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Insights from geochemical proxies 

 
ABSTRACT 

Studying the mean state and variability of past climate provides important insight into 

the dynamically coupled climate system, directly aiding projections of future climate. 

Reconstruction of past climate conditions can be achieved using geochemical proxies 

including the novel clumped isotope paleothermometer. In this thesis I use multiple proxies to 

study climate variability during the last glacial period and at the onset of Antarctic glaciation.   

Greenland ice cores record repeated millennial-scale fluctuations in climate during the 

last glacial period known as Dansgaard-Oeschger (DO) cycles. We measure !18O of bulk 

sediment and planktonic foraminifera (Neogloboquadrina Pachyderma) in sediment cores 

from the North Atlantic to investigate fluctuations in sediment properties on the timescale of 

DO cycles. We find evidence of episodic deposition of carbonate ice-rafted debris near 

Iceland. Integrating these observations with published data and modeling studies, we propose 

a new hypothesis to explain DO cycles. We suggest that a large ice shelf in the Nordic Seas 

acted in concert with sea ice to set the slow and fast timescales of DO cycles. The ice shelf 

was periodically removed by subsurface warming with the timescale of shelf regrowth setting 

the duration of each interstadial.   

We utilize the clumped isotope proxy to reconstruct the climate history during a key 

period of the Cenozoic – the onset of Antarctic glaciation. To facilitate this work, a new inlet 

is developed to streamline sample preparation and reduce sample size requirements. We 

decrease the required sample size from 5-8mg to 1-2mg per replicate, while still achieving 
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external precision of 0.005-0.010‰, equivalent to previous methods. This new capability 

increases the range of possible applications for the clumped isotope paleothermometer, 

specifically in the field of paleoceanography. We apply the clumped isotope 

paleothermometer to thermocline-dwelling foraminifera (Subbotina angiporoides and 

Subbotina utilisindex) from the Southern Ocean core ODP689 across the Eocene-Oligocene 

transition. With the clumped isotope paleothermometer we separate the contributions of near-

surface temperature change and ice sheet growth on the ~1‰ increase in !18O observed in 

planktonic foraminifera from this site. We measure no change in temperature, and 0.8±0.2‰ 

change in !18Osw, equivalent to 124-140% of the modern Antarctic ice sheet volume.  
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Chapter 1. Introduction 

 

1.1   The Study of Past Climate  

The Earth System is made up of many components – the atmosphere, oceans, 

cryosphere, biosphere, and solid earth. The timescales on which these different 

components respond to changes in forcing can vary from days (biosphere response to a 

heat wave) to weeks (atmospheric weather patterns) to months (seasonal cycle in 

temperature) on the shorter end to decades (growth of new forests) to centuries (sea level 

rise from global warming) to millennia (ocean circulation timescales) on the longer end, 

to thousands to millions of years at the longest (ocean crust creation and subduction). 

Compared to a human lifetime, most of these timescales are beyond the limit of what one 

person, or even one civilization can observe. To learn about the climate feedbacks and 

responses occurring on longer timescales, we can study how it has the relationships 

between different components of the climate system have evolved over Earth history. 

Over the past few hundred years, humans have been recording their observations 

of climate conditions. The longest continuous record of temperature is the Central 

England temperature record, which gives monthly mean temperatures dating back to 

1659 [Manley, 1974] and daily mean temperatures back to 1772 [Parker et al., 1992]. 

Tide gauges have recorded sea level changes in Amsterdam since 1700 [van Veen, 1945]. 

Beyond the range of these direct climate observations, scientists have come up with 

creative ways to extract climate data from other historical records. Indication of the 

effects of the Little Ice Age, a colder period in Northern Europe spanning 1550 to 1850 

C.E., was famously found in Dutch paintings of ice skaters, and in increased depictions of 
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wintry scenes in paintings from across northern Europe [Neuberger, 1970]. Roman 

records of Nile River delta flooding events document past precipitation changes over 

northeastern Africa, and writings describing extremely harsh winters can be connected to 

volcanic activity [McCormick et al., 2012]. Archives such as these only extend as far 

back as advanced civilization – maybe a few thousand years at most. In order to go 

farther back in time, scientists look to natural recorders of climate – tree rings, ice cores, 

sediment composition, fossil species, and speleothems, to name a few.  

 

 

1.2   Geochemical Proxies 

In order to reconstruct past climate, a known relationship must exist between a 

certain measurable parameter and climate in the modern world. Trees grow one ring per 

growing season, with the width of the ring increasing with temperature. Therefore, the 

size of fossil tree rings can record temperature variations over the lifetime of that tree. By 

overlapping and correlating sequential records from many trees, a 12,460 year long 

record of temperature in Europe has been created using this proxy [Freidrich et al., 

2004].  

This philosophy of correlating measurable parameters recorded in nature to 

climate conditions has been applied to many chemical quantities as well, creating what 

are known as “geochemical proxies”. When a chemical property is related to temperature, 

the proxy becomes known as a “paleothermometer”. Many geochemical proxies rely on 

the measurement of stable isotope ratios in natural materials, which can record 
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information about such things as temperature, aridity, salinity, or biological activity in the 

past. 

 

1.2.1   Stable isotopes and notation 

Oxygen has three stable isotopes, 16O, 17O, and 18O, defined by their mass. 16O is 

by far the most abundant, making up 99.75% of all oxygen atoms. 18O is the second most 

abundant, at 0.21% of atoms, and 17O makes up the remaining 0.04%. Carbon has two 

stable isotopes, 12C and 13C (14C is a radioactive isotope), with approximate abundances 

of 98.9% and 1.1%. In isotope geochemistry, the ratio of a rare to abundant isotope (e.g. 

R18 = 18O/16O) is measured using the delta notation (!18O), which converts a small 

decimal into a round number. Delta notation, by definition, relates the isotope ratio in a 

sample material (RSA) to the known ratio in a standard (RSTD), as shown in Equation 1.1. 

 

! 

"18O =
RSA
18

RSTD
18 #1

$ 

% 
& 

' 

( 
) *1000         [Eq. 1.1] 

 

 The two most common standard materials for oxygen isotope measurements are 

SMOW and PDB. SMOW, or Standard Mean Ocean Water, (updated to VSMOW), has a 

composition of R18 = 0.0020052 and R17 = 0.0003799, and is meant to approximate 

average ocean water composition. PDB (updated to VPDB) is a belemnite fossil made of 

calcium carbonate, which has a composition of R18 = 0.0020672 and R13 = 0.0112372. 

For carbonate materials, VPDB is the standard of choice for both oxygen and carbon 

isotope ratios, whereas VSMOW is the more common reference material for oxygen 

isotope ratios of water. 
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1.2.2   The oxygen isotope paleothermometer 

The oxygen isotope paleothermometer is based on the observed relationship 

between !18O of carbonate materials (!18Ocarb) and the temperature at which they formed 

[Urey et al., 1951; Epstein et al., 1951]. In addition to temperature, !18Ocarb is also 

influenced by the isotopic composition of the water in which the carbonate formed 

(!18Ow), which in the modern ocean can be controlled by the local evaporation-

precipitation balance, ocean currents, and the volume of isotopically light ice trapped on 

land in ice sheets. The relationship between these three quantities (!18Ocarb, !18Ow, and 

Temperature) has been defined by many studies. A common formulation, based on work 

by Kim and O’Neil [1997], is shown below in two forms (Equations 1.2 and 1.3). 

 

        

! 

1000* ln("Calcite#H2O
) =18.03* (103T #1) # 32.42                    [Eq. 1.2] 

 

where T is temperature in Kelvin and "Calcite-H20 is the fractionation factor between calcite 

and water, or R18
calcite/R18

water. This equation can be re-expressed as in Equation 1.3 [Leng 

and Marshall, 2004], where T is in degrees Celsius, !c is the isotopic composition of the 

carbonate, !18Ocarb, expressed relative to the PDB scale and !w is the isotopic composition 

of the water, !18Ow, expressed relative to the SMOW scale. This formulation is more 

convenient for many calculations because each of the parameters is reported relative to 

the scale most commonly used for that material (PDB for carbonate, SMOW for water, 

Celsius for T).  
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! 

T(°C) =13.8 " 4.58(#c "#w ) +0.08(#c "#w )
2             [Eq. 1.3] 

 

Early applications of the oxygen isotope paleothermometer attempted to 

reconstruct the glacial-interglacial change in ocean temperatures by measuring the 

oxygen isotopic composition of foraminifera (microscopic marine organisms) and 

calculating a temperature using educated guesses about the influence of changing !18Ow 

[Emiliani, 1956]. Later alternative interpretations called, instead, on a large change in 

!18Ow due to ice sheet build up during the glacial stage and almost no change in 

temperature [Shackleton, 1967]. The puzzle of the glacial-interglacial temperature and ice 

volume changes was only solved by directly measuring the isotopic composition of 

glacial seawater trapped in the pore-space of ocean sediments [Schrag et al., 2002; 

Adkins et al., 2002]. Beyond the most recent glacial maximum, however, it is not possible 

to use this approach. Without independently knowing !18Ow, the oxygen isotope 

paleothermometer will be forever under-constrained as a temperature proxy.  

 

1.2.3   The clumped isotope paleothermometer 

 In addition to !18O, another isotopic quantity of carbonate has been discovered to 

relate to temperature. Within the carbonate lattice, the heavy isotopes 13C and 18O are 

observed to “clump” together into the same molecule at a level above that expected by a 

random (stochastic) distribution of these isotopes, and is temperature dependent. A 

carbonate material is converted to CO2 through acid digestion and the amount of doubly-

substituted CO2 having a mass of 47amu (13C18O16O, predominantly) is quantified. The 

amount of clumping is denoted by "47 and is defined as the amount of mass-47 CO2 
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(R47
measured) relative to the expected stochastic distribution (R47

stochastic) for a sample based 

on its bulk isotopic composition (Equation 1.4) [Eiler & Schauble, 2004; Wang et al., 

2004]. Just like R18 defines the ratio between the rare heavy isotope and the more 

common lighter isotope of oxygen, R47 relates the rare doubly-substituted CO2 to the 

most common CO2 isotopologue (12C16O16O), having a mass of 44amu.  

 

! 

" 47 =
Rmeasured
47

Rstochastic
47 #1

$ 

% 
& 

' 

( 
) *1000             [Eq. 1.4] 

 

In practice, this equation is rewritten to include terms that are measurable in the 

laboratory (Equation 1.5). In this formulation, R47, R46, and R45 are measured quantities, 

and R47*, R46*, and R45* are stochastic distributions calculated from raw single-isotope 

ratios R13, R17, R18 [Wang et al., 2004; Affek and Eiler, 2006]. 

 

    

! 

" 47 =
R47

R47*
#1

$ 

% 
& 

' 

( 
) #

R46

R46*
#1

$ 

% 
& 

' 

( 
) #

R45

R45*
#1

$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ *1000            [Eq. 1.5] 

 

!47 is defined to be between 0 and 1, and is restricted to 0.55 to 0.8 for normal 

Earth surface temperatures [Eiler, 2011]. The temperature dependence of !47 has been 

demonstrated for a variety of carbonate materials including synthetic, biogenic, and 

inorganic carbonates [Ghosh et al., 2006; Dennis and Schrag, 2010; Eiler, 2011 and 

references therein], as well as by theoretical calculations [Schauble et al., 2006; Guo et 

al., 2009].  
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As a paleothermometer, the clumped isotope proxy has a benefit over the 

traditional oxygen isotope paleothermometer in that it does not require prior knowledge 

of !18Ow. In fact, by combining the temperature and !18Ocarb values acquired from the 

clumped isotope measurement in Equation 1.3, !18Ow can be directly calculated [Eiler, 

2011]. This makes the clumped isotope paleothermometer a very powerful tool for 

paleoclimate reconstructions.  

 

 

1.3   Cenozoic Climate Change 

 Within the Cenozoic (66Ma-Present), climate has changed dramatically from the 

“hothouse” Paleocene and Eocene to the Plio-Pleistocene “icehouse”. These changes are 

well recorded in the oxygen isotopic composition of benthic foraminifera, bottom-

dwelling marine microorganisms, the skeletons of which are preserved in ocean 

sediments. Although benthic !18O is controlled by both temperature and ice volume 

changes, these two quantities act in the same direction to change !18O (heavier benthic 

!18O when there is more ice and when climate is colder), so trends in !18O still record 

overall climate change. Figure 1.1 shows a composite record of benthic !18O over the 

past 66 million years. Within the Cenozoic, !18O increases towards the present, changing 

from a minimum around -0.3‰ during the Eocene Climatic Optimum (~50Ma) to 

maximum of ~5‰ during the Pleistocene glacial cycles (~0.01Ma) [Zachos et al., 2001]. 

This represents an overall cooling trend since the Eocene. Prior to the Eocene-Oligocene 

boundary, changes in benthic !18O are interpreted mainly as changes in temperature, 

because there is little evidence documenting significant continental ice growth at this 
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time. After the appearance of ice sheets on Antarctica and the northern continents in the 

late Eocene and Pliocene, respectively, !18O began to be influenced by both temperature 

and !18Ow.  

  

 

Figure 1.1   Oxygen isotopic composition of benthic foraminifera (!18Obf) (relative to PDB) 
across the Cenozoic, combining many sites worldwide (grey) with 5pt. running average (black). 

Data from Zachos et al. [2001].  
 

1.3.1   The Eocene-Oligocene transition 

The Eocene-Oligocene transition marked a fundamental shift in global climate, 

from an ice-free world to one with continental ice sheets on Antarctica. Over a period of 

less than one million years, the benthic !18O increased by ~1.5‰, indicating relatively 

rapid cooling and/or ice growth (Figure 1.2, right). If this entire shift were due to 

temperature change, it would represent >6°C of global cooling. If this shift were due to 

ice volume changes alone, assuming an average isotopic composition of -35‰ to -45‰ 

for the new Antarctic ice sheet [DeConto et al., 2008], this would be equivalent to 165-

215% of the modern East Antarctic Ice Sheet, far too much ice to be contained on the 

Antarctic continent [Bohaty et al., 2012]. The true explanation for this large shift in !18O 

is therefore most likely a combination of temperature change and ice growth. Attempts to 
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independently estimate the temperature component of this climate shift using the 

clumped isotope paleothermometer is discussed in Chapter 5.  

 

      

Figure 1.2   Benthic !18O (relative to PDB) (grey) across the last 500kyr, covering four glacial-
interglacial cycles (left) and across the Eocene-Oligocene transition (right), with 5pt. running 

average. Data from Zachos et al. [2001].  
 

1.3.2   Millennial-scale variability within Pleistocene glacial climate 

Around the beginning of the Pliocene, ice sheets began to appear in the northern 

hemisphere, driving !18Ow and benthic !18O heavier still. Within the Pliocene and 

Pleistocene, ice sheets fluctuated through ice age cycles, which appear in benthic !18O 

due to a combination of changing temperature and ice volume (Figure 1.2, left). In 

addition to sediment records, climate of the most recent few glacial cycles is also 

recorded in the ice sheets of Greenland and Antarctica.  

Ice cores drilled from the Greenland Ice Sheet in particular cover the most recent 

glacial period at high resolution, with countable annual layering in the ice [Grootes et al., 

1993; Svensson et al., 2008]. This record reveals that glacial climate was not 

continuously cold, but fluctuated many times between very cold glacial (stadial) climate 

and intermediate (interstadial) climate on 1-2kyr time scales (Figure 1.3) [Wolff et al., 
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2010]. Possible explanations for these rapid temperature changes, known as Dansgaard-

Oeschger cycles, can be found in Chapter 2.  

 

 

Figure 1.3   !18O of ice in the GISP2 ice core from Greenland, showing many stadial-interstadial 
fluctuations known as Dansgaard-Oescgher cycles. Data from [Grootes et al., 1993; Meese et al., 

1994; Steig et al., 1994; Stuiver et al., 1995; Grootes et al., 1997].  
 

 

1.4   Summary of Thesis Chapters 

 This thesis has four body chapters and is broken into two parts. Chapters 2 and 3 

deal with climate changes in the most recent glacial period, from two different 

perspectives. Chapter 2 summarizes the state of knowledge on Dansgaard-Oeschger 

cycles, the millennial-scale climate fluctuations observed in Greenland ice core records 

(Figure 1.3), and presents a new hypothesis to explain these unusual temperature 

changes. Chapter 3 looks to sediment records from the North Atlantic to find evidence in 

support of the new hypothesis and presents data from a suite of cores using a variety of 

geochemical proxies.  

 Chapters 4 and 5 relate to the clumped isotope paleothermometer. Chapter 4 

describes a new method for measuring smaller samples, and presents data from many 
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carbonate standards to document the capabilities of this new measurement technique. 

Chapter 5 applies the clumped isotope proxy to foraminifera samples from the Southern 

Ocean to measure the temperature change across the Eocene-Oligocene transition.  

Climate during the Cenozoic changed on a range of timescales, from the gradual 

cooling trend over the past 50 million years to the more abrupt transition at the end of the 

Eocene, and from the 100kyr glacial cycles of the Pleistocene to the ~1-2kyr Dansgaard-

Oeschger cycles. This thesis documents my work over the past 5 years and details the 

application of a range of geochemical proxies to study climate change over these 

different time periods and time scales.  
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Chapter 2. A new mechanism for Dansgaard-Oeschger cycles 

 

[Petersen, S. V., Schrag, D. P., and Clark, P. U. (2013) A new mechanism for Dansgaard-

Oeschger cycles. Paleoceanography, 28, 1-7, doi:10.1029/2012PA002364. Copyright 

Wiley and Sons] 

 

ABSTRACT  

We present a new hypothesis to explain the millennial-scale temperature 

variability recorded in ice cores known as Dansgaard-Oeschger (DO) cycles. We propose 

that an ice shelf acted in concert with sea ice to set the slow and fast timescales of the DO 

cycle, respectively. The abrupt warming at the onset of a cycle is caused by the rapid 

retreat of sea ice after the collapse of an ice shelf. The gradual cooling during the 

subsequent interstadial phase is determined by the timescale of ice-shelf regrowth. Once 

the ice shelf reaches a critical size, sea ice expands, driving the climate rapidly back into 

stadial conditions. The stadial phase ends when warm subsurface waters penetrate 

beneath the ice shelf and cause it to collapse. This hypothesis explains the full shape of 

the DO cycle, the duration of the different phases, and the transitions between them and 

is supported by proxy records in the North Atlantic and Nordic Seas. 
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2.1   Introduction 

 During the last glacial period, the North Atlantic basin experienced a number of 

large and abrupt millennial-scale fluctuations in climate referred to as Dansgaard-

Oeschger (DO) cycles. Ice cores from Greenland reveal that each cycle began with an 

abrupt warming from stadial to interstadial conditions [Johnsen et al., 1992; Dansgaard 

et al., 1993; Grootes et al., 1993; Huber et al., 2006]. The effects of this warming 

extended across much of the northern hemisphere [Voelker et al., 2002; Overpeck and 

Cole, 2006; Pisias et al., 2010], while a near-simultaneous cooling occurred in Antarctica 

[EPICA Members, 2006; Wolff et al., 2010]. Greenland ice core records then suggest 

gradual cooling during the initial stages of each interstadial phase, followed by abrupt 

cooling back to stadial conditions.  

 A common explanation for these cycles involves changes in the Atlantic 

meridional overturning circulation (AMOC), perhaps triggered by freshwater forcing 

[Clark et al., 2001; Ganopolski and Rahmstorf, 2001], but paleoceanographic evidence 

for these changes remains elusive [Elliot et al., 2002; Piotrowski et al., 2008; Pisias et 

al., 2010]. Here we propose a mechanism to explain these millennial-scale climate cycles 

involving abrupt changes in sea-ice cover, gradual regrowth of ice shelves, and warming 

of intermediate-depth waters.  

  

 

2.2  Rapid Climate Change in Greenland Ice Cores  

!18O records from Greenland ice cores show that each DO cycle began with an 

abrupt shift in !18Oice, occurring in as little as a few years [Steffensen et al., 2008; 
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Thomas et al., 2009], which was associated with a large warming, ranging from 8°C to 

16°C [Severinghaus et al., 1998; Huber et al., 2006; Wolff et al., 2010 and references 

therein]. Other properties of the ice, including electrical conductivity [Taylor et al., 

1993a, 1993b], deuterium-excess [Dansgaard et al., 1989, Steffensen et al., 2008], dust 

content [Fuhrer et al., 1999], and methane concentrations [Brook et al., 1996] changed in 

less than a decade. At the same time, accumulation rates roughly doubled and 

proportionally more precipitation fell in winter months [Alley et al., 1993; Cuffey and 

Clow, 1997]. 

Following the abrupt warming, the interstadial climate gradually cooled before 

abruptly cooling back to stadial conditions. A stable stadial climate characterized by low 

!18Oice values was then maintained for the next hundreds to thousands of years until the 

next abrupt warming, concluding the DO cycle. This characteristic trapezoid shape in 

!18Oice can be seen for all DO cycles, but their duration varies from ~1.1 to 8.6 kyr 

(Figure 2.1A) [Andersen et al., 2006]. Grootes and Stuiver [1997] found a strong peak at 

1470 years in the power spectrum of DO cycles 1 through 13, but Schulz [2002] showed 

that most of the power in the 1470-year band came from DO cycles 5-7 only. Due to 

varying age models and statistical techniques, debate persists over whether a 1470-year 

periodicity exists in the DO time series [Wunsch, 2000; Rahmstorf, 2003; Ditlevsen et al., 

2007]. Based on multiple proxy records with DO-like cycles, Pisias et al. [2010] found a 

mode of variability with broad spectral power of ~1600 years rather than a sharp spectral 

peak at 1470 years.  
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Figure 2.1  Comparison of proxies showing DO variability in the Nordic Seas (B) vs. Heinrich 
variability in the IRD belt (C). A. NGRIP !18Oice vs. age model GICC05 [Svensson et al., 2008] 

B. Planktonic !18O (black line) and Lithic grain concentration (#/gram) (grey solid) vs. age model 
from core PS2644-5 [Voelker et al., 1998] C. Planktonic !18O (black line), >125um size fraction 
(%) (dotted line), and percent carbonate (%) (grey solid) vs. age from core MD95-2024 [Hillaire-

Marcel and Bilodeau, 2000; Weber et al., 2001] D. Map showing the location of the proxy 
records plotted in A-C. Letters on the map correspond to subfigures. 
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Many climate proxies around the globe show DO-like variability on similar time 

scales. Proxies from the northern hemisphere show warmer (colder) and wetter (drier) 

climates during DO interstadials (stadials) [Voelker et al., 2002; Overpeck and Cole, 

2006; Pisias et al., 2010]. Climate oscillations in the Antarctic EDML ice core show an 

inverse relation to Northern Hemisphere climate oscillations (bi-polar seesaw), with a 

correlation to Greenland stadial duration and the amplitude of the Antarctic temperature 

warming [EPICA Members, 2006].  

Sediment cores from 40-50°N in the North Atlantic (the so-called ice rafted debris 

(IRD) belt) show IRD from Icelandic and European sources associated with every DO 

stadial [Bond and Lotti, 1995], but are dominated by larger IRD pulses from the 

Laurentide ice sheet known as Heinrich events, associated with only every second to 

fourth stadial (Figure 2.1A, 2.1C) [Hemming, 2004 and references therein]. In contrast, in 

the Nordic Seas [Voelker et al., 1998; Dokken and Jansen, 1999] and the Irminger Basin 

[van Kreveld et al., 2000; Elliot et al., 2001], IRD pulses of roughly equal magnitude are 

visible for every DO stadial, while characteristic Heinrich layers are absent (Figure 

2.1B). Planktonic !18O records show large negative excursions associated with Heinrich 

events in both the Nordic Seas (Figure 2.1B) [Voelker et al., 1998; Rasmussen et al., 

1996; Elliot et al., 1998; van Kreveld et al., 2000] and the IRD belt (Figure 2.1C) [Bond 

et al., 1992; Hillaire-Marcel and Bilodeau, 2000; Hemming, 2004 and references 

therein], but in the Nordic Seas, weaker negative spikes are also visible for the non-

Heinrich stadials (Figure 2.1B).  
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2.3   Previous Hypotheses for DO Cycles 

 The origin of DO cycles has commonly been explained by changes in the AMOC, 

but a mechanism for forcing the AMOC at this timescale remains unknown and existing 

proxy data do not show corresponding changes in the AMOC for every DO cycle. Winton 

[1993] showed that rapid increases in the overturning rate (“flushing” events) could be 

produced periodically in models by including a constant atmospheric transport of 

freshwater from low to high latitudes. This mechanism operates on millennial time scales 

without the need to dictate a periodicity. The magnitude of warming produced by 

oscillations of the AMOC alone, however, was substantially less than the warming 

reconstructed over Greenland during DO events [Huber et al., 2006].  

Ganopolski and Rahmstorf [2001] produced a time series of characteristically-

shaped DO cycles by forcing an intermediate complexity model with a sinusoidal 

freshwater flux with a period of 1470 years, which caused large reductions and 

subsequent resumptions in AMOC strength that resulted in temperature changes over 

Greenland. We note, however, that there is no known physical mechanism to explain 

such a sinusoidal fluctuation in the hydrological cycle. Moreover, despite what are likely 

unrealistically high rates of overturning (~50 Sv) reached by this model, the simulated 

warming was again considerably less than the reconstructed Greenland temperatures 

[Huber et al., 2006].  

Although benthic !13C [Zahn et al., 1997; Shackleton et al., 2000; Elliot et al., 

2002] and neodymium [Piotrowski et al., 2008; Gutjahr et al., 2010] records from 

intermediate and deep Atlantic sites indicate substantial changes in the AMOC during 

DO stadials associated with Heinrich events, no significant changes are seen during non-
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Heinrich stadials. This indicates that large changes in the AMOC could not have been the 

primary mechanism behind all the DO cycles.  

 An alternative mechanism for causing abrupt DO warming involves changes in 

sea-ice cover [Li et al., 2005; Gildor and Tziperman, 2003]. By removing winter sea-ice 

cover over a large part of the North Atlantic, Li et al. [2005] simulated an annual average 

warming of up to 5-7°C over Greenland, consistent with the lower end of DO warming 

reconstructed from !15N of gases trapped in the ice [Huber et al., 2006]. In addition, the 

simulation produced a doubling of accumulation rate and a shift to more wintertime 

precipitation, also in agreement with observations from ice cores [Alley et al., 1993; 

Cuffey and Clow, 1997; Svensson et al., 2008]. Li et al. [2010] also found that a reduction 

in sea-ice cover in the Nordic Seas alone produced significantly more warming 

(especially in winter) over Greenland’s summit than removing sea-ice cover in the 

western and central North Atlantic, suggesting that the Nordic Sea region may be critical 

in terms of influencing the air temperature over Greenland.  

Li et al. [2010] proposed that rapid sea-ice retreat from the Nordic Seas, possibly 

in response to small changes in wind stress or heat transport, could explain the rapid 

warming at the onset of a DO cycle. However, this same property of sea ice cannot 

explain much of the remainder of the DO cycle, which includes the intervals of gradual 

cooling during the interstadial phase and the sustained cold stadial climate, each of which 

lasted hundreds of years. This suggests that some other mechanism is needed to set these 

longer timescales in the DO cycle.  
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Figure 2.2  Schematic of proposed DO oscillation mechanism. Phases of the DO cycle labeled a-
e with corresponding description of changes in cryosphere and Greenland temperature occurring 
during each phase. 20-year resolution !18Oice from NGRIP ice core (grey line) [Svensson et al., 
2008] over the period 43-49 ka showing DO 12, with a 10-point smoothing of the data (black 

line). 
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2.4   A New Hypothesis for DO Cycles 

 We propose a conceptual model for DO cycles that explains their characteristic 

temporal evolution and is supported by existing proxies of ice-sheet, climate and AMOC 

variability. In particular, we adopt the sea-ice mechanism of Li et al. [2005; 2010] to 

explain the fast-changing intervals of the DO cycles (Figure 2.2b, 2.2d). We then invoke 

an ice shelf to explain the slower-changing phases of the DO cycles (Figure 2.2a, 2.2c, 

and 2.2e). From the perspective of the atmosphere, an ice shelf looks the same as sea ice 

in terms of its albedo and its insulating effects, which reduce the release of heat from the 

ocean. However, because ice shelves are much thicker than sea ice (100s of m vs. <10 

m), they are largely insensitive to small changes in heat transport or wind stress. 

 We first consider the influence of an ice shelf covering a large region of the ocean 

east of Greenland in the Nordic Seas. Given the sensitivity analysis by Li et al. [2010] 

and the number of proxies showing variability of the cryosphere on DO timescales in the 

Nordic Seas (e.g. Figure 2.1B and others) [Voelker et al., 1998; Rasmussen et al., 1996; 

Elliot et al., 2002; Dokken and Jansen, 1999], we focus on an ice shelf along the eastern 

Greenland margin that could influence sea-ice cover in this region. We propose that the 

cooling effect of a large ice shelf combined with extensive sea-ice cover would result in 

regionally cold surface temperatures due to the insulating properties of the ice shelf and 

sea ice, as well as their effect on local albedo [Li et al., 2005; 2010]. This stadial climate 

would be maintained for as long as the ice shelf was present.   

 In the event of the ice shelf’s collapse, potentially caused by warming of 

subsurface waters (discussed below), the only remaining ice cover would be sea ice and 

floating icebergs. A small change in wind stress or heat transport could quickly export or 



! 24!

melt this ice, resulting in a large increase in open-ocean area and a corresponding large 

and abrupt warming over Greenland marking the start of a new DO cycle [Li et al., 2005; 

2010].  

 During the interstadial phase of a DO cycle, the near doubling of accumulation 

over the Greenland Ice Sheet that accompanies the warmer climate [Alley et al., 1993; 

Cuffey and Clow, 1997; Svensson et al., 2008] would induce a more positive mass 

balance, causing the ice shelf to begin reforming along the coast. Expansion of the ice 

shelf to cover increasingly more ocean surface area would cause air temperatures to 

gradually cool over Greenland. Once the shelf reached a critical size, it would cause sea 

ice to rapidly expand through the sea-ice-albedo feedback [Gildor and Tziperman, 2003], 

driving climate back to stadial conditions and completing the DO cycle. The same cycle 

could not be achieved with multi-year sea ice because its regrowth time-scale is 

inconsistent with the gradual decline of climate over the duration of the interstadial 

phase.  

 In summary, our hypothesis combines the ability of sea ice in the Nordic Seas to 

explain the rapid transition into and out of the interstadial phase [Li et al., 2010] with a 

gradually expanding ice shelf derived from eastern Greenland to (i) explain the 

progressive cooling during the interstadial (Figure 2.2c), (ii) provide the mechanism to 

trigger sea-ice growth to cause the rapid cooling (Figure 2.2d), and (iii) sustain the stadial 

climate once the ice shelf reaches steady state (Figure 2.2a, 2.2e). The duration of the 

interstadial phase is determined by the time required to regrow the ice shelf to a threshold 

size, beyond which the local ice-albedo effect causes the rapid expansion of sea ice and 

the corresponding switch to a stadial climate. After a time, ice-shelf collapse, potentially 
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due to subsurface warming, along with an associated rapid loss of sea ice causes the 

abrupt warming that starts a new DO cycle.  

 

 

2.5   Discussion 

We summarize here proxy records, model results, and modern observations that 

support key elements of our hypothesis for DO cycles. Multiple lines of evidence support 

the presence of ice shelves in the northern high latitudes during the last glaciation. 

Reconstructions of seawater salinity during the LGM show that the ocean was saltier than 

expected from ice-sheet build-up alone [Adkins et al., 2002]. Reconciling these 

observations requires either a large change in the volume of groundwater or additional ice 

shelves equivalent to seven times the volume of the modern Antarctic ice shelves [Adkins 

et al., 2002]. In addition, there is widespread evidence on the continental shelves 

surrounding the Nordic Seas, including off eastern Greenland, of fast-flowing ice 

extending to the shelf edge that may have fed ice shelves [Vorren et al., 1998; Stokes and 

Clark, 2001; Svendsen et al., 2004; Evans et al., 2009; Dowdeswell et al., 2010]. 

Proxy records suggest substantial variability of the cryosphere in the Nordic Seas 

on DO timescales. IRD records and planktonic !18O anomalies in the Nordic Seas 

[Voelker et al., 1998; Dokken and Jansen, 1999] and in the Irminger Basin [van Kreveld 

et al., 2000; Elliot et al., 1998, 2001] suggest an increase in ice-rafting during each DO 

stadial (Figure 2.1B). As discussed previously, these records showing similar-scale 

variability for every DO stadial differ from those found further south in the IRD belt, 

where the most prominent IRD and !18O signals are associated with Heinrich events 
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derived from the Laurentide Ice Sheet, and the signals during non-Heinrich DO stadials, 

particularly in !18O, are weak to absent (Figure 2.1C) [Bond et al., 1992; Cortijo et al., 

1997; Labeyrie et al., 1999; Hillaire-Marcel and Bilodeau, 2000].  

An ice shelf constricting the Denmark Strait between Greenland and Iceland may 

have played an important additional role in influencing sea-ice cover in the Nordic Seas. 

Firstly, proxies of ice rafting in this area show a strong response on DO timescales 

(Figure 2.1B) [Voelker et al., 1998]. Additionally, during the glaciation, grounded ice 

extended to the shelf break from both Greenland [Vorren et al., 1998; Dowdeswell et al., 

2010] and Iceland [Hubbard et al., 2006], narrowing the strait to a width of only ~150 

km [Kosters et al., 2004]. Today, the East Greenland Current passes south through the 

Denmark Strait and exports substantial sea ice from the Arctic to the North Atlantic. If an 

ice shelf restricted this outlet, which is an ideal setting for growing an ice shelf due to its 

shallow shelf bathymetry and proximity to two coastlines, sea-ice export would likely be 

impeded. A “log jam” of sea ice could build up north of the Denmark Strait, contributing 

to further sea-ice expansion through the ice-albedo feedback. The removal of the ice shelf 

would allow the East Greenland Current to resume, increasing sea-ice export southward 

into the mid-North Atlantic. In this way, the ice shelf could indirectly influence ice cover 

over a larger area of ocean.  

Previously, Hulbe et al. [2004] proposed a similar mechanism involving the 

destruction of an ice shelf in the Labrador Sea to explain Heinrich events, but this 

hypothesis failed to explain why the ice shelf would collapse only during the cold stadial 

phases [Alley et al., 2005]. Shaffer et al. [2004] explained this relationship by suggesting 

that warming of intermediate-depth waters associated with a large reduction in the 
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AMOC, such as that which occurred prior to Heinrich events [Zahn et al., 1997; Clark et 

al., 2007; Piotrowski et al., 2008; Pisias et al., 2010; Gutjahr et al., 2010], would cause 

melting of the Hudson Strait ice shelf from below while surface temperatures remained 

cold. Additional model results and proxy data provide support for this mechanism 

[Rasmussen et al., 2003; Clark et al., 2007; Alvarez-Solas et al., 2010, 2011; Marcott et 

al., 2011].  

Similarly, we propose that subsurface warming caused the collapse of the 

hypothesized ice shelf along the eastern Greenland margin. In the Nordic Seas, 

Rasmussen and Thomsen [2004] found changes in benthic fauna that suggest intrusion of 

warm intermediate waters during stadial phases of DO cycles [Rasmussen et al., 1996; 

Rasmussen and Thomsen, 2004]. Depleted benthic !18O signals during DO stadials in this 

region are also consistent with warming of intermediate depth waters [Rasmussen et al., 

1996; Dokken and Jansen, 1999; Rasmussen and Thomsen, 2004], with a dominant 

temperature control on these signals supported by Mg/Ca measurements [Jonkers et al, 

2010; Marcott et al., 2011].  

Several lines of evidence identify subsurface warming as an effective way to 

destabilize an ice shelf from below. Modern observations show that warm waters at the 

base of the ice tongue in front of Jakobshavn Isabrae in western Greenland [Holland et 

al., 2008] and an ice shelf in front of Pine Island glacier in Antarctica [Jenkins et al., 

2010] increased basal melting, causing thinning, retreat, and destabilization of those ice 

shelves, leading to accelerated ice discharge. Ice shelf-ice stream models forced by 

subsurface warming produce similar results [Walker et al., 2009; Joughin et al., 2010]. 
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In climate model simulations, warming of intermediate waters in the North 

Atlantic basin is a robust response to a large reduction in the AMOC [Knutti et al., 2004; 

Clark et al., 2007; Mignot et al., 2007; Liu et al., 2009; Brady and Otto-Bliesner, 2011]. 

However, model runs show that subsurface warming can still develop with relatively 

modest changes in the AMOC [Brady and Otto-Bliesner, 2011; Mahajan et al., 2011] and 

is accompanied by a southward shift in the site of convection [Brady and Otto-Bliesner, 

2011]. In the context of our hypothesis, expansion of the ice shelf as well as increased 

freshwater fluxes from iceberg calving and melting of sea ice transported southward may 

have caused a slight reduction in the AMOC and a southward shift in convection, causing 

subsurface warming to develop locally under the expanded ice shelf fringing Greenland 

in the Nordic Seas. A decrease in flushing by the AMOC around the ice shelf may have 

allowed the build-up of atmospherically-derived freshwater in the surface ocean that, in 

addition to the melting of isotopically depleted icebergs calved off the ice shelf, could 

have contributed to the light planktonic !18O observed in the region during stadials. 

During the LGM, the sea ice edge could not have been too far south for the subsurface 

warming to penetrate beneath the ice shelf, resulting in no DO events except following 

Heinrich events when the amount and extent of subsurface warming was greater.  

Although proxy evidence indicates that large reductions in AMOC strength only 

occurred during Heinrich stadials [Zahn et al., 1997; Clark et al., 2007; Piotrowski et al., 

2008; Pisias et al., 2010], existing ocean proxies may not be sensitive to the modest 

AMOC reductions that models suggest can still induce subsurface warming. Antarctic ice 

cores show warming events corresponding to the Heinrich stadials [EPICA Members, 

2006], times when the AMOC was significantly reduced and interhemispheric heat 
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transport was weaker. Between these larger Antarctic warming events, smaller events 

have been correlated with the non-Heinrich stadials [Wolff et al., 2010], consistent with 

minor changes in heat transport (and therefore AMOC strength) during these times.  

 Proxies outside of the Atlantic hint at global changes in intermediate depth 

circulation occurring during DO stadials prior to the abrupt warming. High-resolution 

sediment cores from the Santa Barbara basin show decreases in benthic !18O occurring 

60-200 years prior to the abrupt decrease in planktonic !18O representing the surface 

warming of the DO event [Hendy and Kennett, 2003]. This phasing was interpreted as a 

shift in intermediate depth circulation bringing !18O-depleted water from the north 

Pacific into the basin prior to the large-scale atmospheric reorganizing accompanying the 

DO event warmed the surface waters [Hendy and Kennett, 2003]. In addition, high-

resolution ice core studies show that atmospheric N2O began to rise prior to the rapid DO 

warmings [Flückiger et al., 2004]. In models, global atmospheric N2O production, 

predominantly from the tropical Pacific, has been shown to vary as a result of changes in 

the AMOC [Schmittner and Galbraith, 2008], suggesting the early rise in atmospheric 

N2O observed in ice cores could be an indicator of changes in Pacific and Atlantic ocean 

circulations at intermediate depths prior to the main DO event.  

 

 

2.6   Conclusions 

 We describe a new mechanism to explain DO cycles involving the formation and 

collapse of an ice shelf fringing eastern Greenland, potentially extending across the 

Denmark Strait. Our hypothesis explains the rapid transitions into and out of the 



! 30!

interstadial using the ability of sea ice to rapidly expand and contract, whereas the 

slower-changing phases are explained by the presence or absence of an ice shelf. The 

duration of the interstadial phase is set by the regrowth timescale of the ice shelf, and the 

duration of the stadial phase is determined by the timing of ice-shelf removal, potentially 

due to subsurface warming. Existing proxy evidence from the Nordic Seas supports the 

idea of fluctuating ice volume in the region in time with DO cycles. Further proxy studies 

could explore the IRD and meltwater fluxes resulting from such an ice-shelf break up. 

Modeling work using an active sea-ice model could test the response of sea ice to the 

presence or absence of an ice shelf fringing eastern Greenland. A combination of these 

and other approaches can test the feasibility of this idea and illuminate the exact location 

of the proposed ice shelf.  
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Chapter 3. Evidence for Dansgaard-Oeschger cycles in 

sediment cores from the northern North Atlantic and Irminger 

Basin 

 

 

 

ABSTRACT 

 During the last glacial period, millennial-scale fluctuations in climate are recorded 

globally by proxy records. Greenland ice cores document many stadial-interstadial 

transitions known as Dansgaard-Oeschger (DO) cycles. Sediment cores record these 

cycles, as well as less frequent iceberg discharge events called Heinrich events. A new 

hypothesis points to fluctuations in ice cover (ice shelf + sea ice) off the southeastern 

coast of Greenland as the driver of DO cycles. In this study, we look for evidence of this 

fluctuating ice shelf in sediment records. We use a variety of proxies to show that pulses 

of ice-rafted debris entered sediments in the northeastern Atlantic and Irminger basin 

during the last glacial period and suggest correlation to climate events.  

 

 

 

 

 

 



! 40!

3.1   Introduction 

Within the last glacial period, the North Atlantic experienced millennial scale 

variability in temperature and ice sheet behavior. Greenland ice cores record a pattern of 

repetitive temperature changes known as Dansgaard-Oeschger (DO) cycles, involving a 

rapid initial warming and a gradual cooling back to glacial conditions [Johnsen et al., 

1992; Dansgaard et al., 1993; Grootes et al., 1993]. Sediment cores from the North 

Atlantic document episodes of massive iceberg discharge from the Laurentide Ice Sheet, 

known as Heinrich events, appearing as distinct layers of ice rafted detritus (IRD) within 

otherwise fine-grained abyssal sediment [Hemming, 2004 and references therein]. 

Heinrich events occur approximately every 7-10kyr [Bond et al., 1992] and always fall 

during the stadial phase of Dansgaard-Oeschger (DO) cycles [Bond et al., 1993]. DO 

cycles occur more frequently, with 1-4 cycles occurring between successive Heinrich 

events.  

In Chapter 2, we put forth a new hypothesis to explain the DO temperature cycles. 

We suggest that a fluctuating ice shelf off of southeastern Greenland, accompanied by 

shifts in sea ice cover, can explain the large observed temperature shifts [Petersen et al., 

2013]. In this study, we search for physical evidence of such an ice shelf in the sediment 

record. We use a variety of geochemical tools to study a suite of cores running from 52-

67°N in the North Atlantic. The transect of cores begins just north of the “IRD belt”, a 

swath from 40°N to 50°N in the North Atlantic where Heinrich events are most strongly 

recorded [Ruddiman, 1977], and ends at the southern outlet of the Denmark Strait, near 

the proposed location of the ice shelf. We aim to expand the number of cores 
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documenting DO cyclicity in the Nordic Seas region and delineate the spatial range of 

influence of Heinrich events vs. DO cycles in the sediments.  

 

3.1.1   Identification of Heinrich events and other Dansgaard-Oeschger stadials 

 Traditionally, Heinrich events are identified by an increase in IRD (# grains per 

gram of dry sediment in the >63µm size fraction), accompanied by a decrease in the 

oxygen isotopic composition of planktonic foraminifera, typically N. pachyderma 

(sinistral), a cold-water species (!18ONps) [Bond et al., 1992; Bond and Lotti, 1995]. The 

decrease in !18ONps is attributed to an input of isotopically light water into the surface 

ocean from the melting of glacial ice (icebergs), as opposed to a warming event, based on 

the cold surface water temperatures implied by the concurrent high percentage of N. 

pachyderma (sin.), a proxy for temperature [Bond et al., 1992]. Six primary Heinrich 

layers (H1-H6) have been documented in the IRD belt using these metrics [Bond et al., 

1992], with a seventh found in the Labrador Sea between H5 and H6 [Rashid et al., 

2003], and four older events (H7-H10) found in longer cores near the mouth of the 

Labrador Sea [Rasmussen et al., 2003]. A similar event, named H11, coincides with 

Termination II during the previous glacial period [Rasmussen et al., 2003].  

 In the IRD belt, Heinrich events stand out very prominently from the background 

values of !18ONps and %IRD, whereas the other DO stadials show little change in either 

metric [Bond et al., 1992; Hemming, 2004 and references therein]. In comparison, cores 

from farther north in the Nordic seas show pulses of IRD corresponding to every DO 

stadial phase, with no apparent difference in magnitude between Heinrich and non-

Heinrich stadials [Voelker et al., 1998; Elliot et al., 1998, 2002] (Figure 3.1). !18ONps also  
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Figure 3.1  Published records of IRD content (# grains per gram dry sediment) from cores 
MD95-2010 [Dokken and Jansen, 1999], ENAM93-21 [Rasmussen et al., 1996], SU90-24 [Elliot 
et al., 2002], and PS2644-5 [Voelker et al., 1998] in the Irminger Basin and Nordic Seas region. 

For ENAM93-21, IRD content is measured as the weight of IRD over the weight of total 
sediment in a certain size fraction. Larger size fractions have been scaled for clarity. Map shows 

locations of cores with the color of the points corresponding to y-axis labels. 
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Figure 3.2  Published records of !18O of the planktonic foraminifera N. pachyderma from cores 
MD95-2010 [Dokken and Jansen, 1999], ENAM93-21 [Rasmussen et al., 1996], SO82-5_2 [van 

Kreveld et al., 2000], SU90-24 [Elliot et al., 2002], and PS2644-5 [Voelker et al., 1998] in the 
Irminger Basin and Nordic Seas region. Negative excursions are labeled by the number of the 

corresponding Heinrich event. Map shows locations of cores with the color of the points 
corresponding to y-axis labels. 
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becomes more negative for each DO stadial [Voelker et al., 1998; Elliot et al., 1998, 

2002], with larger magnitude excursions recorded for Heinrich stadials compared to non-

Heinrich DO stadials (Figure 3.2). These larger !18ONps anomalies during Heinrich 

stadials are likely due to the significantly larger volume of icebergs ejected during 

Heinrich stadials. Such large magnitude shifts observed so far north of the IRD belt have 

previously been interpreted as a northward propagation of a meltwater lens from icebergs 

melting in the IRD belt [Elliot et al., 1998].  

 

3.1.2   Motivation for stable isotopes of bulk sediment carbonate 

 Within the IRD belt, variations in !18O of bulk sediment carbonate (!18Obs) have 

been shown to strongly correlate with the depths of Heinrich layers [Hodell and Curtis, 

2008]. !18Obs represents the average isotopic composition of all carbonate in the 

sediment, including both biogenic carbonate (foraminifera, coccolithophores) and 

detritral carbonate (IRD). Variations in this parameter can represent 1) changes in the 

relative proportions of biogenic:detrital carbonate; and/or 2) changes in the end-member 

isotopic value of biogenic, detrital carbonate, or both.  

Within Heinrich layers, the sediment is made up of nearly 100% IRD [Bond et al., 

1992]. The majority of the IRD in these layers is detrital carbonate derived from 

Paleozoic carbonate units underlying the Laurentide Ice Sheet [Bond et al., 1992]. In 

some cores, sediment in Heinrich layers is made up of > 50% carbonate (mainly of 

detrital origin), a large increase over background values of ~10% carbonate [Hemming, 

2004]. Hodell and Curtis [2008] showed that this Laurentide-derived detrital carbonate is 

much lighter in !18O than the background biogenic carbonate (-5 to -6‰ compared to +3-
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4‰), making the IRD-rich layers stand out in !18Obs. In this case, the change in !18Obs is 

due mainly to an increase in the proportion of the detrital end-member over the biogenic 

end-member. The biogenic end-member also becomes lighter during Heinrich events due 

to meltwater inputs, but this change is swamped by the IRD flux.  

In this study, we combined !18Obs and %CaCO3 measurements to identify IRD 

input in cores farther north than the IRD belt. These two parameters can be achieved in a 

single measurement, and can be accomplished in large quantities using an automated 

sampler. This allowed us to quickly “scan” through many cores to search for sections of 

interest, where we then focused more in depth.  

IRD in the region of the Irminger Basin and northeastern North Atlantic could be 

sourced from the Laurentide Ice Sheet via the Hudson Strait, from Eastern Greenland, 

Iceland, or any of the European ice sheets. IRD from the Laurentide, such as that which 

makes up the majority of the Heinrich layer material, has a large fraction of detrital 

carbonate of distinct isotopic composition, making it easy to pick up with this method. 

Another province of carbonate rocks can be found on southeastern Greenland [Bond et 

al., 1992], ideally located to contribute to sediment in the Irminger Basin. Proximity 

would also suggest that IRD from Iceland could contribute significantly to sediments in 

the target region. However, the majority of IRD from Iceland is basaltic glass, which 

would not affect !18Obs values, but may influence %CaCO3. Much of Greenland is made 

of metamorphic rocks that would also not affect !18Obs or !13Cbs, but could influence 

%CaCO3.  
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3.2   Materials 

3.2.1   Sediment core selection 

 We sampled 10 sediment cores housed at the Lamont Doherty Earth Observatory 

Core Repository. The cores came from two cruises – cruise EW93-03 (3 cores) and cruise 

KN158-4 (7 cores) [IMLGS database]. The cores come from water depths varying from 

225-2833m, and are all located between 14°W and 31°W and 52°N and 67°N (Table 3.1). 

This sampling area covers the northeast North Atlantic and the Greenland Sea, and 

reaches up to the coast of Iceland (Figure 3.3). In the following discussion we will focus 

on a subset of these cores (KN42, KN55, KN84, EW6, and EW8). A few radiocarbon 

dates have been previously measured on these cores [de Menocal, personal 

communication]. Ages reported here have been corrected using a 400-year reservoir age 

and the radiocarbon calibration equation of Fairbanks et al. [2005]. 

 

3.2.2   Sediment core sampling 

 Since drilling, sediment cores were stored in refrigerated warehouse rooms at the 

Lamont Doherty Earth Observatory Core Repository, allowing core material to retain its 

original moisture. Sediment varied from clay-rich to sandy texture between cores and 

within each core. Samples were taken from 1cm-wide intervals, and were labeled with 

the depth at the top of the interval. Most cores were sampled at 2cm-resolution. A few 

sections were sampled at lower resolution that were known to be outside the glacial 

period of interest based on magnetic susceptibility scanning data [de Menocal, personal 

communication]. 1-2mg of sediment were sampled for each interval and placed in plastic 

sample vials for transport back to Harvard University. 
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Full Core Name Short 
Name 

Latitude 
(°N) 

Longitude 
(°W) 

Water 
Depth 
(m) 

Core 
Length 
(cm) 

Sampled 
segment 
(cm) 

EW93-03-GGC1 EW1 64.31 25.02 225 204 3-201  
EW93-03-JPC6 EW6 64.82 29.93 2080 1189 1-837 
EW93-03-JPC8 EW8 63.08 29.40 2118 1317 54-1276 
KN158-04-42 KN42 52.55 20.33 2833 450 1-499 
KN158-04-53 KN53 55.46 14.71 2184 520 10-519 
KN158-04-55 KN55 57.03 17.53 1331 522 1-524 
KN158-04-57 KN57 58.66 25.42 2768 554 25-556 
KN158-04-63 KN63 61.00 27.08 1443 591 200-592 
KN158-04-70 KN70 66.67 24.19 238 484 5-476 
KN158-04-84 KN84 63.41 30.94 2484 498 1-491 

Table 3.1  List of locations, water depth, and sampled interval for cores measured in this study 
[IMLGS database]. 

 

 

Figure 3.3  Map showing locations of cores measured in this study (red points). Also showing 
coastlines (yellow) and bathymetry (greyscale). Cores are numbered as follows: 1) KN70; 2) 

EW6; 3) EW1; 4) KN84; 5) EW8; 6) KN63; 7) KN57; 8) KN55; 9) KN53; 10) KN42. 
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3.3   Measurement Techniques 

3.3.1   Bulk sediment  

 Aliquots of bulk sediment were dried in an oven and powdered with a mortar and 

pestle. 5-14mg of powder was weighed into silver boats for analysis. Bulk sediment 

samples were reacted in a common acid bath at 90°C, and the isotopic composition of the 

evolved CO2 was measured on an Optima dual-inlet mass spectrometer. Bulk sediment 

isotopic values (!13Cbs, !18Obs) were acquired with a typical precision of 0.03‰ on !13C 

and of 0.06‰ on !18O. During the transfer of CO2 into the mass spectrometer, a pressure 

reading measured the quantity of gas created during the reaction, which was converted to 

an approximate percent carbonate (%CaCO3) value based on calibration to pure 

carbonate standards, to a precision of ~1%.  

  

3.3.2   Sieved size fractions  

 Aliquots of sediment were wet sieved into four size fractions, dried and weighed. 

The size fractions were <63µm (fine), 63-150µm (medium), 150-250µm (large), and > 

250µm (coarse). The weight percent of sediment in each size fraction was calculated 

relative to the sum of the four dried size fractions (wt. %(fine), wt. %(med), wt. %(large), wt. 

%(coarse)). Material from the smallest two size fractions was measured for its stable 

isotopic composition (!13Cfine, !18Ofine, !13Cmed, !18Omed) and percent carbonate 

(%CaCO3-fine, %CaCO3-med).  

 

3.3.3   Foraminifera  
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 Planktonic foraminifera of the species N. pachyderma (sinistral) were picked from 

the “large” sieved size fraction (150-250µm). N. pachyderma is a surface dweller that 

likes cold waters and is common in the North Atlantic. Due to its unique tolerance for 

cold temperatures, in the highest latitudes it can make up nearly 100% of the foraminifera 

present in a core. 100-200 specimens were picked per depth horizon. The tests were 

crushed and sonicated in deionized water to remove any fine-grained carbonate material 

trapped inside the shells, which can skew isotopic measurements [Hodell and Curtis, 

2008]. The resulting clean shell material was split 3 aliquots of 0.3-0.5mg. One to two of 

these aliquots were measured for stable isotopes (!13CNps, !18ONps) and the other one to 

two were set aside for Mg/Ca analysis [not performed].  

 

 

3.4   Results – Bulk Sediment Stable Isotopes 

3.4.1   KN42, near the IRD belt 

 Core KN42 (52.55°N, 20.33°W), located just north of the traditional IRD belt 

region, is the farthest south of all the cores sampled in this study. This core shows six 

large (3-6‰) negative excursions in !18Obs (Figure 3.4), similar to those seen in the bulk 

sediment record from within the IRD belt [Hodell and Curtis, 2008]. In KN42, negative 

excursions in !13Cbs of 0.6-1.2‰ closely mirror the !18Obs excursions (Figure 3.4). As in 

the IRD belt [Hodell and Curtis, 2008], we suggest that these bulk sediment isotope 

excursions can be correlated to Heinrich events through the influx of detrital carbonate.  
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Figure 3.4  Top: !18Obs (black) and !13Cbs (turquoise) vs. Depth for KN42. Solid black dots mark 
the depths of excursions, which correlate to H1 through H6, including H5a. Open circles mark the 

location of two radiocarbon dates (102cm = 13.9ka, 109cm = 14.4ka) [de Menocal, personal 
communication]. Bottom: Proposed age model, assigning the ages of Heinrich events from 

Hemming [2004] and including the two radiocarbon dates. 
 

 
Figure 3.5  %CaCO3 vs. Depth for KN42. Solid black dots delineate the depths of isotope 

excursions identified in Figure 3.4. Open circles mark the location of two radiocarbon dates 
(102cm = 13.8ka, 109cm = 14.4ka) [de Menocal, personal communication]. Potential correlation 

between maxima in %CaCO3 and DO events 3-17 are shown in numbered open black circles.  
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In the IRD belt, Hodell and Curtis [2008] found that negative excursions in !18Obs 

correlated with the known position of Heinrich layers, defined by an increase in %IRD. 

The isotope excursions were caused by the presence of detrital carbonate material that 

was isotopically distinct from the background biogenic carbonate flux. The average 

isotopic composition of these detrital grains was -5.32±1.3‰ for !18Obs and 0.31±1.3‰ 

for !13Cbs [Hodell and Curtis, 2008]. The lowest isotopic composition achieved in the 

KN42 excursions is -5.4‰ for !18Obs and 0.2‰ for !13Cbs, near the measured end-

member value for Laurentide-derived carbonate IRD. If the IRD end-member in KN42 is 

the same as in the IRD belt, this suggests that Laurentide-derived IRD makes up nearly 

100% of the carbonate in many of these excursion intervals.  

These isotope excursions match peaks in magnetic susceptibility as well [de 

Menocal, personal communication]. Over the measured section, there are 7 peaks in 

magnetic susceptibility, whereas there are only 6 isotope excursions. This “missing” 

isotope excursion would fall at 145cm below seafloor (cmbsf) between the first and 

second isotope excursion. If these excursions correlate to Heinrich events, the “missing 

event” likely represents H1. Compared with the other Heinrich events, H1 has a thinner 

IRD layer in this region [Hemming, 2004 – Figure 25], and may have been missed at 2cm 

sampling resolution or be absent altogether in this core.  

Correlating the five later excursions to H2-H6, the two weakest excursions (230 

and 405cmbsf) correspond to H3 and H6. This difference between H3/H6 and the other 

Heinrich events has been noted before, and it has been suggested that these two events 

are associated with periods of carbonate dissolution as well as IRD influx [Hemming, 

2004, and references therein]. In KN42, H3 and H6 are associated with the lowest percent 
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carbonate values seen in the whole core (Figure 3.4), in agreement with this 

interpretation. This correlation also places the small isotope excursion at ~380cmbsf 

between H5 and H6. This could be the H5a event identified by Rashid et al. [2003] in the 

Labrador Sea.  

Assigning the ages of H1-H6 [Hemming, 2004] to the isotope (and magnetic 

susceptibility) excursions produces a weighted average sedimentation rate of 6.9cm/kyr. 

This is close to the sedimentation rate of 9.5cm/kyr in nearby core ODP609 over a similar 

period [Elliot et al., 1998], suggesting our correlation of these excursions with Heinrich 

events is sound. Two radiocarbon dates at 102cmbsf and 109cmbsf produce ages of 

13.9ka and 14.4ka, respectively, supporting our age model [de Menocal, personal 

communication]. These ages may be younger than this, due to the increased reservoir age 

documented during the Younger Dryas interval [Bard et al., 1994]. This suggests that the 

youngest isotope excursion is related to the deglaciation, either representing ice rafting 

during the Younger Dryas (H0) or melt water influx during the warm Bolling-Allerod.  

The %CaCO3 record shows significant variation throughout the core (Figure 3.5). 

The down-core drop from high Holocene values (70%) to lower glacial values (20%) 

around 100cmbsf delineates the glacial/interglacial transition. The lowest %CaCO3 

values in the core (~10%) occur during H3 and H6. The other isotope excursions show 

differing behavior in %CaCO3. During the oxygen isotope excursions marking H2 and 

H4, %CaCO3 increases to a local maximum, whereas H5 occurs during a decline in 

%CaCO3. Between the Heinrich events, there are smaller fluctuations in %CaCO3 that 

resemble the DO cycles in their timing and magnitude (Figure 3.5). DO events 8, 12, and 

14 stand out as longer intervals of high %CaCO3 and DO events 9,13, and 15 are shorter, 
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in line with their relative duration in the Greenland ice cores [Johnsen et al., 1992; 

Dansgaard et al., 1993; Grootes et al., 1993].  

 KN42 clearly shows the episodic influx of isotopically light carbonate, which 

produces large negative spikes in !18Obs and !13Cbs. Correlation of isotopic excursions to 

known ages of Heinrich events produces a reasonable sedimentation rate. The proposed 

age model aligns distinct Heinrich events (H3/H6, H5a) with excursions of a slightly 

different character. Fluctuations in %CaCO3 between Heinrich events can potentially be 

correlated to DO cycles. This core looks very similar to other cores from the IRD belt, 

despite being outside the traditionally defined IRD belt latitude range, and shows the 

influence of both Heinrich events and DO cycles.  

 

3.4.2   KN55, moving north of the IRD belt 

 Four cores were measured from north of the IRD belt between 55°N and 61°N – 

KN53, KN55, KN57, and KN63. These cores generally show large fluctuations in !18Obs, 

and %CaCO3, but the Heinrich events do not stand out as clearly as in KN42. In this 

region, we will focus on KN55. Data from cores not discussed here can be found in 

Appendix A1.  

 

KN55:  

 KN55 is located at 57.03°N and 17.53°E, on the Rockall Plateau. This core shows 

>2‰ variations in !18Obs, some of which are very rapid. %CaCO3 varies between ~20% 

and ~80% (Figure 3.6). A rough age model for KN55 can be produced by comparing its 

%CaCO3 record to %CaCO3 in a nearby well-dated core, ODP982 (57°31’N,  
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Figure 3.6  !18Obs (black) and !13Cbs (turquoise) vs. Depth in KN55. 
 
 
 

 
Figure 3.7  Top: %CaCO3 (orange) vs. Depth for KN55. Bottom: %CaCO3 (red) and Age (grey) 
vs. Depth for ODP982 [Venz et al., 1999]. The %CaCO3 records are highly similar between the 

two cores, suggesting KN55 covers roughly the same ~190kyr. 
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15°52’W). The KN55 record looks similar to the first 3.9m of ODP982 (Figure 3.7), 

which covers the last ~190kyr, spanning two glacial cycles which are clearly seen in the 

%CaCO3 variations [Venz et al., 1999]. In KN55, interglacial periods have high %CaCO3 

(>60%) and low magnetic susceptibility [de Menocal, personal communication]. The two 

glacial periods covered by this core (MIS2-4 and MIS6) have lower and more variable 

%CaCO3, and coincide with broad peaks in magnetic susceptibility, likely the result of 

increased ice-rafted debris diluting the carbonate component of the sediment with 

terrigenous material. MIS 5 in ODP982 has a dual-peak structure that is not observed in 

KN55, but is seen in other cores from the area [Ruddiman, 1992].  

 This age model is corroborated by one radiocarbon date taken at 114cmbsf, which 

gives an age of 15.6kyr [de Menocal, personal communication]. This date falls in an 

interval of low %CaCO3 right before the rise to higher values at the top of the core. In 

ODP982, the corresponding interval of low %CaCO3 falls at 72cmbsf and has an age of 

15.9kyr (Figure 3.7). This period of low %CaCO3 therefore likely represents the LGM, 

and the rise directly afterwards is the deglaciation.  

 Within the interval that represents the last glacial period (~100-270cmbsf), the 

strong isotope excursions that were present in KN42 are not seen in KN55. !18Obs 

gradually declines into the LGM, with a few negative excursions. occurring at 230-235, 

188, and 135-140cmbsf. !13Cbs varies between 0.5 and 1.2‰, with the lowest values 

occurring at 245-250, 180-195, and 120-125cmbsf, offset from the !18Obs excursions. 

Based on the age model created from correlation with ODP982, these excursions all 

occur during the last glacial phase. With the low number of excursions, it is unlikely that 

they correlate with Heinrich events or Dansgaard-Oeschger cycles.  
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 Although KN55 does not show the same number of negative excursions in !18Obs 

as KN42, and the few excursions that are recorded are lower in magnitude and longer in 

duration, the %CaCO3 records show some similarities that can help correlate age in 

KN55 within the glacial phase. Going down-core, both KN42 and KN55 show 1) the 

glacial/interglacial transition, 2) a period of low %CaCO3 during the LGM, punctuated by 

a few short spikes, 3) a period of intermediate %CaCO3 levels that may correlate to DO 

interstadials 5-17 in KN42, 4) a large dip down to very low %CaCO3 levels that 

corresponds to H6 in KN42, and 5) a rise to high %CaCO3 levels during the previous 

interglacial, MIS5.  

 Overall, this core covers the most recent glacial cycle and the penultimate glacial 

maximum. %CaCO3 and magnetic susceptibility track the glacial cycles. !18Obs and 

!13Cbs are somewhat correlated and show a few negative excursions during the most 

recent glacial cycle, but no high-frequency isotope excursions are seen in this core that 

would suggest IRD or meltwater pulses.  

 

3.4.3   EW1 and KN70, off the coast of Iceland 

Two cores, EW1 and KN70, were drilled in less than 300m water depth, both near 

the coast of Iceland. Despite their proximity to a continental margin that could have 

produced IRD-rich icebergs, neither of these cores shows the type of fluctuations in 

!18Obs that would suggest episodic iceberg discharge events, mainly due to high 

sedimentation rates restricting the time period covered by the core. 
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EW1:  

The bulk stable isotopes of EW1 are highly variable, with !18Obs ranging from -11‰ to 

4‰ and !13Cbs ranging from -9‰ to 7‰ (Figure 3.8). This variability is also 

accompanied by poor reproducibility (average 1" = 1.3‰ for !18Obs and 1.0‰ for 

!13Cbs), with some replicates of the same sample varying by as much as 8‰ in !18Obs.  

The bulk sediment stable isotope measurement becomes less reproducible at very 

low %CaCO3 values (less than 1-2%). In EW1, the majority of the core, except for a 

short section 0-25cmbsf, has %CaCO3 values in this range, making the data quality poor 

overall. The low %CaCO3 in this core is likely attributable to large inputs of basaltic rock 

from Iceland. Below the first 15cm, EW1 has a primary composition described as 

“terrigenous” [IMLGS database].  

 

 
Figure 3.8  !18Obs (black), !13Cbs (turquoise), and %CaCO3 (orange) vs. depth for EW1.  
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Figure 3.9  !18Obs (black), !13Cbs (turquoise), and %CaCO3 (orange) vs. depth for KN70. Bottom: 

%CaCO3 vs. calendar age for KN72, drilled 57m away [Andresen et al., 2005]. 
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color than other cores. The primary composition of KN70 from 200-400cmbsf is 

described as “volcanics” [IMLGS database].  

 %CaCO3 in KN70 is very similar to %CaCO3 in neighboring core KN158-4-

GGC72 (KN72), which has been well-dated using radiocarbon dating on shell pieces 

[Andresen et al., 2005]. In KN72, the sharp drop in %CaCO3 (at 390cmbsf in KN70 and 

381cmbsf in KN72) is the result of the presence of a tephra layer, with a composition of 

nearly 100% basaltic glass [Andresen et al., 2005]. This feature has been dated to 10,200-

10,250 calendar years, and is correlated to the Saksunarvatn tephra [Andresen et al, 

2005]. Therefore, KN70 is restricted to the Holocene interval. Above the tephra layer, 

!18Obs gradually decreases and %CaCO3 increases, consistent with continued warming 

during the Holocene.  

 There is one peak in !18Obs, around 200cmbsf, where !18Obs shifts from 2.7 to 

3.15‰ and %CaCO3 drops from ~38% to 28% (Figure 3.9). This peak is not observed in 

KN72, but it must be of mid-Holocene age.  

 

3.4.4   EW6, EW8, and KN84, the Denmark Strait outlet 

 The best record of Dansgaard-Oeschger cycles in ocean sediments can be found in 

core PS2644-5, located at the northern inlet to the Denmark Strait [Voelker et al., 1998] 

(Figure 3.1, 3.2). The proximity to the Greenland Ice Sheet and the shallow bathymetry in 

this region make it a prime location of the fluctuating ice shelf proposed to drive DO 

cycles (Chapter 2). Three cores were sampled from the outlet of the Denmark Strait. EW6 

and EW8 are both from a depth of ~2100m, whereas KN84 is slightly deeper (~2500m 

depth). The sedimentation rate in these cores is similar to KN55, such that a ~5m core 
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covers the last glacial cycle back to Termination II and a bit beyond. Cores EW6 and 

EW8 are longer (8m and 12m in length), and therefore extend farther back in time. These 

cores display many large and rapid fluctuations in !18Obs, which may be attributable to 

ice-rafting events.  

 

KN84: 

 Core KN84 sits in the center of the outlet of the Denmark Strait at a depth of 

~2500m. Multiple negative isotope excursions in !18Obs are recorded in this core. Each is 

associated with a minimum in %CaCO3, and many are also associated with maxima in 

!13Cbs (Figure 3.10).  

The !18Obs profile has some similarities to that of KN55 – specifically the 

negative excursion around 300cmbsf looks similar in shape to that at 440cmbsf in KN55 

(rapid decrease, gradual increase). In KN55, this negative !18Obs event correlated to the 

last interglacial period based on comparison of the %CaCO3 record to that of the well-

dated core ODP982. The rise in the %CaCO3 in KN55, KN84, and ODP982 at the onset 

of the negative excursion in !18Obs supports assigning this event as Termination II. The 

dual-peak structure of the interglacial %CaCO3 record is similar to that seen in ODP982. 

In KN84, the rise in %CaCO3 near the top of the core represents the transition from 

glacial to interglacial, Termination I. The minima in %CaCO3 around 70cmbsf likely 

represents the glacial maxima.  

 Two radiocarbon dates on this core were measured at 0 and 100cmbsf, giving 14C 

ages of 3.2ka and 29.1ka calendar age [de Menocal, personal communication], which 

converts to a sedimentation rate of 3.9cm/kyr over this time. Interpolating between these  
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Figure 3.10  !18Obs (black), %CaCO3 (orange), and !13Cbs (turquoise) vs. Depth in KN84. Black 
dots mark the locations of isotope excursions in !18Obs. Open circles mark the location of the two 
radiocarbon dates (0cmbsf = 3.2ka, 100cmbsf = 29.1ka) [de Menocal, personal communication]. 
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dates, the age of the first two negative !18Obs excursions (33 and 67-71cmbsf) would be 

11.7ka and 20.5-21.6ka. The first excursion likely represents the Younger Dryas, as it is 

associated with a reversal during the deglacial increase in %CaCO3. The second, longer 

excursion, likely represents the LGM, and is associated with the lowest %CaCO3 values 

and a broad peak in magnetic susceptibility [de Menocal, personal communication]. 

Extrapolating just outside of the dated range, the third excursion, at 105cmbsf, would 

have an age of 30.4ka. This is close to the age of the third Heinrich event (H3 ~31ka) 

[Hemming, 2004].  

This sedimentation rate does not seem to hold for the whole glacial period. Based 

on a sedimentation rate of 3.9cm/kyr, Termination II would have an age of ~78 ka, much 

too young, suggesting that sedimentation rate decreased during the glacial period. 

Therefore, we cannot extrapolate the Holocene sedimentation rate beyond the older of the 

two dates and cannot determine the ages of the other isotope excursions.  

 Overall, these excursions are quite rapid and are similar in appearance to the 

!18Obs excursions seen in KN42, but they differ in other aspects. In KN42, the excursions 

in !18Obs were matched by similar negative excursions in !13Cbs, due to the distinctive, 

light isotopic composition of the detrital end-member. In KN84, the opposite occurs. 

Negative !18Obs excursions are associated with maxima in !13C. Each excursion is also 

associated with a clear minimum in %CaCO3. In KN42, H3 and H6 were associated with 

low %CaCO3 values, whereas the other Heinrich events had either high or unchanging 

%CaCO3.  

 A few possibilities exist to explain concurrent negative !18Obs excursions and 

%CaCO3 minima. First, the %CaCO3 minima could be caused by dissolution events 
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removing carbonate from the deposited sediment. However, this would have to 

preferentially dissolve away carbonate enriched in !18O, while not affecting !13C 

significantly. A second explanation is that the negative !18Obs excursions were caused by 

meltwater pulses. A meltwater pulse with very negative !18Osw would affect !18Obs more 

strongly while leaving !13Cbs mildly affected or unaffected. This does not explain the low 

%CaCO3 accompanying each excursion. All three records could be explained by a flux of 

icebergs carrying predominantly non-carbonate IRD. The melting of the icebergs could 

cause more negative biogenic carbonate !18O values without affecting !13C. The increase 

in non-carbonate IRD could drive down %CaCO3 to a minimum. Such an event should be 

recorded by magnetic susceptibility. The magnetic susceptibility record shows 

intermediate values across the whole glacial period, with a few small peaks at 110, 140, 

162, and 180cmbsf, which roughly, but not perfectly, align with the isotope excursions 

(with the exception of 162cmbsf, which does not have a corresponding isotope 

excursion). Based on the number of excursions, these cannot represent Dansgaard-

Oeschger cycles or Heinrich events. It’s possible that they correspond to some Heinrich 

events and others are missing or unexpressed in this core. If so, the negative !18Obs could 

be derived from migration of a !18Osw anomaly caused by icebergs melting in the IRD 

belt. Negative excursions in the isotopic composition of foraminifera from this region 

have previously been attributed to such a traveling !18Oseawater anomaly [Elliot et al., 

1998].  

 

EW6 and EW8: 
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 Two cores from cruise EW93-03, EW6 and EW8, are located in the Denmark 

Strait outlet at a depth of ~2100m. Both are quite long (8 and 13m, respectively), so the 

deeper portions of the cores likely extend beyond the most recent glacial cycle, and were 

therefore sampled at lower resolution (deeper than 470 and 610cmbsf respectively). The 

two cores have many similarities. Both cores show multiple negative excursions in !18Obs 

ranging from 1-2‰ up to 6‰ in magnitude, larger in EW6. In addition, both cores have a 

section of very low %CaCO3 (denoted by grey bars in Figure 3.11 and 3.12). In these 

intervals, isotopic measurements become unreliable due to the very low amount of 

carbonate in the sediment.  

The two cores can be correlated using the isotope excursions and coincident 

changes in %CaCO3. Similarly to ODP982 and KN84, both cores show a dual-peak 

maximum in %CaCO3 around 300-500cmbsf that represents the last interglacial stage 

(Figure 3.13). The dip in %CaCO3 in the middle of the interglacial stage is associated 

with a negative oxygen isotope excursion in both cores (“mid-IG” excursion) (Figure 

3.14). Beginning with this correlative excursion, it is possible to work outwards both up- 

and down-core to correlate other isotope excursions between EW6 and EW8. The mid-IG 

excursion is bracketed by two smaller excursions. Going deeper in the core, the lower 

bracketing excursion is followed by a series of three more negative excursions (labeled 

“a”, “b”, “c” going downwards). Working upwards from upper bracketing excursion, 

both cores show a W-shaped double-dip excursion (“W”), topped by a segment of very 

low %CaCO3. This series of excursions (in order, beginning with the low %CaCO3 

section, they are W, upper bracket, mid-IG, lower bracket, a, b, and c) cover 300- 
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Figure 3.11  !18Obs (black), %CaCO3 (orange) and !13Cbs (turquoise) vs. Depth in core EW8. 
Stable isotope measurements become unreliable when %CaCO3 is less than ~2-3% (grey bars, red 

points).  
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Figure 3.12  !18Obs (black), %CaCO3 (orange) and !13Cbs (turquoise) vs. Depth in core EW6. 
Stable isotope measurements become unreliable when %CaCO3 is less than ~2-3% (grey bars, red 

points).  
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650cmbsf in EW6 and 200-550cmbsf in EW8, suggesting a similar sedimentation rate in 

the two cores. The deepest three excursions (a, b, and c) occur before Termination II, 

placing them in the previous glacial phase (MIS6) or earlier. In EW8, %CaCO3 fluctuates 

with these three excursions, reaching fairly high levels nearing those of the interglacial 

period between excursions, suggesting each excursion could be a full glacial/interglacial 

cycle. However, in EW6 the %CaCO3 over this interval is similar to glacial values, rather 

than interglacial values, suggesting the a, b, and c excursions all fall within the previous 

glacial phase, MIS6.   

The top-most 10cm of EW6 record the glacial/interglacial transition, apparent in 

the rapid rise in %CaCO3 from ~10% to >60%. EW8 does not record the Termination I. It 

is likely missing from the top of the core. Because Termination I is not recorded in EW8, 

the upper boundary of the core must be within the glacial phase (MIS2-4). EW6 records 

two periods of low %CaCO3, a shorter and longer period, whereas EW8 only records one 

shorter period. From the correlations suggested above, we have aligned the two short 

periods of low %CaCO3 as the same event. This means that the longer period of low 

%CaCO3 seen in EW6 is missing from EW8, potentially also lost off the top of the core. 

This further restricts the age of the upper 200cm of EW8 as within the early glacial 

period. Some small fluctuations in !18Obs can be seen in the top portion of EW8 (54-

200cmbsf) that may correspond to similar fluctuations seen between the two low 

%CaCO3 zones in EW6. 

In the earliest portion of EW6 (1-140cmbsf), !18Obs fluctuates many times 

between ~2‰ and -1 or -2‰ (Figure 3.15). These fluctuations fall within the late glacial, 

up to and including the LGM. They are rapid and large (3-5‰) and many of them are  
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Figure 3.13  %CaCO3 vs. Depth in cores EW6 (top) and EW8 (bottom) showing correlative 
negative isotope excursions. Depths of negative excursions marked by colored bars. W=red, 
bracket excursions = orange, mid-IG = light green, a = turquoise, b = light blue, c = magenta. 

 

 
 

Figure 3.14  !18Obs vs. Depth in cores EW6 (top) and EW8 (bottom) showing correlative negative 
isotope excursions. Depths of negative excursions (colored bars) defined in Figure 3.13. 
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associated with minima in %CaCO3. The correlation between negative !18Obs, low 

%CaCO3, and no change in !13Cbs is similar to the character of excursions in KN84. This 

suggests periodic influxes of meltwater and non-carbonate IRD. It’s possible that these 

rapid fluctuations in !18Obs could represent the Dansgaard-Oeschger cycles, based on  

their timing and number.  

Overall, EW6 and EW8 show multiple negative spikes in !18Obs. Much of the 

most recent glacial period has very low %CaCO3 and is therefore unusable. The previous 

glacial period has higher %CaCO3 and also records excursions. To gain insight into the 

origin of these excursions, we can look at different components of the sediment such as 

specific size fractions and the biogenic end-member.  

 

 
Figure 3.15  !18Obs (black) and %CaCO3 (orange) over the first 140cm of EW6, showing many 

fluctuations in !18Obs, 3-5‰ in magnitude, often correlating to changes in %CaCO3. 
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fraction (particles smaller than 63µm in size) includes fine carbonate dust, coccoliths, and 

possibly fragments of foraminifera. The “medium” fraction (63-150µm) includes smaller 

IRD as well as many foraminifera. The “large” (150-250µm) and “coarse” (>250µm) 

fractions should include larger IRD and larger foraminifera.  

 In EW6, !18Ofine and !18Omed track !18Obs quite closely (Figure 3.16). !18Ofine is 

sometimes 1-2‰ lower than !18Obs, especially in during some of the negative isotope 

excursions (mid-IG, b, and c). !18Omed is generally intermediate between !18Ofine and 

!18Obs. The carbonate content in these size fractions (%CaCO3-fine and %CaCO3-med) also 

closely tracks the bulk sediment %CaCO3 (Figure 3.16). There is no relation between the 

isotope excursions and changes in wt. % in any of the size fractions. Most of the mass in 

the bulk sediment is in the fine fraction (40-60%). All size fractions seem to respond 

together. If IRD input was causing the isotope excursions, the weight % in the larger size 

fractions (>63µm, the threshold definition for IRD) should increase relative to the fine 

fraction. This is not observed. However, icebergs can carry sediment of all size classes, 

so the fine fraction may also have been affected, resulting in no change in the relative 

weight percents.  

The same parameters were measured in EW8 over a similar interval. As in EW6, 

!18Ofine and !18Omed track !18Obs through all four major isotope excursions (mid-IG, a, b, 

c), although the magnitude of the excursions differs (Figure 3.17). !18Ofine reaches much 

more negative values than the bulk sediment, and in three out of four excursions hits a 

lower bound around -2‰. !18Omed is again intermediate between !18Obs and !18Ofine.  
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Figure 3.16 !18Obs, !13Cbs, and %CaCO3 vs. Depth for bulk sediment, fine (<63µm) and medium 
(63-150µm) size fraction in EW6. Weight % in each size fraction vs. Depth (bottom). Colored 

dots represent the depths of negative excursions in !18Obs, as shown in Figure 3.14. 
 

 

 

-4
-2

0
2

4

d18O bulk
d18O fine
d18O med!1

8 O
 (‰

)
EW6

-3
-1

0
1

2
3

d13C bulk
d13C fine
d13C med!1

3 C
 (‰

)
0

10
30

50

%CaCO3 bulk
%CaCO3 fine
%CaCO3 med

%
 C

aC
O
3

350 400 450 500 550 600 650 700
Depth (cm below seafloor)

0
20

40
60

W
t. 

%
 b

y 
si

ze
 fr

ac
.

<63um
63-150um
150-250um
>250um



! 72!

Interestingly, the bracketing excursions (orange dots) are not tracked in !18Ofine and 

!18Omed, but this may be due to a sampling bias.  

The size-fraction separated %CaCO3 measurements also track bulk sediment 

%CaCO3, but not as closely as in EW6. In general %CaCO3-fine and %CaCO3-med are 

lower than the bulk sediment %CaCO3, implying that much of the carbonate in the bulk 

sediment occurs in the two largest size fractions (>150µm). This is especially true during 

the first part of the interglacial phase (350-420cmbsf). In this interval, the majority of the 

sediment weight comes from the smallest size fraction, which only has ~20% carbonate, 

while the bulk sediment has ~60%. The mass balance would imply an impossibly high 

carbonate content in the larger two size classes (>100%). It’s possible that some of the 

carbonate material in the fine and medium size fractions was dolomite, and did not react 

enough during the 6-8 minute reaction time. In the bulk sediment measurement, the 

material was powdered using a mortar and pestle before analysis, which would have 

made dolomite more reactive.  

Unlike in EW6, a consistent pattern of increased wt. %large (150-250µm) occurs 

across all four of the negative !18Obs excursions scanned. This is at the expense of the 

fine fraction, which shows a decrease. The percent by mass of the medium and coarse 

fractions do not change much across excursions. The carbonate in the 150-250µm size 

fraction consists mainly of foraminifera, with some contribution of IRD. If these negative 

excursions were driven by increased influx of IRD, both the large and coarse fractions 

would be expected to show increased contribution during excursions, whereas only an 

increase in the large fraction is observed.  
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Figure 3.17 !18Obs, !13Cbs, and %CaCO3 vs. Depth for bulk sediment, fine (<63µm) and medium 

(63-150µm) size fraction in EW8. Weight % in each size fraction vs. Depth (bottom). Colored 
dots represent the depths of negative excursions in !18Obs, as shown in Figure 3.14. 
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It’s possible that a change in the relative contribution of foraminifera vs. IRD 

without any change in the end-member values of each could be causing the excursion. 

Another possibility is that the meltwater pulse decreases !18Osw, changing the 

composition of the foraminifera while at the same time increasing their prevalence. In 

order to separate these and other scenarios, the isotopic composition of the biogenic 

carbonate (foraminifera) end-member must be measured.  

 

 

3.6   Results – Planktonic Foraminifera 

 The high-latitude planktonic foraminifera N. pachyderma (sinistral) was picked 

from four intervals across the negative excursions a, b, c, and mid-IG in core EW8. 

!18ONps is generally around 4‰ during this period. Given a range in !18Osw of 0 to 1‰, 

this is consistent with temperatures of -2°C to 2°C, in agreement with expected near-

freezing temperatures at this latitude. !18ONps is heavy relative to !18Obs, !18Ofine, and 

!18Omed. 

Across excursions a and b, there is essentially no change in !18ONps, whereas 

across excursion c, !18ONps decreases monotonically by ~1‰. Across the mid-IG 

excursion, !18ONps fluctuates around 4‰ and ends at 4.5‰ post-excursion. !13CNps is 

generally around 0-0.5‰ and is invariant across individual excursions. During the mid-

IG excursion, !13CNps values are lower around -0.5‰, but are still relatively constant. The 

small amount of variability in !18ONps across these excursions is not enough to explain 

the magnitude of the excursion.   
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Figure 3.18  !18Obs (black) and !13Cbs (turquoise) vs. Depth for EW8 across 4 isotope excursions 
(mid-IG, a, b, and c). !18ONps and !13CNps  shown in red diamonds. Colored dots mark the location 

of negative isotope excursions in !18Obs, as defined in text. 
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increase in !18ONps. Since no such change is observed in !18ONps, !18Osw must have 

decreased by 1‰. The magnitude of the excursions (up to 5‰) is much larger than this, 

meaning changes in !18Osw could not explain the isotope excursions, given the 

foraminifera data. This points to an input of isotopically light carbonate material, likely 

IRD, that affects all size-classes during the excursion intervals. Heinrich-like events have 

been observed in previous glacial periods [Hodell et al., 2008]. These observed 

excursions in  

 

 

3.7   Conclusions 

 We studied 10 sediment cores from the North Atlantic in search of evidence of 

ice-rafting events occurring in time with Dansgaard-Oeschger cycles. The farthest south 

core, KN42 showed clear IRD signals corresponding to the Heinrich events, and potential 

evidence of DO variability in the %CaCO3 record. Moving northward, many of our cores 

had slower sedimentation rates, therefore covering a longer time interval, often including 

the previous interglacial and beyond. In KN55, KN84, EW6 and EW8, we identified the 

previous interglacial period based on increased %CaCO3 levels, and the double-dip 

structure. In three cores from the outlet of the Denmark Strait, we identified multiple 

negative excursions in !18Obs within the most recent and the previous glacial periods. We 

measured the isotopic composition and weight percent of different sieved size fractions to 

determine which size class was causing the excursions. In general, all size fractions 

tracked the bulk sediment record in !18O and %CaCO3. In EW8 there was an increase in 

the weight percent in the 150-250µm size fraction across negative excursions in !18Obs. 
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We picked the polar planktonic foraminifera N. pachyderma (s) to isolate changing 

temperature and !18Osw effects from variable input of IRD and discovered that the 

excursions were not caused by changing biogenic carbonate composition, suggesting IRD 

pulses as the origin, potentially containing dolomite.  
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Chapter 4. Clumped isotope measurements of small (1mg) 

carbonate samples using a high-efficiency dual-reservoir 

technique 

 

[Petersen, S. V. and Schrag, D. P. (2014) Clumped isotope measurements of small 

carbonate samples using a high-efficiency dual-reservoir technique. Rapid 

Communications in Mass Spectrometry, accepted] 

 

ABSTRACT 

The measurement of multiply-substituted isotopologues of CO2 derived from 

carbonate has allowed for the reconstruction of paleotemperatures from a single phase 

(CaCO3), circumventing uncertainty inherent in other isotopic paleothermometers. 

Current analytical techniques require relatively large amounts of carbonate (5-8mg per 

replicate), which limits the applicability of the clumped isotope proxy to certain 

geological materials such as marine microfossils, commonly used for paleoclimate 

reconstructions. Clumped isotope measurements of small samples were made on a new, 

high-efficiency, dual-reservoir sample preparation inlet system attached to a Thermo-

Finnegan MAT 253 mass spectrometer. Sample gas produced on the inlet is introduced 

from a 10mL reservoir directly into the source via a capillary. Reference gas fills an 

identical 10mL reservoir installed between the reference bellows and capillary. Gas 

pressures in both reservoirs are initially balanced, and are allowed to decrease together 

over the run. Carbonate samples from 1mg to 2.6mg produced !47 values equivalent to 
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the traditional two-bellows method with identical single-sample precision (1 SE = 0.005-

0.015‰) and external standard error (SE = 0.006-0.015‰, n=4-6). The size of sample 

needed to achieve good precision is controlled by the sensitivity of the mass spectrometer 

and the size of the fixed reservoirs and adjacent U-trap installed on our inlet. Our 

demonstration of high-precision clumped isotope measurements of small aliquots of 

carbonate allows for the application of this proxy to a wider range of geological sample 

materials, such as marine microfossils, that until now have been near-impossible given 

sample size limitation.  

 

 

4.1   Introduction 

The measurement of multiply-substituted isotopologues of CO2 derived from 

carbonate materials has allowed for the reconstruction of paleotemperatures in a variety 

of geologic settings. By deriving a temperature from a single phase (CaCO3), the 

clumped isotope paleothermometer circumvents the uncertainty inherent to traditional 

paleothermometers that require information about the isotopic composition of additional 

phases (H2O). The carbonate clumped isotope paleothermometer is based on the 

temperature-dependent ordering of the heavy isotopes 13C and 18O within the carbonate 

lattice [Eiler, 2011]. At colder temperatures, these heavy isotopes “clump” to produce 

mass-63 CaCO3 (Ca13C18O16O2) at a level above that expected by a random (stochastic) 

distribution of these isotopes. When the carbonate is converted to CO2 via acid digestion, 

this mass-63 anomaly manifests itself as excess mass-47 CO2, denoted by the quantity !47 

(Equation 4.1) [Eiler, 2011]. A !47 value of zero indicates a fully random distribution of 
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isotopes. Over normal Earth surface temperatures, !47 varies between about 0.55 and 0.8 

in the absolute reference frame [Dennis et al., 2011]. Equation 4.1 defines !47 where the 

Rx = xCO2/44CO2 and Rx* is the corresponding stochastic distribution ratio.
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The temperature dependence of !47 has been demonstrated for a variety of carbonate 

materials including synthetic, biogenic, and inorganic carbonates [Eiler, 2011; Ghosh et 

al., 2006a; Dennis and Schrag, 2010], as well as by theoretical calculations [Schauble et 

al., 2006; Guo et al., 2009]. Although this is still a new proxy, researchers have already 

used it to determine paleo-altitude of growing mountains [Ghosh et al., 2006b], 

reconstruct hydrological and ecological conditions in Africa during the time of early 

humans [Passey et al., 2010], and measure the body temperature of dinosaurs [Eagle et 

al., 2011], along with many other applications. 

Traditional mass spectrometry practices used to measure stable isotopes ("18O and 

"13C) require micrograms of carbonate material for a single measurement. This facilitates 

the creation of high-resolution records made up of many measurements of small (<1mg) 

carbonate samples such as foraminifera. In comparison, the clumped isotope technique 

requires 5-15mg of carbonate per replicate [Ghosh et al., 2006a], limiting the possible 

applications of this proxy. In a few cases, this sample size limit has been reduced. Zaarur 

et al. [2011] adjusted the capillary cross section and flow rate and installed a new bellows 

potentiometer, and were able to measure samples of 3-4mg per replicate. Using a Kiel 
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device to measure tiny aliquots of carbonate (0.2mg) for a few minutes each and 

averaging the data from 6-10 aliquots (equivalent to 1.2-2mg), Schmid and Bernasconi 

[2010] were able to calculate a !47 value with a precision of 0.015-0.040‰ (1 SE), while 

at the same time producing a high-resolution stable isotope record. By averaging together 

5-13 of these runs (equivalent to 6-26mg), they were able to achieve an external precision 

of 0.005-0.010‰ (1 SE). The total mass of carbonate required for this is similar to ~4 

replicates at 3-4mg (equivalent to 12-16mg), and both methods are an improvement over 

traditional sample requirements (>24mg for 3 replicates) [Ghosh et al., 2006a]. Meckler 

et al. [2014] showed that with additional corrections, an external error of 0.007-0.009‰ 

(1 SE) could be achieved with 4.5-6mg of total sample.  

The clumped isotope proxy has the potential to be very useful in the field of 

paleoceanography due to its ability to separate the influences of temperature and the 

isotopic composition of seawater on "18O of marine carbonates [Eiler, 2011]. 

Foraminifera, a commonly used sample material for paleoceanographic studies, have 

been shown to follow the same temperature-!47 relationship as other biogenic carbonates 

[Tripati et al., 2010; Grauel et al., 2013]. However, current analytical techniques make it 

difficult to acquire enough sample material for replicate analysis of foraminifera due to 

their small size. A few studies have successfully measured the clumped isotope 

composition of foraminifera using the traditional large-sample methods [Tripati et al., 

2010; Tripati et al., 2014] and the Kiel device method described above [Grauel et al., 

2013]. New methods to reduce sample size requirements will make this proxy more 

widely accessible as a tool for paleoceanography.  
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Here we present a new method of measuring individual aliquots as small as 1 mg. 

A high-efficiency dual-reservoir inlet system allows analysis of smaller samples by 

reducing the “wasted” gas left remaining in the bellows and the sample vial. Gas 

pressures decrease slowly from a fixed-volume sample reservoir and from an identical 

reference reservoir installed between the reference bellows and the change-over block. In 

this study we test the sample size limit of this inlet configuration by measuring carbonate 

standards from 1.0mg to 2.6mg and demonstrate internal precision of 0.005-0.015‰ (1 

SE) and external standard error of 0.006-0.015‰ (1 SE) for 4-6 replicates, in line with 

the traditional dual-bellows configuration (1 SE = 0.002-0.018‰) [Dennis and Schrag, 

2010; Zaarur et al., 2011; Wacker et al., 2013; Thiagarajan et al., 2011] 

 

 

4.2   Methods and Materials 

4.2.1   Standard materials 

 To calibrate the newly constructed sample-preparation inlet, carbonate standards 

of known composition were measured repeatedly at a range of sizes. Two high-

temperature carbonates (CM2, NBS19) with similar !47 values, but different "13C and 

"18O, were measured. One low-temperature coral (RTG) with a higher !47 value was 

measured for comparison. All isotopic compositions are reported relative to V-PDB. All 

errors on !47 reported in this section are external standard errors (1 SE) calculated on 

many measurements, with the number of measurements in parentheses.  
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• CM2 – An in-house Carrara Marble standard with isotopic composition !13C = 

2.29‰ and !18O = -1.77‰ [Dennis thesis]. Previous analysis of this standard at 

Harvard using the traditional two-bellows method and large (8 mg) sample sizes 

yielded a "47 value of 0.385 ± 0.005‰ (n=40) in the absolute reference frame 

[Dennis et al., 2011]. 

• RTG – A coral specimen from Raratonga, used as a cooler-temperature in-house 

standard, with isotopic composition !13C = -2.20‰ and !18O = -4.11‰ [Dennis 

thesis]. Limited previous analyses of this standard in the two-bellows 

configuration produced a "47 value of 0.720 ± 0.007‰ (n=11) [Dennis thesis]. 

• NBS-19 – An IAEA Carrara Marble standard with isotopic composition !13C = 

1.95‰ and !18O  = -2.20‰. Previous analyses at Harvard produced a "47 value of 

0.373 ± 0.007‰ (n=7) in the absolute reference frame [Dennis et al., 2011]. Other 

labs found similar values ("47 = 0.399 ± 0.005‰ (n=12) at Johns Hopkins 

[Dennis et al., 2011], 0.404 ± 0.006‰ (n=40) at Yale [Dennis et al., 2011], and 

0.373± 0.004‰ (n=20) and 0.359± 0.004‰ (n=19) at 25°C and 90°C at Goethe-

University [Wacker et al., 2013]). 

 

To correct the raw "47 data to the absolute reference frame [Dennis et al., 2011], 

heated and equilibrated gases were measured through the same sample-preparation inlet 

in between carbonate sample runs. A large number of heated and equilibrated gases (10-

15) were run at the beginning of each measurement period to establish the calibration 

lines. During the measurement period, a gas standard was run every 1-2 days (every 3-8 

samples). To prepare heated gases, aliquots of four gases (2 tank gases and reacted CM2 
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and RTG) of distinct composition were transferred into quartz tubes, which were heated 

to 1000°C for 2 hours. This procedure randomizes the isotope distribution to produce a 

near-stochastic arrangement, which we measure to correct for a number of mass 

spectrometer source effects [Huntington et al., 2009]. To prepare equilibrated gases, 

aliquots of the same four gases were transferred into Pyrex tubes containing ~1mL of 

deionized water. The tubes were placed in water baths held at 10°C and 35°C and 

allowed to equilibrate over a minimum of 2 days. Each tube is removed immediately 

before analysis and the gas is extracted within minutes, before the CO2 can equilibrate to 

room temperature (see description below).  

 
 

 
 
 

Figure 4.1  Diagram of the new, high-efficiency, dual-reservoir sample preparation inlet. Double 
triangles represent valves. Shaded valves are controlled by the MAT 253 and white valves are 

part of the inlet. 
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4.2.2   Sample preparation 

 Samples were prepared through a newly constructed high-efficiency dual-

reservoir sample preparation inlet (Figure 4.1). This inlet follows the procedure outlined 

by Dennis and Schrag [2010] for creating and cleaning CO2. Gas is introduced into the 

inlet in two different ways. For carbonate samples and standards, CO2 is created by 

reaction with anhydrous phosphoric acid held at 90°C in a common acid bath and is 

continuously frozen into a large U-trap submerged in liquid nitrogen (LN2). Reaction 

time is 6 minutes, and extends well beyond the point when visible bubble formation 

ceases. On its way to the U-trap, the gas passes through a trap held at -80°C to remove 

any trace amounts of water. For gas standards (heated gases and equilibrated gases), CO2 

is introduced into the inlet via a cracker. As with reacted carbonate samples, the CO2 

passes through a -80°C trap to remove water and is frozen into the large U-trap on the far 

side. For equilibrated gases, within 2-3 minutes of being removed from the water bath 

(10°C or 35°C), the base of the Pyrex tube is submerged in LN2, freezing both the water 

and CO2 and inhibiting the equilibration of the CO2 with water at room temperature. LN2 

is then replaced by a -80°C trap before the cracking step to release the CO2 while the 

water stays frozen, and is kept at that temperature while the CO2 is transferred to the U-

trap. This whole process takes less than 10-15 minutes and the exposure of CO2 to water 

at room temperature is short enough to avoid significant re-equilibration observed in 

other experiments [Affek, 2013]. For all sample types, once the freezing step is complete, 

the CO2 is allowed to warm up to room temperature within the large U-trap and the 

volume of gas created or transferred is roughly determined by an analog pressure gauge. 
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 To remove trace contaminants, the gas is then passed through a Pyrex U-trap 

(outer diameter !”) packed with Porapak Q (PPQ) material held at -10 to -12°C by 

immersion in cooled ethanol. Gas is frozen on the far side into a small U-trap (outer 

diameter = "”, internal volume ~6mL) immersed in LN2. During this step, the pressure 

gauge on the large U-trap gradually decreases, demonstrating that the gas is leaving the 

large U-trap. When the pressure gauge nears baseline and stops decreasing (~4-7 minutes 

depending on sample size), this step is deemed complete. The small U-trap is closed off 

and the clean CO2 is allowed to warm up to room temperature. Finally, the gas is 

expanded from the small U-trap into the 10mL sample reservoir and allowed to 

equilibrate for 3 minutes. This completes the sample preparation procedure, which in 

total takes ~30-40 minutes per sample. While one sample is being analyzed on the mass 

spectrometer, and before the next sample is processed, the PPQ trap is baked for 20-35 

minutes at ~150°C to remove any collected contaminants.  

  

4.2.3   Mass spectrometry 

While the CO2 is equilibrating between the small U-trap and the 10mL sample 

reservoir, the gas is introduced directly from the reservoir into the source. A more precise 

determination of yield can be estimated at this point (compared to the rough estimation 

from the inlet pressure gauge) using the initial beam intensity and the pressure reading off 

the MAT 253 vacuum gauge. Reference gas from the bellows fills an identical 10mL 

reference reservoir installed between the bellows and the change-over block (Figure 4.1). 

The reference bellows are manually adjusted until the intensity on the two m/z 47 beams 

are balanced (on average to within 55 mV, and within 12 mV for samples with initial m/z 
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47 < 1000mV). The reference and sample reservoirs are then closed off from the bellows 

and the small U-trap, respectively, so the volume from which gas enters the source is 

identical on both the sample and reference sides. These reservoirs remain closed for the 

entire run, unlike in the dual-bellows method, where the reservoirs are replenished at the 

beginning of each acquisition during the pressure adjustment phase. 

In order to perfectly balance these volumes, 87 clean glass beads (borosilicate, 

3mm diameter, ~1.2mL total volume) were placed permanently in the sample-side 

reservoir. These beads are necessary to balance the difference between the internal 

volumes of the adjacent MAT 253 and inlet valves. The inlet valve has a larger internal 

volume, so the volume of the sample reservoir needs to be decreased accordingly. The 

specific number of beads was determined by gradually adding beads to the sample side 

until the beam intensities decreased at the same rate. Any minor offsets between the 

initial gas pressures set by manual bellows adjustment are eliminated during the course of 

the run as the reservoir with the higher gas pressure decreases more quickly and 

eventually matches the other reservoir closely.  

The MAT 253 at Harvard is equipped with 5 Faraday cups with resistors of 3x107 

!, 3x109 !, and 1x1010 ! for masses 44 through 46 and 1x1012 ! for masses 47 and 48. 

The capillaries on the mass spectrometer have been changed from the factory-fitted 

stainless steel variety to a deactivated fused-silica capillary (~1m in length, 110µm inner 

diameter) to prevent the exchange of CO2 and H2O within the capillaries. One sample run 

lasts about 2 hours and 20 minutes and is comprised of 7 acquisitions of 14 cycles each, 

with an integration time of 26 seconds per cycle and an idle time of 12 seconds, 

equivalent to 2548 seconds of total integration time on each sample. Raw voltage data is 
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processed as outlined by Huntington et al. [2009] to get raw !47 values. Carbonate 

unknowns are then corrected to the absolute reference frame using the heated and 

equilibrated gas data [Dennis et al., 2011], followed by an additional !48 correction 

described below.  

In the traditional two-bellows measurement configuration, beam intensities on 

both the sample and reference side are set to a target value at the beginning of each 

acquisition (e.g. m/z 47 = 2V or 8V for the Harvard instrument [Dennis and Schrag, 

2010; Dennis thesis]). Over the course of one acquisition, the sample and reference beam 

intensities decrease somewhat (the amount depends on how many cycles per acquisition 

and the starting beam intensity), but are returned to the target value at the start of the next 

acquisition by compressing both the bellows (Figure 4.2). In this set up, all of the cycles 

are performed at, or closely below, the target voltage (Figure 4.2). By staying near the 

target voltage, issues of nonlinearities in the source are avoided, and there is no risk of 

gas fractionating as it decreases to a very low pressure. A 10mL reservoir was installed 

between the bellows and the capillary on both the reference and sample side of the mass 

spectrometer to increase the volume from which the gas enters the source, therefore 

reducing the rate at which the gas pressures (and beam intensities) decrease [Dennis and 

Schrag, 2010]. See Figure A4.1 for detailed set up and part numbers. At m/z 47 = 2V, 

!47-raw can be measured to a precision of 0.005-0.010‰ (1 SE) for a single sample run 

[Dennis and Schrag, 2010], reflecting beam stability and shot noise limits [Merritt and 

Hayes, 1994].  

In our dual-reservoir configuration, each cycle is measured at progressively lower 

beam intensity (Figure 4.2). Over the course of a 2-hour 20-minute run, the m/z 47 beam 
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intensity decreases by 40-60%, at a rate proportional to the gas pressure in the reservoirs 

(Figure 4.2). While this gas pressure decreases, the beam intensities on the sample and 

reference sides remain balanced. The ratios between the beams also remain constant, so 

the calculated isotope ratios do not show a trend with beam intensity. Despite the beam 

intensity changing significantly over the run, this configuration can achieve similar 

precision to the dual-bellows configuration for a single measurement, demonstrating 

isotope-ratio stability over a large voltage range. For a single sample run in this 

measurement configuration, !47-raw can be measured to a precision of 0.005‰ to 0.016‰ 

(1 SE), depending on the sample size, consistent with the shot noise limit [Merritt and 

Hayes, 1994] (see Appendix A2 for further discussion).  

 

 

Figure 4.2  m/z 47 beam intensity (mV) over the course of a sample run, shown for one run in the 
dual-bellows configuration (20 acquisitions x 4 cycles, target voltage = 2V on m/z 47) and three 

runs in the dual-reservoir configuration (7 acquisitions x 14 cycles, changing m/z 47 voltage) with 
high, medium, and low starting voltages for m/z 47. m/z 47 beam intensity decreases by 55%, 

48%, and 41% for the three cases, respectively. 
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Figure 4.3  Indicators of sample yield. (a) Mass vs. Source Vacuum Pressure above background. 
Lines are fit through all three data sets and show a consistent yield relationship. (b) Mass vs. 

Initial m/z 47 beam intensity. Three time periods are plotted. 05/13 – 06/13 – Larger U-trap near 
the sample reservoir, 1st source tuning configuration; 06/13 – 09/13 – Smaller U-trap near the 

sample reservoir, 1st source tuning configuration; 10/13 – 03/14 – Smaller U-trap near the 
reservoir, 2nd source tuning configuration.   
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4.3   Results 

4.3.1   Demonstration of yield at small sample sizes 

Sample yield was measured by calculating the increase in pressure recorded by 

the source vacuum gauge after introducing the sample gas into the source. This yield 

estimate represents the volume of gas reaching the source per milligram of carbonate 

reacted, and includes both yield from the acid digestion step and any loss of gas that may 

have occurred through the cleaning process. The data shows a clear linear relationship 

between this pressure increase and the mass of carbonate reacted (Figure 4.3a), as is 

expected from the ideal gas law. In June 2013, installation of a smaller U-trap in front of 

the sample reservoir decreased the volume of “wasted” gas left in the U-trap and 

increased the pressure in the source for the same mass of carbonate reacted (Figure 4.3a). 

Even at the smallest sample sizes, the linear relationship is maintained, indicating good 

yield is being achieved. This corroborates the inlet pressure gauge, which indicates that 

nearly all the gas is transferred away from the large U-trap during the PPQ cleaning step.  

Sample size can also be compared with the initial m/z 47 beam intensity (Figure 

4.3b). For comparison to other instruments, m/z 44 beam intensity is about 5/8 of m/z 47. 

A source tuning after a power outage in early October 2013 strongly increased the 

sensitivity (mV beam intensity/mol of gas) of the mass spectrometer, which allowed us to 

decrease our sample size further, while maintaining the same level of precision (Figure 

4.3b, Smaller U-trap, tuning 2). This tuning was done using the Isodat autofocus routine. 

The increase in sensitivity came mainly from a decrease in the Extraction parameter, and 

corresponded to a significant decrease in the slope of the gas calibration lines (0.009 to 

0.006) but minimal changes in the intercepts (scrambling). After this shift in sensitivity,  
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Figure 4.4  Correlation between !48 and !47-raw shown for two carbonate standards, one heated 
gas, and the reference gas run as a sample from the period September 2013 – March 2014. Lines 
are the result of a group regression to find a common slope and individual intercepts. Error bars 
are smaller than the symbols.  
 
 

Sample Type Number of Data 
Points 

Slope Error (1SE) 

PUCO2_1000C 21 0.0798 0.0098 
Reference Gas 29 0.0477 0.0028 
CM2 (carbonate) 108 0.0566 0.0017 
RTG (carbonate) 76 0.0448 0.0025 
    
All together 234 0.0509 0.0013 

Table 4.1  Slopes (and 1SE errors) found from separate regressions of each sample type 
compared to the slope found using a group regression. Data sets are shown in Figure 4.4. The 

second column shows the number of replicates in each sample type.  
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Figure 4.5  !48 vs. !47-RFAC (top) and Initial m/z 47 intensity vs. !48 (bottom), divided by sample 
size for CM2 runs over all four measurement periods. Smaller sample sizes tend to show higher 
!48, and therefore !47, values, whereas larger samples tend to show lower !48 and !47 values, 

although a few points do not follow this. Grey lines delineate “no fractionation”, or !(!48) = 0, 
covering a range of values for the 4 measurement periods. 
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sample sizes ranging from 1.0mg to 2.5mg produce initial m/z 47 beam intensities 

between 650mV and 5000mV.  

 

4.3.2   Diagnosing an unknown fractionation 

 We observe in all our data a strong correlation between !48 and !47, both raw 

(!47-raw) and fully corrected to the absolute reference frame (!47-RFAC), with !47 

increasing by ~0.05‰ for every 1‰ increase in !48 (Figure 4.4). This relationship is 

present in carbonate standards and heated gases, and despite varying isotopic 

compositions and !47 values, the slope of this relationship is similar among all sample 

types (Table 4.1). The slope is also nearly unchanged (0.000-0.002) before and after the 

correction to the absolute reference frame, and across significant changes in source 

tuning (Figure A4.2, Table A4.1). We observe no significant correlation between !48 and 

!18O or !13C (Figure A4.3). Sample size seems to have an influence on the magnitude of 

the fractionation, with the smallest carbonate samples often (but not always) having 

higher !48 and "47 values (Figure 4.5). The slope of the fractionation is mildly dependent 

on the average "47 value of the sample type, with the slope getting slightly steeper (0.04 

to 0.08) as the degree of clumping decreases (Table 4.1).  

Previously, high !48 values were interpreted as contamination by hydrocarbons, 

chlorocarbons, or sulfur compounds, which produce a mass interference on mass-47 and 

mass-48 [Eiler and Schauble, 2004]. Conventionally, samples should plot within the 

envelope of calibration gas points in !48 vs. "48 space. Points outside of this range are 

thought to be contaminated and would be thrown out in a typical study [Huntington et al., 

2009]. In our data, we observe "48 values both within and outside of the envelope of 
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calibration gas data (ex. Figure 4.6), for samples we consider to be clean, such as 

reference gas run through the inlet (Figure 4.4). These high !48 values have 

corresponding high !47 values offset from the known value (zero in the case of reference 

gas run against itself) and in line with the relationship described above. The result is that 

we observe a larger range in !48 for “clean” samples than previously deemed acceptable.  

We do not know the cause of this fractionation, but we can rule out some potential 

explanations. We see the relationship between !47 and !48 in heated gases originating 

from multiple tanks and in the reference gas run as a sample, all of which are pure CO2. 

This suggests our fractionation is not due to sample contamination. The fractionation is 

also not produced during the acid digestion step because it is observed in standard gases 

that do not get reacted (and are measured both with and without an acid bath attached to 

the inlet). Variations in yield also do not cause the fractionation because residuals on this 

yield do not correlate with !48 (Figure A4.4). 

One possible explanation is that this fractionation is produced in the PPQ cleaning 

step. Previous studies measuring extremely small samples (<15µmol CO2 equivalent to 

<1.5mg CaCO3) observed a fractionation in !47 associated with the GC cleaning step, 

producing !47 values up to 0.2‰ enriched compared to larger samples [Guo and Eiler, 

2007]. This is of the same order of magnitude as the fractionation we observe (Figure 

4.4). However, the authors observed no correlation between !47 and either mass-48 or 

mass-49 excesses [Guo and Eiler, 2007].  

We observe different relationships between !48 and !47 when gas does or does not 

pass through the PPQ trap. Reference gas introduced directly into the small U-trap 

(therefore bypassing the PPQ step) did not show a strong relationship in !48 vs. !47 
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(Figure A4.5a). However, reference gas frozen directly into the small U-trap (instead of 

expanded) shows a fairly strong correlation in !48 vs. !47, but with a slope almost twice 

as steep as when the same gas passed through the whole inlet (Figure A4.5a). Both the 

amount of gas frozen into the U-trap and the voltage at which the gas was run did not 

correlate with the magnitude of the fractionation, although none were as small as our 

smallest samples (Figure A4.5bc). Replacing the PPQ material did not change the slope 

(Figure A4.2). The duration of baking the PPQ trap before passing a new sample through 

was observed to have some influence (longer baking = lower !48), but it was inconsistent.  

 The sample size dependence of this fractionation points to a possible influence of 

the pressure-dependent negative baselines (PBL) observed in many other studies [He et 

al., 2012; Yeung et al., 2012; Bernasconi et al., 2013], which would have the strongest  

influence on samples run at the lowest signal intensity. We did not measure PBLs in this 

study, but the correction to the absolute reference frame implicitly takes the PBL effect 

into account if reference gases and samples are run at the same voltage. Our calibration 

gases span a range of sizes that generally overlaps with the range of sample sizes we ran 

in this study. Some of our smallest samples are outside this range. However, looking at a 

subset of samples and calibration gases run over a narrow voltage range (m/z 47 = 3300 – 

3800mV at the start of the run), we still observe the same relationship, both before and 

after correction to the absolute reference frame (Figure A4.6, Table A4.2). This suggests 

that the size (and running voltage) of the reference and sample gases is not causing the 

observed fractionation.  

Heated gases show a smaller range of fractionation than the carbonate samples 

(Figure 4.4). The volume of CO2 in each aliquot of heated or equilibrated gas was often 
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larger than the volume of CO2 produced by a typical carbonate sample (especially 

compared to our smallest samples) due to the method of preparation of aliquots from the 

reference tanks. After passing through our sample preparation inlet (described below), 

heated and equilibrated gases were chopped down to a volume comparable to the 

carbonate samples so they could be run at similar beam intensities. This was done by 

expanding the gas into the T-junction adjacent to the small U-trap (Figure 4.1), or by 

closing off the reservoir, evacuating the small U-trap, and expanding the gas back into the 

U-trap. The smaller magnitude of fractionation in the heated gases suggests that the 

volume of gas passing through the PPQ trap may play a role in setting the magnitude of 

fractionation.  

Another possibility is that this fractionation is caused by our dual-reservoir 

configuration and the way the beam intensities decrease throughout the run. However, 

!48 and !47 show very little trend over the 2-hour 20-minute run, and the !48, whether 

low or high, is identifiable in the first few cycles, which are no different than the first few 

cycles of a traditional two-bellows analysis. Regardless of the cause of the fractionation, 

it is consistent, well defined, and can be corrected. 

 

4.3.3   Correcting for a fractionation in !47 and !48 

 The observed relationship between increased !48 and !47 causes an undesirable, 

large scatter in the !47 of measured carbonate samples and standards. If a “true” !48 value 

is known for each sample type (e.g. CM2, RTG), the !47 data can be simply corrected 

back to this value along the observed slope. In the past, the “true” (uncontaminated) !48 

value has been determined in relation to the behavior of heated and equilibrated gases in 
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!48 vs. !48 space [Huntington et al., 2009]. Heated and equilibrated gases show a positive 

linear relationship between !48 and !48, and replicates of a single carbonate sample form 

an intersecting line of steeper slope (see Figure 4.6a). The deviation between the !48 of 

an individual replicate and the line determined by the heated/equilibrated gases is denoted 

!(!48) and is calculated based on Equation 4.2.  

 

!(!48) = !48-(!48*SlopeHG/EG  + IntHG/EG)            [Eq. 4.2] 

 

SlopeHG/EG and IntHG/EG are the slope and intercept of the line fitted to all the heated and 

equilibrated gas points in !48 vs. !48 space (Figure 4.6a, black points/lines). The “true” 

!48 value for each carbonate sample type (CM2, RTG, unknown) is then determined to be 

the value at which !(!48) = 0 (i.e. the point of intersection between the sample line and 

the heated/equilibrated gas line). This can be calculated for each sample type using 

Equation 4.3.  

 

“true” !48 = (IntCARB48*SlopeHG/EG - IntHG/EG*SlopeCARB48)/(SlopeHG/EG - SlopeCARB48)  

         [Eq. 4.3] 

 

SlopeCARB48 and IntCARB48 are the slope and intercept of the line fitted to all the 

data of a single carbonate sample type in !48 vs. !48 space (Figure 4.6a, colored 

points/lines). SlopeCARB48 and IntCARB48 can be determined individually for each sample 

type by fitting a line to all replicates of that sample. The individual !48 vs. !48 slopes for 

carbonates agree with each other within error when sample types have enough replicates, 
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suggesting all carbonates are following the same slope and the lines are parallel. 

Therefore, data sets of all carbonate sample types can be fitted simultaneously for a 

common slope and individual intercepts. This is the same as the mathematical procedure 

done to solve for the slope and intercepts of the heated and equilibrated gases in !47 vs. 

!47 space when correcting data to the absolute reference frame [Dennis et al., 2011]. By 

solving all data sets together, this decreases the influence of any individual outlying 

point, and improves the fit to a sample for which you have few replicates (e.g. NBS19). 

Slopes and intercepts resulting from the group fit are the same as those from individual 

fits for CM2 and RTG within error, but not for NBS19, which only has 2-5 replicates per 

measurement period. The close agreement between slopes of different sample types, and 

the benefits when measuring unknowns with few replicates lead us to prefer the group fit 

for this step. !48 vs. !48 lines in this study have been calculated using a group fit of CM2, 

RTG, and NBS19 together. See Appendix A5 for an in-depth discussion of group fit vs. 

individual fit.  

 

 

 

 

Figure 4.6  Diagram of correction method for RTG data points from February to March 2014. (a) 
!48 vs. "48 for three carbonate sample types and for heated and equilibrated gases (HG/EG). The 
line fitted to the HG/EG (black) gives SlopeHG/EG and IntHG/EG and the lines fitted together to the 

carbonate data give one SlopeCARB48 value and individual IntCARB48 values. (b) "48 vs. "47 for RTG 
data corrected ("47-corr) and uncorrected ("47-RF/AC) for the "48 fractionation. In both panels, the 

green arrow denotes the “true "48” value. The small black arrow indicates the way in which points 
are corrected back to the “true "48” along the slope. Bars on the right indicate the full range of 

points, corrected and uncorrected. Points and error bars on the right indicate the mean and 
standard error (1 SE) of the corrected and uncorrected data sets. The published value 0.720 ± 

0.007‰ is plotted for comparison.  
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Figure 4.6   [continued] 
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Once the “true” !48 value is determined for each sample type, the scattered !47 

data can be corrected to this value using Equation 4.4, following the observed 

relationship between !47 and !48 (see Figure 4.6b). 

 

!48-Corrected !47 = !47-corr = !47-RF/AC – (!48 – “true” !48)*SlopeCARB47   [Eq. 4.4] 

 

!47-RF/AC is the !47 value corrected to the absolute reference frame and adjusted 

for the acid digestion fractionation [Dennis et al., 2011]. We choose to apply this 

correction to the data already corrected into the absolute reference frame since any 

nonlinearities caused by source effects should be removed in the !47-RF/AC data. However, 

the slope of the carbonate lines in !48 vs. !47 space (SlopeCARB47) are very similar for the 

reference frame-corrected and raw data (Table A4.1), so the choice of order of operations 

does not have a large effect (mean difference of 0.001‰).  

SlopeCARB47 can be found by fitting replicates of a single sample type in !48 vs. 

!47 space, or by fitting data sets of all carbonate sample types simultaneously for a 

common slope. When correcting unknown data with a small number of replicates (e.g. 

NBS19), it is preferable to do the group fit again (see discussion in Appendix A5). When 

correcting samples or standards with a large (>10-15) number of replicates, the individual 

fit should accurately capture SlopeCARB47 for that sample type. For carbonate samples, 

SlopeCARB47 is roughly equal to 0.05 and does not change much through time (Figure 

A4.2, Table A4.1). We do observe a slight but consistent difference between slopes of 

CM2 and RTG, which may be !47-dependent. To preserve the difference in slope 

between CM2 and RTG, while still getting the benefits of the group fit for NBS19, we 
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choose to fit RTG individually and CM2 and NBS19 together for this step. The small 

number of NBS19 points have a minimal effect on the group fit making the resulting 

slope identical within error to the CM2 individual fit. A comparison of data corrected 

using different fit procedures can be found in Appendix A5. For future measurements of 

unknowns that only have a few replicates each, a group fit is beneficial. Due to the 

observed difference in slope between carbonate sample types, a group fit of unknowns 

should only be combined with a carbonate standard of similar !47 composition, otherwise 

data may be skewed one way or the other. 

 

4.3.4   Corrected carbonate data 

Applying this correction dramatically reduces the scatter in our !47 data and shifts 

the mean value to within error of the published values (Table 4.2). (A comparison of 

corrected and uncorrected data can be found in Figures A4.7 and Table A4.3). For CM2, 

the correction shifts the mean !47 from 0.429 ± 0.010‰ to 0.378 ± 0.003‰ (n=108). For 

RTG, the correction shifts the mean !47 from 0.773 ± 0.010‰ to 0.723 ± 0.004‰ (n=76). 

These values compare nicely with the published values of 0.385 ± 0.005‰ (n=40) for 

CM2 and 0.720 ± 0.007‰ (n=11) for RTG [Dennis et al., 2011]. !13C values agree well 

with published data, whereas !18O values are consistently too light by 0.15-0.2‰ from 

known values (Table 4.2). When measuring unknowns in the future, stable isotope data of 

unknown samples will be corrected for this systematic offset, as has been done in other 

studies [Price and Passey, 2013].  
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Sample !13C (‰) !18O (‰) "47-RFAC (‰) "47-corr (‰) 
CM2 (n = 108) 2.22 ± 0.004 -1.95 ± 0.008 0.429 ± 0.010 0.378 ± 0.003  
CM2  
published [17] 

2.29 ± 0.006 -1.77 ± 0.010  0.385 ± 0.005 (n=40) 

RTG (n = 76) -2.19 ± 0.006 -4.34 ± 0.007 0.773 ± 0.010  0.723 ± 0.004 
RTG  
published [16] 

-2.2 ± 0.062 -4.11 ± 0.019  0.720 ± 0.007 (n=11) 

NBS19 (n = 9) 1.95 ± 0.019  -2.34 ± 0.037 0.372 ± 0.021  0.366 ± 0.007 
NBS19 
published [17] 

1.95 -2.2  0.373 ± 0.007 (n=7) 
 

 
Table 4.2  Summary of all carbonate samples of sizes 1.0-2.6mg measured from September 2013 

to March 2014 compared to published values. !13C and corrected "47 values compare well to 
published values. !18O values are consistently 0.15-0.2‰ too light. Future analysis of unknown 

carbonates will be corrected for this fixed offset. All listed errors are 1 standard error (1 SE) 
estimates on the mean of all points of that sample type, with the number of replicates listed in 

parentheses. 
 

 
 
Date Sample Mass 

(mg) 
!47 (‰) "47-raw (‰)  "47-RF/AC 

(‰) 
!48 (‰) "48 

(‰) 
"47-corr (‰) 

12/10/13 NBS19 2.32 17.317 -0.587±0.008 0.307±0.017 12.926 0.235 0.379±0.022 
12/13/13 NBS19 2.41 17.494 -0.547±0.007 0.346±0.016 14.026 1.147 0.366±0.021 
01/13/14 NBS19 2.37 17.463 -0.564±0.006 0.329±0.040 14.220 1.407 0.327±0.045 
02/05/14 NBS19 2.47 17.491 -0.546±0.006 0.348±0.039 13.564 0.658 0.390±0.044 
03/25/14 NBS19 1.23 17.497 -0.449±0.012 0.414±0.036 15.537 2.729 0.356±0.039 
03/25/14 NBS19 1.36 17.401 -0.484±0.010 0.379±0.037 14.217 1.502 0.387±0.039 
03/27/14 NBS19 2.32 17.499 -0.553±0.006 0.327±0.037 13.889 1.022 0.363±0.039 
03/27/14 NBS19 1.27 17.480 -0.477±0.011 0.385±0.037 15.229 2.431 0.343±0.040 
03/27/14 NBS19 1.33 17.102 -0.345±0.010 0.517±0.034 17.634 4.151 0.380±0.037 

ALL  -0.504±0.025 0.372±0.021   0.366±0.007 
Group 1 (1.2-1.4mg, n=4)  -0.439±0.032 0.331±0.007   0.367±0.010 
Group 2 (2.3-2.5mg, n=5)  -0.555±0.009 0.424±0.032   0.365±0.011 

Published Value      0.373+/- 
0.007 (n=7) 

 
Table 4.3  Raw data used in the correction of NBS19 data points measured from September 2013 
to March 2014. Errors on "47-raw are 1 SE on all cycles measured for an individual run. Errors on 
"47-RF/AC and "47-corr have taken the raw error and propagated it through the reference frame and 
"48 correction, respectively. Average errors (1 SE) on !47, !48, and "48 are 0.011‰, 0.053‰, and 

0.052‰, respectively. Errors reported on mean values represent 1 SE of that sample group.  
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Figure 4.7 shows all the corrected data for CM2 and RTG. The data is separated 

into 0.1mg bins and samples in each bin are treated as replicates of one sample. In each 

bin, the average and standard error are computed. For both CM2 and RTG, there is no  

systematic increase in scatter of individual points or in the external standard error of the 

binned groups as the sample size is reduced. The RTG data points show more scatter than 

the CM2 data points (!47-corr 1 s.d. = 0.036 vs. 0.031, all replicates). This might be 

explained by increased heterogeneity of samples material between replicates. The RTG 

coral material was more coarsely ground than the CM2 marble, and shallow-water corals 

are known to be heterogeneous in !47 [Ghosh et al., 2006a; Saenger et al., 2012]. In 

addition, fewer replicates of RTG were run in many of the mass bins compared to CM2 

(Table A4.3), leading to larger standard errors for the same mass bins.  

A smaller number of replicates of NBS19 were run, producing a mean !47 value 

of 0.366 ± 0.007‰ (n=9). This compares well with the value of 0.373 ± 0.005‰ 

calculated from previous measurements of this standard at Harvard [Dennis et al., 2011]. 

Replicates of NBS19 fall into two mass groups – a larger group (2.3-2.5mg) and a 

smaller group (1.2-1.4mg). The means of these two groups (0.365 ± 0.011‰ and 0.367 ± 

0.010‰, respectively) were within error of each other and of the published value (Table 

4.3). 

Errors (1 SE) on raw !47 of individual samples increase as the sample size 

decreases following the shot noise limit (see Appendix A2). At 1mg, error bars on !47-raw 

for individual replicates are 0.014-0.016‰ for both CM2 and RTG. At 1.5mg, the same 

error bars are 0.009-0.011‰. When these raw 1 SE errors are fully propagated through 

the reference frame and !48 corrections, they get significantly larger and the influence of  
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Figure 4.7  (a) Fully corrected !47-corr vs. Mass for all CM2 points. Individual points are shown 
with error bars representing the original shot noise error fully propagated through all corrections. 

Binned averages (0.1mg bins) are shown in filled symbols. Grey horizontal lines indicate the 
published value and error. (b) Same as (a) but for RTG. Mean values for each bin are summarized 

in Table A4.3.   
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sample size disappears (see Appendix A3 for details on error propagation calculations). 

The average error increases from 0.009‰ to 0.034‰. The majority of this increase 

comes from the reference frame correction, which is responsible for 0.019‰ of the 

0.025‰ increase, whereas the !48 correction contributes only 0.007‰ on average. The 

!48 correction had the largest impact during measurement period #1, where it contributed 

a 0.013‰ increase to average error, due to the limited number of carbonate samples run 

during this period (n=15), causing greater uncertainty in the carbonate slopes and 

intercepts needed for the correction. The reference frame correction is smallest in 

measurement period #2 (only 0.006‰), where the most standard gases were run. Other 

measurement periods (#1, #3) were cut short due to mechanical issues (e.g. power 

outage) before the desirably number of gas standards were run, resulting in larger 

uncertainties in the heated and equilibrated gas lines and the empirical transfer function.   

 

 

4.4   Discussion 

4.4.1   Precision and sample size 

The benefit of this technique is the ability to measure !47 on small aliquots of 

carbonate. All applications of clumped isotopes require at least 3 replicates per unknown 

to reduce the uncertainty on the mean. For geologic applications, errors on the order of 

0.010‰ are needed to get meaningful results. To improve the overall sample 

requirements (combined mass of all replicates), it’s necessary to balance the sample size 

per replicate and the number of replicates needed to achieve the necessary precision.  



! 109!

In applying this method, we recommend 5-6 replicates of mass 1.2-1.4mg per 

unknown (equivalent to 6 to 8.4 mg of CaCO3) to minimize the total amount of sample 

material needed while achieving acceptable precision. For CM2, mass bins in this range 

give standard errors of 0.007-0.008‰ for 5 or 6 replicates (Table A4.3). The smaller 

NBS19 mass bin (1.2-1.4mg) has a standard error of 0.010‰ for 4 replicates (Table 4.3). 

For RTG, the 1.2-1.3mg mass bin has a standard error of 0.009‰ for 4 replicates. The 

other mass bin in this range (1.3-1.4mg) has a higher error (0.023‰). The addition of 1-2 

more replicates would also improve the error in the RTG and NBS19 mass bin. Even with 

a larger number of replicates, this is about half the mass required for the best existing 

traditional techniques (~4 replicates at 3-4mg [Zaarur et al., 2011]) and is similar to the 

lower limit of measurements made with the Kiel device technique (6-26mg) [Schmid and 

Bernasconi, 2010; Meckler et al., 2014]. 

In addition to running the heated and equilibrated gases for correction to the 

absolute reference frame, it is necessary to run a number of carbonate standards along 

with unknowns to better resolve the slope of the carbonates in !48 vs. !47 space. Because 

each unknown may have only a few replicates, having one line with many replicates of 

the same sample type (a standard material) can greatly improve the group fit to find 

SlopeCARB47.  

 

4.4.2   Detecting contaminated samples 

 One issue that arises is how to detect contaminated samples if a perfectly clean 

sample can have high !48 due to this unexplained fractionation. We suggest that a 

contaminant would be unlikely to affect !47 and !48 in the exact same ratio as our 
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fractionation. Contaminated samples would therefore deviate from the observed 

relationship, likely in the direction of higher !48. In this study, we observe 7 samples that 

significantly deviate from the fractionation line in the direction of high !48 (Figure A4.8), 

and believe them to be contaminated. These few points are not included in plots and data 

reported here. 

 In practice, a threshold or envelope around the fractionation line should be set and 

points outside this range should be tossed out, similar to how the heated gas line in "48 vs. 

!48 space has been used previously. When measuring unknowns, residuals of the 

unknown data around the unknown’s group fit line can be compared to residuals of 

carbonate standards. Scatter in excess of the typical carbonate standard (especially in the 

high !48 direction) should be deemed contamination. This method of determining 

contamination has the risk of failing to eliminate some “mildly contaminated” samples. 

Inclusion of these samples would result in temperatures that were too hot.  

 

4.4.3   A lower limit on sample size 

 We have shown that for sample sizes as low as 1mg, the average of multiple 

replicates can faithfully reproduce the mean value and give standard errors within an 

acceptable range (0.005-0.015‰), similar to that achieved by traditional methods [Dennis 

and Schrag, 2010; Zaarur et al., 2011; Wacker et al., 2013; Thiagarajan et al., 2011]. 

The sample preparation procedure on the inlet does not seem to limit the sample 

size that can be run because for all sample sizes we obtain good yields consistent with the 

ideal gas law (Figure 4.3). Instead, we are limited by the beam intensities at which the 

sample is run, which are intimately linked to the shot noise limit and the maximum 
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achievable precision on each replicate. As voltages drop below ~500mV on m/z 47, we 

observe less stability in the isotope ratios through the run, despite obtaining correct mean 

values when many replicates of this size are measured. This may indicate the lower limit 

at which the mass spectrometer can operate. The gas pressure (and therefore beam 

intensity) produced by a given mass is affected by a few parameters: 1) the size of the 

small U-trap; 2) the sensitivity of the MAT 253; and 3) the size of the sample and 

reference reservoirs.  

 Installing a smaller U-trap in front of the sample reservoir decreased the samples 

size necessary to achieve an internal precision of 0.010‰ and 0.007‰ from 3.1mg to 

1.6mg and from 3.7mg to 2.4mg, respectively. Currently, the internal volume of the small 

U-trap is about 6mL. If this were cut in half to 3mL, it would further decrease the above 

sample sizes to 1.4mg and 2.1mg, respectively. In an ideal case, the volume of the U-trap 

would be as small as possible while still allowing the sample to freeze and expand 

without fractionating.  

After tuning the source using the Isodat autotune function, we observed an 

increase in average sensitivity from 1.94x1010 to 2.66x1010 mV on m/z 47 per mbar 

source vacuum pressure. This is equivalent to an increase from m/z 47 = ~2900mV to 

~4100mV at ~35mbar pressure in the bellows. This caused the sample size necessary to 

achieve an internal precision of 0.010‰ and 0.007‰ to decrease further from 1.6mg to 

1.4mg and from 2.4mg to 2.0mg, respectively. An instrument with higher sensitivity 

could measure even smaller samples and achieve the same level of precision.  

Changing the size of the sample (and reference) reservoir(s) could also increase 

the signal from a given volume of sample gas, by the same mechanism as decreasing the 
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size of the small U-trap. However, decreasing the reservoir size also increases the rate at 

which gas depletes. The 10mL reservoir is the smallest available from Swagelok, but this 

technique should work equally well for a smaller reservoir. For very small reservoir sizes, 

the gas may deplete away before the 2-hour run completes. In other methods using 

microvolumes, either the gas is not run for a very long time [Schmid and Bernasconi, 

2010] or additional corrections for fractionation in stable isotopes were necessary 

[Halevy et al., 2011]. We selected the 10mL reservoir size to balance the sample yield 

and the depletion rate.  

Our high-efficiency dual-reservoir configuration, in its current state, can handle 

samples as small as 1 mg. At this low limit, we begin to see more instabilities in the 

isotope ratios. A similar inlet with a smaller U-trap, a slightly smaller reservoir, or higher 

sensitivity of the mass spectrometer could push the sample size even lower using this 

measurement technique.  

 

 

4.5   Conclusions    

 This study demonstrates that sample sizes as small as 1mg can be measured with 

good precision using a newly constructed, high-efficiency, dual-reservoir inlet. By 

eliminating the sample bellows and installing matching fixed reservoirs from which gas 

gradually enters the source, the volume of “wasted” gas typically left in a sample vial or 

bellows is reduced and yield is increased. With some adjustments, this measurement 

configuration could be successful for even smaller sample sizes. This achievement will 

allow the application of the clumped isotope proxy to sample materials for which it is 
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difficult to acquire a large amount of material, such as foraminifera, and will expand the 

usage of this proxy in fields such as paleoceanography.  
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Chapter 5. Application of the clumped isotope 

paleothermometer to foraminifera across the Eocene-

Oligocene Transition 

 

 

ABSTRACT 

Across the Eocene-Oligocene transition (EOT), the oxygen isotopic composition 

of benthic foraminifera increased dramatically (1-1.5‰). This is thought to represent a 

combination of cooling of bottom waters and growth of a large ice sheet on Antarctica. 

To determine the contribution of each of these effects on the total change in benthic !18O, 

an independent estimate of temperature is required. Here we use the clumped isotope 

paleothermometer on planktonic foraminifera from the Southern Ocean to measure the 

temperature change across the EOT. We measure average temperatures of ~12-13°C both 

before and after the transition, which compare well with estimates from nearby cores. A 

net temperature change of 0.0 ± 1.1°C is calculated, indicating that the change in !18O 

seen in planktonic foraminifera at this site is almost exclusively due to changes in ice 

volume. Based on these temperatures, we calculate absolute !18Osw values that are much 

heavier than expected. However, the net change in !18Osw of 0.8 ± 0.2‰ is within the 

range of previous estimates. We suggest that vital effects or an offset in the "47-

calibration could explain the high absolute !18Osw values.  
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5.1   Introduction 

The Eocene-Oligocene Transition (EOT) stands out as a period of major global 

climate change, occurring ~34 Ma and marking a shift from a “greenhouse” to “icehouse” 

conditions and the onset of substantial ice sheet growth on Antarctica. The EOT was first 

identified as a large increase in the !18O of benthic foraminifera [Shackleton and Kennett, 

1975; Kennett and Shackleton, 1976]. Since then, isotope excursions have been 

documented in both benthic and planktonic foraminifera from a number of sites around 

the world. The magnitude of the benthic transition varies globally, from 1.2-1.7‰, with 

composite records showing an average of 1.5‰ [Miller et al., 1987; Zachos et al., 2001; 

Cramer et al., 2009]. High-resolution studies show that the transition occurred in two 

steps of ~40kyr each (named EOT-1 and Oi-1), separated by ~200 kyr of stable !18O 

values [Zachos et al., 1996; Coxall et al., 2005; Pusz et al., 2011; Bohaty et al., 2012].  

The isotopic composition of benthic foraminifera is affected by both temperature 

and the isotopic composition of the water in which the foraminifera grew (!18Osw in this 

case). If there were no change in !18Osw, a !18O increase of ~1.5‰ (relative to PDB) in 

benthic foraminifera would correspond to ~6°C of bottom water cooling. Conversely, if 

there were no temperature change, the same increase in benthic !18O would correspond to 

a 1.5‰ (relative to SMOW) increase in !18Osw. To convert this change in !18Osw to a 

change in sea level or ice volume requires knowledge of the isotopic composition of the 

newly formed ice, which is not directly know for the Eocene/Oligocene Antarctic Ice 

Sheet (AIS). Ice sheets forming in the warmer temperatures of the Eocene/Oligocene 

would be isotopically heavier than the modern AIS (-56.5‰ (SMOW) for the East AIS 

and -41-42.5‰ for the West AIS [Lhomme et al., 2005]), and would have changed over 
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the course of ice sheet formation. Modeling studies calculate that initial ice formed at -20 

to -25‰, and decreased to -42‰ (SMOW) by the end of ice formation [DeConto et al., 

2008]. Regardless of the isotopic composition assumed, a 1.5‰ increase in !18Osw would 

require significant ice sheet growth, greater than the modern cryosphere. Therefore, 

instead of being explained by one or the other, the shift in benthic oxygen isotope values 

likely represents a combination of cooling and ice growth on Antarctica. In order to 

determine the relative contributions of these two effects on changing benthic and 

planktonic !18O, temperature or !18Osw must be independently estimated. In this study, 

we apply the clumped isotope paleothermometer to foraminifera samples from the 

Southern Ocean to measure the temperature change across the Eocene-Oligocene 

transition and use it to estimate changes in !18Osw. 

 

5.1.1   Ice growth on Antarctica during the EOT 

Many qualitative proxies suggest increased ice growth on Antarctica around the 

Eocene-Oligocene transition. In Southern Ocean sediment cores, changes in clay 

mineralogy and shifts in "Nd towards more continental values coincide with the observed 

two-step increase in benthic !18O, signifying increased physical weathering on Antarctica 

[Robert and Kennett, 1997; Ehrmann and Mackensen, 1992; Scher et al., 2011]. The 

appearance of ice-rafted debris in open-ocean sediments during the second step implies 

that significant continental ice existed on Antarctica by the end of the EOT [Scher et al., 

2011].  

 More direct measures of ice growth across this period can be calculated from 

sedimentological evidence of changes in sea level near coastal sites. Sedimentological 
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studies of shallow marine sections in Italy document a drop in sea level of 20m during the 

first step (EOT-1) and 50-60m during the second step (Oi-1) of the transition [Houben et 

al., 2012]. Backstripping methods and benthic biofacies changes on the Alabama coast 

and New Jersey shelf suggested <25m sea level fall for the first step (EOT-1) and 80 ± 

25m for the second step (Oi-1) [Miller et al., 2009; Kominz and Pekar, 2001]. Both these 

indicators of ice growth suggest the first step of the transition was mainly a cooling event 

and the second was a combination of ice growth and cooling [Miller et al., 2009; Houben 

et al., 2012].  

 

5.1.2   Temperature change across the EOT 

Initial attempts to independently estimate the temperature change across the EOT 

used the Mg/Ca proxy and showed no change or a small warming of bottom waters [Lear 

et al., 2000; Billups and Schrag, 2003; Lear et al., 2004]. The apparent increase in 

bottom water temperatures across this transition requires a change in !18Osw greater than 

the magnitude of the observed change in benthic !18O. The volume of ice growth implied 

by these estimates is hard to accommodate on Antarctica alone, suggesting northern 

hemisphere ice accumulation occurred as well. Evidence of ice-rafting in the Nordic Seas 

prior to the EOT support this hypothesis [Eldrett et al., 2007], but pollen records from 

Greenland imply minimum temperatures too warm to sustain more than high-elevation 

mountain glaciers in the northern hemisphere [Eldrett et al., 2009].  

To explain the disagreement between the cooling signal of the benthic !18O and 

the warming signal implied by Mg/Ca, Billups and Schrag [2003] suggested that 

environmental factors in addition to temperature may have been controlling Mg/Ca, such 
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as primary productivity. It was later determined that the carbonate ion concentration of 

seawater ([CO3
2-]) has a significant effect on how Mg is incorporated into carbonate 

[Elderfield et al., 2006]. A ~1km deepening of the CCD, as seen across the EOT, would 

perturb the saturation state of the oceans, increasing [CO3
2-] at depths, and would 

increase Mg/Ca recorded in benthic foraminifera without any change in temperature. To 

avoid this corrupting effect, authors looked for shallow-water sites that were above the 

CCD through the whole transition, where the change in [CO3
2-] would be less dramatic, 

or attempted to correct for changes in [CO3
2-] using other elemental ratios. Intermediate 

water temperatures [Katz et al., 2008; Katz et al., 2011] and surface temperatures [Lear et 

al., 2008; Wade et al., 2012] from shallow tropical sites showed ~2-2.5°C cooling across 

the EOT, mostly occurring in the first step (EOT-1). Thermocline and intermediate-depth 

waters in the Southern Ocean cooled 2-3°C [Bohaty et al., 2012], in agreement with 

estimates of 3°C of cooling in these latitudes from changes in the abundance of cool-

water taxa [Wei, 1991], a proxy impervious to changes in [CO3
2-], but with its own 

biological uncertainties. Alkenone proxies disagree over whether there was cooling in 

tropical SSTs, but do show ~3-5°C cooling in high latitudes [Liu et al., 2009].  

In cores that are strongly affected by changes in the CCD, authors attempted to 

correct for changes in [CO3
2-] using paired Li/Ca and Mg/Ca measurements [Lear et al., 

2010]. Both Li/Ca and Mg/Ca are predominantly controlled by temperature and [CO3
2-]. 

By measuring both ratios, the influence of each of these factors can be estimated [Lear 

and Rosenthal, 2006; Lear et al., 2010]. Across the EOT, large shifts in Li/Ca confirm 

that the changing CCD did indeed affect [CO3
2-] [Lear and Rosenthal, 2006; Peck et al., 

2010]. Correcting for [CO3
2-] using Li/Ca at two South Atlantic sites caused disagreeing 
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data (no change and 3°C warming) to come into agreement, both showing 1.5°C cooling 

across the second step of the transition [Pusz et al., 2011]. However, additional 

parameters other than temperature and [CO3
2-] may affect these elemental ratios (such as 

growth rate [Rickaby et al., 2002; Thebault et al., 2009]), adding uncertainty to these 

estimates.  

Removing the differing effects of temperature change at many sites from the 

tropics to the high southern latitudes results in a residual change in benthic !18O of ~0.6-

0.8‰ to be explained by ice volume (!18Osw) changes (Table 5.1). Authors calculated 

volumes of ice growth anywhere from 40% to 120% of the modern AIS (Table 5.1). The 

large range in estimates is due both to differences in calculated !18Osw change and 

varying assumptions about the isotopic composition of the new ice sheet. The modern 

AIS contains 25.4x106 km3 of ice, and is equivalent to 57m of sea level [Lythe et al., 

2001], yet because of its light isotopic composition (-56.5‰ (SMOW)), would cause a 

0.91‰ change in !18Osw if it melted entirely [Lhomme et al., 2005]. By this scaling, a 

0.6-0.8‰ shift in !18Osw would be equivalent to 1.7-2.3x107 km3 of ice growth at the 

modern isotopic composition. With the heavier Eocene composition, more ice would be 

required to explain the same change in !18Osw. For comparison, sequence stratigraphy 

studies estimate ~54m of eustatic sea level (80m apparent sea level) fall at the EOT 

transition [Pekar et al., 2002], which is nearly equivalent to volume of ice stored in the 

modern AIS. Ice sheet modeling shows that this range of ice volumes can plausibly grow 

on Antarctica under late Eocene conditions [DeConto and Pollard, 2003; DeConto et al., 

2008; Goldner et al., 2014], eliminating the need for significant ice growth in the 

northern hemisphere.  



! 122!

 

Study Location Change in 
!18Osw? 

Ice volume 
estimate 

Lear et al., 
2008 

Tanzania Drilling Sites (TDP11, 12, 
17) (tropical) 

0.6‰ 70-118% modern 
AIS 

Katz et al., 
2008 

Saint Stephens Quarry, Alabama 
(tropical) 

1.2‰ 120% modern 
AIS 

Liu et al., 
2009 

High latitudes (SH: ODP 511, 277, 
and 1090; NH: 336 and 913) 

0.4-0.85‰ 40-120% modern 
AIS 

Peck et 
al., 2010 

South Atlantic (ODP 1263) 0.6‰ none calculated 

Pusz et al., 
2011 

South Atlantic (ODP 1090 and 1265) 0.75‰ 85-95% modern 
AIS 

Bohaty et 
al., 2012 

Southern high latitudes (ODP 738, 
744, 748) 

0.45-0.75‰ 60-130% modern 
EAIS 

Table 5.1   Summary of measured temperature changes, calculated !18Osw increases, and 
equivalent ice volumes reported in published studies, using a variety of assumptions detailed in 
each article. AIS= Antarctic Ice Sheet, EAIS = East AIS.  
 

5.1.3   Possible causes of the EOT 

Early studies suggested the EOT was caused by the opening of the Drake Passage 

and the onset of the Antarctic Circumpolar Current (ACC), which thermally isolated the 

continent and kept it cool enough to sustain significant continental ice [Kennett and 

Shackleton, 1976; Kennett, 1977]. There is controversy over the timing of the opening of 

the Drake Passage, and a recent review found that it would not have been deep enough to 

sustain a full ACC until 22 Ma, much too late to explain the EOT [Barker and Thomas, 

2004]. However, neodymium isotopes suggest that the passage was open to shallow or 

intermediate depths by 37 Ma, prior to the EOT [Scher and Martin, 2006]. A partially-

opened Drake Passage could still allow a proto-ACC to form, which would begin to 

change Southern Ocean circulation and cause some thermal isolation [Katz et al., 2011]. 

Model runs with the Drake Passage open and closed show that this change alone was not 
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enough to drive ice sheet growth on Antarctica [DeConto and Pollard, 2003; Goldner et 

al., 2014].  

The decrease in pCO2 that occurred across this transition has also been proposed 

as a driver of cooling and ice growth. The Eocene was characterized by pCO2 levels 

above 1000ppm [Lowenstein and Demicco, 2006; Pagani et al., 2011; Pearson et al., 

2009; Breecker et al., 2010], which declined to ~600-700ppm by the end of the EOT 

[Pearson et al., 2009; Pagani et al., 2011]. These lower levels are consistent with the 

threshold for Antarctic glaciation produced in models [DeConto et al., 2008]. In addition, 

observations of cooling in both the northern and southern high latitudes is more 

consistent with declining pCO2 than opening of the Drake Passage, which would have 

had stronger local effects [Liu et al., 2009]. Orbital configurations during the transition 

favored cooler summers (decreased seasonality), which likely allowed for ice 

accumulation on land [Coxall et al., 2005]. Feedbacks between ice sheet growth and 

ocean circulation under decreasing pCO2 are sufficient to explain the observed ocean 

temperature pattern without the need for gateway changes [Goldner et al., 2014].   

The timing of the EOT also coincides with changes in ocean circulation and 

deepwater formation in the northern hemisphere. A reduction in strength of the Icelandic 

mantle plume resulted in deepening of the Greenland-Scotland-Faroe Ridge around the 

EOT and allowed the overflow of dense water from the Norwegian Sea into the North 

Atlantic for the first time [Abelson et al., 2008]. Initiation of sediment deposition at the 

Feni Drift [Wold, 1994] and the Southeast Faroe Drift [Davies et al., 2001] document this 

new deepwater flow, and neodymium isotopes in the South Atlantic indicate increased 

contribution of northern-sourced waters to deep waters in the Atlantic basin [Via and 
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Thomas, 2006]. These changes in ocean circulation may also have played an indirect role 

in changing global climate at the EOT, due to the highly coupled nature of the climate 

system.  

 

5.1.4   Determination of temperature change using clumped isotopes 

 The clumped isotope proxy is ideally suited to study the EOT, because both 

temperature and !18Osw changed together, and large perturbations to the ocean’s 

carbonate chemistry complicate Mg/Ca measurements. Clumped isotopes have been used 

to reconstruct terrestrial temperature change across this period in northern mid-latitudes 

[Hren et al., 2013], but have not yet been used to look at ocean temperature changes. 

Middle to Late Eocene temperatures in high southern latitudes have been measured using 

clumped isotopes on bivalves, but this record does not extend across the EOT [Douglas et 

al., 2014].  

 In this study, we apply the clumped isotope proxy to planktonic foraminifera 

samples from the Southern Ocean to reconstruct temperature and !18Osw changes across 

this transition. A variety of foraminifera species have been shown to follow the same "47-

T relationship as other biogenic carbonates [Tripati et al., 2010; Grauel et al., 2013]. In 

order to measure sample-limited materials like foraminifera, a new method that reduces 

sample size requirements for clumped isotopes was developed and will be employed in 

this study [Petersen and Schrag, in revision].  
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5.2   Methods and Materials 

5.2.1   Site ODP 689B 

Site ODP 689B was selected for this study due to its location proximal to 

Antarctica, and the previous work that has been done on this core [Kennett and Stott, 

1990; Mackensen and Ehrmann, 1992; Mead and Hodell, 1995; Billups and Schrag, 

2002; 2003; Bohaty et al., 2012]. Core 689B was taken on ODP Leg 113, and is located 

at 64°N, 3°E [Barker et al., 1988]. Site 689B is located on the Maud Rise in the Weddell 

Sea, at a modern depth of 2080m and a paleodepth of ~1650m [Kennett and Stott, 1990].  

This core has continuous recovery across the EOT, lies above the CCD, and has good 

carbonate preservation (>75% CaCO3) [Barker et al., 1988]. Core segments from 689B-

12H-7 to 689B-14H-7 were sampled over the depth interval 110.22 – 129.37mbsf, 

yielding 13 depth horizons with sufficient sample material (Table 5.3). This interval 

spans 31.6-35.4 Ma and encapsulates the EOT transition itself.  

The age model in this core was created using datums selected by Kennett and 

Stott [1990] and SpeiB [1990] with additional datums from Mead and Hodell [1995]. 

Seven datums span the depths of the samples in this study (Table 5.2). Chron assignments 

have been adjusted following Mead and Hodell [1995] and ages of these datums have 

been adjusted from their originally assigned ages to those published by Berggren et al. 

[1995] to reflect updates to the magnetostratigraphy timescale. Sample ages were 

calculated by linear interpolation between the adjacent datums. Core segments, sample 

depths, and interpolated ages are shown in Table 5.3.  

In this core, the EOT is marked by a ~1.2‰ increase in both benthic and 

planktonic !18O [Kennett and Stott, 1990; Mackensen and Ehrmann, 1992; Mead and 
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Hodell, 1995; Bohaty et al., 2012]. Bulk sediment carbonate also shows an increase in 

!18O of similar magnitude [Shackleton and Hall, 1989]. Across the study interval, percent 

carbonate in the sediment decreases from ~90% to ~60% and the non-biogenic fraction, 

opal fraction, and terriginous silt fraction increases due to an increased input of ice-rafted 

debris from Antarctica [Ehrmann and Mackensen, 1992]. Mg/Ca records from planktonic 

and benthic foraminifera show excursions around the transition itself, but display similar 

stable values in the intervals before and after the transition period [Billups and Schrag, 

2003; Bohaty et al., 2012].  

Depth (mbsf) Datum Description Age (Ma) 
106.87 Base C12n 30.939 
116.71 Top C13n 33.058 
119.69 Base C13n 33.545 
124.09 Top C15n 34.655 
125.07 Base C15n 34.940 
128.32 Top C16n 35.343 
134.02 Base C16n-1 35.536 

Table 5.2   Datum levels used for constructing timescale in core ODP 689B. Selected datums 
span the depth range of samples measured in this study. Depths and assigned chrons from Kennett 
and Stott [1990] and SpeiB [1990], updated following Mead and Hodell [1995], with chron ages 
updated to Berggren et al. [1995], as described in the text. 
 

Core Segment Depth in 
segment (cm) 

Depth below sea 
floor (mbsf) 

Age (Ma) 

12H 7 22 110.22 31.660 
13H 1 21 110.81 31.787 
13H 2 17 112.27 32.102 
13H 3 17 113.77 32.425 
13H 4 20 115.3 32.754 
14H 1 16 120.36 33.714 
14H 1 68 120.88 33.845 
14H 1 118 121.38 33.971 
14H 2 67 122.37 34.221 
14H 2 119 122.89 34.352 
14H 3 20 123.4 34.481 
14H 4 20 124.9 34.891 
14H 7 17 129.37 35.377 

Table 5.3   Depth horizons of measured samples with core segment information and calculated 
ages, found using linear interpolation between datums in Table 5.2.  
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5.2.2   Sample preparation 

Wet sediment was prepared for picking foraminifera in the course of a previous 

study [Billups and Schrag, 2003], and the procedure is described by Billups and Schrag 

[2002]. Bulk sediment samples were dried in the oven, soaked in a metahexaphosphate 

solution buffered to a pH of 7.5, and washed through a 63µm sieve. In this study, a 

second step of dry-sieving was performed to capture only the >150µm size fraction, from 

which foraminifera were individually picked.  

For each sample, two planktonic species Subbotina angiporoides (hereafter S. 

ang) and Subbotina utilisindex (hereafter S. util) were picked. These species are both 

thought to have descended from Subbotina linaperta in the middle and late Eocene, 

respectively [Pearson et al., 2006]. All three of these Subbotina species have been 

designated as thermocline-dwellers based on having !18O values intermediate between 

benthic species and the lightest planktonic species (Globigerina angiporoides and 

Globigerina utilisindex [Poore and Matthews, 1984]; Globigerina angiporoides and 

Subbotina linaperta, [Keigwin and Corliss, 1986]). This type of “ranking” of 

foraminifera species based on their !18O values does not account for possible vital 

effects, which are difficult to judge in extinct species like these. In one depth horizon, the 

surface-dwelling species Chiloguembelina cubensis was prevalent and two samples were 

measured.  

Picked foraminifera  were sonicated for 20-30 seconds and rinsed with dI water to 

remove any caked sediment. This was repeated multiple times until the solute no longer 

became cloudy after sonication. Cleaned foraminifera  were placed in an oven at 35°C to 
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dry overnight. Dry foraminifera  were separated into 1.1-2.5mg aliquots for 

measurement, with the majority weighing 1.5-2.2mg.   

 

5.2.3 Clumped isotope measurement and data correction 

 The clumped isotope measurement was made using the high-efficiency sample 

preparation inlet and the dual-reservoir measurement technique described in Chapter 4 

[Petersen and Schrag, in revision]. Foraminifera samples were reacted in phosphoric acid 

at 90°C in a common acid bath to produce CO2. CO2 was then cleaned of contaminants 

by passing through a U-trap filled with Porapac Q material, held at -11°C. Finally, clean 

CO2 was introduced into the mass spectrometer from a fixed reservoir. Reference gas 

entered the mass spectrometer from an identical reference reservoir filled to an equal 

pressure by compression of the reference bellows based on matching m/z 47 beam 

intensity. Both reservoirs were closed off and allowed to decrease in pressure during the 

measurement period of 2 hours 20 minutes. Measurements were made on a Thermo 

Finnegan MAT 253, equipped with 5 cups measuring masses 44 to 48 (resistors of 3E7, 

3E9, 1E10, 1E12, and 1E12 !, respectively). Samples were each run for 7-9 acquisitions of 

14 cycles with 26 seconds integration time, at starting voltages between 800mV and 

3500mV on m/z 47, depending on sample size and sensitivity of the instrument at the 

time.   

Raw voltages were converted to "47 using the calculations described by 

Huntington et al. [2009]. Measured "47 values samples and carbonate standards were 

corrected to the absolute reference frame using heated gases (1000°C), and gases 

equilibrated with water at 35°C and 10°C, as described by Dennis et al. [2011]. 
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Carbonate standards were also run alongside samples. These included the in-house 

standards CM2 (Cararra marble, !47 = 0.395±0.005‰) and RTG (tropical coral, !47 = 

0.731±0.007‰), and the international standard NBS19 (marble, !47 = 0.384±0.007‰), 

whose values were determined by previous studies [Dennis et al., 2011; Dennis thesis, 

2011]. Once in the absolute reference frame, carbonate data was corrected for 

fractionation during acid digestion using the 90°C acid digestion correction factor of 

0.092‰ [Henkes et al., 2013]. !47-RFAC values of samples and standards were next 

corrected for a newly-identified fractionation between !48 and !47 [Petersen and Schrag, 

in revision]. Finally, the !47-corr values of unknowns were corrected for scale compression 

using a secondary transfer function made up of the carbonate standards, as described in 

Meckler et al. [2014]. This final !47 value was converted to temperature using the 

published calibration lines of Ghosh et al. [2006] (hereafter GH06) and Dennis and 

Schrag [2010] (hereafter DS10). Two foraminifera-specific calibration studies exist 

[Tripati et al., 2010; Grauel et al., 2013], and show general agreement with the GH06 

line. However, these comparisons were made between data from different labs that had 

not been converted into the absolute reference frame, so this similarity may not hold for 

reference frame-corrected data. We choose to only use calibration studies that have been 

corrected to the absolute reference frame, because this facilitates more direct comparison 

between data measured in different labs and at different times. Oxygen and carbon 

isotope values of unknowns were adjusted based on the mean offset of measured 

carbonate standards from know values for each measurement period.  
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5.3   Results 

5.3.1   !18O and !13C 

 Stable isotope values of S. ang and S. util were acquired in the process of making 

the clumped isotope measurement. Average precision for !18O and !13C were 0.055‰ 

and 0.082‰ (1 s.d.), respectively for all samples. The larger error on !13C was caused by 

two samples that replicated poorly, without which the 1 s.d. error would be 0.065‰. 

Carbonate standards had precision of 0.103‰ and 0.068‰ (1 s.d.) for !18O and !13C, 

respectively. It is unclear why our samples have better precision than the carbonate 

standards for !18O.  

Mean !18O values of S. ang and S. util are very similar to each other, and agree 

well with published data from this core in which these two species were combined 

(Figure 5.1) [Bohaty et al., 2012; Mackensen and Ehrmann, 1992]. The high similarity 

between the two species supports the decision of these studies to not differentiate 

between S. ang and S. util. In our study, each measured aliquot was made up of either S. 

ang or S. util, but in later analysis, measurements of both species from a single depth 

horizon were combined.  

Samples record a 1.1‰ increase in !18O across this transition. We have no 

samples from immediately after the transition, where the published high-resolution data 

records the heaviest !18O values [Bohaty et al., 2012]. However, our first sample from 

after the transition (13H4-20cm, 32.754 Ma) has a !18O value of 2.6‰, similar to the 

lowest values recorded by the high-resolution data immediately after the transition 

[Bohaty et al., 2012]. After the transition, our samples show a trend towards lighter 
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values, capturing the “rebound” interval that is also visible in the benthic stack [Zachos et 

al., 2001].  

 !13C values gradually decrease from 1.4‰ to 1‰ towards the present (Figure 

5.2). Our data display similar trends, but slightly heavier (by ~0.1‰) values compared 

with published data [Mackensen and Ehrmann, 1992]. In addition to planktonic and 

benthic foraminifera records, the stable isotopic composition of the bulk sediment have 

also been measured by previous studies (Figure 5.1 and 5.2) [Shackleton and Hall, 1989]. 

Our stable isotope data differ substantially from the bulk sediment values for both !13C 

and !18O, suggesting our cleaning procedures were sufficient to remove any sediment 

attached to foraminifera tests.  

 

Figure 5.1 !18O of individual replicates (grey filled) and mean values for S. angiporoides 
(purple) and S. utilisindex (blue) vs. Age. Published !18O records plotted for comparison using 
authors age model [Bohaty et al., 2012 (Subb. spp.)] or converted to the age model from this 
paper [Mackensen and Ehrmann, 1992 (Subb. spp.); Shackleton and Hall, 1989 (bulk sed)]. 

Number of replicates of S. ang and S. util are shown in corresponding colors at the bottom. Error 
bars denote 1SE of mean of the displayed number of replicates. Where only one replicate exists, 

the internal error on that single point was used. 
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Figure 5.2  !13C of individual replicates (grey filled) and mean values for S. angiporoides 
(purple) and S. utilisindex (blue) vs. Age. Published !13C records plotted for comparison 

[Mackensen and Ehrmann,1992; Kennett and Stott, 1990; Mead and Hodell, 1995 (Subb. spp.); 
Shackleton and Hall, 1989 (bulk sed)] plotted on age model from this paper. Number of replicates 

of S. ang and S. util are shown in corresponding colors at the bottom. Error bars denote 1SE of 
mean of displayed number of replicates. Where only one replicate exists, the internal error on that 

single point was used. 
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 Our samples can be divided into four intervals: late-Eocene (1 sample), pre-

transition (5 samples), mid-transition (2 samples), and post-transition (5 samples). Due to 

insufficient foraminifera, we lack data within and immediately following the transition. 

Of the two samples in the mid-transition interval, only one has sufficient replicates to be 

reliable. Additionally, these samples only capture the first step of the transition (EOT-1),  
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Figure 5.3. Mean !47 (black circles) and mean "18O (grey circles) for each depth horizon vs. 

Age. Error bars represent external 1 SE errors on the mean. Where only 1 replicate is available, 
fully-propagated internal 1SE errors are substituted. S. ang and S. util are combined. Published 
"18O shown for comparison [Bohaty et al., 2012; Mackensen and Ehrmann, 1992]. Grey boxes 
and numbers show the mean and 1SE of the points in four intervals described in the text. Black 

numbers at the bottom indicate the number of replicates contained in each depth horizon. 
 

 

not the larger second step (Oi-1). Therefore, our data do not have the ability to capture 

the full instantaneous cooling or ice growth. Instead, we attempt to quantify the longer-

term shift associated with this transition by comparing the pre- and post-transition 

intervals, which cover more than one million years each and bracket the transition.  

Comparison of the pre- and post-transition mean values reveals negligible change 

in !47 (and therefore temperature) across this transition (-0.001±0.005‰) (Figure 5.3). 

The only sample that deviates significantly from the others is the late-Eocene sample 

(14H7-17). This value is made up of 13 analyses, made over two measurement periods. 

Despite being picked and cleaned at different times and corrected using different standard 

!1
8 O

 (‰
)

2.
8

2.
4

2.
0

1.
6

1.
2

31 32 33 34 35 36

0.
70

0.
74

0.
78

Age (Ma)

!
47

 (‰
)

!47 vs. Age in ODP689B
S. ang + S. util mean D47
Avg D47 +/- 1SE
S. ang + S. util mean d18O
Published S.ang + S.util d18O

10 3 7 8 12 3 1 8 12 6 5 8 13

0.738 +/- 0.004
0.737 +/- 0.002

0.734 +/- 0.006

0.710 +/- 0.004



! 134!

gases and carbonates, the mean values from the two measurement periods (n=6 and n=7) 

only differ by 0.0028‰, well within error of each period’s mean value, suggesting that 

this is not a measurement artifact. 

 

5.3.3   Temperature  

 Figure 5.4 shows temperatures calculated using the calibrations of Dennis and 

Schrag [2010] (DS10) and Ghosh et al. [2006] (GH06), updated into the absolute 

reference frame [Dennis et al., 2011]. Each individual replicate was converted to 

temperature, and mean temperatures and 1 SE errors were calculated for each depth 

horizons. Mean values for depth horizons were combined to calculate average 

temperatures in each of the four intervals described above. Comparing the pre- and post-

transition averages, both calibration lines result in no temperature change across the 

interval. Combining the errors in quadrature, the GH06 calibration calculates 0.0±0.7°C 

of temperature change and the DS10 calibration calculates 0.0±1.1°C of temperature 

change. Absolute temperatures differ by 8-9°C between the two studies, with the GH06 

calibration calculating warmer temperatures. Excluding the late-Eocene sample, average 

DS10 temperatures are 12.4°C, whereas average GH06 temperatures are 21.7°C.  

 

5.3.4   !18Osw across the EOT 

 Using the measured !18O values and DS10-calculated temperatures, the isotopic 

composition of seawater can be determined at each depth horizon. This calculation is 

performed using the !18O-T equilibrium relationship of Kim and O’Neil [1997]. 

Calculated !18Osw values are in the range of 1‰ to 2‰, and the late-Eocene sample is 
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~3‰. Although !18O values change dramatically, both through the transition and within 

the “rebound” interval, "47 values remain constant, signifying that the large change in 

foraminiferal !18O is due mainly to changes in !18Osw. The pre-transition mean !18Osw is 

1.2 ± 0.2‰ and the post-transition mean is 2.0 ± 0.1‰. This yields a change in !18Osw of 

0.8 ± 0.2‰ across the whole transition. This falls within the range of estimates 

determined by previous studies (Table 5.1). Identical calculations done using the GH06-

calculated temperatures yield heavier absolute !18Osw estimates (3.3 ± 0.1‰ and 4.1 ± 

0.1‰ for pre- and post-transition, respectively), but the same net change (0.8 ± 0.1‰).  

 
 
 

 
Figure 5.4   Temperature calculated using the Dennis and Schrag [2010] and Ghosh et al. [2006] 
calibration lines, both updated to the absolute reference frame [Dennis et al., 2011]. Error bars on 

each point represent 1SE on the mean of all replicates at that depth horizon. Where only one 
replicate is available, the internal error (fully propagated) is used. Depth horizons have been 

combined into 4 intervals (described in the text). Grey boxes show average temperature and 1SE 
error of the included depth horizons. Where only one depth horizon is included (late-Eocene), the 

1SE error from averaging replicates at that depth horizon is used. 
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Figure 5.5 Comparison of planktonic !18O, "47-derived temperature (without error bars), 
calculated using the DS10 calibration, and corresponding !18Osw. LGM and modern !18Osw values 

are shown for comparison. Grey boxes and text indicate average values for four intervals 
described in the text. 
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This change in !18Osw can be converted to a change in sea level or a volume of ice 

by assuming an isotopic composition for the growing ice (!18Oice). Modeling studies 

estimate !18Oice values ranging from -20 to -25‰ initially, to as light as -42‰ near the 

end of ice growth [DeConto et al., 2008]. For comparison, the modern West AIS and East 

AIS have average compositions of -41 to -42.5‰ and -56.5‰, respectively [Lhomme et 

al., 2005]. Table 5.4 shows calculated volumes of ice for !18Oice values ranging from -

30‰ to -45‰ (SMOW), as well as a comparison to modern AIS volume and an 

equivalent sea level change. Using the average estimated change in !18Osw (0.8‰) and an 

intermediate value for !18Oice (-35 to -40‰), we estimate 124-140% of modern Antarctic 

ice volume, or 3.1-3.5 x 107 km3 of ice.  

 

 

5.4   Discussion 

5.4.1   Comparison to temperature estimates from other proxies 

 Temperatures calculated using two calibration lines, DS10 and GH06, differed 

significantly, with average values of 12.4°C and 21.7°C, respectively (excluding the late-

Eocene sample). Other temperature reconstructions from nearby sites compare well with 

the temperatures calculated by the DS10 calibration, whereas the GH06 temperatures 

appear too high (Figure 5.6). A multi-proxy study reported temperatures on Seymore 

Island (current location = 64°S, 56°W, paleolatitude = 67°S) from TEX86 and "47 

measurements [Douglas et al., 2014]. At 34 Ma, they measured temperatures of 14.5 ± 

1.4°C and 13.0 ± 1.5°C from the two proxies [Douglas et al., 2014], in good agreement 

with our nearest data point at 13.2 ± 2.8°C and the pre-transition average values of 12.2 ±  
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Average 
!18Oice 

Calculated amount of 
ice growth  

Change in 
!18Osw = 0.6‰ 

Change in 
!18Osw = 0.8‰ 

Change in 
!18Osw = 1.0‰ 

Mass of ice (x1019 kg) 2.9 3.8 4.7 
Ice Volume (x107 km3) 3.2 4.1 5.1 
% Modern AIS 128% 164% 204% 

!18Oice =  
-30‰ 

Sea Level equivalent 88m 113m 141m 
Mass of ice (x1019 kg) 2.5 3.2 4.0 
Ice Volume (x107 km3) 2.7 3.5 4.4 
% Modern AIS 108% 140% 176% 

!18Oice =  
-35‰ 

Sea Level equivalent 75m 97m 122m 
Mass of ice (x1019 kg) 2.1 2.8 3.5 
Ice Volume (x107 km3) 2.3 3.1 3.8 
% Modern AIS 92% 124% 152% 

!18Oice =  
-40‰ 

Sea Level equivalent 64m 86m 105m 
Mass of ice (x1019 kg) 1.9 2.5 3.1 
Ice Volume (x107 km3) 2.1 2.7 3.4 
% Modern AIS 84% 108% 136% 

!18Oice =  
-45‰ 

Sea Level equivalent 58m 75m 94m 
 
 
Table 5.4 Calculated amount of ice growth for different isotopic compositions of new ice (!18Oice 

= -30‰ to -45‰) and estimated changes in !18Osw (0.8 ± 0.2‰). Calculations use volume 
estimates of modern ocean (1.33x109 km3 [Charette and Smith, 2010]), Antarctic Ice Sheet 
(2.47x107 km3 [Lythe et al., 2001]), and Greenland Ice Sheet (2.93x106 km3 [Bamber et al., 
2001]), mean isotopic compositions of WAIS (-41.75‰), EAIS (-56.5‰), and Greenland (-

35.5‰) relative to SMOW from Lhomme et al. [2005], relative contribution of EAIS and WAIS 
from sea level estimates, average densities of glacial ice (917 kg/m3) and sea water (1028 kg/m3) 
from Lythe et al. [2001]. Modern seawater is assumed to have a composition of 0‰ (SMOW). 

Ice-free ocean is calculated using these values to have a composition of -0.96‰ (SMOW). 
Conversion to sea level equivalent made using a fixed ocean area of 3.62x108 km2. Our best 

estimate of ice volume growth is highlighted. 
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1.0°C. Seymore Island is currently located at the same latitude as ODP 689 (64°S), and 

modeling studies of Eocene sea surface temperatures suggest these two sites should have 

similar temperatures [Douglas et al., 2014].  

 Another multi-proxy study using TEX86 and UK’
37 measured temperatures before 

and after the EOT at Site 511 (current location, 51°S, 46°W, paleolatitude = 52.5°S) [Liu 

et al., 2009]. Temperatures from the two proxies combined are 19.3 ± 1.8°C before the 

transition and 11.4 ± 1.4°C afterwards. This study does not have data coverage 

immediately prior to or across the actual transition. The pre-transition average agrees 

with our late-Eocene sample (21.2 ± 1.5°C). The post-transition average agrees very well 

with our post-transition mean of 12.2 ± 0.5°C. Site 511 is located farther north than ODP 

689, but may have been influenced by similar surface waters. Eocene modeling studies 

produce a gyre in the Weddell Sea circulating clockwise that would have brought waters 

from ODP689 up the coast to site 511 [Douglas et al., 2014], which may explain the 

similar temperatures at these two sites. 

 

5.4.2   Lack of temperature change at ODP689 

 Most recent studies of the EOT record some amount of cooling across the 

transition, which is needed to account for the large magnitude change in !18O without 

excessive ice growth. Our measurements on thermocline-dwelling S. ang and S. util 

record no change in temperature. One possible explanation is that these species have a 

strong temperature preference and adjusted their depth habitat to maintain the same 

thermal habitat while the overall ocean was cooling. Compared with surface-dwellers,  
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Figure 5.6  A comparison of temperatures calculated with the two calibrations to data from other 

studies. TEX86 and UK’
37 data from ODP511 from Liu et al. [2009]. !47 and TEX86 data from 

Seymore Island from Douglas et al. [2014]. 
 

thermocline-dwelling species would be able to more easily maintain the same 

temperature environment due to the large thermal gradient without changing the depth 

(and therefore light conditions) in which they lived. Another study that measured Mg/Ca 

on S. util in the South Atlantic also found no change in temperature across the EOT [Peck 

et al., 2010]. If these species do change regulate their thermal environment by changing 

their depth habitat, then changes in "18O recorded in their shells should isolate local 

changes in "18Osw.  

 

5.4.3   Extremely high "18Osw values 

 Despite our DS10 temperatures agreeing with nearby sites, the calculated "18Osw 

values are unreasonably high. "18Osw values of 1-2‰ require ice volumes in excess of the 
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Last Glacial Maximum, which are hard to justify, especially for this time period. This 

implies that the measured temperatures are too warm, even with the DS10 calibration 

(warmer GH06 temperatures result in even heavier !18Osw values). !18Osw values are 

expected be between -1 and 0‰ pre-transition, indicating the existence of little 

continental ice prior to this ice growth event, nearly 2‰ lighter than values calculated in 

this study.  

This discrepancy between calculated and expected !18Osw values may be due to 

errors in the absolute "47-T calibration or possibly to vital effects in this extinct species of 

foraminifera. Differences in the "47-T calibration would influence absolute temperatures 

(and !18Osw) values, but would not have a large impact on the calculated change in 

temperature, which would be zero regardless of the choice of calibration (as 

demonstrated by the equivalent change in temperature calculated by the GH06 and DN10 

calibrations). Vital effects in foraminifera are generally expressed as a fixed offset from 

equilibrium values (e.g. +0.64 for Cibicidoides spp.), so would also only effect the 

absolute temperatures and !18Osw values.  

 The calculated ice volume increase of 124-140% of the modern Antarctic ice 

sheet is on the higher end of previous estimates (Table 5.1), but is still plausible. 

Modeling studies have shown that ice sheets on the order of 2.0-2.1x107 km3 can be 

sustained in Eocene-Oligocene conditions [Goldner et al., 2014], which is about 2/3 of 

our calculated ice volume. At the EOT, the land area of Antarctica was 10-20% larger 

than today, which, based on the curvature of a growing ice sheet, would scale to an even 

greater increase in potential ice volume [Wilson and Luyendyk, 2009]. If any ice at all 
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was growing in the northern hemisphere, the required volume on the Antarctic continent 

would be reduced.  

  

5.4.4   Choice of clumped isotope calibration line 

 The absolute !18Osw values calculated with our "47-derived temperatures appear 

too heavy, indicating the temperature estimates may be too high. This could be due to an 

offset in the "47-T calibration. Published calibration lines that convert "47 into 

temperature have been published by a number of authors, and were created by 

measurement of synthetic carbonates grown in the lab [Ghosh et al., 2006; Dennis and 

Schrag, 2010; Zaarur et al., 2013; Tang et al., 2014] biogenic carbonates with known 

growth temperatures [Ghosh et al., 2006; Came et al., 2007; Tripati et al., 2010; Henkes 

et al., 2013; Grauel et al., 2013; Dennis et al., 2013; Eagle et al., 2013; Came et al., 

2014], or from theoretical calculations [Schauble et al., 2006; Guo et al., 2009; Hill et al., 

2014]. In general, these calibrations tend to fall into two groups – those following a 

steeper slope similar to the original synthetic + biogenic calibration of Ghosh et al. 

[2006] (GH06) and those that follow a shallower slope similar to the second synthetic 

calibration study performed by Dennis and Schrag [2010] (DS10).  

Many possible explanations for these discrepancies have been put forward, such 

as differences in precipitation methods between the two original synthetic studies, 

differences in laboratory procedures (e.g. temperature of acid digestion), differences in 

the "47-T relationship for different biogenic carbonate types, etc. Originally, the disparity 

was attributed to inter-lab differences, but the differences remained even after both the 

GH06 and DS10 calibration lines were updated into the absolute reference frame [Dennis 
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et al., 2011]. Some correlation exists between the temperature of the acid digestion step 

(90°C vs. 25°C) and the slope of the calibration lines. Possibly as a result of this, 

synthetic and biogenic calibrations performed in the same lab tend to agree with each 

other [Came et al., 2014, and references therein]. Despite this correlation between 

reaction temperature and calibration line slope, labs using different reaction temperatures 

(Caltech and Yale at 25°C and Harvard and JHU at 90°C) were able to measure agreeing 

values in an inter-lab comparison study, once all values were converted to the absolute 

reference frame [Dennis et al., 2011].  

Among the calibrations with the shallower DS10 slope, the intercept values differ 

by ~0.02-0.04‰ in the !47 range of interest, with three calibrations coming in lower than 

DS10 [Henkes et al., 2013; Schauble et al., 2006; Hill et al., 2013] and one coming in 

higher [Eagle et al., 2013]. A decrease of 0.02‰ in the intercept of the calibration would 

result in a decrease of ~6.5°C for the mean temperature before and after the transition 

(from 12.2 to 5.7°C in both periods). At these temperatures, "18Osw values shift from -

0.2‰ before the EOT to 0.6‰ after, showing the same magnitude of change (0.8‰), but 

absolute values much closer to those expected for a nearly ice-free Eocene.   

 

5.4.5   Comparison to Mg/Ca data 

 Two studies have measured Mg/Ca on foraminifera from Site ODP 689 [Billups 

and Schrag, 2003; Bohaty et al., 2012]. The conversion of paleo-Mg/Ca values to 

temperature is complicated by a few factors. First of all, Mg/Ca ratios in seawater have 

changed through time, and were potentially as low as ~2 at the EOT compared to a 

modern value of 5.17 [Evans and Muller, 2012]. Over short timescales, this influences  
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Figure 5.7 Comparison of !18O and Mg/Ca records from Cibicidoides spp. (red and brown) and 
S. angiporoides (black) from site ODP689 [Bohaty et al., 2012; Billups and Schrag, 2003] with 
"47 data from this study (black crossed circles). All axes are oriented so that the up direction 

corresponds to warmer temperatures. 
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absolute temperatures but not relative temperature change because of the long residence 

time of Mg and Ca in seawater. Second, modern calibration studies have shown inter-

species differences in the Mg/Ca-T relationship [Anand et al., 2003], so choosing the 

right calibration for extinct species is challenging. Finally, it has been shown that changes 

in carbonate ion concentrations ([CO3
2-]) have a significant effect on the incorporation of 

Mg into the carbonate lattice [Elderfield et al., 2006], which has the potential to mask the 

influences of changing temperature. At the EOT, a ~1km deepening of the carbonate 

compensation depth occurred [Coxall et al., 2005; Palike et al., 2012], which would have 

increased [CO3
2-] throughout the water column, but especially at depth. Estimates from 

paired Li/Ca and Mg/Ca measurements at sites in the South Atlantic [Peck et al., 2010] 

and equatorial Pacific [Lear et al., 2010] calculate an increase in [CO3
2-] of 29-36 

µmol/kg, which has the potential to increase Mg/Ca by 0.25-0.31, the equivalent of a 2-

3°C warming signal [Lear et al., 2010].  

Both studies show fairly constant Mg/Ca values both before and after the 

transition, for both benthic and planktonic foraminifera (Figure 5.7) [Billups and Schrag, 

2003; Bohaty et al., 2012]. S. ang, in particular, shows average values of 1.84 and 1.82 

before and after [Bohaty et al., 2012]. This would seem to imply no change in 

temperature, in agreement with our data, but effects of changing [CO3
2-] cannot be ruled 

out. Benthic and planktonic data from Bohaty et al. [2012] show similar patterns, whereas 

benthic data from Billups and Schrag [2003] show an excursion to high Mg/Ca during the 

transition, implying a warming. The estimated changes in [CO3
2-] from nearby sites is not 

enough to explain the magnitude of this shift, and it is curious that it does not appear in 

the Bohaty et al [2012] benthic data. However, the magnitude and timing of changes in 
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[CO3
2-] at site ODP 689 have not been quantified, so these Mg/Ca records are hard to 

interpret.  

The Mg/Ca values of S. ang can be converted to temperature using the calibration 

of Anand et al. [2003], which combines many planktonic species. Average temperatures 

across the whole interval come to 17.0°C using this calibration. However, at the EOT, 

seawater Mg/Ca was likely around ~2, instead of the modern 5.17 [Evans and Muller, 

2012]. Scaling the Mg/Ca calibration for this difference, the average temperature 

increases to 27.5°C. This is warmer than the !47-temperatures calculated by both 

calibrations, and warmer than temperatures from other nearby sites (Figure 5.6). For 

temperatures calculated from !47 to be in agreement with Mg/Ca temperatures, 

Mg/Ca(sw) would have to be ~7.6, which is higher than modern and inconsistent with 

multiple proxies [Evans and Muller, 2012]. This may reflect differences in Mg/Ca-T 

relationship for this species compared to the modern planktonic species used to generate 

the calibration [Anand et al., 2003]. These data are therefore hard to reconcile with our 

and others measurements.  

  

5.4.6   Possible vital effects in Subbotina spp.  

The "18O-depth “ranking” of S. ang and S. util as intermediate dwellers due to 

their heavier "18O values may by incorrect. Instead, these could be surface-dwelling 

species that fractionate "18O to incorporate more 18O into their shells than would be 

expected from equilibrium with seawater.  In depth-ranking studies of Eocene-age 

foraminifera, S. util and S. ang recorded "18O values 1.39-1.75‰ and 0.04‰ heavier than 

the lightest "18O recorded by planktonic foraminifera (Chiloguembelina cubensis) [Poore 
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and Matthews, 1984]. This is contradictory to what we have observed, which is that !18O 

values for S. ang and S. util are nearly identical. None of the samples used by Poore and 

Matthews [1984] had both S. ang and S. util, so direct comparison did not occur. At one 

depth horizon (14H2-67), we measured two replicates of Chiloguembelina cubensis, 

which had !18O values 0.12‰ lighter than the S. ang and S. util average. The two 

replicates gave very different "47 temperatures (14.5 and 37.1°C from DS10), but limited 

sample material prohibited additional measurements, so we cannot determine whether C. 

cubensis lived in warmer surface waters.  

Keigwin and Corliss [1986] use !13C as another metric of depth habitat. !13C in 

seawater gets lighter with depth, so intermediate-dwelling species should have lighter 

!13C (because of this gradient) and heavier !18O (because of temperature) than surface-

dwelling species. S. linaperta, the ancestor of S. ang and S. util [Pearson et al., 2006], 

showed !18O values ~1‰ heavier than C. cubensis and two other surface-dwelling 

species, but showed !13C  values ~0.75‰ heavier than C. cubensis and within error of the 

other two species, earning it the title of intermediate-depth dweller [Keigwin and Corliss 

1986]. In our sample, C. cubensis had !13C values ~0.6‰ heavier than the S. ang and S. 

util mean, in contradiction with Keigwin and Corliss [1986]. Additional measurements of 

these two species in ODP689 also show heavier !13C in C. cubensis [Kennett and Stott, 

1990].  

The size of the offset in !18O between Subbotina spp. and C. cubensis observed 

by Keigwin and Corliss [1986] and Poore and Matthews [1984] (0-1.75‰), if interpreted 

as a vital effect, could explain much of the difference in !18Osw from expected values. If 

S. ang and S. util record !18O values 1-2‰ heavier than equilibrium with seawater, the 
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true !18Osw would be 1-2‰ lighter than calculated, which would bring estimates in line 

with a nearly ice-free late Eocene. This also demonstrates the danger of the !18O depth 

ranking system for determining depth habitat of extinct species, especially using so few 

samples for comparison [Matthews and Poore 1984; Keigwin and Corliss 1986].  

 

5.4.7   Influence of changing [CO3
2-] on ice volume estimates 

 Across the EOT, seawater [CO3
2-] has been calculated to change on the order of 

36µmol/kg in the deep Pacific [Lear et al., 2010] and 19-29µmol/kg in the South Atlantic 

[Lear et al., 2010; Peck et al., 2010] from paired Li/Ca and Mg/Ca measurements. These 

values agree with a calculated change in [CO3
2-] of 19µmol/kg caused by a 1.2km 

deepening of the carbonate compensation depth [Lear et al.. 2010; Broecker and Peng, 

1982]. It has been shown that increases in [CO3
2-] cause reduced stable isotope values in 

planktonic foraminifera and other single-celled planktonic organisms with a slope of -

0.0022‰ !18O/(µmol/kg [CO3
2-]) for Orbulina universa [Spero et al., 1997], -0.0048 for 

a coccolithophore species and -0.0243 for a calcareous dinoflagellate [Ziveri et al., 2012]. 

Based on the above estimates of changes in [CO3
2-], this could influence !18O values by 

0.04-0.08‰ for foraminifera. However, based on the range of slopes observed in various 

unicellular planktonic calcifying organisms and the single foraminifera species tested, a 

slope of -0.0022 may not be correct for all foraminifera species. The larger slope for 

coccolithophores would result in changes in a reduction of post-transition !18O values of 

0.09-0.17‰, muting full magnitude of the signal. This influence would differ from site to 

site, basin to basin, and especially with depth of the core. A site like ODP 1218, which 

was near the CCD prior to the EOT, saw a large change (36µmol/kg [Lear et al., 2010]), 
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whereas a shallower site may have seen a smaller impact. These site-to-site and depth-

dependent differences may explain some of the range in ice volume estimates, because 

the calculated changes in !18Osw may be variably muted according to the local change in 

[CO3
2-]. 

 

 

5.5   Conclusions 

We have made clumped isotope measurements on foraminifera from the Southern 

Ocean across the Eocene-Oligocene transition. We observe mean temperatures around 

12-13°C using the calibration of Dennis and Schrag [2010], both before and after the 

transition, in line with temperature estimates from nearby sites using other temperature 

proxies, and with modeled surface ocean circulation before the Drake passage was open 

[Douglas et al 2014; Liu et al., 2009]. We calculate a net change in temperature of 0.0 ± 

1.1°C, and a net change in !18Osw of 0.8 ± 0.2‰ across the transition, resulting in an ice 

volume increase of 3.1-3.5x107 km3, equivalent to ~124-140% of modern AIS. The 

absolute values of !18Osw are 1-1.5‰ heavier than expected for this time period. We 

suggest that this difference could be due to the "47-T calibration overestimating 

temperatures, or to vital effects in these species of foraminifera, which was previously 

mis-identified as an intermediate-depth habitat. Despite high absolute values, the 

calculated difference in !18Osw is robust and is within the range of previous estimates.  
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Appendix A1. Additional Sediment Core Data from Chapter 3 
 

 
 
 
Figure A1.1 !18Obs (black), %CaCO3 (orange), and !13Cbs (turquoise) vs. Depth for 
KN53.  
 

 
Interpretation:  
Covers the glacial/interglacial transition (as seen in %CaCO3 change). !18Obs shows a 
permanent shift to heavier values.  
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Figure A1.2 !18Obs (black), %CaCO3 (orange), and !13Cbs (turquoise) vs. Depth for 
KN57.  
 
 
Interpretation:  
Radiocarbon dates show that the first portion is all within the Holocene (hence the low-
resolution sampling). The portion from 400-600cm likely represents a very compressed 
glacial period (compare to KN55).  
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Figure A1.3 !18Obs (black), %CaCO3 (orange), and !13Cbs (turquoise) vs. Depth for 
KN63.  
 
 
Interpretation:  
Covers the glacial/interglacial transition (as seen in %CaCO3 shift). Lots of excursions in 
!18Obs, but hard to interpret.  
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Appendix A2. Discussion of Shot Noise Limit with Decreasing 

Beam Intensity 

 

 Shot noise (!"), or the minimum possible error on a measurement due to 

instrument noise, is nicely defined by Merritt & Hayes [1994] and can be calculated with 

the following equation:  

 

     

! 

"#
2 = 2*106 * "R

R
$ 
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( 
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2

          [Eq. A2.1] 

 

This can be rewritten as:  

 

       

! 

"#
2 = 2*106 * (1+ R)

R
*$44 *qe
t *V44

          [Eq. A2.2] 

 

where #44 is the resistor for the mass-44 beam, which is 3x107 ohms for our instrument, 

and qe is the charge on each ion (1.6x10-19 C). t is the total number of seconds of 

integration time over all cycles and acquisitions, which can be calculated by multiplying 

together the number of acquisitions (7), the number of cycles (14), and the integration 

time per cycle (26s) to get 2548s per sample. R is the ratio of currents between the minor 

beam of interest and the major beam, or i47/i44 in our case. This can be calculated as (V47/ 

#47)/(V44/ #44) using a representative m/z 44 and m/z 47 voltage reading and the mass-47 

resistor of 1x1012 ohms. In our case, R is approximately 4.8x10-5. 



! 162!

In the traditional dual-bellows measurement configuration, V44 is the target 

voltage for the m/z 44 beam at which every cycle is measured. The quantity V44*t/qe 

gives an estimate of the total number of ions collected over the whole measurement 

period. In our dual-reservoir measurement configuration, the beam intensity (and 

therefore V44) is constantly changing throughout the run. In order to quantify the total 

number of ions collected over the measurement period, we “integrate” the beam strength 

over time. We take V44 for each cycle, multiply by 26 seconds, the integration time of a 

single cycle, and then sum all the cycles. This is computationally equivalent to taking the 

average V44 value over the whole run and inputting that in place of the target voltage V44 

in Equation A2.2.  

 We observe a roughly linear relationship between the average V44 and the initial 

V47, which we can relate to sample size by the following two equations:  

 

      

! 

V44"average = 0.4197*V47" initial + 50.2         [Eq. A2.3] 

             

! 

V47" initial = 2231* (Mass) "1714             [Eq. A2.4] 

 

where Mass is the mass of carbonate reacted for that sample. We can therefore plot the 

theoretical shot noise limit against sample size, assuming all samples were run for the 

same amount of time (7 acquisitions x 14 cycles x 26 second integration time), and 

compare it to the measured standard errors for samples. We see our measured standard 

error increasing in line with the predicted shot noise limit at small sample sizes.  
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Figure A2.1 Mass of carbonate reacted vs. calculated (line) and observed (points) shot noise 
limit.  
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Merritt, D .A. and J. M. Hayes (1994), Factors controlling precision and accuracy in 

isotope-ratio-monitoring mass spectrometry, Analytical Chemistry, 66, 2336.  

1.0 1.5 2.0 2.5

0.
00
5

0.
01
0

0.
01
5

0.
02
0

mass of reacted carbonate (mg)

sh
ot

 n
oi

se
 li

m
it 

(p
er

m
il)

Sample Size vs. Shot noise limit (for 7acquisitions x 14 cycles)

Calculated from equations
Measured 1sigma SE on D47 



! 164!

Appendix A3. Error Propagation in the Clumped Isotope 

Absolute Reference Frame Correction and !48 Correction 

 

The correction from a raw !47 value to a fully-corrected !47 value is made up of a 

few steps. This includes 3 steps to get from the raw value to a value in the absolute 

reference frame [Dennis et al, 2011], as well as 2 steps to correct for the “unknown 

fractionation” with !48 observed in our samples. All of the data and regression outputs 

that go into these corrections have errors that need to be propagated.  

To get from the raw value to the absolute reference frame value takes 3 steps:  

 

Step 1:  !47-SGvsWG0 = !47-raw - "47
raw* SlopeEGL         [Eqn. A3.1] 

Step 2:  !47-RF = !47-SGvsWG0 * SlopeETF + IntETF         [Eqn. A3.2] 

Step 3:  !47-RF/AC = !47-RF + Acid Frac. Factor          [Eqn. A3.3] 

 

To correct the absolute reference frame value for the !48 fractionation takes 2 steps:  

 

Step 4:   true!48 = (IntCARB48 * SlopeHG/EG – IntHG/EG * SlopeCARB48) * (SlopeHG/EG – 

SlopeCARB48)                  [Eqn. A3.4] 

Step 5:   !47-corr = !47-RF/AC  – (!48- true!48) * SlopeCARB47       [Eqn. A3.5] 

 

We begin with the raw carbonate data points, containing the following values and errors:  
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"47 ± se"47   !47 ± se!47  

"48 ± se"48   !48 ± se!48  

 

where the delta values and errors represent the mean and standard error of all cycles and 

acquisitions in one sample run (7acq x 14 cyc = 98 points to average per sample).  

We also have the outputs of two regressions, the equilibrium gas lines (EGL) and 

the empirical transfer function (ETF). A statistical program such as R will output the 

standard error of the slope and intercept estimates with the regression information. We 

also take the published value and error for the acid fractionation factor of your choice 

(based on reaction temperature).  

 

SlopeEGL± seSlpEGL 

SlopeETF ± seSlpETF  IntETF ± seIntETF 

Acid Fractionation Factor ± erAcidFr 

 

For the !48 correction, we also need the slope and intercept of the heated gas 

(HG/EG) and carbonate (CARB48) data in "48 vs !48 space, as well as the regression of 

!48 vs !47-RF/AC for carbonates (CARB47). These give us the following additional values:  

 

SlopeHG/EG ± seSlpHGEG  IntHG/EG ± seIntHGEG 

SlopeCARB48 ± seSlpCARB48  IntCARB48 ± seIntCARB48 

SlopeCARB47 ± seSlpCARB47 
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To propagate the errors I will use the two following formulas, which are basic definitions 

of error propagation.   

 

For z = x + y   

! 

dz = dx 2 + dy 2              [Eqn. A3.6] 

For z = x*y  

! 

dz = x * y * dx
x

" 

# 
$ 

% 

& 
' 
2

+
dy
y

" 

# 
$ 

% 

& 
' 

2

                      [Eqn. A3.7] 

 

 

Step 1: Linearity correction 

To propagate the errors through Equation A3.1, we combine the Eqn. A3.6 and 

A3.7 in the correct order to get:  

 

err!47-SGvsWG0 = SQRT[ se!47
2 + ("47

raw* SlopeEGL)2 *( (se"47/"47
raw)2 + 

(seSlpEGL/SlopeEGL)2) ]            [Eqn. A3.8] 

 

Step 2: ETF correction 

To propagate the errors through Equation A3.2, we combine Eqn. A3.6 and A3.7 

in the correct order, and input the error calculated in Eqn. A3.8 (err!47-SGvsWG0). We get: 

 

err!47-RF = SQRT[ seIntETF2 + (!47-SGvsWG0 * SlopeETF)2 * ( (err!47-SGvsWG0/!47-SGvsWG0)2 

+ (seSlpETF/SlopeETF)2 ) ]             [Eqn. A3.9] 
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Step 3: Acid fractionation correction 

To propagate the errors through Equation A3.3, we combine Eqn. A3.6 and A3.7 

in the correct order, and input the error calculated in Eqn. A3.9 (err!47-RF ). We get: 

 

err!47-RF/AC = SQRT [ err!47-RF
2 + errAcidFr2 ]        [Eqn. A3.10] 

 

Combining equations A3.8, A3.9, and A3.10, we can create one equation for the error on 

!47-RF/AC that contains only known quantities. All of the inputs to this equation should be 

known from original data, regression outputs, or literature values (erAcidFr).  

 

err!47-RF/AC = SQRT [ ( seIntETF2 + (!47-SGvsWG0 * SlopeETF)2 * ( ( se!47
2 + ("47

raw* 

SlopeEGL)2 *( (se"47/"47
raw)2 + (seSlpEGL/SlopeEGL)2) )/!47-SGvsWG0

2 + (seSlpETF/SlopeETF)2 

) ) + errAcidFr2 ]            [Eqn. A3.11] 

 

Step 4: Calculate true!48  

The value true!48 is the y-coordinate (!48) of the intersection between the heated 

gas and carbonate data in "48 vs. !48 space. Because this is the intersection of two lines 

with errors on their slopes and intercepts, it is a more complicated calculation to get 

errTrue!48, and it is discussed below.  

 

Step 5: Correction for !48 fractionation 
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To propagate the errors through Equation A3.5, we combine Eqn. A3.6 and A3.7 in the 

correct order, and input the error calculated in Eqn. A3.10 or A3.11 (err!47-RF/AC). We 

get: 

 

err!47-corr =  SQRT [ err!47-RF/AC
2 +  ((!48-raw- true!48) * SlopeCARB47)2 * ( (se!48

2 + 

errTrue!48
2)/(!48-raw- true!48)2 + (seSlpCARB47/SlopeCARB47)2 ) ]      [Eqn. A3.12] 

 

Combining equations A3.11 and A3.12, we can create an equation for the error on !47-corr, 

the fully corrected value, that contains only known quantities. Everything in this equation 

should be one of the given values at the start, except for errTrue!48.  

 

err!47-corr =  SQRT [ ( ( seIntETF2 + ((!47-raw - "47
raw* SlopeEGL)* SlopeETF)2 * ( ( se!47

2 + 

("47
raw* SlopeEGL)2 *( (se"47/"47)2 + (seEGL/SlopeEGL)2) )/(!47-raw - "47

raw* SlopeEGL)2 + 

(seSlpETF/SlopeETF)2 ) ) + errAcidFr2 ) +  ((!48-raw- (IntCARB48 * SlopeHG/EG – IntHG/EG * 

SlopeCARB48) * (SlopeHG/EG – SlopeCARB48)) * SlopeCARB47)2 * ( (se!48
2 + errTrue!48

2)/(!48-

raw- (IntCARB48 * SlopeHG/EG – IntHG/EG * SlopeCARB48) * (SlopeHG/EG – SlopeCARB48))2 + 

(seSlpCARB47/SlopeCARB47)2 ) ]          [Eqn. A3.13] 

 

 

Error in the intersection of two fitted lines 

We have two lines in "48 vs. !48 space, one for heated and equilibrated gases 

(HG/EG) and one for carbonate (CARB48). These are normal regressions, and we get the 
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standard error on the slope and intercept from the regression output (for example from the 

summary function in R):  

 

SlopeHG/EG+/- seSlpHGEG  IntHG/EG+/- seIntHGEG 

SlopeCARB48+/- seSlpCARB48  IntCARB48+/- seIntCARB48 

 

For now, let’s make the notation simpler and say that we have two lines:  

 

Line 1: y = a*x + c   Line 2: y = b*x + d 

 

These lines intersect at the point (X,Y), such that X = (d-c)/(a-b) and Y = (a*d-

b*c)/(a-b). The lines are both linear regression fits with errors on the slope and intercept: 

#a, #b, #c, #d. Each fit also has a covariance coefficient, which is between 0 and 1 and 

can be calculated as follows:  

 

r = cov(x,y)/ [ sd(x) * sd(y) ]         [Eqn. A3.14] 

 

x and y in Equation A3.14 are the vectors of data ("48 and !48) for either HG/EG or 

carbonates which were used for the regression. This r is the same as the square root of the 

R2 value given by the regression output. We can calculate this for each of the two lines 

and call them r1 and r2.  

We can then write the error matrix (covariance matrix) for the intersection point 

(X,Y) 



! 170!

 

! 

"X
2 r *"X"Y

r *"X"Y "Y
2

# 

$ 
% 

& 

' 
(  = N          [Eqn. A3.15] 

 

We can write the covariance matrix comparing a, c, b, and d.  Note: We are 

assuming the two lines are independent. Since the lines come from different sample runs 

(gas standards vs. carbonates), this is a fairly good assumption.   

 

! 

"a
2 r1*"a *"c 0 0

r1*"a *"c "c
2 0 0

0 0 "b
2 r2*"b *"d

0 0 r2*"b *"d "d
2

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 = M      [Eqn. A3.16] 

 

We also need a transformation matrix, which calculates the partial derivatives of x 

and y with each of the parameters a,b,c,d.  
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        [Eqn. A3.17] 

 

Where k = (d-c)/(a-b), for simplicity.  

We can then use the matrix multiplication TTMT = N to solve for #x and #y. They 

have the following solution, after matrix multiplication and algebra… 
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#X
2 = 1/(a-b)2 * [k2 * (#a

2 + #b
2) + 2*k*(r1*#a*#c + r2*#b*#d) + #c

2 + #d
2)  [Eqn. A3.18] 

#Y
2 = 1/(a-b)2 * [k2 * (b2*#a

2 + a2*#b
2) + 2*k*(r1*b2*#a*#c + r2*a2*#b*#d) + b2*#c

2 + 

a2* #d
2)              [Eqn. A3.19] 

 

If we now translate this back into our clumped isotope calculation, we really care 

about #Y only, which is equal to errTrue!48, or the error on the y-value at the point of 

intersection. #X represents the error in the x-value ("48) at the point of intersection. 

Letting Line 1 be the HG/EG line and Line 2 be the CARB48 line, we can make the 

following substitutions:  

 

a = SlopeHG/EG  #a
 = seSlpHGEG 

c = IntHG/EG  #c = seIntHGEG 

b = SlopeCARB48 #b = seSlpCARB48 

d = IntCARB48  #d = seIntCARB48 

 

Finally, we just plug these values into Eqn. A3.19 and solve for #Y. This is then 

plugged into Eqn. A3.13 along with other known quantities to solve for our final product, 

err!47-corr, or the error on the fully corrected !47 value (!47-corr).   
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Appendix A4. Supplemental Figures for Chapter 4 
 
 
 
 
 
 

 
 
 

Figure A4.1   Diagram of 10mL reservoir attached to reference bellows. The MAT253 has a 
built-in !” Swagelok compression fitting as the output to the reference bellows. We attach the 

10mL stainless steel reservoir (Swagelok piece # SS-4CD-TW-10) to the fused silica capillaries 
(~1m length, 110µm inner diameter, SGE # 0624459) using two converter pieces (1/4” male to 
3/8” female, Swagelok piece # SS-600-R-4, and 3/8” female to 1/16” female, Swagelok piece # 

SS-600-6-1). The capillaries are connected to the 1/16” Swagelok fitting using a graphite-Vespel 
composite ferrule (SGE # 072663). On the sample side, the same 2 Swagelok connectors and 

10mL reservoir were used to form identical volumes from which the gas bleeds down. However, 
the internal volume of the inlet valve adjacent to the sample reservoir is larger than the internal 

volume of the MAT 253 valve adjacent to the reference reservoir, so 87 glass beads (borosilicate, 
3mm diameter,  similar to VWR#26396-630) were placed inside the sample reservoir to balance 

this volume difference. 
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Figure A4.2 !48 vs. !47-raw and !48 vs. !47-RFAC for both CM2 and RTG for the 4 measurement 

periods (MP1 = 09/22/13 to 10/03/13; MP2 = 10/07/13 to 12/18/13; MP3 = 01/06/14 to 02/14/14; 
MP4 = 02/18/14 to 03/28/14). The PPQ trap material was changed during MP3 and did not have a 

large influence on the slope. Horizontal grey lines indicate published value for each standard. 
RTG has few replicates in MP1, resulting in a more divergent slope. 

 

Meas. 
Period 

Samp 
Type 

# 
pts 

Raw vs. 
Ref. Fr. 

Slope 
 

Slope Error 
(1 SE) 

Intercept Intercept 
Error (1 SE) 

1 CM2 10 Raw 
Ref. Frame 

0.060 
0.060 

0.003 
0.003 

-0.584 
0.260 

0.009 
0.009 

2 CM2 36 Raw 
Ref. Frame 

0.057 
0.057 

0.004 
0.004 

-0.592 
0.297 

0.008 
0.008 

3 CM2 41 Raw 
Ref. Frame 

0.059 
0.061 

0.003 
0.003 

-0.606 
0.282 

0.011 
0.011 

4 CM2 29 Raw 
Ref. Frame 

0.055 
0.056 

0.003 
0.003 

-0.581 
0.273 

0.010 
0.010 

1 RTG 5 Raw 
Ref. Frame 

0.026 
0.026 

0.023 
0.024 

-0.221 
0.690 

0.029 
0.030 

2 RTG 20 Raw 
Ref. Frame 

0.047 
0.047 

0.003 
0.003 

-0.283 
0.654 

0.006 
0.006 

3 RTG 13 Raw 
Ref. Frame 

0.044 
0.045 

0.011 
0.011 

-0.247 
0.693 

0.028 
0.029 

4 RTG 40 Raw 
Ref. Frame 

0.040 
0.041 

0.003 
0.004 

-0.239 
0.677 

0.011 
0.012 

Table A4.1 Slopes and intercepts of the lines shown in Figure S3 (!48 vs. !47-raw and !48 vs. !47-

RFAC), with errors (1 SE). There is a slight noticeable offset between the slopes fit to CM2 data 
and that fit to RTG. 
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Figure A4.3   "18O (left) and "13C (right) vs. !48 for all CM2 (blue), RTG (green), and NBS19 
(orange) points measured over 4 different measurement periods. No significant correlation is 

observed between !48 and the stable isotopes, unlike between !48 and !47. Plots of "13C and "18O 
vs. !47-RFAC, !47-corr, and "48 look very similar because of the strong correlation between those 

quantities and !48. 
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Figure A4.4   Residual yield (difference between observed yield, measured as increase in source 
vacuum gauge pressure, and fitted line shown in Figure 3a) vs. !48 for all carbonate data run over 
all four measurement periods. There is no correlation between residual yield and !48, indicating 

that partial yield is not causing the fractionation. If that were the case, we would expect to see the 
highest !48 values occurring either at the highest residual yield (contaminant being added) or the 
lowest (fractionation occurring during loss of some gas). Instead we see near-zero residual values 

showing the highest !48. 
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Figure A4.5   Tests of reference gas run as a sample in three different configurations. (a) !48 vs. 
!47-raw (b) !48 vs. m/z 44 before chopping (represents the amount of gas entering the U-trap and 

reservoir initially) (c) !48 vs. m/z 47 at the start of the run (represents the sample size after 
chopping). Three configurations are shown - 1) reference gas passed through the full inlet; 2) 

reference gas frozen into the small U-trap (bypassing the PPQ trap); 3) reference gas expanded 
into the small U-trap (bypassing the PPQ trap).  
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Figure A4.6   !48 vs. !47-raw and vs. !47-RFAC. The fractionation relationship is preserved through 

the correction to the universal reference frame, with essentially no change in slope. The carbonate 
data shown here are a subset of data from measurement period #2 which were run at a starting 

voltage of m/z 47 = 3300-3800mV. These carbonates were corrected using only heated and 
equilibrated gases run within the same voltage range. If the difference in running voltage of the 

samples and gas standards were causing the observed fractionation, this reference frame 
correction done with similar-sized carbonates and standard gases should remove the fractionation 
and flatten out the data in this plot. The fact that the slope is unchanged suggests that differences 

in running voltage between samples and standards do not cause the observed fractionation. 
 
 

Line Slope Slope error 
(1 SE) 

Intercept Intercept 
error (1 SE) 

R2 

CM2  (!47-raw) 0.0711 0.0076 -0.6066 0.0112 0.8973 
CM2  (!47-RFAC) 0.0700 0.0074 0.2694 0.0109 0.8994 
RTG  (!47-raw) 0.0596 0.0052 -0.2875 0.0067 0.9632 

RTG  (!47-RFAC) 0.0582 0.0051 0.6290 0.0066 0.9627 
Table A4.2   Fitted slopes and intercepts for the four lines shown in Figure S2. The slope is 
essentially unchanged by the correction to the universal reference frame, and is statistically 

different from zero in all cases, suggesting that the reference frame correction does not remove 
the fractionation slope, even when the gases and carbonates are run at the same voltage. 
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Figure A4.7   !47-RFAC and !47-corr vs. sample size for CM2 (top, blue), RTG (middle, green), and 
NBS19 (bottom, orange). Filled symbols are the same as open symbols plotted in Figure 6. 

Correction for the fractionation relationship brings points and mean values closer to published 
values. Error bars account for full error propagation of original 1 SE on !47-raw through all 

correction steps carried out (Reference frame for !47-RFAC and Reference frame + !48 correction 
for !47-corr). The majority of the increase above the original shot noise error comes from the 

Reference frame correction, with a smaller additional increase from the !48 correction. 
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Mass Bin n Mean !47-RFAC (‰) Mean !47-corr (‰) 
CM2/NBS19 and RTG 

fit separately 

Mean !47-corr (‰) 
All 3 carbonates fit 

together 
CM2 samples 

2.5-2.6mg 5 0.352 ± 0.032 0.388 ± 0.011 0.384 ± 0.012 
2.4-2.5mg 4 0.386 ± 0.040 0.379 ± 0.007 0.377 ± 0.007 
2.3-2.4mg 10 0.358 ± 0.008 0.392 ± 0.005 0.390 ± 0.005 
2.2-2.3mg 11 0.369 ± 0.023 0.391 ± 0.010 0.389 ± 0.011 
2.1-2.2mg 7 0.376 ± 0.029 0.364 ± 0.011 0.364 ± 0.011 
2.0-2.1mg 6 0.380 ± 0.023 0.369 ± 0.018 0.370 ± 0.017 
1.9-2.0mg 7 0.417 ± 0.036 0.368 ± 0.011 0.370 ± 0.011 
1.8-1.9mg 8 0.448 ± 0.047 0.376 ± 0.017 0.381 ± 0.019 
1.7-1.8mg 8 0.434 ± 0.029 0.358 ± 0.012 0.362 ± 0.012 
1.6-1.7mg 6 0.428 ± 0.027 0.367 ± 0.010 0.371 ± 0.010 
1.5-1.6mg 6 0.458 ± 0.048 0.391 ± 0.014 0.395 ± 0.015 
1.4-1.5mg 6 0.502 ± 0.039 0.385 ± 0.008 0.393 ± 0.009 
1.3-1.4mg 5 0.558 ± 0.038 0.391 ± 0.007 0.402 ± 0.006 
1.2-1.3mg 6 0.503 ± 0.035 0.392 ± 0.008 0.403 ± 0.009 
1.1-1.2mg 7 0.489 ± 0.031 0.382 ± 0.014 0.396 ± 0.014 
1.0-1.1mg 6 0.504 ± 0.067 0.354 ± 0.015 0.376 ± 0.019 
All CM2s 108 0.429 ± 0.010 0.378 ± 0.003 0.382 ± 0.003 

RTG samples 
2.5-2.6mg 5 0.718 ± 0.007 0.715 ± 0.010 0.717 ± 0.012 
2.4-2.5mg 4 0.742 ± 0.037 0.701 ± 0.008 0.689 ± 0.020 
2.3-2.4mg 8 0.700 ± 0.024 0.708 ± 0.008 0.706 ± 0.006 
2.2-2.3mg 5 0.708 ± 0.029 0.710 ± 0.005 0.710 ± 0.006 
2.1-2.2mg 4 0.689 ± 0.016 0.710 ± 0.012 0.713 ± 0.012 
2.0-2.1mg 4 0.806 ± 0.033 0.703 ± 0.013 0.690 ± 0.016 
1.9-2.0mg 5 0.696 ± 0.055 0.691 ± 0.012 0.690 ± 0.012 
1.8-1.9mg 4 0.755 ± 0.033 0.728 ± 0.008 0.722 ± 0.002 
1.7-1.8mg 4 0.760 ± 0.014 0.729 ± 0.014 0.721 ± 0.014 
1.6-1.7mg 5 0.814 ± 0.035 0.778 ± 0.019 0.770 ± 0.016 
1.5-1.6mg 5 0.814 ± 0.040 0.756 ± 0.016 0.744 ± 0.013 
1.4-1.5mg 4 0.842 ± 0.019 0.742 ± 0.012 0.719 ± 0.015 
1.3-1.4mg 4 0.878 ± 0.042 0.748 ± 0.023 0.725 ± 0.026 
1.2-1.3mg 4 0.841 ± 0.020 0.752 ± 0.009 0.736 ± 0.008 
1.1-1.2mg 5 0.820 ± 0.025 0.717 ± 0.017 0.696 ± 0.018 
1.0-1.1mg 6 0.838 ± 0.026 0.706 ± 0.020 0.682 ± 0.021 
All RTGs 76 0.773 ± 0.010 0.723 ± 0.004 0.714 ± 0.004 

Table A4.3   Binned averages (0.1mg bins) for CM2 and RTG, for data uncorrected (!47-RFAC) 
and corrected (!47-corr) for the !48 fractionation using two methods (discussed in later section). 
Data shown in Figure 6 comres from the 4th column (CM2/NBS19 and RTG fit separately). 
Comparison of columns 4 and 5 are shown in Figure S20. Column 2 shows the number of 

replicates per mass bin. Errors are 1 SE of the samples in each bin. 
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Figure A4.8   !48 vs. !47-raw for measurement period 4 showing contaminated samples compared 
with clean samples. Samples that have significantly elevated !48 relative to the amount expected 

for a given !47 (in other words, fall to the right of the fractionation line), are deemed to be 
contaminated. These 7 samples were thrown out from further calculations. This method of finding 

contaminated samples runs the risk of including some “slightly contaminated” samples in the 
acceptable data. This would result in lighter !47 values and hotter temperatures. 
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Appendix A5. Choice of Group Fit vs. Individual Fit for the !48 

Correction 

 

When correcting carbonate data for the !48 correction, there are two steps in the 

correction process for which you can choose a group vs. individual fit: 1) solving for the 

slope and intercepts of carbonate data in "48 vs. !48 space and 2) solving for the slope of 

carbonate data in !48 vs. !47 space. In the case of most of our data, we have many 

replicates of each sample type (CM2 and RTG) in each measurement period, giving us 

more than enough points to get a robust fit for each of these sample types using the 

individual fit method. However, in many cases where we would be measuring unknowns, 

we may only have 6 or fewer replicates of each unknown (like NBS19 in this study). 

Depending on the spread of the data, it may be difficult to fit an individual line that 

accurately captures the slope of the !48 vs. !47 relationship. Below we will show two 

examples of the group fit vs. the individual fit in the case of having 5 replicates or 2 

replicates of an unknown (in this case NBS19) in a given measurement period. We will 

also discuss the slight but observable difference between the slopes of the CM2 and RTG 

lines and the choice of group vs. individual fit for future studies.  

 

NBS19 during measurement period #4:  

An unknown with a typical number of replicates (5) 

 

First we look at the fit in "48 vs. !48 space. In this case the two lines are fairly 

similar, and the important quantity (!(!48) = 0) is nearly identical for the two lines. In 
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general, there tends to be very little scatter around the carbonate lines in "48 vs. !48 space, 

meaning the individual fit is usually fairly close to the group fit.  

 

 

Figure A5.1   "48 vs. !48 for NBS19 run during measurement period #4 showing two fitted lines – 
one from an individual fit of just NBS19 data points, and one from the group fit including all 

CM2 and RTG from measurement period #4. Black points show the heated and equilibrated gases 
run during this period. 

 

HG/EG: !48 = 0.0919 * "48 + 0.2690 

Individual: !48 = 0.8163 * "48 – 10.1239, R2 = 0.9837 

Group: !48 = 0.9432 * "48 – 12.0647, R2 = 0.9923 for all carbonates 

 

These fits in "48 vs. !48 space are needed to calculate the “true !48” value, aka the 

intersection with the heated and equilibrated gas line in "48 vs. !48 space. The different 

fits correspond to different intersection points, but the “true !48” values only differ by 

0.012‰.  

 

Individual fit: ("48, !48) = (14.429, 1.655) 

Group fit: ("48, !48) = (14.559, 1.667) 
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The second place where we can compare the group and individual fits is in 

solving for SlopeCARB47, or the slope of the carbonate samples in !48 vs. !47 space. There 

is much more scatter about the lines in this case, meaning the group fit becomes more 

important with fewer replicates of the unknown.  

 

Figure A5.2 !48 vs. !47 for NBS19 run during measurement period #4 showing two fitted lines, 
from the individual and group fits. 

 

Individual: SlopeCARB47 = 0.0560 +/- 0.0087 

Group: SlopeCARB47 = 0.0482 +/- 0.0024 

 

These slopes are not too different, but what matters is how much the final 

corrected data differs. Using the group and individual SlopeCARB47 values, paired with the 

intersection points (true !48) found for both methods, we can correct the data.  

Point # 1 2 3 4 5 Mean 1 SE 
!48  1.022 1.502 2.431 2.729 4.151   
!47-RFAC 0.327 0.379 0.385 0.414 0.517 0.404 0.031 
!47-corr (Individual Fit) 0.362 0.388 0.342 0.354 0.377 0.365 0.008 
!47-corr (Group Fit) 0.358 0.387 0.348 0.363 0.397 0.371 0.009 

Table A5.1 Comparison of raw NBS19 data (!48 and !47-RFAC) with data corrected with each of 
the two fits (!47-corr) for measurement period #4. 
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Although the group fit has a slightly larger error, the mean value is closer to the 

published values (0.373 +/- 0.007‰ [Dennis et al., 2011]). Other labs found higher 

values (0.399‰ [JHU] and 0.404‰ [Yale]). This shows that with a typical number of 

replicates for an unknown (5), the group fit does better than the individual fit. The more 

replicates of a certain sample type you have, the less the group fit differs from the 

individual fit.  

 

NBS19 during measurement period #3:  

An unknown with a very small number of replicates (2) 

Typical clumped isotope measurements have 3-6 replicates of an unknown. 

However, sometimes not all of these replicates will be conducted in the same 

measurement period. In this case, we would need to correct a small number of replicates 

with a given heated gas line. Here we show an example of a case where there were only 2 

replicates of NBS19 in a given measurement period.  

 

Figure A5.3 "48 vs. !48 for NBS19 run during measurement period #3 showing two fitted lines – 
one from an individual fit of just NBS19 data points, and one from the group fit including all 

CM2 and RTG from measurement period #3. Black points show the heated and equilibrated gases 
run during this period. 
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Again, although there are only two points, the lines fitted in "48 vs. !48 space do 

not differ very much.  

 

HG/EG: !48 = 0.0988 * "48 – 0.0339 

Individual: !48 = 1.142 * "48 – 14.829, R2 = 1 

Group: !48 = 0.9672 * "48 – 12.4032, R2 = 0.9941 for all carbonates 

 

Calculating the intersection points:  

 

Individual fit: ("48, !48) = (14.186, 1.368) 

Group fit: ("48, !48) = (14.225, 1.374) 

 

In this case the two lines have very similar intersection points, with the “true !48” 

values differing only by 0.006‰. This is partly because the two points are very close to 

the heated gas line. In a case where one point has a much higher !48 (where it could 

influence the slope of the line more), its possible that the two fits could result in 

intersection points that are more disparate.  

Looking at !48 vs. !47, we will see the real benefit of a group fit.  
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Figure A5.4 !48 vs. !47 for NBS19 run during measurement period #3 showing two fitted lines, 
from the individual and group fits. 

 

Individual: SlopeCARB47 = -0.0254 (no error) 

Group: SlopeCARB47 = 0.0583 +/- 0.0035 

 

In this case, we can see that the two points do not form a line that reflects the 

fractionation we know occurs (Slope = ~0.05). The two points are split on either side of 

the line calculated by the group fit. In this case, the slope is set by replicates of other 

carbonate standards (CM2 and RTG), and places the intercept as the average position of 

the two points.  

 

Point # 1 2 Mean 1 SE 
!48  0.658 1.407   
!47-RFAC 0.348 0.329 0.329 0.009 
!47-corr (Individual Fit) 0.330 0.330 0.330 0.000 
!47-corr (Group Fit) 0.390 0.327 0.358 0.031 

Table A5.2 Comparison of raw NBS19 data (!48 and !47-RFAC) with data corrected with each of 
the two fits (!47-corr) for measurement period #3. 

 

0.8 1.0 1.2 1.4

0.
33
0

0.
33
5

0.
34
0

0.
34
5

!48 (‰)

!
47

 (‰
)



! 187!

The group fit brings the mean value much closer to the published value (0.373 +/- 

0.007‰ [Dennis et al., 2011]). The individual fit in this case doesn’t correct the data at 

all. This shows that for a very small number of replicates, the group fit does substantially 

better than the individual fit. It is possible that you could have a case where two 

replicates form a line that perfectly matches the true slope, but given the scatter we see 

around this relationship, it is unlikely that a small number of replicates will properly 

capture the slope on their own.  

We can calculate an individual fit for NBS19 replicates measured during 

measurement period #2, which had 2 replicates as well. Combining all 9 replicates of 

NBS19 over three measurement periods, we get a mean value of 0.362 +/- 0.007‰ for 

the individual fits compared to a mean of 0.368 +/- 0.007‰ for the group fits. In an 

additional case, we can correct the NBS19 data by doing a group fit with CM2 data only 

(RTG fit separately). For this case, the mean value is 0.366 +/- 0.007‰.  

 

Choice of individual vs. group fit: CM2 & RTG 

We observe a slight but consistent difference between the individual fits of the 

CM2 and RTG data (see table S3). The slope for RTG is ~0.44, whereas the slope for 

CM2 is ~0.57. In this paper, we chose to do the group fit for all the data, because in 3 out 

of 4 measurement periods we had a small number of replicates of NBS19 to correct as 

well. To test this choice, we also performed an “individual fit” case where we fit RTG 

with its own line and then did a group fit on CM2 and NBS19 data. This would ideally 

allow the RTG data to have a more accurate fit, while still giving the benefits of the 

group fit to the NBS19 data which only had a small number of replicates.  
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There is very little difference in these two methods. Figure S19 shows a point-by-

point comparison for CM2 and RTG data across all measurement periods. The CM2 data 

shifts slightly downwards, specifically in measurement period #4 (blue X’s). RTG data is 

shifted slightly upwards, with a larger magnitude change than CM2. The largest shifts 

occur during measurement period #4 as well (blue X’s). This likely has to do with the 

relative number of CM2 vs. RTG during each measurement period (see Table S3). In 

most cases, the number of CM2 points outweighed the number of RTG points, so the 

group fit slope was closer to the individual CM2 fit slope, causing little change in CM2 

data between the two fit methods. In measurement period #4, RTG points outnumber 

CM2 points, so we see a larger change in CM2.  

 

 

Figure A5.5 Comparison of individual CM2 (left) and RTG (right) data points (!47-corr) corrected 
using the group fit vs. the individual fit described above. Data is separated by color and symbol 
into the four measurement periods. In both panels, a 1:1 line is plotted for reference. CM2 data 

shifts slightly downward, whereas RTG shifts slightly upward. 
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Figure S20 shows the mass-binned averages for each of the two methods. There is 

a shift in individual averages, but overall there is not much shift in the whole data sets. 

For CM2, the mean of all points in the group fit is 0.381 +/- 0.003‰, whereas in the 

individual fit this mean is 0.377 +/- 0.003‰. For RTG, the group fit mean is 0.713 +/- 

0.004‰ and 0.723 +/- 0.004‰. The individual fit brings the RTG data closer to the 

published value, while moving the CM2 value slightly lower.  

 

 

Figure A5.6 Comparison of binned averages for the CM2 and RTG data from all four 
measurement periods calculated using either the group fit or for the case where RTG and 

CM2/NBS19 were fit separately. Group fit points are identical to those shown in Fig 6, and listed 
in Table S4. 
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 In the future, when measuring unknowns, we will opt for the group fit, because 

there will likely be few replicates of each sample type. Because the observed difference 

in RTG and CM2 slopes seems to be a constant occurrence, and because most unknowns 

will have !47 values more in the range of RTG (aka earth surface temperatures), it may be 

prudent to use RTG as the primary carbonate standard for the group fit instead of CM2. 


