r = 0.64) and TCGA 

Ovarian (r = 0.49) sample sets (Fig. 14a), indicating that cancer cells that have PSMC2 

copy loss tolerate reduced PSMC2 expression. 

To explore the effects of PSMC2 loss on PSMC2 protein levels, we evaluated 

PSMC2 levels in IOSE cells and ten ovarian cancer cell lines, including five 

PSMC2Neutral and five PSMC2Loss lines. To minimize potential confounding of other 

genetic events affecting the 19S complex, we selected PSMC2Neutral lines that had no 

copy-number gains of PSMC2 and PSMC2Loss lines that had copy loss of no more than 

one other 19S regulatory complex subunit (Table 10). All five PSMC2Loss cell lines 

expressed lower levels of PSMC2 than any of the other cell lines (Fig. 14b). In contrast, 

the levels of eight 19S subunits including PSMC1 (Rpt2), PSMC4 (Rpt3), PSMC6 

(Rpt4), PSMC3 (Rpt5), PSMC5 (Rpt6), PSMD2 (Rpn1), PSMD1 (Rpn2), PSMD4 

(Rpn10), or the 20S subunits PSMB5 (β5) and PSMA1-6 (α subunits) failed to correlate 

with PSMC2 copy-number (Fig. 14b). Since PSMC2 is essential for cell proliferation, we 

concluded that PSMC2Neutral cells either require more PSMC2 or produce more than is 

necessary for cell survival. We therefore investigated how PSMC2Neutral cells can 

tolerate greater suppression of PSMC2. 

Specifically, we expressed a PSMC2-specific shRNA under the control of a 

doxycycline-regulated promoter in OVCAR8 (PSMC2Loss) and A2780 (PSMC2Neutral) 

cells. The addition of doxycycline led to the suppression of PMSC2 in both OVCAR8 

and A2780 cells (Fig. 14c). Under these conditions, A2780 cells continue to proliferate 
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Figure 14- Effects of PSMC2 on expression of proteasome components: (a) Scatterplots of 
PSMC2 copy number versus mRNA expression derived from cell lines in CCLE (Barretina et al., 
2012) and primary ovarian tumors in TCGA. A linear regression line and the Pearson correlation 
coefficient (r) are also displayed. (b) Comparison between PSMC2 copy number and protein 
expression of 10 other 26S proteasome components. (c) Immunoblot for PSMC2 in PSMC2Loss 
and PSMC2Neutral lines containing a Dox-inducible promotor for either shLacZ or shPSMC2. Cells 
were harvested 48 hours after addition of Dox, prior to qualitative observation of any phenotype. 
(d). Effects of Doxycycline-induced PSMC2 suppression on proliferation. (e) Relationship 
between PSMC2 mRNA expression and proliferation in PSMC2Neutral (left) and PSMC2Loss (right) 
cells. Data represents averages ± S.D.  
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Table10-­‐Copy	
  Number	
  Status	
  of	
  19S	
  Proteasome	
  Components	
  Across	
  Cell	
  Lines
"1"	
  Indicates	
  Hemizygous	
  Deletion;	
  "0"	
  indicates	
  Copy	
  Neutrality

gene HEYA8 OVCAR8 OVISE RMGI SKOV3 A2780 IGROV1 OV90 TYKNU RKN
	
  	
  	
  	
  PSMD4 0 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD14 1 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD1 1 1 0 0 0 0 0 0 0 1
	
  	
  	
  	
  PSMD6 0 0 1 0 0 0 0 1 0 0
	
  	
  	
  	
  PSMD2 0 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMC2 1 1 1 1 1 0 0 0 0 0
	
  	
  	
  	
  PSMD5 0 0 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD13 1 1 0 0 0 0 0 1 0 0
	
  	
  	
  	
  PSMC3 1 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD9 0 0 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMC6 0 0 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMC1 0 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD7 1 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD11 1 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD3 0 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMC3IP 0 0 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMC5 0 0 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD12 0 0 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMD8 0 1 0 0 0 0 0 0 0 0
	
  	
  	
  	
  PSMC4 0 1 0 0 0 0 0 0 0 0
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whereas OVCAR8 cells arrest at G2/M and die by apoptosis, characteristic hallmarks of 

pharmacologic inhibition of the proteasome347,348 (Fig. 15). To verify that A2780 cells 

tolerate a higher percentage of PSMC2 suppression, we varied the degree of PSMC2 

mRNA suppression by changing the concentration of doxycycline from 0.01 ng/ml to 30 

ng/ml, and found that a 50% decrease in PSMC2 expression reduced the proliferation of 

OVCAR8 cells but had no effect on A2780 proliferation (Fig. 14d-e). 

To determine the amount of PSMC2 required to maintain A2780 cell proliferation, 

we suppressed PSMC2 expression further by transfecting a pool of three PSMC2 

specific siRNAs at varying concentrations. Using quantitative RT-PCR and 

immunoblotting, we estimated that untreated OVCAR8 cells express approximately 50% 

of the PSMC2 mRNA and protein found in A2780 cells (Fig. 16a) Furthermore, the 

proliferation of A2780 cells decreased only when PSMC2 expression was suppressed 

by more than 60% (Fig 16b) and that both A2780 and OVCAR8 lose proliferative 

capacity at similar total levels of PSMC2 expression (Fig. 16c), suggesting that they 

have a comparable threshold requirement for PSMC2.  

 

PSMC2Loss cells exhibit only slight alterations in proteasome content and function 

The tolerance of cells for loss of PSMC2 copy-number and expression indicates 

that cells contain a reservoir of excess PSMC2 that is not required for proliferation. This 

reservoir may be maintained in an excess of fully assembled 26S proteasome or 

elsewhere in the cell. We analyzed proteasome assembly and content by performing 

Polyacrylamide Gel Electrophoresis (PAGE) on crude lysates under native (non-

denaturing) conditions. Under these conditions, the 26S proteasome complex is stable 
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Figure 15- Effects of PSMC2 on cell cycle progression and apoptosis:  Flow 
cytometry measurements of cell cycle progression (left) and apoptosis (right) in 
PSMC2Neutral and PSMC2Loss cells with and without suppression of PSMC2. No 
differences in cell cycle progression were observed, but PSMC2Loss cells undergo 
increased Annexin V staining, indicating increased apoptosis, after PSMC2 suppress  .noi
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Figure 16- Effects of PSMC2 on cell cycle progression and apoptosis: 
(a) Quantification of relative levels of PSMC2 protein.  The immunoblot (left) indicates PSMC2 
levels in OVCAR8 cell lysates relative to a dilution series using A2780 cell lysates. The graph on 
the right indicates fraction of PSMC2 mRNA in OVCAR8 cells when compared to A2780, using 
two different genes to normalize qPCR product.  (b) PSMC2 expression and relative proliferation 
in A2780 cells subjected to increasing levels of siRNA targeting PSMC2. (c) Schematic combining 
26 data from Fig. 14d-e and Fig. 16b indicates that A2780 and OVCAR8 cells share a similar 
absolute threshold requirement for PSMC2 (dashed line). 
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and active and migrates in two distinct bands, distinguished by having either one or two 

19S subunits incorporated in the formation of the 26S349. Using lysates collected from 

IOSE, two PSMC2Neutral, and three PSMC2Loss cancer cell lines (all with comparable 

proliferation rates), we detected 26S1, 26S2, and 20S proteasome complexes by 

immunoblotting for the core 20S subunits, PSMA1-6 (Fig. 17a). 

We found that PSMC2Loss lines express only slightly less 26S proteasome (most 

evident in 26S2), which is not comparable to the decrease in PSMC2 in these cells (Fig. 

17a), and increased 20S proteasome. Similarly, comparable changes in PSMC2 

expression in isogenic systems failed to substantially affect 26S proteasome content. 

Suppression of PSMC2 levels by 50% in the Dox-shRNA-2 A2780 system led to an 

increase in the 20S complex but little to no change in 26S1 or 26S2 proteasome content 

relative to controls (Fig. 17b). Conversely, ectopic expression of PSMC2 in OVCAR8 

cells led to a slight reduction in 20S levels and slight increases in 26S1 and 26S2 

proteasome content (Fig. 17b). The levels of other 19S proteasome units remained 

unchanged (Fig. 17c). 

Similarly, peptidase cleavage activity varied only slightly between PSMC2Neutral 

and PSMC2Loss lines. We observed the greatest differences in in-gel analyses of 

peptidase activity, which revealed less 26S2 proteasome peptidase cleavage and 

increased 20S peptidase activity in PSMC2Loss cells (Fig. 18a). These changes were 

recapitulated by PSMC2 suppression in A2780 cells and reversed by ectopic PSMC2 

expression in OVCAR8 cells (Fig 18b). The decrease in 26S2 activity in PSMC2Loss 

relative to PSMC2Neutral cells, however, was not associated with significant differences in 

peptidase cleavage when quantitatively assayed in whole cell lysates under conditions 
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Figure 18: PSMC2Loss cells lack a PSMC2 reservoir .  Native PAGE 26S and 20S peptidase 
cleavage in PSMC2Neutral and PSMC2Loss cells (corresponding to 17a). Native PAGE 26S and 20S 
peptidase cleavage in isogenic systems (17b). (c) In vitro 26S proteasome activities in 
PSMC2Neutral and PSMC2Loss cells. Each point represents a cell line; dashed lines represent 
averages. We found no significant difference between the activity in these two populations. (d) 
Poly-ubiquitinated protein levels in PSMC2Neutral and PSMC2Loss cells. (e) In vitro 26S proteasome 
activities and (f) Poly-ubiquitinated protein levels for the isogenic systems used in (b).  



(in the absence of SDS) in which free 20S proteasome does not contribute activity350 

(p=0.39) (Fig. 18c). In this assay, proteasome-specific peptidase activity is determined 

by bortezomib-inhibited cleavage. We found that 97% of activity was ablated by 

bortezomib, suggesting that other proteases did not contribute substantially to the 

measured activity. Lysates from PSMC2Neutral and PSMC2Loss lines grown under 

conventional non-stressed conditions also exhibited qualitatively similar total levels of 

poly-ubiquitin (Fig. 18d). 

To test the acute effect of manipulating PSMC2 expression on peptidase activity, 

we measured peptidase activity in lysates of A2780 cells in which we suppressed 

PSMC2 and of OVCAR8 cells engineered to recover PSMC2 expression. Suppression 

of PSMC2 by 50% in A2780 cells led to a 17% reduction in total 26S specific peptidase 

activity, associated with reduced 26S2 activity (Fig. 18e), neither of which corresponded 

to changes in total levels of poly ubiquitin (Fig. 18f). Conversely, ectopic PSMC2 

expression in OVCAR8 led to a 15% increase in peptidase activity, associated with 

increased 26S2 activity. The finding in both systems that modulating PSMC2 levels by 

up to 50% resulted in only a 17% alteration in 26S activity suggested that PSMC2 

content was not the limiting component to 26S formation in PSMC2Neutral cells. 

We found no increased sensitivity to bortezomib in PSMC2Loss cells and no 

significant correlation between the concentration of bortezomib that inhibits proliferation 

by 50% (IC50) and decreased expression of any of the 47 26S proteasome components, 

across 133 cell lines previously tested351 (Table 11). Suppression of PSMC2 in Dox-

shRNA-2 A2780 cells or ectopic PSMC2 expression in OVCAR8 cells also did not 

substantially affect the bortezomib IC50 (Fig. 19a-b). These observations are consistent 
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Table	
  11-­‐Analysis	
  to	
  correlate	
  Bortezomib	
  IC50	
  with	
  expression	
  of	
  proteasome	
  components
Left	
  tail	
  =	
  genes	
  where	
  high	
  expression	
  correlates	
  with	
  low	
  bortezomib	
  IC50;	
  
Right	
  tail	
  =	
  genes	
  where	
  low	
  expression	
  correlates	
  with	
  low	
  bortezomib	
  	
  IC50
Proteasome	
  Component R	
  sided	
  p	
  value Left	
  sided	
  p	
  value Right	
  sided	
  FDR Left	
  sided	
  FDR
PSMG4 0.9983 0.0017 0.9983 0.0799
PSMD5 0.9788 0.0212 0.9983 0.488
PSMC2 0.9595 0.0405 0.9983 0.488
PSMB2 0.9521 0.0479 0.9983 0.488
PSMD2 0.9481 0.0519 0.9983 0.488
PSMB7 0.9371 0.0629 0.9983 0.488
PSMD12 0.9243 0.0757 0.9983 0.488
PSMD14 0.9042 0.0958 0.9983 0.488
PSMG1 0.904 0.096 0.9983 0.488
PSMD1 0.8962 0.1038 0.9983 0.488
PSME2 0.8712 0.1288 0.9983 0.5497
PSMA7 0.8248 0.1752 0.9983 0.5497
PSMC4 0.8241 0.1759 0.9983 0.5497
PSMB6 0.8225 0.1775 0.9983 0.5497
PSMB8 0.8134 0.1866 0.9983 0.5497
PSMD6 0.8129 0.1871 0.9983 0.5497
PSMA2 0.7981 0.2019 0.9983 0.5581
PSMD10 0.7537 0.2463 0.9983 0.634
PSMB9 0.7437 0.2563 0.9983 0.634
PSMC5 0.7105 0.2895 0.9983 0.6636
PSMB5 0.6971 0.3029 0.9983 0.6636
PSMA3 0.6719 0.3281 0.9983 0.6636
PSMA5 0.6567 0.3433 0.9983 0.6636
PSME1 0.6414 0.3586 0.9983 0.6636
PSMG2 0.6158 0.3842 0.9983 0.6636
PSMD11 0.6133 0.3867 0.9983 0.6636
PSME3 0.6115 0.3885 0.9983 0.6636
PSMC6 0.6022 0.3978 0.9983 0.6636
PSMB3 0.5803 0.4197 0.9983 0.6636
PSMG3 0.5671 0.4329 0.9983 0.6636
PSMA1 0.5496 0.4504 0.9983 0.6636
PSMC3IP 0.5482 0.4518 0.9983 0.6636
PSMD9 0.5338 0.4662 0.9983 0.6639
PSMA8 0.5054 0.4946 0.9983 0.6838
PSMB1 0.4777 0.5223 0.9983 0.7014
PSMB10 0.4346 0.5654 0.9983 0.7303
PSMA4 0.4171 0.5829 0.9983 0.7303
PSMD7 0.3949 0.6051 0.9983 0.7303
PSMD8 0.394 0.606 0.9983 0.7303
PSMB4 0.297 0.703 0.9983 0.826
PSMD3 0.2699 0.7301 0.9983 0.837
PSMD13 0.1462 0.8538 0.9983 0.9526
PSMD4 0.1232 0.8768 0.9983 0.9526
PSMF1 0.1082 0.8918 0.9983 0.9526
PSME4 0.0686 0.9314 0.9983 0.9646
PSMC3 0.0451 0.9549 0.9983 0.9646
PSMA6 0.0354 0.9646 0.9983 0.9646
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with our prior observation that 26S proteasome function is not substantially 

compromised in PSMC2Loss cells. 

  

PSMC2Neutral cells have a reservoir of PSMC2 that buffers 26S proteasome levels 

against PSMC2 loss 

The finding that PSMC2Neutral cells have near equal 26S proteasome content to 

PSMC2Loss cells even though they express higher levels of PSMC2 suggests that 

PSMC2Neutral cells contain a separate reservoir of PSMC2 that is preferentially lost when 

levels are reduced. To identify this reservoir, we combined native PAGE with 

immunoblotting for PSMC2 across a panel of cell lines (Fig. 20a). Of the multiple 

reactive bands identified, even after a long exposure, only one band (“ComplexPSMC2”) 

was present in all of the PSMC2Neutral but none of the PSMC2Loss lines. Using isogenic 

systems, we also found that PSMC2 suppression in Dox-shRNA-2 A2780 cells led to 

reduced levels of ComplexPSMC2, whereas ectopic PSMC2 expression in OVCAR8 cells 

led to its reappearance (Fig. 20b). These results suggest that ComplexPSMC2 is a 

specific PSMC2 reservoir. 

 We hypothesized that ComplexPSMC2 serves as a “buffer” in PSMC2Neutral cells, 

enabling such cells to maintain 26S proteasome levels and function in the face of 

reduced PSMC2 expression. In this case, PSMC2 suppression should deplete 

ComplexPSMC2 before reducing 26S proteasome levels. To quantify the consequences of 

reducing PSMC2 on ComplexPSMC2 and 26S proteasome levels, we compared dilutions 

of lysates from Dox shRNA-2 A2780 cells propagated in the absence of doxycycline to 

lysate collected from these cells cultured in doxycycline (Fig. 20c). In cells in which 
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Figure 20. ComplexPSMC2 buffers PSMC2Neutral cells against PSMC2 suppression: (a) Native 
PAGE immunoblot for PSMC2 across a panel of PSMC2Neutral and PSMC2Loss cells. (b) Native 
PAGE immunoblot for PSMC2 in A2780 after inducible expression (left), and in OVCAR8 cells 
after inducible suppression or ectopic expression, of PSMC2. (c) Quantification of 26S 
proteasome and ComplexPSMC2 levels after PSMC2 suppression in Dox-shRNA-2 A2780 cells by 
Native PAGE (top) and total PSMC2 levels (bottom). (d-f) OVCAR8 cells with and without PSMC2 
suppression analyzed by Native PAGE immunoblots for (d) PSMA1-6 and (e) peptidase cleavage 
measured either in whole-cell and native gel formats (see Fig. 18a-c), and (f) total poly-ubiquitin 
levels 
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PSMC2 was suppressed, the relative loss of ComplexPSMC2 exceeded the decrease in 

26S proteasome content. These observations indicate that ComplexPSMC2 was 

preferentially lost in A2780 cells after PSMC2 suppression. In contrast, PSMC2 

suppression in OVCAR8 cells, which lack ComplexPSMC2, led to near-complete ablation 

of 26S proteasome levels (Fig. 20b) and peptidase activity (Fig. 20e) and to a 

qualitative increase in the amount of poly-ubiquitin (Fig. 20f). 

To analyze the components of ComplexPSMC2, we fractionated lysates from IOSE 

cells expressing either V5-GFP or V5-PSMC2 (Fig. 21a) using a glycerol gradient (Fig. 

21b), and isolated V5-immune complexes containing either ComplexPSMC2 or 26S 

proteasome. ComplexPSMC2 immune complexes (collected in fractions 2-4) contained 

PSMC2, PSMC1 (Rpt2), PSMD2 (Rpn1), and PSMD5 (S5B) (Fig. 21c), subunits of one 

of three complexes known to compose the base of the 19S proteasome 

330‐332,352,353. ComplexPSMC2 did not contain subunits of the other two complexes, PSMC3 

(Rpt5), PSMC4 (Rpt3), PSMC5 (Rpt6), PSMC6 (Rpt6), or members of the 20S 

proteasome, PSMB5 (β5), or PSMA1-6 (α subunits) (Fig. 21c). All of these proteins 

except PSMD5 were detected in immune complexes containing the 26S complex (from 

fractions 7-9). These observations indicate that the PSMC2 reservoir is a subcomplex of 

the 26S proteasome. 

 

The reduction of PSMC2 levels in PSMC2Loss cells inhibits orthotopic tumor 

growth 

 To explore the therapeutic potential of PSMC2 suppression in vivo, we tested the 

consequences of suppressing PSMC2 in ovarian xenografts. Specifically, we used a 
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tumor-targeted nanoparticle delivery system that delivers siRNA into the cytosol of cells 

within the tumor parenchyma345. We generated tumor-penetrating nanocomplexes 

(TPNs) consisting of PSMC2-specific siRNA non-covalently bound to tandem peptides 

bearing an N-terminal cell-penetrating domain, Transportan (TP), and a C-terminal 

tumor-specific domain, LyP-1 (CGNKRTRGC), which binds to its cognate receptor p32 

(Fig. 22a). 

 We first assessed the compatibility of cell lines with TPN-targeted siRNA 

delivery. OVCAR8 and A2780 cells exhibited high cell surface levels of expression of 

p32, whereas IOSE cells exhibited low expression (Fig 22b). In consonance with these 

observations, flow cytometry to quantify cytosolic delivery of fluorescently labeled 

siRNAs indicated substantial accumulation of siRNA in both OVCAR8 and A2780 cells 

(Fig. 22c). A monoclonal antibody directed against p32 (mAb 60.11) substantially 

reduced nanocomplex uptake, whereas a control antibody had no effect on uptake. 

These results indicate that surface p32 expression correlates with enhanced uptake of 

TPNs and that TPN-mediated siRNA delivery is p32 receptor-specific. 

 We next used these TPNs to confirm the vulnerability of PSMC2Loss cells to 

PSMC2 suppression both in vitro and in vivo. We treated OVCAR8 and A2780 cells in 

vitro with TPNs carrying siRNAs targeting non-overlapping exons of PSMC2. In both cell 

types, we observed a reduction of PSMC2 protein relative to cells treated with TPNs 

carrying GFP siRNA (Fig. 22d). This reduction was associated with a corresponding 

decrease in proliferation only in the OVCAR8 cells (Fig. 22e). We then used these 

TPNs to treat mice harboring orthotopic OVCAR8 or A2780 tumors expressing firefly 

luciferase. We injected TPNs carrying PSMC2-siRNA (1 mg siRNA/kg body weight for 
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delivery of PSMC2-specific siRNA suppresses ovarian 
tumor growth: (a) Schematic depicting the mechanism of 
tumor-penetrating nanocomplex (TPN)-mediated delivery of 
siRNA. (b) FACS analysis of p32 surface expression on A2780 
and OVCAR8 cells. (c) Comparison of cellular uptake of 
fluorescently labeled siRNA in untreated cells (solid grey) and 
cells treated with TPN alone (black line) and in combination with 
IgG (grey line) or an antibody to p32 (solid pink). (d) 
Immunoblots of PSMC2 in A2780 and OVCAR8 cells with and 
without in vitro TPN-mediated delivery of PSMC2-siRNA. (e) C. 
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14 days) intraperitoneally every three days and monitored tumor burden non-invasively 

by imaging bioluminescence. We observed a reduction in tumor burden (by >75% 

relative to tumors treated with siGFP) only in OVCAR8 tumors (Fig. 23a). A2780 and 

any remaining OVCAR8 tumors treated with TPN/siPSMC2 exhibited lower levels of 

PSMC2 but not two other members of ComplexPSMC2, PSMC1 and PSMD5 (Fig 23b).  

 However, TPN/siPSMC2 nanoparticles failed to decrease tumor burden of 

PSMC2Loss cells in which we reconstituted PSMC2 expression in vivo using orthotopic 

tumor xenografts derived from OVCAR8 cells expressing V5-PSMC2 (Fig. 23c). This 

finding confirmed that the effects of TPN/siPSMC2 on tumor growth were the 

consequence of reduced PSMC2 expression. 

Conversely, TPN/siPSMC2 nanoparticles reduced tumor growth and significantly 

improved survival in PSMC2Neutral cells expressing PSMC2-specific shRNAs (Fig . 23e). 

We measured the effects of TPN/siPSMC2 nanoparticles relative to TPN/siGFP or PBS 

in mice with xenografts of A2780 cells engineered to express inducible PSMC2 shRNA. 

Among mice treated with doxycycline and TPN/siPSMC2, overall survival was 40 days 

and 40% survived more than 42 days, whereas all animals in the TPN/siGFP and PBS 

cohorts succumbed to tumors within 19 days (p=0.0013) (Fig. 23e). These findings 

demonstrated the therapeutic efficacy of PSMC2 suppression in vivo, and support the 

notion that PSMC2Loss cells are sensitive to suppression of PSMC2 due to decreased 

basal levels of PSMC2 mRNA. 

Discussion 
From a therapeutic standpoint, increasing the number of targetable cancer 

dependencies has the potential to increase the number of treatable patients, and 

focusing on driver alterations limits us to targeted therapies involving these events. 
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Figure 23- Effects of PSMC2 suppression on cellular viability 
in-vivo: (a) Tumor burden of mice bearing disseminated OVCAR8 
(top) or A2780 (bottom) orthotopic xenografts treated with TPN 
carrying either GFP-siRNA or PSMC2-siRNA. n=5 animals per 
group. (b) PSMC2 levels (top) and levels of two other proteasome 
components (bottom) in orthotopic tumors of A2780 or OVCAR8 
after treatment with nanoparticles carrying siGFP or siPSMC2. (c) 
Tumor burden of mice bearing orthotopic tumors of OVCAR8 cells 
expressing V5-PSMC2. n =5 animals per group. (d) Tumor burden 
(top) and overall survival (bottom) of mice bearing orthotopic 
tumors of A2780 cells expressing doxycycline-inducible shRNA 
against PSMC2. n = 5-13 animals per group. Data in all panels 
presented as average ± S.E.M. Significance was determined by 
one-way ANOVA or Log-rank (Mantel-Cox) tests as appropriate. 
n.s. = not significant; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 
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Additionally, many driver alterations belong to categories historically refractory to 

reversal with small molecule modulators220,354‐356, which may leave many patients with 

no targetable driver alterations. In such cases, having other targets of opportunity will be 

vital.  

Even when targeting driver alterations, treatment refractory recurrence has been 

almost inevitable357‐359. Rather than evidence against chasing passenger vulnerabilities, 

the repeated failure to find persistent dependence, even in the most likely targets, 

should further motivate us to expand our search for effective therapies to non-traditional 

targets. It is increasingly obvious that targeted therapies, acting in isolation, are unlikely 

to lead to sustained remission, and only by targeting multiple pathways simultaneously 

can we avoid recurrence caused by emergence of resistant subclones. Non-driver 

dependencies, if not effective in isolation can be tool in such combination therapy 

approaches.   

PSMC2 as a CYCLOPS gene 

By integrating data derived from the genomic characterization of human tumors 

with systematic interrogation of essential genes in cancer cell lines, we have identified a 

distinct class of cancer specific vulnerabilities associated with partial copy-number loss 

of essential genes. Hemizygous loss of PSMC2 in particular, and of CYCLOPS genes in 

general, renders cells highly dependent on the remaining allele. Although PSMC2 is 

frequently involved in partial copy-number loss, we did not observe homozygous 

deletion, consistent with the notion that PSMC2 is an essential gene. Partial copy-

number loss, in contrast, resulted in no measurable impact on either proteasome 

function or cell proliferation. Specifically, ectopic expression of PSMC2 failed to 
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enhance cell proliferation, and copy-number loss of PSMC2 was not associated with 

decreased proteasome activity. Taken together these observations define an approach 

to identify a new class of context specific cancer dependencies. 

26S proteasome components are not in stoichiometric equilibrium within cells, 

and the limiting components may differ between cancer and normal cells. For example, 

cells often express free 20S complex, but not 19S, suggesting that 26S proteasome 

levels are limited by the levels of 19S regulatory complex (Fig. 17a). There may be a 

similar imbalance between the modules that make up the base of the 19S complex. We 

found that the module containing PSMC2 (Rpt1), PSMC1 (Rpt2), PSMD2 (Rpn1), and 

PSMD5 (S5B) was in excess in many cancer cell lines, yet became limiting to 19S 

formation in PSMC2Loss cells, unveiling a new sensitivity. PSMC2 levels are influenced 

by its sub-complex partners360, so interfering with the formation of ComplexPSMC2 or of 

its incorporation into the 19S proteasome may be a specific approach to reduce PSMC2 

levels and proliferation in PSMC2Loss cells. Indeed, when we suppressed PSMC2 in vivo 

using tumor penetrating nanoparticles, we were able to obtain >75% reductions in tumor 

burden and a doubling of overall survival. 

Since the proteasome is essential in all cells, one concern in targeting CYCLOPS 

gene targets is whether this strategy would induce substantial toxicity to non-cancer 

cells. However, proteasome inhibition has been well tolerated in humans, with 

bortezomib treatment resulting in 70% reduction of proteasome activity as measured by 

LLVY peptide cleavage, with acceptable side effect profiles361. In comparison, 

proliferation of PSMC2Loss cells is reduced at levels of PSMC2 suppression that result in 

only a 15% reduction of peptide cleavage in PSMC2Neutral cells. 
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Our findings suggest that one consequence of genomic instability is an alteration 

in the stoichiometry of components of macromolecular machines including the 

proteasome, ribosome, and spliceosome. These observations suggest that many of 

these imbalances may present potential therapeutic targets in individual components or 

precursor complexes, and that these components, rather than the fully assembled 

machines, will require specific inhibition or disruption.  
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Perspectives and Future Directions 
 
 
SCNA Determination and future significance analyses 

Discrete, allelic SCNA data provides a much richer source of information for 

future significance analyses. In the short term, copy neutral loss of heterozygosity 

(cnLOH) events can be paired with exomic sequencing across many of the TCGA 

samples to better identify potential recessive tumor suppressor genes.  

We are also developing significance analyses specifically designed to take 

advantage of the data from this platform and model both positive and negative selection 

of SCNAs acquired through cancer development. In current analyses, the basic 

assumption is that positive selection through strong driver genes is the primary force 

shaping the somatic alterations we observe. With this assumption, we can assume a 

uniform background of expected somatic alterations, and deviations from this are seen 

as likely driver events in cancer development.  However, many recent studies have 

implied that much of what we observe is shaped by either strong negative selection, 

such as inactivation of essential genes, or from accumulation of modest selective 

pressures362.  

In addition, our group and others have shown that the location of a gene within 

the chromosome may significantly affect the background rate of alterations at that 

locus19,21.  With this in mind, one can imagine that the types of genes neighboring driver 

gene may have just as much influence on the SCNA profile at that locus as the driver 

gene itself. We are developing analyses to incorporate our understanding of event 

generation and attempts to model the selective pressures on each genetic element 

within regions of interest. This model should incorporate, the likelihood of a given set of 
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events based on the location of driver genes as well as other, more common genetic 

elements, such as essential genes, toxic genes, spacing of genetic elements within a 

particular region.  We are also trying to better account for variations in levels of genomic 

disruption between samples and diseases.  

Incorporation of whole genome sequencing data to improve models of SCNA 

determination 

While SNP6.0 arrays are constantly being analyzed in more significant ways to 

produce richer data, there will always be fundamental limitations to the technology. 

Unlike sequencing approaches, arrays do not provide any direct information about 

somatic genomic structural changes, such as translocations. This necessitates a rather 

simplistic view of SCNAs, where each event affects contiguous regions of DNA (with 

minor extensions such as those described in in chapter 2). We know this model to be 

inaccurate. Fortunately, whole genome sequencing is being applied to more and more 

tumors. By comparing our event determination from SNP arrays to event decomposition 

techniques utilizing WGS, we hope to improve our methods of event deconstruction in 

non-WGD samples, and thus extend the information gained through WGS to the 

thousands of samples that have been genomically characterized without WGS.  

 
Extracting functional information from correlative structure in the cancer genome 

We are currently working on extending our SCNA correlation analysis to 

incorporate discrete, allelic information, as well as exomic sequencing data. In these 

analyses, we are controlling for sample specific rates of mutations in a similar way to 

our controls for SCNA rates in each sample.  Activation or inactivation of driver genes 

may be accomplished in many ways during cancer development, so correlation 
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analyses integrating all types of alterations will improve on these results and have the 

potential to be very informative.  By combining whole exome sequencing with a precise 

determination of the amount of DNA at each locus in each sample, we can generate a 

model of expected mutation distribution and develop a permutation test that maintains 

this distribution, in a way similar to our SCNA method.  

In addition, we are controlling for the ploidy at each locus, as we expect that will 

affect the probability of a mutation at that locus. Finally, it has been observed that some 

specific alterations, such as TP53 or PIK3CA, actually correlate or anticorrelate with 

overall levels of disruption above and beyond the expected rate of correlation261. We are 

attempting to control for these locus-specific patterns of alteration as well. This will lead 

to an ability to determine how mutations and SCNAs interact with each other in a locus 

and sample specific manner.  

Varying levels of genomic disruption across cancers are likely to engender 

biases in analyses of correlations not only between SCNAs, but also between SCNAs 

and other features of these cancers.  For example, increased genomic disruption has 

been associated with poor prognosis in multiple cancer types8,363.  Poor prognosis is 

therefore likely to be associated with increased rates of SCNA across much of the 

genome.  Controlling for this tendency will be required to identify SCNAs that are 

functionally associated with progression.  It will also be important to account for other 

possible confounders, such as mechanistically linked events (e.g. chromothripsis or 

SCNAs that encompass multiple peak regions). 

The future of CYCLOPS  

Identification of novel non-driver targets of cancer dependency 
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It is important to note that the initial pooled RNAi screen is a hypothesis-

generating experiment, and that, for a number of experimental reasons, there is likely a 

high false negative rate in our initial analysis that suggests our 56 initial candidate 

genes we identified may be an underestimate of the true number of potential targets. 

Indeed, more recent analyses using around 200 Achilles-screened cell lines (as 

opposed to the original 86) have identified over significant 300 genes in total, with extra 

genes mostly derived from an increase in power. Our initial analysis of Project Achilles 

only included 5,312 genes and many of these genes may represent false negative 

results due to insufficiently effective shRNAs. The set of 86 cell lines was also too small 

to enable detection of lineage-specific CYCLOPS genes. Indeed, a second RNAi 

dataset enriched in breast and pancreatic lineages revealed new CYCLOPS targets in 

addition to validating the targets described in our more lineage diverse dataset. 

Systematic evaluation of the complete annotated genome using more shRNAs for each 

gene and a larger group of cell lines representing many lineages is likely to uncover 

many more potential targets.  

Resistance to Cyclops. Experiments with clonal expansion after transfection.  

To determine the mechanisms of potential resistance to CYCLOPS 

vulnerabilities, selecting and characterizing single cell clones of PSMC2Loss lines that 

survive PSMC2 inhibition seems the most natural first step. To find resistances that are 

biologically relevant, we can rule out failures in our perturbation system, such as loss of 

Dox promoter or deletions that remove the effectiveness of the shRNA, by confirming 

Dox addition still leads to PSMC2 inhibition. Assuming resistance is not developed by 

circumventing mRNA suppression, PSMC2 qPCR, rtPCR, SDS-PAGE and native gel 
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western blots may provide insights into resistance mechanisms. One likely mechanism 

is increased expression, either through copy number amplification or increased 

transcription of the remaining allele, either of which could be validated by qPCR and or 

FISH.   

Challenges of interpreting RNAi pooled screens 

shRNAs are an imperfect tool for the discovery of haplo-sufficient bystander 

dependencies. Even in a best case scenario, in order for a gene to be correctly 

identified as a CYCLOPS gene in our screen, the following criteria had to have been 

met: 

1. It is a CYCLOPS gene 

2. It has two shRNA in the screen that work 

3. Those two shRNA have to both have to have incomplete suppression, yet 

sufficient suppression to induce the phenotype in partial loss cells.  

4. We have enough cell lines within and across lineages with partial loss at the 

locus to adequately assess the significance in gene dependency differences 

between loss and neutral lines.  

Given these restrictions, it is perhaps surprising that our initial analysis identified as 

many genes as it did, and as these pooled screens add more shRNA per gene, more 

gene targets, more cell lines, and better analytics, we may be able to decrease the 

number of false negatives caused by these experimental limitations.  

  Regardless, the correlations we found between dependency on CYCLOPS 

candidates and partial loss in the context of a pooled screen are only hypotheses until 

they are further validated. Each would each need to be experimentally studied to 
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confirm our genome-scale results as interpretation of shRNA data is challenging given 

the preponderance of variable efficacy and off-target effects. In our initial validation, we 

used a targeted, low throughput approach towards validation, but more “medium-

throughput” approaches, including using pooled cell culture technologies, may improve 

our ability to validate CYCLOPS sensitivities.   

Other forms of non-driver dependency 

Our studies using the Achilles cell line screen discovered a set of gene 

dependencies based on partial copy loss of that gene. Besides copy-number loss, other 

types of genomic alteration may also unveil CYCLOPS-related vulnerabilities. In most 

cases, vulnerability to suppression of CYCLOPS genes was associated with decreased 

expression, so other somatic genetic events, such as sequence variants, epigenetic 

modification or chromosome translocations, may similarly predict dependency. While 

many CYCLOPS genes exhibited high correlation between copy number and 

expression, many others did not, and in general, it may be perilous to assume a 

correlation between low expression and increased vulnerability across a panel of cell 

lines will extrapolate to in vivo dependency.  For example, cell lines derived from a 

specific cell lineage may have slightly lower expression of a gene, yet still be dependent 

on it, so expression alone may be dangerous to use as a criteria for bystander 

vulnerability.  

There is also potential for utilizing trans-effects in bystander gene loss. Cancers 

often rely on redundant pathways to make up for acquired deficiencies. For example, 

cancers with BRCA1 loss are more dependent on PARP, a second DNA repair 

pathway364. Similarly, Muller et al. showed that homozygous deletion of the glycolytic 
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gene enolase ENO1, a bystander gene in GBM, will leave cells more dependent on 

ENO2, which may prove to be a therapeutic target365. Although further work will be 

necessary to explore these other classes, CYCLOPS genes alone or in combination 

with oncogenic targets may provide a new approach to cancer therapy. 

Pharmacologic targeting of CYCLOPS genes 

One of the primary motivations for searching for vulnerabilities in bystander 

alterations is to increase our library of targetable dependencies. Unfortunately, many of 

our CYCLOPS candidates do not come from traditionally targetable gene classes. 

Pairing genetics with small molecule screens could highlight passenger vulnerabilities 

that are responsive to currently available small molecules. Unlike shRNA screens, it 

may be more challenging to determine whether a drug dependency predicted by 

bystander loss is caused by direct inhibition of the gene or through a trans effect. For 

example, lenalidomide, used to treat multiple myeloma, has recently been shown to 

decrease abundance of two transcription factors by increasing effectiveness of their 

ubiquitin-mediated degradation. One could imagine finding similar mechanisms to either 

target CYCLOPS genes with current drugs or discover new bystander targets through 

small molecule screens.  

Mechanism of dependency on CYCLOPS genes 

While the biochemistry of proteasome assembly has been recently elucidated, 

the regulation and limiting factors of 19S assembly is less well understood. We found 

that there is relatively little compensation for moderate suppression of one component 

of the proteasome, either transcriptionally or translationally. In the case of partial 

suppression of PSMC2, this leads to decreased levels of the immediate PSMC2-
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containing subcomplex, but relatively stable amounts 19S and 20S proteasome.  

However, suppression of other genes within the complex may lead to very different bio-

chemical results, including significant loss in proteasome function, or even inhibition of 

the negative feedback loop that regulates transcription of 26S proteasome components. 

Determining the transcriptional, translational, and biochemical responses to loss of 

these other genes may improve our understanding of how the proteasome is regulated 

and what triggers changes in complex formation.  

The next step: Expanding our understanding of the CYCLOPS phenomenon 

While our studies on PSMC2 showed how partial loss may lead to increased 

sensitivity, it is unlikely to be the only mechanism for CYCLOPS dependence. In fact, 

some of our CYCLOPS genes showed little correlation between copy number and 

expression, while others undoubtedly have other mechanisms of dosage compensation. 

To that end, researching the mechanism of sensitivity in other CYCLOPS genes may 

lead to improved understanding of this class of genes, in addition to new therapeutic 

targets.  

The second-most enriched pathway in our CYCLOPS gene analysis was the 

spliceosome. Like the proteasome, the spliceosome is a cellular essential 

macromolecular complex366. The SF3B subcomplex comprises a part of the 

spliceosome important in splice-site recognition, and this complex alone contained 

multiple significance CYCLOPS genes. SF3B1 is an obligate member of this complex 

and one of the top CYCLOPS genes in an updated analysis using an increased number 

of Achilles lines. Unlike PSMC2 or its immediate subcomplex, there are small molecule 

inhibitors of the SF3B complex, making partial loss of SF3B1 an enticing therapeutic 
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target. Validation and biochemical characterization experiments on SF3B1Loss lines are 

currently underway, and initial results are promising, though the mechanism of 

sensitivity in loss lines may be more complicated than in the case of PSMC2. Besides 

the immediate potential for CYCLOPS to predict small molecule sensitivity, these 

experiments further validate CYCLOPS as a novel class of cancer vulnerabilities. 

New high-throughput techniques may help identify inaccuracies in our current screen 

  Since our initial validation of PSMC2 as a CYCLOPS gene, a pathway utilized by 

prokaryotes as an immune response to viri, nicknamed CRISPR, has been engineered 

as a new tool for genetic perturbation367. CRISPR works by using a guide RNA strand to 

direct the CAS9 enzyme, a nuclease, to that sequence in the genome, where it then 

induces a double stranded break. Resolution of these double stranded breaks are error 

prone, so this system allows for directed genome modification by insertion/deletion.  It is 

believed that these CRISPR techniques suffer fewer of the specificity/sensitivity issues 

that plague shRNA experiments, and so provide a much cleaner system for studying the 

phenotypic effects of loss-of-function230. Because many CYCLOPS candidates are 

thought to be essential genes, this is an interesting tool for creating an isogenic system 

with inactivation of a single allele in the CYCLOPS gene (as biallelic inactivation is 

unlikely to be tolerated). In fact, for studies of SF3B1, our lab has created just such an 

isogenic system and shown that these newly created SF3B1Loss created lines are newly 

sensitive to SF3B1 suppression.  

 

Conclusion  
Somatic copy number alterations are fundamental part of cancer evolution, occur 

through a variety of processes, and result in a complex pattern of changes that span the 
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genome. Our work endeavored to improve the understanding of SCNAs and their 

consequence on cancer development and vulnerabilities. Through this work, we have 

developed new ways to analyze the patterns and significance of SCNAs throughout 

cancer, as well as provide a valuable resource for future studies. 

The extended nature of SCNAs allowed us to query whether affected non-driver 

genes may introduce new opportunities for targeted therapy.  Our studies of CYCLOPS 

genes suggest that non-driver dependencies may represent an underexploited source 

of cancer vulnerability. We showed that in the case of PSMC2, partial loss led to 

decreased mRNA and protein, but not a decrease in function, leaving cells with loss 

more vulnerable to further insult. We hope these efforts will expand the thinking about 

potential therapeutic targets in cancer therapy and lead to a more comprehensive 

search for viable treatment options. 
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Appendix 1: SNP6.0 array processing 

 

Standard Affymetric SNP6.0 Array preparation and analysis 

 

For a period of about 5 years, The Cancer Genome Atlas (TCGA), the cancer cell 

line encyclopedia, and many other high-throughput genomics platforms made use of 

SNP 6.0 Affymetrix microarrays144. These arrays probe the DNA content of human 

samples using 906,600 single nucleotide polymorphisms (SNPs) and over 946,000 

probes designed to detect copy number variation. 

The SNP probes are derived from previous versions of Affymetrix arrays143 

(482,000 curated from dbSNP database368) in addition to 424,000 SNPs discovered in 

the International HapMap project369. Each of the 2 alleles at each locus are measured in 

triplicate by 25-mers scattered across the array. 

In addition to the SNP probes, there are 946,000 25-mer copy number (CN) 

probes included in SNP6.0 arrays, 744,000 were chosen to provide even coverage of 

the genome, with 202,000 chosen based on known germline copy number variation370.  

An overview of the bench procedure is diagrammed in 143. The DNA sample is digested 

with restriction enzymes Sty 1 and NSP 1, then ligated to adapters designed to match 

the single stranded DNA overhangs that result from that digestion. A primer that 

recognizes the adapter sequence is then used to amplify the DNA through polymerase 

chain reaction (PCR), with settings set to optimize amplification of fragments between 

200 and 1,100 bp. The resulting product is then fragmented using DNAse1 and 

chemically labeled with a fluorescent dye. Finally, each reaction is loaded onto a 
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SNP6.0 array. These arrays are scanned using a GeneChip Scanner 3000 7G and 

controlled by either Affymetrix GeneChip Command Console (AGCC) or GeneChip 

Operating Software (GCOS), either of which output a standard .CEL file that contains 

information about the intensity, standard deviation, and pixel count for each cell in the 

array.  This .CEL file represents the endpoint of standard Affymetrix analyses, to which 

developers at the Broad Institute have developed a number of additional tools to extract 

information about Somatic copy number changes in cancer samples. 

 

Broad institute Copy number inference pipeline for  SNP 5.0 and 6.0 arrays371 

 

Preprocessing 

The first step in this pipeline is to normalize each array to correct for overall 

differences in array intensity, and then convert each probeset representing a SNP allele 

to a single value. 

Median normalization adjusts the median probe-level value of each array to 

1000, followed by quantile normalization. Next we use Model-based expression indices 

(MBEI) to map these normalized intensities to the normal sample with total intensity 

closest to the median total intensity in the plate. MBEI assumes a linear relationship 

between probe intensity and DNA content,such that the coefficient for this relationship 

may be unique to the probe in question.  Finally, replicate probes are summarized using 

median polish across the samples in the plate.  

 

Copy Number Inference 
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The goal of this section is to convert these normalized intensities (which are 

relative values based on co-developed samples) to copy number values, values relative 

to the total amount of DNA at a particular locus. We assume the intensity for the i-th 

probeset in the j-th sample, yij, is derived from a linear transformation of the underlying 

copy number  

 

௜௝ݕ ൌ ௜଴ߚ	 ൅	ߚ௜ଵݔ௜௝ 

 

where ߚ௜଴ denotes the “background” parameter and  ߚ௜ଵdenotes the scale parameter. 

Because of extra information inherent in SNP probes, the pipeline handles SNP and CN 

probes slightly differently 

 

CN probes 

CN probe calibration utilizes the intensity measurements of 5 cell lines, each with 

a different number of copies of the X chromosome (1-5). This panel of cell lines was 

used to create a X-chromosome “dosage” experiment, where the normalized intensity 

values for each probe on the X chromosome was measured for each cell line in the 

panel. These values were then used to fit a probe-specific linear calibration curve for 

each of these probes. To extrapolate these curves to the autosomal chromosomes, a 

regression model was used, with probe-specific GC content, fragment length, and 

median intensity used as regression variables over this set of 5 cell lines (presumably 

diploid over the autosomal chromosomes). Finally, this regression model is used to 
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predict the background and scale parameters on each probe in the current dataset 

(Table 1). 

 

SNP probes 

The background and scale parameters for SNP probes rely on the Birdseed, 

which calculates these parameters by analyzing relative intensities of zero and one 

copy SNP varients in diploid “normals” (non-tumor somatic tissue, usually derived from 

patient blood) run in the same batch. Because this relies on representation of the allele 

within the batch of normal, it is optimal to run at least 15 diploid normal samples in each 

batch. However, if a batch lacks adequate representation at a particular locus we can 

use prior information to fill in these values. Otherwise, the probes are discarded for this 

set of samples. 

 

Sample cleanup and noise reduction 

 

Outlier removal 

Noise is a constant factor in analysis of DNA arrays. This noise can be sample 

specific (e.g. a bubble on the array), or systematic (e.g. inefficient DNA cleavage at a 

particular locus). Outlier elimination attempts to remove probes with extreme values not 

corroborated by other nearby probes. Specifically, taking the 5 probes immediately to 

one side of a given probe, if the difference between the given probe and the median of 

the other 5 probes is greater than 0.3, the probe is considered an outlier with respect to 
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these probes. If a probe is an outlier with respect to probes on both its left, and its right, 

it is replaced with the median of the three values centered on itself. 

 

Tangent normalization 

Even after these extensive normalization procedures, there is variation in probe 

set intensity across samples that remain when comparing individual diploid normal 

samples, or even replicates of the same normal sample.  These patterns of variation 

may reflect changes in experimental conditions between different arrays but could 

provide false copy number alterations in not properly accounted for. To remove these 

variations caused by systemic noise present in normal tissue, we project the copy 

number values of each probe in our tumor sample onto a plane created by values 

obtained from a large archive of normal tissue (presumably diploid). The linear 

projection of our sample onto this “plane” of normal DNA values represents the 

hypothetical diploid sample subjected to a similar set of systemic noise as our tumor 

sample. We then subtract this modeled systemic variation from our tumor sample. It is 

important to point out that known regions of germline copy number variation (CNVs) are 

removed prior to this step as this is an attempt to model systematic (i.e. non-biological) 

noise alone. CNV regions are subsequently added back to data. 

 

Circular Binary Segmentation (CBS) 141,372 

This approach takes each chromosome and attempts to find evidence for 

contiguous regions of equal copy number and transforms the data from thousands of 
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probes, each with a unique copy number value, to segments of data, where each 

segment is composed of multiple probes with a single copy number value. 

CBS does this by taking each segment (starting with the whole chromosome) 

and recursively asking if there is likely to be a copy number breakpoint within that 

segment.  

If a segment consists of markers 1 through m, this equates to asking at each 

marker pair i and j (i<j), whether the mean of values i+1:j is significantly different from 

the mean of values outside of this range (Figure 2). This significance is determined by a 

“hybrid” approach. If the number of markers m in a given segment is less than 1000, 

then the maximum value k for which full permutation test is applied is 25, with k 

increasing by 5 for every doubling of m. For segments smaller than this threshold, the p-

value is derived directly from a full permutation test for all values of i and j such that (j – 

i) > than some minimum segment length (based on inter-probe variation within the 

sample). For values of (j – i) greater than the threshold, the test statistic T was assumed 

to originate from a standard normal distribution. If there exists an (i,j) pair that exceeds 

the significance threshold, the (i,j) that generate the best T statistic are considered the 

end points of a new segment. This process is repeated recursively on each segment, 

until no more segments are created by this approach. Finally, the mean value of 

markers in each segment becomes the value of that segment. 

 

 

HAPSEG and ABSOLUTE 
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The absolute algorithm is a parallel analysis technique developed by Carter et al147 

utilizing the extra information present in SNP probes to determine integer allelic copy 

number values at each locus. 
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