

Accelerating Markov chain Monte Carlo via parallel predictive
prefetching

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation No citation.

Accessed February 17, 2015 12:47:13 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070022

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/13070022&title=Accelerating+Markov+chain+Monte+Carlo+via+parallel+predictive+prefetching
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070022
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Accelerating Markov chain Monte Carlo via parallel predictive prefetching

A dissertation presented

by

Elaine Lee Angelino

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

August 2014

c©2014 Elaine Lee Angelino
All rights reserved.

Dissertation Advisors Author

Professor Margo Seltzer and Professor Ryan P. Adams Elaine Lee Angelino

Accelerating Markov chain Monte Carlo via parallel predictive prefetching

Abstract

We present a general framework for accelerating a large class of widely used Markov

chain Monte Carlo (MCMC) algorithms. This dissertation demonstrates that MCMC

inference can be accelerated in a model of parallel computation that uses speculation to

predict and complete computational work ahead of when it is known to be useful. By

exploiting fast, iterative approximations to the target density, we can speculatively

evaluate many potential future steps of the chain in parallel. In Bayesian inference

problems, this approach can accelerate sampling from the target distribution, without

compromising exactness, by exploiting subsets of data. It takes advantage of whatever

parallel resources are available, but produces results exactly equivalent to standard serial

execution. In the initial burn-in phase of chain evaluation, it achieves speedup over serial

evaluation that is close to linear in the number of available cores.

iii

Contents

1 Motivation and summary 1

2 Markov chain Monte Carlo 7
2.1 Markov chains . 8
2.2 Monte Carlo methods . 10

2.2.1 Rejection sampling . 12
2.2.2 Importance sampling . 12
2.2.3 Limitations of Monte Carlo sampling 13

2.3 Markov chain Monte Carlo . 14
2.4 Metropolis-Hastings (MH) . 15

2.4.1 Factors affecting the behavior of MH 16
2.5 MCMC methods for faster convergence . 19

2.5.1 Auxiliary variable methods . 19
2.5.2 Ensemble methods . 21
2.5.3 Non-reversible methods . 22

2.6 Parallel MCMC . 23
2.6.1 Parallel ensemble samplers . 24
2.6.2 Prefetching . 24

2.7 Approximations and large-scale Bayesian inference 26
2.7.1 Embarrassingly parallel, approximate MCMC 27
2.7.2 MCMC with mini-batches . 28

3 Predictive prefetching with transition operator approximation 30
3.1 Mathematical framework . 31
3.2 Metropolis–Hastings simulation . 34

3.2.1 Bit string notation . 34
3.2.2 Mapping states to bit strings . 35
3.2.3 Computation with respect to a simulation path 36
3.2.4 Using pseudo-randomness . 37
3.2.5 Representing computation with the jobtree 38
3.2.6 Metropolis–Hastings with prefetching 40

3.3 Predictive prefetching: Exploiting predictions 42
3.4 An estimator for large-scale Bayesian inference 45
3.5 Speedup with instantaneous, imperfect predictions 48

3.5.1 Worker depth and simple bounds on speedup 49

iv

3.5.2 Worker allocation and expected speedup 50
3.5.3 Speculation plus parallelism at each node 52

4 System architecture and implementation 54
4.1 Architectural overview . 55

4.1.1 Master state machine . 55
4.1.2 Worker state machine . 57
4.1.3 Practical considerations . 59

4.2 The jobtree . 60
4.3 Selecting high-utility pending nodes . 61
4.4 Execution and messaging protocol . 62
4.5 Managing pseudo-randomness . 67
4.6 Generating proposals . 69
4.7 Predictor implementation . 70
4.8 Implementation details and plug-in interface 71

5 Empirical evaluation 74
5.1 Example Bayesian inference problems . 75

5.1.1 Mixture of multidimensional Gaussians 75
5.1.2 Bayesian Lasso for photovoltaic activity 76

5.2 Adaptive proposal distribution . 78
5.3 Assessing chain convergence and quality . 80
5.4 Speedup results . 82
5.5 Adaptive Metropolis–Hastings behavior . 87
5.6 Estimate, error model and predictor behavior 89
5.7 System measurements . 97
5.8 System overheads . 101

6 Conclusions and generalizations 104

A Additional parameters in experiments 118

v

Acknowledgements

This dissertation describes joint work with Eddie Kohler, Amos Waterland, Margo Seltzer,

and Ryan P. Adams. I would like to thank Michael P. Brenner, Ekin Dogus Cubuk, Jonathan

H. Huggins, Varun Kanade, Zhenming Liu, Dougal Maclaurin, and Robert Nishihara for

helpful discussions, Alan Aspuru-Guzik, Johannes Hachmann and Roberto Olivares-Amaya

for the use of the Clean Energy Project dataset and introduction to the cheminformatic

feature set, and Michael Tingley for the derived features used here. Michael I. Jordan influ-

enced writing that appears in Chapter 1. Kevin Swersky, David Duvenaud, Xinghao Pan and

Joseph Gonzalez provided helpful comments on Chapter 6. Andrew C. Miller and Matthew

J. Johnson provided many helpful comments on drafts of this manuscript. This work was

partially funded by DARPA Young Faculty Award N66001-12-1-4219, the National Insti-

tutes of Health under Award Number 1R01LM010213-01, a Microsoft Research New Faculty

Fellowship award, and Google.

I am deeply indebted to Margo Seltzer for supporting my various interests while steering

me toward concrete and fulfilling directions. I would like to thank Ryan P. Adams for sharing

his enthusiasm and ideas on diverse topics, and Eddie Kohler for incredible generosity with

his time and systems expertise. I also thank Michael P. Brenner for putting up with me

all these years. The Harvard School of Engineering and Applied Sciences has given me fine

institutional support. I woud like to acknowledge Women in Machine Learning for having a

profound impact on my research direction. Finally, I am very grateful to many individuals

who have enhanced the last several years of my life; some of their names are listed below.

vi

Margo Seltzer Ryan P. Adams Eddie Kohler Michael P. Brenner

Alecia McGregor Christina Cheuk

Roy Kishony Andrew Murray Pardis Sabeti Frank Solomon

Allison Craney

Adriana Gallegos

Dhruva Kothari Aaron Tjoa

Rianna Stefanakis

Bobby Thompson Ryan LaPerle Jaclyn Parks

Danny Goodman Marsha Berger Jonathan Goodman

Aviva Presser Aiden Erez Lieberman Aiden

Denny Kinlaw Ben Belknap

Daniel Yamins Janice Yamins David Yamins

Justin T. Riley Eric Jones Doug Fritz

Jason Rosenfeld

Uri Braun David Holland Daniel Margo Peter Macko Nicholas Murphy

Kiran-Kumar Muniswamy-Reddy Robin Smogor Susan Welby

Marc Chiarini Lisa Lowy

Ann Marie King Marie Dooley Lisa Frazier Meg Hastings Julie Holbrook

Peter Bailis Karthik Dantu Brian Kate Jason Waterman Jim Waldo

Philip Guo Nils Napp Kirstin Petersen

Heather Pon-Barry Alice Gao Sophia Shao Stacy Wong Elif Yamangil

Neena Kamath Amy Tai Joy Zhang Raina Masand

Shelby Lin Maddie Boyd Julie Monrad Gabrielle Ehrlich

vii

Jeremy Rassen Pete Wahl Sebastian Schneeweiss

Michael Mitzenmacher Naveen Sinha Brent Heeringa Michael Goodrich

Jonathan Appavoo Efthimios Kaxiras

Steve Chong Greg Morrisett Radhika Nagpal Barbara Grosz

Jeremy Gunawardena

Christos Papadimitriou

Leslie Valiant

Elena Agapie Anna Huang Varun Kanade Justin Thaler

Amos Waterland Dogus Cubuk Miguel Aljacen Miriam Huntley Ben Good

James Zou Zhenming Liu Jon Ullman Thomas Steinke Mark Bun

Kenneth Arnold Pao Siangliulue Bo Waggoner Sam Wiseman

Margo Levine Marie Dahleh Beth Chen Sarah Kostinski

Michael S. Kester Jemila C. Kester Sarah M. Kester Hannah J. Kester

Gregory Valiant Sham Kakade

Teagan Seltzer Tynan Seltzer Keith Bostic

Mary Baker

Eyal Dechter Finale Doshi-Velez David Duvenaud Yakir Reshef

Diana Cai Michael Gelbart Scott Linderman Dougal Maclaurin Robert Nishihara

Oren Rippel Jasper Snoek Kevin Swersky Brian Zhang

Matt Johnson Jonathan Huggins

Andy Miller

Zorana Zeravcic Andrej Mesaros

Norman J. Angelino Theresa Yi-Yuan Lee Kenneth Lee Angelino Keith Lee Angelino

viii

To my parents

ix

Chapter 1

Motivation and summary

A central tool of modern data analysis is inference, the process of estimating structure in data

via probabilistic modeling. The goal is to recover the parameters of a probabilistic description

of data, given a set of observations. In particular, Bayesian inference uses Bayes’ rule to

update a probabilistic description of model parameters as more data are observed. Sadly,

inference is computationally expensive when the underlying functions are high-dimensional

and/or full of many local optima, as is typical with large datasets. In general, there are no

analytic solutions to these problems; there are approximate and simulated approaches, but

these are often slow and do not naturally leverage modern computing resources, such as

clouds.

Inference is dominated by two approaches: using optimization procedures to find the best

model parameter setting and the Bayesian approach of integrating with respect to the rela-

tive probabilities of various parameter settings. This thesis focuses on Bayesian procedures,

which have been mostly absent in discussions of large-scale inference until very recently.

While there have been recent successes in scaling inference procedures, most have focused

on optimization.

The main computation in Bayesian inference is that of the posterior density π(θ |x) over

the parameters θ to a probabilistic model, given a set of observed data x = {x1, . . . , xn}. The

1

posterior is proportional to the product of two other probability densities, a likelihood π(x | θ)

describing the probability of the data, given the model, and a prior π0(θ) over the model pa-

rameters. Bayesian inference is appealing because the posterior density encodes uncertainty

over model parameters; this uncertainty can then be propagated to downstream applications.

However, there are often no analytic solutions to useful functions of the posterior, such as

expectations; typically these involve integrating over the parameters. While samples from

the posterior can be used to estimate quantities of interest, there is usually no analytic way

to obtain them. This motivates approximate sampling-based methods such as Markov chain

Monte Carlo (MCMC) and importance sampling. Unfortunately, these methods are difficult

to scale, which has inhibited their application to large datasets.

This thesis focuses on MCMC, a widely used, powerful and general technique for both

optimization and Bayesian inference. In the optimization setting, it stochastically searches

a parameter space for the best setting of θ. In Bayesian inference, it produces a sequence of

samples drawn from a sequence of distributions that converge to the posterior distribution.

These algorithms are typically slow to converge so they must be run for many iterations

before they yield useful output. Furthermore, they are inherently serial and thus, in general,

do not parallelize well.

Reliance on serial algorithms is a great frustration given the power of today’s scientific

computing environments, which are highly parallel. Researchers have routine access to hun-

dreds to thousands of parallel cores in multicore environments, where computational work

can be distributed over multiple cores that are able to communicate with one another. Thus,

our ability to perform large-scale Bayesian inference is limited by our algorithms, not our

computational resources.

The pseudocode in Algorithm 1 illustrates the serial nature of many Bayesian inference

procedures: start with some initial setting of model parameters θ0, then iteratively select the

next parameter setting θ1 from some set of choices that depend on θ0, then θ2 from choices

that depend on θ1, and so on. Each iteration can take a long time – e.g., because selecting θt

2

Algorithm 1 Serial Bayesian inference

Specify a dataset x, a posterior density π(θ |x) and an initial parameter setting θ0.
for t in 0, . . . , T do

Generate one or more parameter settings {θ′} that depend on θt.
Select θt+1 from {θ′} by comparing the evaluations of {π(θ′ |x)} to π(θ |x).

end for
Output some function of θ1, θ2, θ3,

for t > 0 depends on the computationally expensive evaluation of π(θt |x). If we had N

cores and could perform N iterations at a time in parallel, then we could speed-up execution

by a factor of N . However, since each iteration depends on the last, it is not possible to

skip ahead to later iterations without first completing earlier ones. Specifically, the iteration

indexed by t produces θt+1 in a way that depends on knowing θt, which in turn depends

on θt−1, θt−2, . . . , θ0, only the last of which is known initially.

That said, there is nothing to stop us from materializing predictions for θt and executing

the corresponding iterations on parallel cores. This is a form of speculative execution, the

technique of optimistically performing computational work that might be eventually useful.

This dissertation demonstrates that MCMC inference can be accelerated in a

model of parallel computation that uses speculation to predict and complete

computational work ahead of when it is known to be useful.

Below, we outline how the remaining chapters demonstrate the veracity of this thesis

statement. In Chapter 2, we review Markov chain Monte Carlo, an algorithmic approach for

stochastically estimating the expectation of a function with respect to a probability distribu-

tion. Computing such an expectation might be an intractable task, e.g., its exact calculation

might involve a sum of exponentially many values or an integral with no known analytic

solution. MCMC combines two powerful ideas – Markov chains and Monte Carlo integration

– and we begin by explaining the basic theory and properties of all three. In particular,

the serial nature and convergence behavior of MCMC algorithms derive from their under-

lying use of Markov chains. The Metropolis–Hastings (MH) algorithm provides a concrete

introduction to MCMC; it is a simple and canonical algorithm that illustrates the challenges

3

and limitations of MCMC. The rest of the chapter categorizes existing MCMC algorithms

according to their strategies for improving on näıve algorithms such as MH. The algorithms

in the first of two broad categories attempt to decrease the time to reach convergence; those

in the second make use of parallel resources. We do not provide a complete review of all

MCMC algorithms, which have been reviewed elsewhere, but we do thoroughly summarize

existing parallel MCMC algorithms that use speculative techniques, called prefetching in

this literature. Finally because this thesis is motivated by large-scale Bayesian inference, the

chapter ends with a summary of MCMC algorithms recently proposed for this setting.

The core intellectual contributions of this thesis are in Chapter 3, where we propose

and analyze a new class of prefetching MCMC algorithms. First, we provide a mathemati-

cal language for describing a large class of MCMC algorithms that can be mapped to, and

would benefit from, prefetching. This treatment is more formal and general than what has

been provided by prior prefetching literature but is designed to motivate prefetching and

elucidate its feasibility and validity. For concreteness, the remainder of the thesis focuses

on Metropolis–Hastings, where prefetching requires speculating about the outcome of a bi-

nary condition at each iteration of the algorithm. This motivates predictive prefetching, a

principled framework for exploiting predictions about these binary outcomes so as to most

effectively allocate parallel resources. The goal is to maximize the expected speed-up relative

to serial execution, given parallel cores and predictive information. We derive predictors for

the setting of large-scale Bayesian inference that we later use directly in the empirical stud-

ies of Chapter 5. Finally, since perfect predictions are not normally available, we analyze

the performance of predictive prefetching in terms of expected speed-up as a function of

predictor accuracy and the number of parallel cores.

Chapter 4 describes the design and implementation of a practical parallel system for

predictive prefetching. The system architecture follows a master-worker pattern in which a

single master core maintains information about computational work that might be useful,

determines what work is carried out by the remaining worker cores, and records the results

4

of these computations. The master maintains data structures that organize the results of

potentially useful increments of computational work, plus related information. These incre-

ments of work include all those that exactly correspond to equivalent serial execution and are

eventually identified as such with absolute certainty. Workers request work from the master

whenever they are available, the master replies to each worker with a specification of the

work to do, and workers send computed results back to the master. The system guarantees

results equal to serial execution, i.e., invariant to the number of cores used. Since MCMC

algorithms are stochastic, this guarantee depends critically on correct management of the

source of (pseudo)randomness. This issue is subtle and the solution presented here is more

careful than any provided in prior literature on prefetching. The implementation includes a

simple plug-in interface for specifying a concrete instantiation of a MH algorithm via user-

defined functions. We also provide remaining details about specific implementation choices

and artifacts.

Next, in Chapter 5, we present an empirical evaluation of the parallel implementation of

predictive prefetching in a real research computing environment. We select and implement

concrete large-scale Bayesian inference problems involving both synthetic and real datasets.

The efficiency of predictive prefetching depends on the behavior of MH, which in turn de-

pends in a sensitive fashion on parameters that are typically hand-tuned by practitioners

according to heuristic guidelines. Furthermore, this behavior changes – often dramatically –

over the course of running a single instantiation of the algorithm. To execute reasonably cali-

brated experiments, we identify an adaptive MH scheme that eliminates this tuning problem

and requires only a simple extension to our original implementation for MH. We clearly de-

scribe a framework for assessing chain convergence, which we use to identify different regimes

of chain behavior. We present and discuss empirical results for speed-up as a function of the

number of parallel cores used, measured relative to a baseline system implementation with

one master and one worker. The chapter ends with a discussion of the overheads of our

system.

5

Finally, in Chapter 6 we distill the conclusions of this thesis, including lessons learned and

a map of possible extensions to this work. We will have demonstrated effective use of relatively

näıve prediction strategies, therefore we identify additional promising strategies for predictive

prefetching, emphasizing generic methods based on constructing approximations to a target

density. We also outline technical challenges for predictive prefetching in the context of

more sophisticated MCMC algorithms, then propose and justify potential solutions. We end

with a broad discussion of opportunities for applying speculative execution to algorithms

ranging across various properties: stochastic versus deterministic, exact versus approximate

or heuristic, discrete versus continuous.

6

Chapter 2

Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a widely used, powerful technique for estimating

statistics of an arbitrary distribution Π defined over a state space X . MCMC simulates a

random walk that produces a sequence of samples drawn from a sequence of distributions

that converges to Π. MCMC is typically employed when samples from, or statistics of,

a distribution cannot be obtained analytically, as is often the case with complex, high-

dimensional systems arising across disciplines, e.g., estimating bulk material properties from

molecular dynamics physics simulations or inferring the parameters of Bayesian probabilistic

models describing large datasets.

In this chapter, we first review the two powerful tools underlying MCMC algorithms –

Markov chains and Monte Carlo methods. Next, we introduce MCMC via the well-known

Metropolis-Hastings algorithm, both as a way to concretely exemplify relevant concepts and

to motivate a large body of research whose goal is to design more efficient MCMC algorithms.

We then provide an overview of different classes of these approaches, with greater focus on

the areas that together provide the foundation for a new approach to large-scale MCMC

that we present in the next chapter.

7

2.1 Markov chains

Let X be a discrete or continuous state space and let x, x′ ∈ X denote states. A Markov

chain is a discrete-time stochastic process governed by a transition operator T (x→ x′) that

specifies the probability of transitioning from a current state x to some next state x′. It is

memoryless in the sense that its future behavior depends only on the current state and is

independent of its past history – this is known as the Markov property.

Many systems can be modeled by Markov chains. For example, an unbiased random walk

on a one-dimensional lattice is described by a Markov chain. The integers modulo k can be

used to index a finite lattice of k states, in which case X = Zk. The transition operator,

T (x→ x− 1 mod k) = T (x→ x+ 1 mod k) = T (x→ x mod k) =
1

3
, (2.1)

describes a random walk on the lattice, with periodic boundaries, that at each time step

either moves to the ‘left’ or ‘right’ by one unit, or stays put, where the three scenarios are

equiprobable. Here, the stationary distribution is simply the uniform distribution over Zk.

Given an initial distribution P 0(x) over X , a Markov chain evolves this distribution from

one time point to the next through iterative application of the transition operator; after t

steps let us call this distribution P t(x). Direct simulation of a Markov chain follows this

iterative construction and leads to inherently serial implementations. We are interested in

Markov chains that converge to a unique stationary distribution π(x) in the sense that

lim
t→∞

P t(x)→ π(x),

for any initial distribution P 0(x).

The speed of convergence or mixing time of a Markov chain measures how quickly P t(x)

approaches π(x); it is typically defined with respect to a distance measure between prob-

ability distributions and a threshold. For example, it could be defined as the minimum or

8

expected number of steps t such that DKL(π(x) ‖ P t(x)) < ε, for some appropriate ε > 0,

where DKL(P‖Q) is the Kullback-Leibler divergence of two distributions P and Q, and we

think of Q as an approximation to P (Kullback and Leibler, 1951). Convergence behavior

depends on the properties of the state space X – e.g., whether it is discrete or continuous,

its dimensionality – and the behavior of the transition operator.

For example, consider a simulation of a one-dimensional, k-state random walk, described

by the transition operator in Eq. 2.1. The mixing time is O(k2), i.e., the simulation re-

quires O(k2) steps to ‘forget’ the initial condition and look reasonably like the uniform

stationary distribution. In contrast, consider a deterministic transition operator that always

moves to the ‘right’, i.e., T (x→ x+ 1) = 1. This time, simulation requires only O(k) steps

to approach the uniform stationary distribution. While this simple example represents an

extreme case that is not useful for typical applications, it illustrates how two Markov chains

can have the same stationary distribution but different convergence behavior. A major area

of Markov chain research is understanding how to design efficient transition operators that

converge quickly, as doing so has direct practical consequences for their simulation.

For a transition operator T (x → x′) to have π(x) as its stationary distribution, its

application must leave π(x) invariant over the entire space, i.e.,

∑
x∈X

T (x→ x′)π(x) = π(x′), ∀x′ ∈ X

for a discrete state space, or

∫
X
T (x→ x′)π(x)dx = π(x′), ∀x′ ∈ X (2.2)

for a continuous state space; this thesis will focus on continuous state spaces. For the sta-

tionary distribution to be unique, i.e., not depend on the initial distribution, the Markov

chain must be irreducible: for any x, x′ ∈ X such that π(x), π(x′) > 0, it must be possible

to reach x′ from x in a finite number of steps. A powerful application of Markov chains

9

involves designing a transition operator that has as its stationary distribution some target

distribution of interest – this is the main idea behind Markov chain Monte Carlo methods.

In restricted cases it is easy to show that a transition operator has a certain stationary

distribution. Notably, when a transition operator T (x→ x′) is reversible, it satisfies detailed

balance with respect to a distribution π(x),

T (x→ x′)π(x) = T (x′ → x)π(x′), (2.3)

and it is easy to show that π(x) is its stationary distribution. Integrating over X on both

sides gives:

∫
X
T (x→ x′)π(x)dx =

∫
X
T (x′ → x)π(x′)dx

= π(x′)

∫
X
T (x′ → x)dx

= π(x′),

which is precisely the required condition from Eq. 2.2. We can interpret Eq. 2.3 as stating

that, for a reversible Markov chain starting from its stationary distribution, any transition

x→ x′ is equilibrated by the corresponding reverse transition x′ → x. As we will see, many

MCMC methods are based on deriving reversible transition operators. A transition operator

that is not reversible is called non-reversible; it is generally more difficult to manipulate and

prove statements about these.

For a formal introduction to Markov chains, see the book by Meyn and Tweedie (1993).

2.2 Monte Carlo methods

Monte Carlo methods are a broad class of algorithms that simulate many repeated ran-

dom samples to estimate some quantity of interest. For example, the following procedure

is a form of Monte Carlo integration that estimates the area under any positive function

10

f : [a, b]→ R+, where −∞ < a < b <∞:

1. Draw a box around f with vertical boundaries set by the interval [a, b] and horizontal

boundaries set by 0 and an upper bound m on the maximum value of f in the interval.

2. Sample a large number of random points (x, y) uniformly within the box and for each,

determine whether the point falls below or above f by computing whether f(x) < y.

3. Let r be the fraction of points such that f(x) < y. Since the total area of the box is

m(b− a), multiplying by r provides an estimate for
∫ b
a
f(x)dx.

More generally, when we can think of an integral as an expectation, Monte Carlo inte-

gration invokes the law of large numbers to estimate this expectation via a sample average.

Specifically, if we can write an integral as the expectation of a function f(x) with respect to

a distribution Π with probability density function π(x),

EΠ(f) =

∫
f(x)π(x)dx, (2.4)

then we can estimate this integral by averaging over a set of samples {xn}Nn=1 from Π as:

f̄N ≡
1

N

N∑
n=1

f(xn).

Since the samples are independent, as long as the expectation in Eq. 2.4 exists and is finite,

this sum obeys the law of large numbers. Hence, the estimate is unbiased and its variance

scales as the inverse sample size 1/N , or equivalently, its error scales as 1/
√
N . In our example

above, the integral of f(x) on the interval [a, b] can be thought of as an expectation with

respect to the uniform distribution on [a, b].

Monte Carlo integration thus requires sampling from a distribution, which is sometimes

straightforward, as with the uniform and normal distributions, but in general requires nu-

merical simulation. Below, we describe two additional Monte Carlo methods that address

11

this issue in restricted settings: rejection sampling and importance sampling. Their limita-

tions and inefficiencies will help motivate Markov chain Monte Carlo methods, which are

more sophisticated but related techniques. For simplicity, we describe these procedures with

respect to one-dimensional normalized probability densities; both can be generalized.

2.2.1 Rejection sampling

Rejection sampling uses one distribution to sample from another by exploiting information

relating the two; von Neumann (1951) provided an algorithm for this method. Suppose

that we want to sample from a target distribution Π with probability density function π(x).

Suppose further that we can sample from a proposal distribution Q whose probability density

function q(x) can be scaled by a constant factor γ to provide an upper bound on π(x), e.g., we

might be able to scale a normal distribution so that our distribution of interest lies below it

everywhere. If we satisfy these requirements, then we can use rejection sampling to generate

proposals from Q that we stochastically accept or reject according to the relative difference

between γq(x) and π(x). Specifically, to produce one sample:

1. Generate a proposal x by drawing a sample from the proposal distribution Q.

2. Draw a sample y uniformly from the interval [0, γq(x)].

3. If y < π(x), accept x. Otherwise, reject x and return to Step 1.

Rejection sampling is most efficient in the limit where the scaled proposal density equals the

target density, in which case all proposals are accepted. More generally, in expectation, this

procedure accepts proposals at a rate given by
∫
π(x)/(γq(x))dx ≤ 1.

2.2.2 Importance sampling

Similar to rejection sampling, importance sampling also uses information from one distribu-

tion to sample from another, but with fewer restrictions. Suppose we have distributions Π

12

and Q as above, where this time we can simply think of q(x) as an approximation to π(x);

i.e., we do not require some γq(x) that is an upper bound to π(x). Suppose we want to

compute the expectation of some function f(x) with respect to the distribution Π:

EΠ(f(x)) =

∫
f(x)π(x)dx.

By multiplying and dividing by q(x) inside the integral,

EΠ(f(x)) =

∫
f(x)π(x)

q(x)
q(x)dx ≡ EQ (f(x)w(x)) ,

we change nothing, but can interpret this new expression as the expectation of f(x) weighted

by w(x) = p(x)/q(x) with respect to Q. We can Monte Carlo estimate this integral using a

set of samples {xn}Nn=1 from Q:

1

N

N∑
n=1

f(xn)w(xn).

The quality of this estimator depends on how much f(x)w(x) varies – ideally this quan-

tity would be constant with respect to x. Some historical notes and a list of references on

importance sampling can be found in the textbook by Gelman et al. (2003).

2.2.3 Limitations of Monte Carlo sampling

The primary limitation of both rejection sampling and importance sampling is that for

these methods to be feasible and practical, each requires a proposal distribution that can

be sampled easily and is in some sense close to the target distribution. To produce samples,

both methods use a set of independent samples from the proposal distribution; rejection

sampling selects from among the proposals and importance sampling ‘fixes up’ the proposals

by assigning each a weight.

13

2.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods simulate a Markov chain whose stationary

distribution is equal to a target distribution of interest. When this Markov chain is simulated,

it produces samples from a sequence of distributions that asymptotically equals the target

distribution. The principles of Monte Carlo integration, estimation and sampling thus apply

to these samples in the asymptotic limit. Concretely, for a Markov chain started from its

stationary distribution Π with density π(x), a sequence of N samples {xn}Nn=1 can be used

to estimate an expectation EΠ(f) =
∫
X
f(x)π(x)dx using Monte Carlo integration via the

sample average f̄N = 1
N

∑N
n=1 f(xn). The efficiency of a MCMC transition operator can be

analyzed with respect to both the variance of this estimator, also known as the asymptotic

variance, as well as the speed of convergence or mixing time. In practice, we use samples

produced by simulated chains of finite length, typically started away from stationarity. The

materialized sequence of samples obeys the Markov property and is correlated, which is

in contrast to the independent samples obtained by simple Monte Carlo methods such as

rejection sampling and importance sampling.

The remaining sections of this chapter give an incomplete overview of MCMC algo-

rithms for sampling applications, with greater emphasis on certain procedures either for the

purpose of providing general background or to review those most directly related to this

thesis. First, we describe the Metropolis-Hastings (MH) algorithm, a canonical and simple

MCMC method. We use MH to build some intuition for the behavior of MCMC algorithms,

and to illustrate its limitations that motivate more sophisticated approaches. The following

two sections classify these further approaches into serial algorithms designed to converge

more quickly than MH and parallel algorithms. Finally, we briefly review MCMC algorithms

that exploit common features of Bayesian inference problems. For a general introduction to

MCMC, see the highly motivating review by Diaconis (2008).

14

2.4 Metropolis-Hastings (MH)

The Metropolis-Hastings (MH) algorithm simulates a Markov chain, over a state space X ,

with stationary distribution equal to some target distribution of interest. Given an initial

state x0, a target distribution π and a proposal function q(x′|x), MH generates a sequence of

states x1, . . . , xT ∈ X drawn from a sequence of distributions that converges to the target.1

We provide pseudocode for MH in Algorithm 2. Each iteration, a proposal for the next

state x′ is drawn from the proposal distribution, conditioned on the current state x; e.g., a

common choice is to sample from a Gaussian centered at x. The proposal is stochastically

accepted with probability given by the acceptance ratio,

r =
π(x′)q(x |x′)
π(x)q(x′ |x)

, (2.5)

via comparison to a random variate u drawn uniformly from the interval [0, 1]. If u < r, then

the next state is set to the proposal, otherwise, the proposal is rejected and the next state is

set to the current state. MH is a generalization of the Metropolis algorithm (Metropolis et al.,

1953), which requires the proposal distribution to be symmetric, i.e., q(x′|x) = q(x|x′), in

which case the acceptance ratio is simply r = π(x′)/π(x). Hastings (1970) later relaxed this

by showing that the proposal distribution could be arbitrary.

The MH algorithm can be viewed as a biased random walk that always accepts proposals

when π(x′)q(x |x′) > π(x)q(x′ |x) and stochastically rejects them otherwise; for a symmetric

proposal distribution, these scenarios can be interpreted as accepting ‘uphill’ proposals and

stochastically rejecting ‘downhill’ proposals. We can see that the stationary distribution is

indeed π by showing that the MH transition operator satisfies detailed balance, as defined

1As is common in the literature, we will henceforth use the same symbol to refer to both a distribution
and its probability density function; the interpretation should be clear from context.

15

Algorithm 2 Metropolis-Hastings

Input: Initial state x0, number of iterations T , target π(x), proposal q(x′ |x)
Output: Samples x1, . . . , xT
for t in 0, . . . , T − 1 do

x′ ∼ q(x′ |xt) . Generate proposal

r ← π(x′)q(xt |x′)
π(xt)q(x′ |xt)

. Compute acceptance ratio

u ∼ Unif(0, 1) . Draw random number
if u < r then

xt+1 ← x′ . Accept proposal
else

xt+1 ← xt . Reject proposal
end if

end for

in Eq. 2.3. From the algorithm description, the MH transition operator is:

T (x→ x′) = min(1, r)q(x′ |x) = min

(
1,
π(x′)q(x |x′)
π(x)q(x′ |x)

)
q(x′ |x).

We can verify the detailed balance condition as follows:

T (x→ x′)π(x) = min

(
1,
π(x′)q(x |x′)
π(x)q(x′ |x)

)
q(x′ |x)π(x)

= min (π(x)q(x′ |x), π(x′)q(x |x′))

= min

(
π(x)q(x′ |x)

π(x′)q(x |x′)
, 1

)
q(x |x′)π(x′)

= T (x′ → x)π(x′).

2.4.1 Factors affecting the behavior of MH

The MH algorithm is both simple to implement and quite general; it is thus appealing and

widely applicable. However, the MH algorithm has a major drawback – it can be slow to

converge. This is due to the fact that the steps of the underlying Markov chain are correlated,

which can be viewed as random walk or diffusive behavior. One broad strategy for increasing

the efficiency of MCMC methods is to design transition operators that behave less like simple

16

diffusion; we survey several techniques for doing so in the next section.

Within the MH framework and given a target density, the variable parameters are the

proposal distribution and the initial condition. Let us first consider the proposal distribution.

For example, for a one-dimensional continuous target density, if we restrict the proposal

distribution to be Gaussian and centered at the current state, q(x′ |x) = N (x′ |x, σ2), then

there is a single tuning parameter: the distribution’s standard deviation σ, which gives the

expected ‘step size’ of the proposal with respect to the current state. This affects the MH

acceptance rate, which we also refer to as the acceptance probability, i.e., the fraction of

proposals that are accepted.

To illustrate the relationship between the proposal distribution and the acceptance rate,

consider unimodal target and proposal distributions. Suppose that we are able to initialize

MH at a state close to the target distribution’s mode with respect to its width. Intuitively,

if the proposal step size is large compared to the width of the target, then proposals will

tend to fall in faraway, low-probability regions, resulting in a low acceptance rate. On the

other hand, if the step size is very small, then the target density at the proposal will be very

close to that at the current state, in which case the algorithm will tend to accept proposals,

but the samples will be highly correlated and the chain will take a long time explore the

area under the target density. This suggests that there is some notion of an optimal MH

acceptance rate corresponding to some intermediate proposal step size.

A classic result is that the optimal value for the MH acceptance rate is 0.234, derived

for the scenario where the target and proposal distributions are multidimensional Gaussians,

in the limits where the chain has converged and the number of dimensions tends to infin-

ity (Roberts et al., 1997). A heuristic widely followed by practitioners is to tune the proposal

distribution to obtain an observed acceptance rate of about 0.234.

The sensitivity of the acceptance rate as a function of the proposal distribution also

explains why the MH algorithm has trouble sampling from multimodal target densities.

When modes are far apart compared to the widths of the peaks around them, they are

17

separated by low-probability regions that are difficult for a simulated MH chain to traverse.

In these cases, the MH algorithm tends to get ‘stuck’ for many iterations around local modes,

instead of sampling globally from the entire distribution. In practice, a MH simulation tends

to find the mode closest to the initial state and then samples the area around this mode.

Given target and proposal distributions, the only other specification required by the MH

algorithm is an initial state. Clearly, it is desirable for the initial state to be close to some

probable region of the target density – a ‘bad’ initial state combined with the random walk

nature of chain simulation yields initial samples that are not representative of the target.

This initial portion of a MCMC simulation, before convergence, is sometimes called burn-in.

The behavior of a MCMC simulation during burn-in is different from that after conver-

gence, because the shape of the target density differs far from versus close to the bulk of

its mass. Specifically, the target density tends to be ‘flatter’ or ‘less steep’ around a mode

compared to less probable regions. This characterization interacts with proposal generation,

resulting in acceptance behavior that changes from burn-in to convergence.

To illustrate differences in MCMC behavior between burn-in and convergence, consider

MH for a Gaussian target distribution. Typically, a MCMC simulation is initiated at some

informed guess that is still somewhat far from higher probability regions of the target;

assuming it is well-behaved, the chain should eventually spend more time in these regions.

A Gaussian distribution has its mass concentrated around a single mode. A region close to

this mode can be well-approximated by an upside down parabola – a quadratic function –

while the tails fall off exponentially quickly. Suppose also that our proposal distribution is

symmetric and its width is not large compared to the width of the target. In the region

close to the target mode, the target densities evaluated at two nearby states will tend to

be comparable values. In the context of MH, the acceptance ratio r will be well within

the interval [0, 1] and the decision to accept or reject a proposal depends on both r and the

random variate u. If we consider two nearby states in the tail regions, then the target density

evaluated at one will be exponentially smaller than the other. Here, the acceptance ratio r

18

will be close to either 0 or 1, so the random variate u has little influence over whether a

proposal is accepted. As we will see later, these differences between chains during burn-in

and convergence have implications for the performance of our new approach to MCMC as

well as our empirical studies.

2.5 MCMC methods for faster convergence

In this section, we survey classes of MCMC algorithms designed to converge more quickly

than the MH algorithm by reducing the correlation between successive states. We do not

provide a thorough review, as the methods we develop in this thesis do not build directly

on these techniques. However, we do describe specific algorithms both for concreteness,

and because we will later consider them within the context of predictive prefetching, a new

framework we present in Chapter 3.

2.5.1 Auxiliary variable methods

Given a target density π(x), we can introduce an auxiliary variable y and define a new

density π(x, y) such that
∫
π(x, y)dy = π(x), i.e., marginalizing out y the yields the target.

Auxiliary variable methods design MCMC sampling schemes over the space of a new joint

distribution; after sampling from π(x, y), one obtains samples from π(x) simply by ignoring

the y values. While it would seem less desirable to sample from a higher dimensional space,

it is possible to design transition operators over the joint space that marginally sample from

the target in a way that is more efficient than Metropolis-Hastings.

For example, consider a one-dimensional target density π(x) : R → R+. Sampling

from π(x) yields a sequence of samples along the real line. Now consider a representation

of the target in the (x, y)-plane such that y = π(x). If we sample a set of points {(xi, yi)}

uniformly within the two-dimensional area between π(x) and the x-axis, then marginally,

the {xi} are samples from π(x). Below, we summarize two auxiliary variable methods: slice

19

sampling and Hamiltonian Monte Carlo.

Slice sampling methods are based on the above idea, sampling from the joint distri-

bution π(x, y) by iteratively sampling each variable marginally (Neal, 2003). Given some

state xi, the procedure constructs yi and then the next xi+1 as follows:

1. Sample yi ∼ π(yi |xi) by sampling uniformly from the (vertical) interval [0, π(xi)].

2. Sample xi+1 ∼ π(xi+1 | yi) by sampling uniformly from the (horizontal) intervals where

π(x) > yi.

We think of yi as defining a horizontal ‘slice’ through the distribution. Slice sampling has

multiple advantages over Metropolis-Hastings. The procedure has the opportunity to mix

well with respect to sampling from the target distribution, because a horizontal slice may

correspond to a large domain that is sampled uniformly, so xi+1 can be very far from xi. In

practice, it can be tricky to sample the xi since doing so in full would require constructing

the inverse of π(x), but there are various procedures for avoiding this issue while maintaining

correctness. Notice also that there is no proposal distribution in slice sampling, which means

fewer tuning parameters.

Hybrid Monte Carlo (HMC) introduces an auxiliary ‘momentum’ variable to embed the

action of sampling from the target density π(x) within a physical system described by clas-

sical mechanics (Duane et al., 1987); it is also called Hamiltonian Monte Carlo (Neal, 2010).

First, think of (x,−π(x)) as defining an ‘upside down’ surface where the original modes

of π(x) are ‘valleys’ and low-probability regions are ‘uphill.’ Now consider a frictionless puck

with mass m moving around this surface – its dynamics will be described by its position and

its momentum. HMC generates a proposal for a Metropolis algorithm by giving the puck a

kick in some direction with some velocity, both random. The puck’s trajectory is simulated

for some fixed amount of time τ by integrating the system’s equations of motion; the final

position at time τ is the proposal. This can generate faraway but useful proposals because

the puck tends to go downhill toward high-probability regions; it glides over flat equiprobable

20

regions and loses momentum by moving uphill toward low-probability regions.

2.5.2 Ensemble methods

Ensemble (or population) methods run multiple chains and accelerate mixing by sharing in-

formation between the chains. Examples include affine-invariant ensemble sampling (Good-

man and Weare, 2010) and generalized elliptical slice sampling (Nishihara et al., 2014).

Below, we focus on a class of ensemble approaches known as annealing methods.

Recall that the MH algorithm has trouble sampling from multimodal distributions. In-

formally, ‘flatter’ distributions are easier to sample from compared to ‘peaky’ distributions,

especially multimodal ones. Now consider the probabilistic interpretation of a physical multi-

state system at temperature τ > 0: for a state x ∈ X , its probability p(x) is proportional to

the exponential of the negative of its energy E(x) divided by the temperature, i.e.,

p(x) ∝ exp(−E(x)/τ). (2.6)

For a given system defined by states and their energies, raising the temperature has the

effect of flattening the distribution over those states, while maintaining important features.

Annealing methods leverage this intuition to sample more efficiently from difficult targets.

As an example of a popular annealing method, we describe parallel tempering (Iba, 2001).2

Let π(x) be the target density over a state space X . The idea is to construct a single Markov

chain on the product space XK corresponding to an ensemble of K Metropolis-Hastings simu-

lations of the system specified by π(x) and Eq. 2.6 or its continuous analog, each at a different

temperature. Simulations at higher temperatures explore the space more quickly than those

at lower temperatures, and they can share information through interactions. One of the K

simulations is constructed to marginally have as its stationary distribution the target π(x).

Explicitly, we can define the system via an energy function of the form E(x) = − log(π(x)).

2Following Murray (2007), we cite a review that chronicles the history of parallel tempering.

21

Now we specify K distributions:

πk(x) ∝ exp(−E(x)ck), k = 1, . . . K,

where ck can be interpreted as an inverse temperature. Notice that ck = 1 yields πk(x) equal

to the target π(x), and ck = 0 results in a constant. Thus to obtain K copies of the system,

with one equal to the target and the rest at higher temperatures, we can choose the ck so

that c1 = 1 > c2 > c3 > · · · > cK ≥ 0. In each iteration of the algorithm, the K simulations

are advanced according to a MH acceptance rule, but they are also allowed to interact, e.g., a

pair of simulations may exchange states. Thus, the slower mixing chain indexed by k = 1 may

jump to states explored by faster mixing chains at higher temperatures. Parallel tempering is

popular because its implementation is a straightforward modification to the MH algorithm.

There are several additional classes of annealing methods and other ensemble methods;

an excellent review can be found in the PhD thesis by Murray (2007).

2.5.3 Non-reversible methods

The methods described above are representative of the rich menagerie of MCMC algorithms

developed using reversible Markov chains where the probability that the chain is in state x

and transitions to state x′ is equal to the probability that it is in state x′ and transitions

to x. This condition of detailed balance is straightforward to check, which helps explain the

invention of many reversible MCMC methods. Recall that the goal of these methods is to

discourage the diffusive behavior of simple Metropolis-Hastings. Intuitively, diffusion is not

an efficient mechanism for mixing, say, a cake batter – one uses a spoon or electric mixer to

induce a flow that is not equilibrated by a flow in the opposite direction.

Such non-reversibility that discourages ‘backtracking’ has been difficult to study; a hand-

ful of articles describe methods limited to discrete state spaces. These include the theoretical

and numerical analysis by Diaconis et al. (2000) of a simple non-reversible chain. The au-

22

thors start with a reversible unbiased random walk on a one-dimensional finite lattice and

then make two copies of the state space, one ‘upstairs’ for transitions to the ‘right’ and one

‘downstairs’ for transitions to the ‘left’, plus transitions between the two levels. This non-

reversible chain converges more quickly according to two different distance metrics. Geyer

and Mira (2000) reanalyze the same system, this time with respect to asymptotic variance,

and find that the most efficient version of the non-reversible chain sweeps through the states

in a deterministic way. In a related fashion, Neal (2004) constructs non-reversible chains

from reversible chains and demonstrates that their asymptotic variance is no worse than the

original reversible chains. Other non-reversible schemes are inspired by non-diffusive physical

systems, such as a method for inserting ‘vortices’ by Sun et al. (2010).

2.6 Parallel MCMC

The most obvious way to parallelize MCMC is to run independent simulations in parallel

and aggregate their samples. However, this embarrassingly parallel approach does not help

to reduce the mixing time, which can be prohibitively long and would be replicated across

the parallel instances.

In MCMC, the computational cost is most often determined by the expense of evaluat-

ing the target density relative to the mixing time. For example in Metropolis–Hastings, this

cost is incurred when the target is evaluated to determine the acceptance ratio of a pro-

posed move. We focus on the increasingly common case where the target is expensive and

the dominant computational cost. This evaluation can sometimes be parallelized directly,

e.g., when the target function is a product of many individually expensive terms. This some-

times arises in Bayesian inference if the target can be easily decomposed into one likelihood

term for each data item. Scalability (i.e., practically achievable speedup) in this setting is

limited by the communication and computational costs associated with aggregating the par-

tial evaluations. In general, the target function cannot be parallelized; we divide methods

23

that accelerate MCMC via other sources of parallelism into two classes: parallel ensemble

sampling and prefetching.

2.6.1 Parallel ensemble samplers

The ensemble methods discussed earlier run multiple chains that can be simulated in parallel,

where any information sharing between chains requires communication. Examples include

parallel tempering, described in Section 2.5.2, the emcee implementation (Foreman-Mackey

et al., 2012) of affine-invariant ensemble sampling (Goodman and Weare, 2010) and a parallel

implementation of generalized elliptical slice sampling (Nishihara et al., 2014).

2.6.2 Prefetching

The second class of parallel MCMC algorithms uses parallelism through speculative execu-

tion to accelerate individual chains. This idea is called prefetching in some of the literature

and appears to have received only limited attention. To the best of our knowledge, prefetch-

ing has only been studied in the context of the MH algorithm where, at each iteration, a

single new proposal is drawn from a proposal distribution and stochastically accepted or

rejected. As shown in Algorithm 2, the body of a MH implementation is a loop containing

a single conditional statement and two associated branches. We can thus view the possible

execution paths as a binary tree, illustrated in Figure 2.1. The vanilla version of prefetching

speculatively evaluates all paths in this binary tree (Brockwell, 2006). The correct path will

be exactly one of these, so with J cores, this approach achieves a speedup of log2 J with

respect to single core execution, ignoring communication and bookkeeping overheads.

Näıve prefetching can be improved by observing that the two branches are not taken

with equal probability. On average, the reject branch tends to be more probable; the classic

result for the optimal MH acceptance rate is 0.234 (Roberts et al., 1997), so most prefetching

scheduling policies have been built around the expectation of rejection. Let α ≤ 0.5 be the

expected acceptance rate. Byrd et al. (2008) introduced speculative moves, a procedure that

24

xt

xt+1
0

xt+2
00

xt+3
000 xt+3

001

xt+2
01

xt+3
010 xt+3

011

xt+1
1

xt+2
10

xt+3
100 xt+3

101

xt+2
11

xt+3
110 xt+3

111

Figure 2.1: Metropolis–Hastings conceptualized as a binary tree. Nodes at depth d correspond
to iteration d, where the root is at depth 0, and branching to the right/left indicates that
the proposal is accepted/rejected. Each subscript is a sequence, of length d, of 0’s and 1’s,
corresponding to the history of rejected and accepted proposals with respect to the root.

speculatively evaluates only along the ‘reject’ branch of the binary tree; in Figure (2.1), this

corresponds to the left-most branch. In each round of their algorithm, only the first k out

of J − 1 extra cores perform useful work, where k is the number of rejected proposals before

the first accepted proposal, relative to the root of the tree. The expected speedup is then:

1 + E(k) < 1 +
∞∑
k=0

k(1− α)kα < 1 +
1− α
α

=
1

α
.

The first term on the left is due to the core at the root of the tree, which always performs

useful computation in prefetching schemes. For an acceptance rate of α = 0.23, this scheme

yields a maximum expected speedup of about 4.3, reaching about 4 with 16 cores, and thus

is more limited than the näıve prefetching policy since it essentially cannot take advantage

of additional cores. Byrd et al. (2010) later considered the special case where the evaluation

of the target occurs on two timescales, slow and fast. This method, called speculative chains,

modifies speculative moves so that when the target evaluation is slow, available cores are

used to speculatively evaluate the subsequent chain, assuming the slow step accepts.

25

Further extensions to the näıve prefetching scheme allocate cores according to the op-

timal ‘tree shape’ with respect to various assumptions about the probability of rejecting a

proposal, i.e., by greedily allocating cores to nodes that maximize the depth of speculative

computation expected to be correct (Strid, 2010). Next, we summarize Strid’s schemes and

reference related ideas. Static prefetching assumes a fixed acceptance rate; versions of this

were proposed earlier in the context of simulated annealing (Witte et al., 1991). Dynamic

prefetching estimates the acceptance probabilities, e.g., at each level of the tree by drawing

empirical MH samples (100,000 in the evaluation), or at each branch in the tree by com-

puting min(β, r̂) where β is a constant (β = 1 in the evaluation) and r̂ is an estimate of the

MH acceptance ratio based on a fast approximation to the target function. Alternatively,

Strid proposes using the approximate target function to identify the single most likely path

on which to perform speculative computation. Strid also combines prefetching with other

sources of parallelism to obtain a multiplicative effect. To the best of our knowledge, these

prefetching methods have been evaluated on up to 64 cores, although usually many fewer.

In the next chapter, we propose predictive prefetching, a new scheme that, like Strid’s

dynamic prefetching, uses an approximation to the target function to predict what compu-

tations to prefetch. There are several fundamental differences between our work and Strid’s.

Most critically, we model the error of the target density approximation, and thus the un-

certainty of whether a proposal will be accepted. In addition, we identify a broad class of

MCMC algorithms that could benefit from prefetching, not just Metropolis–Hastings, and

we show how prefetching can exploit a series of approximations, not just a single one.

2.7 Approximations and large-scale Bayesian inference

Real-world problems are rarely amenable to exact inference, so they require approximate

inference in the form of Monte Carlo estimates or variational approximations. Unfortunately,

approximate Bayesian inference can be challenging when modeling large data sets, as the

26

target posterior density may become expensive to evaluate. This challenge has motivated

new methods for inferential computation that can take advantage of approximations to the

target density, most often by examining only a subset of the data, or by exploiting closed

form approximations such as Taylor series (Christen and Fox, 2005), or by fitting linear or

Gaussian process regressions (Conrad et al., 2014).

In Bayesian inference, the target density involves a likelihood, which often decomposes

into a product of many factors corresponding to data items, e.g.,

π(θ |x) = π0(θ)π(x | θ) = π0(θ)
N∏
n=1

π(xn | θ). (2.7)

Below, we survey MCMC sampling schemes that exploit this factorization property, moti-

vated by large-scale Bayesian inference with large datasets.

2.7.1 Embarrassingly parallel, approximate MCMC

Several authors have suggested partitioning a large dataset into multiple shards and running

MCMC inference on each partition separately across parallel cores. Each of J shards {x(j)}Jj=1

defines what is sometimes called a subposterior :

π(j)(θ |x(j)) = π0(θ)1/J
∏
x∈x(j)

π(x | θ), j = 1, . . . , J.

The contribution from the original prior is down-weighted so that the original posterior is

equal to the product of the J subposteriors, i.e., π(θ |x) =
∏J

j=1 π
(j)(θ |x(j)). However, it

is not clear how to combine the samples from the J subposteriors in a coherent fashion to

estimate functions of the desired full posterior. Below, we describe three recent efforts.

Neiswanger et al. (2014) explore three potential solutions, ranging from parametric to

non-parametric and semi-parametric models. For example, their parametric model invokes

the Bayesian central limit theorem; they argue that since a posterior looks like a Gaus-

27

sian in the limit of many data items, they fit each subposterior with a Gaussian, and then

approximate the full posterior as a product of these approximate subposteriors.

Scott et al. (2013) propose consensus Monte Carlo, which combines the subposteriors

through a weighted average. For Gaussian models, the optimal weight of the jth subposterior

is Wj = Σ−1
j , the inverse of the covariance matrix Σj of the subposterior. Assuming a

Gaussian model, the authors Monte Carlo estimate Σj using the empirical sample variance

from the corresponding subposterior.

Finally, Wang and Dunson (2013) propose a Weierstrass sampler for parallel MCMC on

independent data partitions; these authors provide analytic bounds on the approximation

error of their sampler, which appears to be more robust than those described above.

2.7.2 MCMC with mini-batches

Other methods for accelerating MCMC sampling in the case of large-scale Bayesian inference

are inspired by stochastic gradient descent. Traditional gradient descent performs optimiza-

tion by iteratively computing and following a local gradient that depends on a sum of terms

corresponding to data items (Dennis and Schnabel, 1983). Stochastic gradient descent is

remarkably simple and effective: at each iteration, it uses an approximate gradient based

on only a random subset of data, called a mini-batch, or even just a single datum (Mu-

rata, 1998). Stochastic variational inference techniques adapt these ideas to variational in-

ference (Hoffman et al., 2013), a class of Bayesian procedures that can be efficient but are

only approximate in the sense of lacking MCMC’s feature of asymptotic correctness.

With MCMC, the idea is to evaluate an approximate posterior whose likelihood term

is a noisy estimate based on sampling only one or a few data items. Recent approaches

have implemented efficient transition operators that lead to approximate stationary distri-

butions (Welling and Teh, 2011; Ahn et al., 2012; Korattikara et al., 2014; Bardenet et al.,

2014; Doucet et al., 2014). Other recent work uses a lower bound on the local likelihood

factor to simulate from the exact posterior distribution while evaluating only a subset of the

28

data at each iteration (Maclaurin and Adams, 2014).

In the rest of this thesis, we focus on accelerating MCMC by combining parallelism with

approximations to the transition operator through prefetching ideas. Notably, we arrive at

a method in which the stationary distribution is exactly the target posterior.

29

Chapter 3

Predictive prefetching with transition

operator approximation

We attack the general problem of accelerating MCMC algorithms by using speculative exe-

cution to parallelize them. In the previous chapter, our survey of MCMC methods included

this approach, sometimes called prefetching. An effective prefetching implementation must

overcome several challenges, such as correctness. For example, for the results of prefetching

to exactly equal those of a serial execution, care is required in the treatment of pseudo-

randomness (i.e., each node’s source of randomness must produce the same results as it

would in a serial execution); slapdash treatment risks introducing biases. But the key chal-

lenge for prefetching is performance. A näıve scheduling scheme always requires ≈ 2J parallel

cores to achieve a speedup of J . As we saw, this speedup can be improved by leveraging in-

formation about the average proposal acceptance rate (Strid, 2010). In particular, if most

proposals are rejected, a prefetching implementation can improve its speedup by prefetch-

ing more heavily along the reject path. Although in practice the optimal acceptance rate is

less than 0.5 (Roberts et al., 1997), extremely small acceptance rates, which lead to good

speedup, are accompanied by less effective mixing. If the acceptance rate is set to something

like 0.234, speedup is still at most logarithmic.

30

In this chapter, we propose predictive prefetching, a new scheduling approach that uses

local information to improve speedup relative to other prefetching schemes. First, we pro-

vide a general mathematical framework that allows us to identify a broad class of MCMC

algorithms that can benefit from prefetching. Second, we carefully reason about Metropolis–

Hastings in a way that maps naturally to prefetching schemes. Next, we describe our predic-

tive prefetching scheme, where we adaptively adjust speculation based not only on the local

average proposal acceptance rate – which changes as evaluation progresses – but also on the

actual random deviate used at each state. In particular, we describe how we make use of

any available fast approximations to the transition operator. Though these approximations

are not required, when they are available or learnable, we leverage them to make better

scheduling decisions. For the special case of large-scale Bayesian inference, we develop a se-

ries of increasingly expensive but more accurate approximations. These decisions are further

improved by modeling the error of these approximations, and thus the uncertainty of the

scheduling decisions. Performance depends critically on how we model the approximations,

and a key insight is in our error model for this setting; much smaller error, and therefore

more precise predictions, are obtained by modeling the error of the difference between two

proposal evaluations, rather than evaluating the errors of the proposals separately. Finally,

we provide a theoretical analysis of speedup due to predictive prefetching as a function of

predictor accuracy and the number parallel cores. In the next chapter, we describe the de-

tails of our system design and implementation, and in the following chapter, we present our

actual empirical results.

3.1 Mathematical framework

Consider a transition operator T (x→ x′) which has π as its stationary distribution on state

space X . Simulation of such an operator typically proceeds using an ‘external’ source of

pseudo-random numbers that can, without loss of generality, be assumed to be drawn uni-

31

formly on the unit hypercube, denoted as U . The transition operator is then a deterministic

function from the product space of U and X back to X , i.e., T : X × U → X . Most practical

transition operators – Metropolis–Hastings, slice sampling, etc. – are actually compositions of

two such functions, however. The first function produces a countable set of candidate points

in X , here denoted Q : X × UQ → P(X), where P(X) is the power set of X . The second

function R : P(X)× UR → X then chooses one of the candidates for the next state in the

Markov chain. Here we have used UQ and UR to indicate the disjoint subspaces of U relevant

to each part of the operator. In this setup, the basic Metropolis–Hastings algorithm uses Q(·)

to produce a tuple of the current point and a proposed point, while multiple-try MH (Liu

et al., 2000) and delayed-rejection MH (Tierney and Mira, 1999; Green and Mira, 2001), each

create a larger candidate set that includes the current point. In the exponential-shrinkage

variant of slice sampling (Neal, 2003), the function Q(·) produces an infinite sequence of

candidates that converges to, but does not include, the current point.

This setup is a somewhat more elaborate treatment than usual, but this is intended to

serve two purposes: 1) make it clear that there is a separation between generating a set of

possible candidates via Q(·) and selecting among them with R(·), and 2) highlight that both

of these functions are deterministic functions, given the pseudo-random variates. Others have

observed this latter point and used it to construct alternative approaches to MCMC (Propp

and Wilson, 1996; Neal, 2012).

We separately consider Q(·) and R(·), because it is generally the case that Q(·) is inex-

pensive to evaluate and does not require computation of the target density π(x), while R(·)

must compare the target density at the candidate locations and so represents the bulk of

the computational burden. Prefetching MCMC observes that, since Q(·) is cheap and the

pseudo-random variates can be produced in any order, the tree of possible future states of the

Markov chain can be constructed before any of the R(·) functions are evaluated, as in Fig-

ure 2.1 and reproduced here for convenience in Figure 3.1. The sequence of R(·) evaluations

simply chooses a path down this tree. We parallelize execution by speculatively choosing to

32

xt

xt+1
0

xt+2
00

xt+3
000 xt+3

001

xt+2
01

xt+3
010 xt+3

011

xt+1
1

xt+2
10

xt+3
100 xt+3

101

xt+2
11

xt+3
110 xt+3

111

Figure 3.1: Metropolis–Hastings conceptualized as a binary tree. Each level of the tree rep-
resents an iteration, where branching to the right/left indicates that the proposal is ac-
cepted/rejected. Each subscript is a sequence of 0’s and 1s corresponding to the history of
rejected and accepted proposals with respect to the root. (Reproduced from Figure 2.1.)

evaluate R({xi}, u) for some parts of the tree that have not yet been reached. If one or more

nodes in this subtree are eventually reached, then we achieve a speedup.

For clarity, in the remainder of this thesis we focus on the straightforward random-

walk Metropolis–Hastings operator; we depict our view of its simulation in Algorithm 3.

In this special case, Q(·) produces a tuple of the current point and a proposal. The func-

tion R : X × X × (0, 1)→ X takes these two points, along with a uniform random variate

in (0, 1), and selects one of the two inputs via:

R(x, x′, u) =

x′ if u

q(x′ |x)

q(x |x′)
<
π(x′)

π(x)

x otherwise

, (3.1)

where q(· | ·) is the proposal density corresponding to Q(·). We write the acceptance ratio in

this somewhat unusual fashion to highlight the fact that the left-hand side of the inequality

does not require evaluation of the target density and is easy to precompute.

33

Algorithm 3 Our view of Metropolis–Hastings.

Input: Initial state x0, number of iterations T , target π(x), proposal q(x′ |x)
Output: Samples x1, . . . , xT

for t in 0, . . . , T − 1 do

utQ = {utQ,i ∼ Unif(0, 1)} . Pseudo-random numbers consumed by Q(·)
utR ∼ Unif(0, 1) . Pseudo-random number for R(·)
(xt, x′)← Q(xt,utQ) = (xt, x′ ∼ q(x′ |x)) . Produce two candidates

xt+1 ← R(xt, x′, utR) =

x′ if utR
q(x′ |xt)
q(xt |x′)

<
π(x′)

π(xt)

xt otherwise
. Select next state

end for

3.2 Metropolis–Hastings simulation

In this section, we reason about Metropolis–Hastings simulation through the lens of the

binary state tree. This enables us to coherently reason about prefetching schemes as well

as motivate and describe our approach in the next section. First, we develop some notation

that gives us a language for talking about the MH tree. This notation will also map to

the data structures and routines used in our system design, described in the next chapter.

Now, recall that prefetching schemes use parallel cores to precompute the target density at

states that might be considered during simulation. Thus, we next use the tree to identify

where computation occurs with respect to a particular simulation and then discuss the use

of pseudo-randomness with respect to the tree. Finally, we introduce a new binary tree, the

jobtree, that simplifies how to reason about computation during MH simulation; this will

help us cleanly describe our approach in the next section and will form the central data

structure of our system in the next chapter.

3.2.1 Bit string notation

We use small Greek letters (α, β) for elements of {0, 1}∗. Let ε be the empty string. Given

a bit string α, let bαc equal α with all trailing 0 bits removed. Define flip(α) as α with the

34

xtε

xt+1
0

xt+2
00

xt+3
000 xt+3

001

xt+2
01

xt+3
010 xt+3

011

xt+1
1

xt+2
10

xt+3
100 xt+3

101

xt+2
11

xt+3
110 xt+3

111

Figure 3.2: Metropolis–Hastings conceptualized as a binary tree. Each level of the tree rep-
resents an iteration, where branching to the right/left indicates that the proposal is ac-
cepted/rejected. Each subscript is a sequence of 0’s and 1’s corresponding to the history of
rejected and accepted proposals with respect to the current state xt at the root. Nodes of the
same color correspond to sequences of states that are equal, which happens when proposals
are rejected. For example, the nodes along the left-most branch are all equal to the root
and correspond to a sequence of three rejected proposals. The four uncolored nodes at the
bottom of the tree represent the possible proposals at iteration t+ 3 and are distinct.

last bit flipped, as follows:

flip(α) =

1 if α = ε,

β1 if α = β0,

β0 if α = β1.

3.2.2 Mapping states to bit strings

Recall from Figure 3.1 that we can conceptualize Metropolis–Hastings as a binary tree: given

the current state, the possible sequences of future states result from accepting or rejecting a

proposal at each iteration. We reproduce this tree in Figure 3.2, this time with different colors

to highlight sequences of possible Markov chain states that are identical, due to sequences

of rejected proposals. Each node is labeled with a distinct subscript, mapping each possible

state to a bit string that records the history of the chain, as we describe below.

Without loss of generality, call the current state x0. Let iteration t simulate the transition

35

from a state xt to the next state xt+1, as in our descriptions of Metropolis–Hastings in

Algorithms 2 and 3. For all t ≥ 0, define a mapping ρ(xt) ≡ ρt that identifies with each

possible state xt a bit string ρt, relative to the current state x0, as follows:

ρ(xt) =

ε if t = 0,

ρt−11 if t > 0 and proposal at iteration t is accepted,

ρt−10 otherwise, in which case the proposal is rejected and xt = xt−1.

In other words, the current state x0 is mapped to ε and otherwise, xt is mapped to a sequence

of 0’s and 1’s corresponding to its history of rejected and accepted proposals, respectively.

The length of ρt is t and ρt is a prefix of ρT for all T ≥ t. Note that an inverse mapping from

bit strings to states, i.e., ρ−1(ρt) = xt, must satisfy ρ−1(α) = ρ−1(bαc). This corresponds to

the fact that sequences of rejected proposals yield sequences of Markov chain states equal to

either the last accepted proposal or the initial state, if no such proposal exists.

3.2.3 Computation with respect to a simulation path

Figure 3.3 depicts one instance of a Metropolis–Hastings simulation superimposed on the

binary tree of all possible states. As before, left and right children correspond to the state

after a proposal has been rejected or accepted, respectively. Given the current state at the

root, the states of the simulated Markov chain correspond to a single connected path through

the tree. We call this the simulation path.

Each iteration simulates one MH transition and involves evaluating the target density at

a new proposal. A node corresponding to a rejected proposal is not directly on the simulation

path, but its left sibling and parent as well as other ancestors are all on the simulation path.

The state at the left sibling is equal to the state at the parent. Thus, the MH algorithm

involves computations at and only at three kinds of nodes: the root, nodes on the simulation

path that are right children (accepted proposals) and the right siblings of nodes on the

36

xtε

xt+1
0

xt+2
00

xt+3
000 xt+3

001

xt+2
01

xt+3
010 xt+3

011

xt+1
1

xt+2
10

xt+3
100 xt+3

101

xt+2
11

xt+3
110 xt+3

111

Figure 3.3: Schematic of a Metropolis–Hastings simulation superimposed on the binary tree
of all possible states. As in Figure 3.1, each level of the tree represents an iteration, where
branching to the right/left indicates that the proposal is accepted/rejected. The simulation
path (thick arrows) starts at the root xt and connects the output states: xt+1

1 , xt+2
10 , xt+3

100 . In
this example, the first proposal is accepted and the next two proposals are rejected. The dark
filled circles indicate states where the target density is evaluated during simulation. Those
that are not on the simulation path correspond to rejected proposals. Their siblings are pale
filled circles on the simulation path; since each of the corresponding states is a copy of its
parent, its target density does not need to be reevaluated during the subsequent comparison
to the next proposal.

simulation path that are left children (rejected proposals).

3.2.4 Using pseudo-randomness

For a particular transition operator T (x → x′) as described in Section 3.1, the number of

random variates required to simulate one transition in general depends on the starting state x.

For example, in Metropolis–Hastings as described in Algorithm 3, iteration t consumes at

least one random variate utQ to generate the proposal plus exactly one random variate utR

to select the next state. The MH proposal step can easily consume a non-constant number

of random variates, e.g., if the proposal is generated via rejection sampling, as is common

when dealing with truncated distributions.

This subtle point matters when thinking about prefetching schemes as it implies that the

37

consumption of a pseudo-random stream during Markov chain simulation depends on the

history of the chain. With respect to the MH tree as illustrated in Figure 2.1, this means that

a pseudo-random stream may be consumed at different rates, depending on what simulation

path is taken on the tree. From our reading of prior work on prefetching, it is not clear to

us whether this issue has been addressed or ignored; e.g., Strid (2010) casually refers to the

handling of pseudo-random numbers in prefetching schemes as “an implementation issue.”

In our use of prefetching, given an initial state and an initialized pseudo-random stream,

we require the simulated chain to be equal to that produced by a serial execution, not merely

statistically equivalent. To satisfy this constraint, there are several strategies for managing

the pseudo-random stream so that its use with prefetching equals that during serial execution.

The first is to synchronize the use of the stream across all possible simulation paths so that the

sequence of random variates available at iteration t depend only on t. In the language of the

MH tree, the random variates used to simulate the transition from a node at depth t to t+ 1

are shared across all possible transitions at this layer in the tree. This can be achieved by

reseeding a random number generator at the start of each iteration, e.g., using the random

variates of a separate pseudo-random stream as the sequence of seeds. Alternatively, if k

gives an upper bound on the number of random variates consumed at each iteration, then

the stream can be allocated across iterations so that iteration t is constrained to use the k

random variates starting at the kt-th location in the stream. A jump-ahead random number

generator, could be useful for such a scheme, e.g., the algorithm by Haramoto et al. (2008a,b).

The final strategy – which is the one we follow in our implementation, described in the next

chapter – is to use the pseudo-random stream exactly as in a ‘normal’ serial execution. This

leads to history-dependent consumption of the random variates and requires a small amount

of bookkeeping.

38

xtε

xt+1
1

xt+2
01

xt+3
001 xt+3

011

xt+2
11

xt+3
101 xt+3

111

Figure 3.4: Schematic of the same Metropolis–Hastings simulation as in Figure 3.3, this time
superimposed on the jobtree. Recall that, given the current state xtε, the simulated chain in
this example is: xt+1

1 , xt+2
10 , x

t+3
100 , corresponding to one accept followed by two rejects. This

tree includes only those nodes in the original MH tree where a new state is introduced and
thus the target density must be evaluated when comparing such a state to another. States
where the the target density is evaluated in a serial MH execution (filled circles) are now
connected by a single path (thick arrows) that we call a computation path.

3.2.5 Representing computation with the jobtree

Here, we introduce the Metropolis–Hastings jobtree, depicted in Figure 3.4. Like the original

MH state tree, the jobtree is generally binary, except that the root has only one child.

It contains all of the same information as the MH state tree yet is more compact as it

represents only those states where new computation occurs, i.e., where the target density

must be evaluated in order to compare such a state to another. Specifically, it includes the

root node and all right children of the MH state tree, corresponding to the current state and

all possible subsequent proposals – together, these specify the possible distinct states and at

what iteration each would first appear. Since the jobtree leaves out all left children – which

are equal to their parents – it includes about half as many nodes as the MH state tree.

While the nodes in the jobtree are a subset of the nodes in the MH tree, the jobtree itself

is not subtree of the MH tree. In the jobtree, the root has one out-edge that represents the

immediate comparison between the current state and corresponding proposal, which must

39

occur at the current iteration. We refer to the transition from the current state to the next

state as the immediate transition. The nodes below the root are all proposals and each has

two children: the left child corresponds to the next proposal if its parent proposal is rejected,

and the right child corresponds to the next proposal if its parent is accepted.

Recall that in the MH tree, simple paths correspond to instantiations of simulated Markov

chains but do not capture all nodes where computation occurs. Paths on the MH jobtree rep-

resent computation in the sense that they map to sequences of states where the target density

is evaluated during serial MH simulation. We refer to any such path as a computation path;

an example is shown in Figure 3.4.

Recall that the MH transition operator selects between two states; in the MH tree, two

such states are represented as siblings. For any pair of sibling nodes in the MH tree, there

is an equivalent pair of nodes in the jobtree. We can see this by first considering the MH

tree, and recalling that the state at any left child is equal to its parent and more generally

to all ancestors that are also left children. Consider a proposal, i.e., some right child in

the MH tree, encoded by a bit string ρ. Its left sibling is encoded as flip(ρ) and the oldest

ancestor whose state is equal to the left sibling as bflip(ρ)c. In deciding whether to accept a

proposal, the MH transition operator compares the proposal xρ to a state equal to xbflip(ρ)c,

which we call its comparison parent. In Figure 3.5, we draw back-edges from each proposal

to its comparison parent. A comparison parent is always either the root node or a right child

corresponding to a proposal, and thus is also in the jobtree. We illustrate this in Figure 3.6

by adding these back-edges from each proposal in the jobtree to its comparison parent.

3.2.6 Metropolis–Hastings with prefetching

A prefetching framework schedules cores to simulate the immediate transition and prefetch

possible future transitions. This scheduling could be performed at many levels of granularity;

for concreteness and simplicity, let us map cores to transitions. Then, a prefetching framework

with J cores uses one core to simulate the immediate transition and the others to precompute

40

xtε

xt+1
0

xt+2
00

xt+3
000 xt+3

001

xt+2
01

xt+3
010 xt+3

011

xt+1
1

xt+2
10

xt+3
100 xt+3

101

xt+2
11

xt+3
110 xt+3

111

Figure 3.5: The Metropolis–Hastings binary state tree. As in Figure 3.2, nodes of the same
color correspond to sequences of states that are equal, which happens when proposals are
rejected. Here, we add dashed back-edges from a proposal node ρ to its comparison par-
ent bflip(ρ)c, the oldest ancestor equal to its left sibling. Each comparison parent is either
the root node or a right child, and so is also a node in the jobtree, depicted in Figure 3.6.

xtε

xt+1
1

xt+2
01

xt+3
001 xt+3

011

xt+2
11

xt+3
101 xt+3

111

Figure 3.6: The Metropolis–Hastings jobtree, here with back-edges that connect each pro-
posal node ρ to its comparison parent bflip(ρ)c. For any proposal, the state of its comparison
parent is equal to that of its left sibling, and so these back-edges represent the comparison
that is made in evaluating whether the proposal is accepted. The colored nodes correspond
to those as in Figures 3.2 and 3.5 of the MH tree, where each group of nodes with the same
color share the same state. In the jobtree, the states are distinct and so there is only one
node for each color.

41

transitions for possible future iterations. The actual set of transitions that must be simulated

maps to a single computation path on the jobtree. If each precomputation falls along the

actual computation path, the framework will achieve the ideal linear speedup (evaluating T

iterations will take time proportional to T/J). If some of them do not fall along the chain,

the framework will fail to scale perfectly with the available resources. For instance, a näıve

framework that evaluates transitions based on breadth-first search of the prefetching state

tree (Figure 2.1) will achieve logarithmic speedup (time proportional to T/ log2 J). Good

speedup thus is possible with prefetching, if we can make good predictions about which

computation path will be taken on the jobtree. This is in turn determined by the ability to

predict whether the MH threshold will be exceeded in Equation 3.1.

3.3 Predictive prefetching: Exploiting predictions

In this section, we propose predictive prefetching, a principled scheduling approach that ex-

ploits predictions about whether possible precomputations will fall along the true computa-

tion path. Let ρ denote a node on the tree, xρ indicate the current state at ρ, and x′ρ indicate

the proposal. Note that in the language of the jobtree, xρ = xbflip(ρ)c is the comparison parent

of x′ρ. For convenience, let us define

γρ = uρ
q(x′ρ |xρ)
q(xρ |x′ρ)

(3.2)

where uρ is the MH threshold variate associated with node ρ. The Markov chain’s steps are

determined by iterations of computing the indicator function

ιρ = I(γρ < π(x′ρ)/π(xρ)), (3.3)

where a proposal is accepted iff ιρ = 1. The quantities xρ, x
′
ρ, and γρ can be inexpensively

computed at any time from the stream of pseudo-random numbers, without examining the

42

expensive target π(·).

The precomputation schedule should maximize expected speedup, which corresponds to

the expected number of precomputations along the true computation path in the jobtree. To

maximize this quantity, the framework needs to anticipate which branches of the jobtree are

likely to be taken. The root node and its only child are always evaluated. We associate with

each remaining node ρ in the jobtree a predictor ψρ that models the conditional probability

that xρ is accepted, given that ρ is on the computation path. If ρ is on the computation

path and xρ is accepted/rejected, then its right/left child will be the next node on the true

computational path. In Figure 3.7, we illustrate the predictor with respect to the jobtree by

labeling the edges with branch probabilities : the edge from a node ρ to its right child has

branch probability equal to the predictor ψρ and the edge to its left child has branch proba-

bility 1− ψρ. Note that a predictor ψρ may vary over time. When the target functions π(xρ)

and π(x′ρ) are completely evaluated, we require that the predictor ψρ equals the indicator ιρ

in Equation 3.3. We use the predictors to model the expected utility of a node ρ, i.e., the

probability that ρ is on the computation path. This is given by the product of the branch

probabilities along the path connecting the root to ρ, as we illustrate in Figure 3.8. We take a

greedy approach, scheduling those nodes with maximum expected utility for precomputation.

A predictor is always available – e.g., one can use the recent acceptance probability;

Figures 3.7 and 3.8 take as an example ψρ = 0.2. Alternatively, suppose we have access

to a fast approximation to the target density π̃(x) and model the error of approximately

evaluating log(π(x′ρ)/π(xρ)) as normally distributed with variance σ2. Then we can write:

ψρ = Pr

(
log γρ < log

(
π(x′ρ)

π(xρ)

) ∣∣∣∣ π̃(x), σ2

)
(3.4)

=

∫ ∞
log γρ

N
(
z

∣∣∣∣ log

(
π̃(x′ρ)

π̃(xρ)

)
, σ2

)
dz. (3.5)

More generally, we can often improve predictions using computation. To model this, we

43

ε

1

01

001

0.8

011

0.2

0.8

11

101

0.8

111

0.2

0.2

1

Figure 3.7: Example Metropolis–Hastings jobtree, as in Figure 3.4, here with edges labeled
by their branch probabilities and nodes labeled by their bit strings. We associate with each
node ρ a predictor ψρ that models the conditional probability that xρ is accepted, given that ρ
is on the computation path. The edge from a node ρ to its right child has branch probability
equal to the predictor ψρ and the edge to its left child has branch probability 1− ψρ. This
example illustrates the branch probabilities for a predictor ψρ based solely on an average
acceptance rate of 0.2.

1

1

0.8

0.64

0.8

0.16

0.2

0.8

0.2

0.16

0.8

0.04

0.2

0.2

1

Figure 3.8: Example Metropolis–Hastings jobtree where each node ρ is labeled by the prob-
ability that ρ is on the computation path. As in Figure 3.7, an edge pointing to a node ρ is
labeled by the branch probability indicating the belief that node ρ will be on the computa-
tion path, given that its parent is on the computation path. The probability that a node ρ is
on the computation path then equals the product of the branch probabilities along the path
from the root to ρ.

44

define a sequence of estimators

ψ(m)
ρ ≈ ψρ, m = 0, 1, 2, . . . , N, (3.6)

where increasing m implies increasing expected accuracy, and ψ
(N)
ρ = ιρ. Workers move

through this sequence until they perform the exact computation. The predictor sequence

affects scheduling decisions: once it becomes sufficiently certain that a worker’s branch will

not be taken, that worker and other workers computing on its descendent nodes should be

reallocated to more promising branches. Ultimately, every step that is actually taken on the

Markov chain is computed to completion. The approach simulates from the true stationary

distribution, not an approximation thereof. The estimators are used only to make scheduling

decisions for prefetching.

There are several schemes for producing this estimator sequence, and predictive prefetch-

ing applies to any Markov chain Monte Carlo problem for which approximations are available.

We focus on the important case where the target density is a posterior and the likelihood

depends on a (possibly large) dataset. Specifically, we obtain a fast approximation to the

posterior by estimating the likelihood with only a subset of the data, and improve estimates

by including more and more data.

3.4 An estimator for large-scale Bayesian inference

In Bayesian inference with MCMC, the target density is a (possibly unnormalized) poste-

rior distribution. In most modeling problems, the target density can be decomposed into a

product of terms. If the data x = {xn}Nn=1 are conditionally independent given the model

parameters θ, there is a factor for each of the N data:

π(θ |x) ∝ π0(θ) π(x | θ) = π0(θ)
N∏
n=1

π(xn | θ). (3.7)

45

Here π0(θ) is a prior distribution and π(xn | θ) is the likelihood term associated with the nth

datum. The logarithm of the target distribution is a sum of terms,

L(θ) = log π(θ |x) = log π0(θ) + log π(x | θ) + c = log π0(θ) +
N∑
n=1

log π(xn | θ) + c , (3.8)

where c is an unknown constant that does not depend on θ and can be ignored. Our predictive

prefetching algorithm uses this to form predictors ψρ as in Equation 3.5. We can reframe ψρ

using log probabilities as

ψρ ≈ Pr (log γρ < L(θ′)− L(θ)) , (3.9)

where γρ is the precomputed random MH threshold of Equation 3.2. One approach to forming

this predictor is to use a normal model for each L(θ), as done by Korattikara et al. (2014).

However, rather than modeling L(θ) and L(θ′) separately, we can achieve a better estimator

with lower variance by considering them together. Expanding each log likelihood gives:

L(θ′)− L(θ) = log π0(θ′)− log π0(θ) +
N∑
n=1

∆n (3.10)

∆n = log π(xn | θ′)− log π(xn | θ) . (3.11)

In Bayesian posterior sampling, the proposal θ′ is usually a perturbation of θ and so we

expect log π(xn | θ′) to be correlated with log π(xn | θ). In this case, the differences ∆n occur

on a smaller scale than they would otherwise and also have a smaller variance compared to

the variance of log π(xn | θ) across data terms.

A concrete sequence of estimators is obtained by subsampling the differences. Let {∆n}mn=1

be a subsample of size m < N , without replacement, from {∆n}Nn=1. This subsample can be

used to construct an unbiased estimate of L(θ′)− L(θ). We model the terms of this subsample

as i.i.d. from a normal distribution with bounded variance σ2, leading to:

L(θ′)− L(θ) ∼ N (µ̂m, σ̂
2
m) . (3.12)

46

log γρ
µ̂m

L(θ')−L(θ) ∼ N(µ̂m , σ̂
2
m)

Figure 3.9: We use a normal model for the difference of log posteriors at states θ′ and θ
as L(θ′)− L(θ) ∼ N (µ̂m, σ̂

2
m). Thus, the predictor ψ

(m)
ρ is equal to the area under N (µ, σ2)

to the right of log γρ. Recall that γρ is the precomputed random MH threshold of Equation 3.2
and depends on a uniform random variate u ∼ Unif(0, 1).

The mean estimate µ̂m is empirically computable:

µ̂m = log π0(θ′)− log π0(θ) +
N

m

m∑
n=1

∆n . (3.13)

The error estimate σ̂m may be derived from sm/
√
m, where sm is the empirical standard

deviation of the m subsampled ∆n terms. To obtain a confidence interval for the sum of N

terms, we multiply this estimate by N and the finite population correction
√

(N −m)/N ,

giving:

σ̂m = sm

√
N(N −m)

m
. (3.14)

As illustrated in Figure 3.9, we can now form the predictor ψ
(m)
ρ by considering the tail

probability for log γρ, where recall γρ is defined in Equation 3.2:

ψ(m)
ρ =

∫ ∞
log γρ

N (z | µ̂m, σ̂2
m) dz (3.15)

= 1−
∫ log γρ

−∞
N (z | µ̂m, σ̂2

m) dz

=
1

2

[
1− erf

(
log γρ − log µ̂m√

2σ̂m

)]
=

1

2

[
1 + erf

(
log µ̂m − log γρ√

2σ̂m

)]
. (3.16)

47

1

p

p2

p

pq

q

p

q

qp

p

q2

q

q

1

0

1

2

3

Figure 3.10: Metropolis–Hastings jobtree in our biased coin model. Nodes are arranged so
that the left-most branch is the (unknown) true computation path (thick arrows). Further-
more, given a node, the predictor expects the left (right) child to be next on the path with
probability p (q), where p ≥ q and p + q = 1. Each node is labeled by the probability the
predictor expects it to be on the true path. The root is complete; workers are scheduled to
the remaining nodes greedily. We index depth in the tree from 0 at the root.

3.5 Speedup with instantaneous, imperfect predictions

If we could make instantaneous, perfect predictions, then predictive prefetching would achieve

perfect speedup, in an ideal system with zero communication costs or other overheads. In

reality, we have access only to imperfect predictions, and we use probabilistic models to

characterize our uncertainty about these predictions. In this section, we analyze the expected

speedup of predictive prefetching, as a function of predictor accuracy, for infinitely fast

predictions in an ideal system.

Consider a specific MH simulation of fixed length. Suppose we have access to a predic-

tor ψρ that models the conditional probability that xρ is accepted, given that ρ is on the

computation path, as introduced in Section 3.3. We model the predictor’s accuracy by a

biased coin, depicted in Figure 3.10. Let p be the probability that the expected outcome is

the true outcome and let q = 1− p be the corresponding probability that it is not. We can

think of p and q as the accuracy and error, respectively, of the predictor. Let τJ denote the

48

MH simulation running time, using predictive prefetching with J workers. Then, SJ = τ1/τJ

is the speedup relative to a single worker. Our objective is to understand SJ as a function

of q and J .

In the limit of perfect predictions, q = 0 and predictive prefetching obtains perfect, lin-

ear speedup, with SJ = J . In the limit of uninformative predictions, q = 1/2 and predic-

tive prefetching reduces to the näıve scheme, leading to logarithmic speedup. The expected

speedup is log2(J + 1), e.g., E[S1] = 1, E[S3] = 2, E[S7] = 3. Below, we analyze the expected

speedup for imperfect predictions, where 0 < q < 1/2. We do not study the adversarial sce-

nario of malicious predictions, where q > 1/2, which happens when we believe our predictors

to be informative, but they are actually incorrect on average.

To calculate expected speedup, we need to understand how the greedy scheme, described

in Section 3.3, schedules workers on the jobtree. For simplicity, we consider one ‘round’ of

the algorithm, initialized as follows: the jobtree is known to depth J , where the root is

considered depth 0, the target has been evaluated at the root and nowhere else; at all other

nodes, only the predictor has been evaluated. We break down our analysis into two parts.

First, we consider the scheduled workers’ depth, which gives us a lower bound on the expected

speedup. Then, we give a complete description of the workers’ allocation, which allows us

to calculate the expected speedup. Finally, we consider a scheme that combines predictive

prefetching with parallel computation at each node.

3.5.1 Worker depth and simple bounds on speedup

In the limit of perfect predictions, q = 0, and predictive prefetching schedules workers along

the true computation path in the jobtree. When 0 < q < 1/2, our biased coin model assigns

the k-th node along the true path a probability of pk, where the root is indexed by k = 0. In

Figure 3.10, this corresponds to the left-most branch. As long as pk > pq, a greedy scheduling

algorithm places at least k cores along this path before starting to consider alternate paths.

Let K denote the maximum value of k before the greedy algorithm starts to allocate cores

49

away from a single path, i.e., K is the largest value of k satisfying pk = (1− q)k ≥ q. Then,

K =

⌊
log q

log(1− q)

⌋
. (3.17)

For example, when q = 0.1, 0.01, 0.001, then K = 21, 458, 6904, respectively. Figure 3.11

plots K as a function of q on a log-log scale. With K cores, the expected speedup is the sum

of the probabilities of these nodes, giving us the following lower bound:

E[SK] ≥
K∑
k=1

pk = −1 +
K∑
k=0

pk = −1 +
1− pK+1

1− p
=
p− pK+1

1− p
=

(1− q)− (1− q)K+1

q
.

Since K tells us about the depth of the tree, it also gives us an upper bound on SJ .

With J ≤ K cores, they are all placed along the left branch, thus SJ < J . With J > K

cores, for reasonable values of J and q, workers are allocated to other nodes at depths no

greater than K, thus SJ < K. Figure 3.12 depicts these lower and upper bounds on the

expected speedup, as a function of J , for different values of q.

3.5.2 Worker allocation and expected speedup

The greedy algorithm places J cores at the J nodes with the highest probabilities of occurring

on the true path. Let us encode a node at depth i by a bit string γ ∈ {0, 1}i, where the root

is at depth 0. In our encoding introduced in Section 3.2.1, 1 (0) denotes that, given a state θ,

the proposal θ′ is accepted (rejected). Here, let 1 (0) denote that a prediction based on the

expected outcome is correct (incorrect) with probability p (q = 1− p).

Let Pr(γ | q) denote the probability that the node encoded by bit string γ is on the

true path, given q, the probability that the expected outcome from one node to the next is

incorrect. Let a and b be the number of 1’s and 0’s, respectively. Then,

p(γ | q) = paqb.

50

10-3 10-2 10-1 100

q

100

101

102

103

104

K

Figure 3.11: K as a function of q, shown on a log-log plot. K = log q/ log(1− q) is the
maximum number of nodes allocated before the greedy scheduling algorithm starts to place
cores away from the single true path, and 0 < q < 1/2 is the error rate in our biased coin
model.

The resulting expected speedup is the sum of the J largest terms in

U = {Pr(0),Pr(1),Pr(00),Pr(01),Pr(10),Pr(11), . . . },

where we have suppressed the dependency on q in our notation. Figure 3.12 plots the ex-

pected SJ as a function of J , for different values of q; it falls within the bounds mentioned

previously. To compute this sum, it is not necessary to exhaustively enumerate all the terms

up to depth J ; our above reasoning tells us that depth K suffices. Let z be the number of 0’s,

i.e., errors. We consider all terms up to depth K, for z = 0, . . . , 87:

• z = 0 : Pr(1),Pr(11),Pr(111), . . .

• z = 1 : Pr(0),Pr(01),Pr(10),Pr(011),Pr(101),Pr(110), . . .

• z = 2 : Pr(00),Pr(001),Pr(010),Pr(100), . . .

• . . .

51

100 101 102 103 104

Number of cores (J)

100

101

102

103

104

E
x
p
e
ct

e
d
 s

p
e
e
d
u
p
 (
E

[S
J
])

Expected speedup with simple bounds

E[SJ] =J

q=0.001

q=0.01

q=0.1

E[SJ] =log2 (J+1)

Figure 3.12: Expected speedup as a function of the number of workers. The extremes
of the shaded regions are the lower and upper bounds for speedup from Section 3.5.1.
The solid lines show the sum of the J largest terms in U , as described in Section 3.5.2.
Different colors indicate different values of q. The dotted black line corresponds to per-
fect linear speedup; the solid purple line corresponds to the näıve scheme, i.e., q = 0.5.
When q = 0.1, 0.01, 0.001, then K = 21, 458, 6904, respectively; these values correspond to
the (horizontal) upper bounds where J ≥ K.

We do not actually enumerate all of the above terms, but instead count the number of terms

in each group having the same probability, i.e., all terms for a particular z at the same

depth in the tree. For example, there are 3 bit strings of length 3 with z = 1; they all have

probability p2q.

3.5.3 Speculation plus parallelism at each node

Finally, we consider the case where we combine parallel predictive prefetching with paral-

lelism at each node in the jobtree. Figure 3.13 plots the expected speedup as a function of J ,

for 8-way and 64-way parallelism at each node. Such a scheme would allow us to place more

workers at higher-probability nodes, and therefore achieve greater speedup. As we noted in

Section 2.6.2, Strid (2010) has experimented with this idea.

52

100 101 102 103 104

Number of cores

100

101

102

103

104

E
x
p
e
ct

e
d
 s

p
e
e
d
u
p

Expected speedup with 8-way parallelism

E[SJ] =J

q=0.001

q=0.01

q=0.1

q=0.5

100 101 102 103 104

Number of cores

100

101

102

103

104

E
x
p
e
ct

e
d
 s

p
e
e
d
u
p

Expected speedup with 64-way parallelism

E[S] =J

q=0.001

q=0.01

q=0.1

q=0.5

Figure 3.13: Expected speedup as a function of J , with 8-way (top) and 64-way (bottom)
parallelism at each node. The dotted black line corresponds to perfect linear speedup; the
solid purple line (q = 0.5) corresponds to the näıve scheme with parallelism at each node.

53

Chapter 4

System architecture and

implementation

This chapter presents the design and implementation of a practical parallel system for predic-

tive prefetching. For concreteness, we focus on Metropolis–Hastings in the case of large-scale

Bayesian inference. First, we give an overview of our system architecture, which follows

a master-worker pattern. The master and workers communicate via message passing. The

master keeps track of the state of computational work that could be performed, is currently

in progress or has been completed by the workers. Importantly, this includes, in the form

of probabilities, predictive information about what work is believed to be the most useful.

The master uses this information to schedule computational work to be completed by the

workers. In the following section, we describe how the master uses the jobtree, introduced

in Section 3.2.5, as the central data structure for managing this information. Then, we de-

scribe our model of execution as it is driven by the messages passed between the workers

and the master. In the next sections, we provide details about how the master manages

pseudo-randomness and how the workers generate MH proposals. Finally, we describe our

plug-in interface for specifying an instantiation of MH within our predictive prefetching

implementation.

54

4.1 Architectural overview

Our system architecture follows a master-worker pattern requiring J ≥ 2 parallel cores. One

is designated the master and the remaining J − 1 are workers. The main components of our

architecture are: the protocol by which the master and workers communicate, a data structure

for keeping track of computations and their expected utilities, a scheduler that determines

what computational work should be performed by each executor, and executors that generate

proposals and evaluate the target or approximate posteriors. For clarity, we describe our

system in the context of Bayesian posterior sampling. Given a target posterior π(θ |x),

proposal distribution q(θ′ | θ), initial state θ0 and number of iterations T , our system executes

a Metropolis–Hastings simulation. The output sequence of samples θ1, . . . , θT is invariant to

the number of worker cores. Before describing each architectural component in further detail,

we use two state machines to describe the high-level actions of the master and a worker. We

also highlight our use of lazy evaluation principles that make our implementation practical.

4.1.1 Master state machine

The central roles of the master are to implement the scheduler that assigns computational

work to each worker, cache the workers’ computational results and emit the simulated Markov

chain. The Markov chain starts in some given initial state. We can describe the actions of

the master via a state machine, depicted in Figure 4.1. The master starts in the wait state,

where it waits for any message from any worker. Eventually, the master receives one of

three messages, WANT-WORK , SET-PROPOSAL or UPDATE , from a particular worker. Upon

receipt of a WANT-WORK message, the master moves to the schedule state. There, it iden-

tifies useful computational work, replies to the worker with a HAVE-WORK message and re-

turns to the wait state. Upon receipt of a SET-PROPOSAL message, the master moves to

the add-proposal state. The SET-PROPOSAL message contains a proposal computed by the

worker, which the master caches before returning to the wait state. Upon receipt of an

55

waitstart

schedule

add-proposal

send-abandon update-tree

delete-loser

emit

Receive WANT-WORK

Receive SET-PROPOSAL

Receive UPDATE

Node utility above threshold
Node complete

Node utility below threshold

Node is root’s child

N
ode

not
root’s

child

Figure 4.1: State machine for the master.

56

UPDATE message, the master moves to the update-tree state. The UPDATE message contains

information that improves the predictor for some node ρ in the jobtree, as described in

Section 3.3. The master uses this information to update the predictor ψρ.

Once the master applies the last update at a node, the node becomes complete. If both ρ

and ρ’s comparison parent are complete, then the predictor ψρ converges to the indicator in

Equation 3.3. In this case, one of ρ’s children has branch probability 1 and the other has

branch probability 0. Consequently, this latter child’s entire subtree has utility 0. The master

moves to the delete-loser state, where it deletes this subtree. If ρ is complete but is not

the child of the root in the jobtree, then the master returns to the wait state. Otherwise,

the master now knows the result at the immediate transition and moves to the emit state.

There, the master emits one or more of the next states of the Markov chain. The master also

integrates garbage collection with updating, and at this point trims portions of the jobtree

that are no longer relevant. This could alternately have been integrated with the master’s

response to some other periodic worker message. Either way, there is no separate garbage

collection ‘process.’ From the emit state, the master returns to the wait state.

If the update does not contain enough information for the predictor to converge to the

indicator, the master may optionally reconsider whether further computation at node ρ is

still of interest. If the master decides that the expected utility of ρ is above some thresh-

old, then it returns back to the wait state; in this case, the worker continues work on the

current node. Otherwise, the master moves to the send-abandon state, where it sends the

worker an ABANDON message, telling the worker to stop its current computation. From the

send-abandon state, the master returns to the wait state.

4.1.2 Worker state machine

The central role of a worker is to implement an executor that performs computational work

scheduled by the master. We depict the state machine of a worker in Figure 4.2. The worker

starts in the want state, in which it sends the master a WANT-WORK message indicating that

57

wantstart

start-work

continue-work

check-abandon

Receive HAVE-WORK w/o proposal

Receive partial HAVE-WORK

Complete last quantum

Complete quantum
ABANDON received

No ABANDON received

Figure 4.2: State machine for a worker.

it is ready for a new assignment of computational work. The worker leaves the want state

once it receives a HAVE-WORK message from the master containing such an assignment.

If the worker receives a HAVE-WORK message for a node ρ in the jobtree such that the

message does not contain the state θρ, then the worker moves to the start-work state. Note

that the first HAVE-WORK message for the root of the jobtree contains the initial state θ0,

while the first HAVE-WORK message for any other node does not contain the corresponding

state, which in this latter case is always a proposal. In the start-work state, the worker

generates the proposal θρ at node ρ and can compute functions of θρ, e.g., in Bayesian

posterior sampling, the prior π0(θρ) in Equation 3.7 is only a function of θρ. The worker

sends these results to the master and then moves to the continue-work state. The worker

58

could alternately receive a work assignment to resume computation at a partially evaluated

node; in this case, it moves directly from the want state to the continue-work state.

In the continue-work state, the worker performs computation that contributes to form-

ing a predictor ψρ for the given node ρ. For example, it may compute a fast approximation

to the target likelihood evaluated at θρ, which together with the prior produces an approx-

imate posterior. Alternatively, it may complete the exact target evaluation of interest, or

any incremental portion of any approximate target or the exact target. After computing

some quantum, i.e., useful unit of computation, the worker moves to the send-update state,

where it sends a message to the master containing the latest results produced while in the

continue-work state. If at this point the worker has completed the last assigned quan-

tum at node ρ, then it moves back to the want state. Otherwise, the worker enters the

check-abandon state, where it checks whether it has received an ABANDON message from the

master instructing it to stop its current computation. If it has received such a message, then

it returns to the want state; otherwise, it returns to the continue-work state.

4.1.3 Practical considerations

Lazy evaluation is an important principle that makes our implementation practical. In par-

ticular, our central data structure is a binary tree with depth equal to the number of desired

Metropolis–Hastings samples, i.e., the number of iterations in the equivalent serial execution;

in our empirical studies designed to be representative of realistic scenarios, this number is

50000. We only materialize small portions of the tree as they become useful for prefetching;

we never materialize the whole tree. Furthermore, the expected utilities change as compu-

tations are updated and completed, so we lazily compute expected utilities only as they are

needed, instead of continuously updating them.

59

4.2 The jobtree

Central to our architecture is a data structure for keeping track of computations and other

information relevant to managing a MCMC simulation within the predictive prefetching

framework. This data structure is used for caching the results of computation performed by

the workers, including speculative and partial computation. Furthermore, it must be able to

maintain and update probabilistic beliefs about the utilities of different computations that

have been or could be performed or are currently in progress. During the course of execution,

this data structure must reflect when these beliefs eventually converge to certainty and thus

support the construction of output exactly equal to the equivalent serial computation. Im-

portantly, it must be efficient to query this data structure for computational work that is not

complete, is not currently being performed by any worker and is believed to be significantly

useful.

A tree supports our data structure requirements. Specifically, the master maintains a

representation of the jobtree, introduced in Section 3.2.5. Every node ρ in the jobtree is

associated with a state θρ and full, partial or approximate computation of the target density

at that state. If the full target density π(θρ |x) has been computed, then we mark the node as

complete; otherwise, the partial or approximate computation provides an estimate π̃(θρ |x)

and we mark the node as incomplete. Every node ρ, except the root, has a right child ρ1, a

left child flip(ρ)1 and a comparison parent bflip(ρ)c. The root ε has a single (right) child ε1.

Every node ρ, except for the root, is a proposal and has a predictor ψρ equal to the conditional

probability that θρ is accepted, given that ρ is on the true computation path. For convenience,

we set the root’s predictor to 1. Every node also has an expected utility, i.e., probability of

being on the true computation path. The root’s (expected) utility is 1. For every other node ρ,

the expected utility is the product of the branch probabilities along the path connecting the

root to ρ. Recall that the branch probabilities label the edges and are related to the predictors:

the edge from a node ρ to its right child has branch probability equal to the predictor ψρ

and the edge to its left child has branch probability 1− ψρ.

60

Our jobtree includes several features specific to our implementation. As described in Sec-

tion 4.1.3, the master lazily computes the expected utility of a node ρ whenever called for

by traversing the path from the root to ρ. Thus, the expected utilities are not explicitly

represented at each node in the jobtree. Also, every node ρ may have at most one executor,

i.e., the worker core computing π(θρ |x), and optional executor status information, such as

how much partial computation has been completed so far. An extension to our implementa-

tion would be to have multiple executors per node, an idea explored by Strid (2010) and by

us in Section 3.5.3, and that we discuss further in Chapter 6. Finally, every node is marked

with one of three designations. A dead node has utility 0; it cannot be part of the true

computation path. A pending node is incomplete, has positive expected utility and has no

executor. An active node is incomplete, has positive expected utility, and has an executor.

4.3 Selecting high-utility pending nodes

One of the master’s jobs is to assign workers to the pending nodes with highest utility. In

our initial implementation, the master maintained a priority queue called the pending queue.

It contained all pending nodes in the tree, ordered by ascending expected utility, i.e., the

head of the pending queue was the inactive node with the highest expected utility.

We observed that the pending queue was actually redundant with the jobtree, as the latter

data structure contained all the same information. This suggested an alternative stochastic

routine, described next, that allowed us to eliminate the pending queue. To assign a worker

to a node, the master stochastically traverses the jobtree from the root, following branches

according to their branch probabilities, until it finds a pending node, i.e., a node that is

neither active nor dead and has no executor. In this way, the master stochastically assigns

workers to those nodes with highest expected utility.

61

4.4 Execution and messaging protocol

Our system’s execution is driven by the messages communicated from the workers to the

master and vice versa. The protocol by which they communicate is implicit in their state

machines, described in Section 4.1. We present our model of execution and messaging protocol

together by considering the various possible scenarios that may occur.

Initially, the jobtree contains two nodes, ε and 1. Both of these nodes have (expected)

utility 1. The predictor ψ1 is initialized to 0.5, reflecting that we initially have no information

about whether the first proposal will be accepted or rejected. The master can send or receive

messages to any worker and each worker can send or receive messages to the master; the

workers do not communicate with each other. From the master’s state diagram in Figure 4.1,

we can see that its actions are responsive, i.e., it starts in the wait state, leaves only to

respond to a message from a worker, and always returns to the wait state.

Workers initiate execution by requesting work from the master via a WANT-WORK mes-

sage. This is the first action of each worker. We summarize the simplest initial series of

messages, starting with such a WANT-WORK message, in Figure 4.3. When the master receives

a WANT-WORK message from worker W , it finds a pending node with high expected utility, as

described in Section 4.3. The master replies to worker W with a HAVE-WORK message con-

taining ρ and, if known, the state θρ, and otherwise, it also contains whatever information

is available to generate θρ most efficiently. Precisely what information this is will become

clear in Sections 4.5 and 4.6; for now, note that θρ can be generated from its comparison

parent, θbflip(ρ)c, given the appropriate position in the pseudorandom stream. Further, recall

that the log (unnormalized) target posterior decomposes as

L(θρ) = log π(θ |x) = log π0(θ) +
N−1∑
n=0

log π(xn | θ). (4.1)

In our implementation, workers compute the above sum of likelihood terms in batches of

size b, and thus it may have already been partially evaluated. Also in batches, workers

62

Master Worker

WANT-WORK

New HAVE-WORK

SET-PROPOSAL

UPDATE

UPDATE

Last UPDATE

WANT-WORK

msc new work, no abandons

Master Worker

WANT-WORK

Partial HAVE-WORK

UPDATE

Last UPDATE

WANT-WORK

msc partial work, no abandon

2

Figure 4.3: Simplest scenario in which a worker asks for work via a WANT-WORK message
and receives a new HAVE-WORK message for a particular node in the jobtree. The worker
performs all the work at this node, sending partial results along the way. The proposal,
and potentially, initial computational results involving the proposal, are contained in a
single SET-PROPOSAL message. Subsequent computational results are contained in one or
more UPDATE messages. When the worker is finished, it requests new work with via another
WANT-WORK message. For simplicity, this diagram contains only one worker.

compute the sum of squared likelihood terms

N−1∑
n=0

(log π(xn | θ))2 (4.2)

used by the master to estimate the error in using a partially evaluated target to approx-

imate the true target. Thus, the HAVE-WORK message also includes the results of having

partially evaluated Equations 4.1 and 4.2, as well as an index m, where 0 ≤ m < N − 1

and m mod b = 0, indicating where the worker should resume computation. The master

then marks ρ as active and sets ρ’s executor to W . If ρ does not yet have any children in the

jobtree, the master also creates ρ’s children, each of which it marks as pending. For each new

node φ, its predictor ψφ is initialized to the local acceptance rate, which we define to be em-

pirical acceptance rate observed during simulation of the k most recent Metropolis–Hastings

63

samples. In our implementation, k = min{t, 100}, where t is total number of MH samples

obtained thus far.

A HAVE-WORK message for node ρ contains the partially evaluated target posterior in Equa-

tion 4.1, the partially evaluated sum of squared likelihood terms in Equation 4.2, an index m

and, if m > 0, the state θρ. Figure 4.3 depicts the scenario where the HAVE-WORK message does

not contain θρ. In this case, the worker first generates θρ, as described in Section 4.6, and then

computes the log prior log π0(θρ). The worker replies to the master with a SET-PROPOSAL mes-

sage containing ρ, θρ and log π0(θρ). The master stores the information from this message in

the jobtree, i.e., it stores θρ and, if relevant, log π0(θρ) at node ρ.

Alternately, the HAVE-WORK message already contains the proposal, and potentially, ad-

ditional partial results; this scenario is depicted in Figure 4.4. In either case, the worker

proceeds with computing the target posterior in Equation 4.1 and sum of squared likelihood

terms in Equation 4.2, in batches of size b starting at index m. After each completed batch,

the worker sends an UPDATE message to the master containing the updated values of the

partially evaluated target posterior and sum of squared likelihood terms, as well as an in-

dex m′ > m, indicating how far these incremental computations have progressed in total. The

worker periodically checks for any ABANDON messages from the master. Upon receiving such

a message, the worker discontinues work on node ρ and sends the master a WANT-WORK mes-

sage. We depict this scenario in Figure 4.5. In our implementation, the worker makes these

checks after each completed batch. After the worker sends the last UPDATE message for the

last batch, it sends the master a WANT-WORK message.

Now suppose the master receives an UPDATE message for node ρ from a worker; we depict

such messages in Figures 4.3, 4.4 and 4.5. At node ρ in the jobtree, the master updates

its estimate of the log posterior as in Equation 4.1 and the error of this estimate as in

Equation 4.2. Next, the master updates the branch probabilities, introduced in Section 3.3,

of node ρ and any nodes for which ρ is the comparison parent. Recall that each Metropolis–

Hastings transition stochastically chooses between two states – where one is the comparison

64

Master Worker

WANT-WORK

New HAVE-WORK

SET-PROPOSAL

UPDATE

UPDATE

Last UPDATE

WANT-WORK

msc new work, no abandons

Master Worker

WANT-WORK

Partial HAVE-WORK

UPDATE

Last UPDATE

WANT-WORK

msc partial work, no abandon

2

Figure 4.4: Scenario in which a worker receives a partial HAVE-WORK message for node ρ that
already contains the state θρ, and potentially, additional partial results.

parent of the other – by comparing their posterior evaluations relative to a uniform random

variate. Consider one of these branch probability updates, such that ρ is the comparison

parent of a node corresponding to the proposal θ′ρ with uniform variate u. Recall from

Section 3.3 that the edge from a node ρ to its right child has branch probability equal to

the predictor ψρ and the edge to its left child has branch probability 1− ψρ. To update

the predictor ψρ in Equation 3.16, the master computes an estimate of the difference of log

posteriors as in Equation 3.11,

L(θρ)− L(θφ) = log π(x | θρ)− log π(x | θφ),

the error of this estimate corresponding to Equation 3.14 and the constant value

r = u
q(θ′ρ | θρ)
q(θρ | θ′ρ)

.

We elaborate on the details of this calculation in Section 4.7. In all of our experiments, the

proposal distribution q(· | ·) is symmetric, in which case r = u.

When the master applies the last update at node ρ, the node becomes complete. If both ρ

and ρ’s comparison parent are complete, then the predictor ψρ converges to the indicator in

65

Master Worker

WANT-WORK

Partial HAVE-WORK

UPDATE

ABANDON

WANT-WORK

msc new work, abandon

3

Figure 4.5: Scenario in which a worker receives an ABANDON message. If an UPDATE from a
worker results in the expected utility of the node dropping below some threshold, then the
master sends an ABANDON message.

Equation 3.3 and the master deletes the subtree with utility 0. If ρ is the child of the root

in the jobtree, i.e., the immediate transition chooses between the states at these two nodes,

then the master emits the next state of the Markov chain, which is now completely specified,

and also emits any subsequent states of the Markov chain whose predictors have already

converged to the indicator. Each time the next state of the Markov chain is emitted, the

root of the jobtree is removed and the emitted state becomes the new root. If the emitted

state corresponds to an accepted proposal, the root’s (only) child becomes the new root and

the left subtree is trimmed away. Otherwise, the proposal was rejected and old root is still

the new root, but needs to be connected to the left subtree at its left grandchild (with bit

string 01) and the right subtree is trimmed away.

If the update does not contain enough information for the predictor to converge to the

indicator, the scheduler may optionally reconsider whether further computation at node ρ is

still of interest. Recall that each updated branch probability may change the expected utilities

of descendant nodes that are pending. The master lazily updates the expected utility of ρ and

identifies a high-utility pending node φ following the procedures outlined in Sections 4.1.3

and 4.3. If the expected utility of φ is significantly greater than that of ρ, the master marks ρ

66

as pending and sends the worker an ABANDON message, depicted in Figure 4.5. Note that any

partial computations at an abandoned node remain cached on the jobtree until the node is

trimmed. Such abandoned nodes can later be reassigned to workers if their expected utility

increases relative to the active nodes. Any subsequent workers will resume computation

where the previous worker left off.

In all of our experiments, the master decides to abandon ρ if the expected utility of φ is

at least a factor of 1.1 greater than that of ρ. This threshold, which we observed empirically

to be effective, balances the ideal policy – keeping the workers active at those nodes with

highest expected utility – with the actual implementation costs of reassigning nodes to

workers, which include some bookkeeping and communication.

4.5 Managing pseudo-randomness

Prefetching schemes require careful management of pseudo-randomness to yield output that

is invariant to the number of worker cores, and, as a consequence, is exactly equal to an

equivalent serial execution. In Section 3.2.4, we outlined several strategies for achieving

this. Here, we describe our approach, in which our system synchronizes the use of pseudo-

randomness to our notion of ground truth corresponding to serial execution.

Our implementation follows directly from the mathematical framework presented in Sec-

tion 3.1. Recall that progressing from one level to the next in the MH binary tree, or

equivalently the jobtree, corresponds to one application of the MH transition operator.

For a large class of MCMC algorithms, we showed how to decompose the transition op-

erator T : X × U → X into two functions. The first function Q : X × UQ → P(X), produces

a countable set of candidate points in X , where P(X) is the power set of X . The second

function R : P(X)× UR → X then chooses one of the candidates for the next state in the

Markov chain. UQ and UR indicate disjoint subspaces of the unit hypercube U relevant to

each part of the operator. In Metropolis–Hastings, UQ corresponds to the pseudo-random

67

x0ε

x11

x201

x3001

u4
Q, u

5
Q

x3011

u4
Q, u

5
Q

u2
Q, u

3
Q

x211

x3101

u6
Q, u

7
Q

x3111

u6
Q, u

7
Q, u

8
Q, u

9
Q

u2
Q, u

3
Q, u

4
Q, u

5
Q

u0
Q, u

1
Qu0R

u1R

u2R

Figure 4.6: Consumption of pseudo-randomness with respect to the Metropolis–Hastings
jobtree. Edges are labeled by elements from the pseudo-random sequence {u0

Q, u
1
Q, u

2
Q, . . . }

consumed during proposal generation. Each layer also requires one element of a separate
pseudo-random sequence {u0

R, u
1
R, u

2
R, . . . }, shown on the left, corresponding to the uniform

random variate used in the stochastic accept/reject decision. In general, each proposal gen-
eration may require a variable number of sequence elements.

numbers consumed to generate proposals and UR corresponds to the uniform random variates

used to stochastically accept or reject proposals.

In our implementation of MH within the prefetching framework, the proposals are gen-

erated on the workers and the decision to accept or reject a proposal is made on the master.

We use two pseudo-random sequences: one on the master for the uniform variates used in

the stochastic decisions and one shared across the workers for proposal generation. In Fig-

ure 4.6, we illustrate the consumption of both sequences with respect to the MH jobtree.

The pseudo-random sequence uR = {u0
R, u

1
R, u

2
R, . . . } on the master is easy to manage; each

MH iteration consumes exactly one element in this sequence. Specifically, all possible tran-

sitions that decide between a node at depth d and its comparison parent consume the same

element udR, where the depths are indexed starting from 0 at the root. The second pseudo-

random sequence uQ = {u0
Q, u

1
Q, u

2
Q, . . . } is managed by the master and consumed by the

68

workers; all workers have access to the sequence. As discussed in Section 3.2.4, each proposal

generation can require a variable amount of pseudo-randomness, resulting in path-dependent

consumption of this sequence. Our master synchronizes the consumption of uQ to an equiv-

alent serial evaluation by using the jobtree to keep track of the sequence position before and

after each proposal is generated.

Note that we could have instead used a single pseudo-random sequences; this would cor-

respond most closely with standard implementations of serial MH and would have effectively

interleaved our two sequences. In this scenario, the uniform variates are path-dependent

rather than simply a function of MH (job)tree depth, or equivalently, iteration. Maintaining

two sequences allows all the uniform variates to be specified at the beginning of computation,

which enables their immediate use by predictors.

4.6 Generating proposals

In our implementation, the executors on the workers compute the proposals; an alternative

design could have the master compute them. Our focus is on the regime where proposal

generation is fast relative to target evaluation, thus either choice is reasonable. Given a

state θ and proposal distribution q(· | ·), a proposal θ′ ∼ q(θ′ | θ) is generated by sampling

from the distribution. A common choice is to sample according to a symmetric distribution,

e.g., a Gaussian distribution centered at θ, as in θ′ ∼ N (θ′ | θ, σ2).

The master and workers communicate to synchronize consumption of uQ across the

workers. Each proposal θ′ depends directly on its comparison parent θ as well as some

pseudo-randomness via the sequence uQ. As explained in Section 4.5, the consumption of

this sequence is, in general, path-dependent with respect to the Metropolis–Hastings job-

tree. When the master sends a worker a HAVE-WORK message indicating that the worker

needs to generate a proposal, this message also contains an index indicating the last used

position j in the uQ sequence. The worker generates the proposal, consuming k sequence

69

elements {uj+1
Q , uj+2

Q , . . . , uj+kQ }. When the worker responds with a SET-PROPOSAL message,

it includes the proposal as well as the index j + k, which the master records on the jobtree.

This allows the master to keep track of the information contained in Figure 4.6.

Notice that a proposal cannot be generated until all its ancestors in the jobtree have

already been generated, regardless of whether they correspond to accepted or rejected pro-

posals. The simplest approach would be for the master to assign a worker to a node only after

the proposal at its parent is known, i.e., after the proposals at all its ancestors have been

generated. This leads to a startup problem, where potentially many workers are available

but cannot be assigned immediately to nodes. Our solution is to enable workers to generate

the proposal θρ at node ρ from the state at its comparison parent, or if that is not available,

the comparison parent of its comparison parent, or any such ancestral comparison parent α

further back in the jobtree. To accomplish this, the master transmits a HAVE-WORK message

containing the state θα at the ancestral comparison parent α closest to ρ, the index of the

last element in uQ used to generate θα and an encoding of the path on the jobtree from α

to ρ. This code is a string indicating the sequence of right and left branches on the path.

Given this information, the worker simulates the corresponding sequence of accept and re-

ject decisions, generating each proposal on the path until it produces the desired state. The

worker then transmits a SET-PROPOSAL message containing this state and the index of the

last consumed element of uQ.

4.7 Predictor implementation

The target posteriors log π(θ |x) and log π(θ′ |x) are evaluated by separate workers, as de-

scribed in Section 4.4. Our normal model for the Metropolis–Hastings ratio based on a

subsample of size m, derived in Section 3.4, depends on the empirical mean and standard

deviation of the differences ∆n from Equation 3.11. We use an approximation to our error

model that avoids having to keep track of all these differences, since this would require extra

70

communication. The worker for θ calculates

Gm(θ) = log π0(θ) +
N

m

m∑
n=1

log π(xn | θ) (4.3)

rather than the difference mean µ̂m from Equation 3.13. Given these values, the master

can precisely compute µ̂m = Gm(θ′)−Gm(θ), but the empirical standard deviation of dif-

ferences, sm in Equation 3.14, must be estimated. Recall that for two random variables X

and Y with standard deviations σX and σY , respectively, and covariance σX,Y , the stan-

dard deviation of their difference is
√
σ2
X + σ2

Y − 2σX,Y . Also, their covariance is related to

their correlation ρX,Y and standard deviations via σX,Y = ρX,Y σXσY . Treating the likelihood

terms as random variables and combining the above two facts gives

sm =
√
Sm(θ)2 + Sm(θ′)2 − 2c̃Sm(θ)Sm(θ′) , (4.4)

where Sm(θ) denotes the empirical standard deviation of the first m terms log π(xn | θ),

and c̃ approximates the correlation between log π(xn | θ) and log π(xn | θ′). We empirically

observe this correlation to be very high; in all experiments we set c̃ = 0.9999. Note that this

approximation affects only the quality of our speculative predictions; it does not affect the

actual decision to accept or reject the proposal θ′.

4.8 Implementation details and plug-in interface

Our implementation is written primarily in C++.1 We make use of several Boost C++

libraries, including the Boost.MPI implementation of the Message Passing Interface (MPI) for

communication between the master and worker cores, its Serialization library for constructing

messages and Boost.Random for the Mersenne twister pseudo-random number generator used

by uR and uQ.

1Code for our implementation is publicly available at https://github.com/elaine84/fetching.

71

https://github.com/elaine84/fetching

Algorithm 4 Our two-core implementation of Metropolis–Hastings for Bayesian posterior
sampling with a symmetric proposal distribution. Messages are suppressed for simplicity.

Input: Initial state θ0, number of iterations T , data x, log prior log π0(θ), log likeli-
hood log π(θ |xn), proposal function θ′ ∼ q(θ′ | θ)
Output: Samples θ1, . . . , θT

log π(θ0 |x) = log π0(θ0) +
∑N

n=1 log π(xn | θ0) . Worker evaluates target at θ0

for t in 0, . . . , T − 1 do

θ′ ∼ q(θ′ | θ) . Worker generates proposal, which consumes uQ

log π(θ′ |x) = log π0(θ′) +
∑N

n=1 log π(xn | θ′) . Worker evaluates target at θ′

utR ∼ Unif(0, 1) . Master samples uniform random variate, which consumes uR

θt+1 ←

{
θ′ if log utR < log π(θ′ |x)− log π(θt |x)

θt otherwise
. Master selects next state θt+1

end for

Algorithm 4 presents a summary of our implementation of MH for Bayesian posterior

sampling, with two cores. As can be seen from this description, an instantiation of our system

depends on user-defined functions for the log prior log π0(θ), log likelihood log π(θ |x), and

proposal distribution θ′ ∼ q(θ′ | θ). Given a fixed dataset x, the log likelihood is evaluated in

batches, therefore this function also takes as arguments an index into x and batch size b. All

our experiments use symmetric proposal distributions, thus do not require a user-defined log

proposal density log q(θ′ | θ).

Our system includes a plug-in interface for these user-defined functions and supports

user functions callable from C++, Python or the command-line. The command-line inter-

face allows us to support user functions written in other popular languages for scientific

computing, such as MATLAB and R. These functions are called by executors implemented

in C++. Note that the user-defined proposal function θ′ ∼ q(θ′ | θ) must use the pseudo-

random stream uQ under the control of the master. For a pure C++ instantiation of our

system, it is straightforward to synchronize the direct use of uQ across workers. For proposal

functions written in other languages, the simplest approach is for the master to supply ap-

propriate access to uQ that the proposal function can use to seed some native pseudo-random

number generator. In particular, Python user functions can access uQ via a rand module

72

that we provide and includes familiar function interfaces, e.g., rand.random() for the next

random float in [0.0, 1.0).

We focus on describing our plug-in interface for user-defined functions written in Python

because it is a language widely used among machine learning practitioners. In the experi-

ments presented in the next chapter, all user functions are written in Python. An executor

calls Python user functions via the Boost.Python library. The user specifies these functions

as methods of a single class. Note that in their descriptions below, θ is a Python object.

• init is the first method called by the executor to perform one-off, initialization

actions such as loading the dataset x.

• data size returns N , the number of elements in x, used by the executor to track the

progress of evaluating the log likelihood.

• first proposal returns the initial state θ0, which it might generate randomly.

• next proposal takes as input θ, calls a function from our rand module, described

above, and uses the returned value to seed a Python pseudo-random number generator

that it uses to generate a proposal θ′ ∼ q(θ′ | θ).

• log prior takes as input θ and returns the log prior, log π0(θ).

• evaluate takes as input θ and returns a batch of work towards evaluating the log

likelihood,
∑N

n=1 log π(xn | θ).

• unparse proposal takes as input θ and returns a string representation that the ex-

ecutor serializes when constructing a SET-PROPOSAL message. Notice that the master

never needs to interpret this representation, it simply caches it on the jobtree.

Our user-defined Python functions make use of the NumPy package for its pseudo-random

number generator, convenient random sampling functions (e.g., for generating proposals sam-

pled from Gaussian distributions) and array operations (e.g., for the batched log likelihood

evaluations).

73

Chapter 5

Empirical evaluation

Our evaluation focuses on Metropolis–Hastings for large-scale Bayesian inference, using the

predictors described in Sections 3.4 and 4.7, though our framework can use any approxima-

tion scheme for the target distribution. Our experiments rely on realistic modeling problems

of interest to the machine learning community. Furthermore, we design our experiments to be

representative of typical MH simulation in practice. Specifically, we design each experiment

to start away from convergence, progress through burn-in and eventually converge, according

to standard statistics, while achieving a reasonable acceptance rate and number of effective

samples. In this chapter, we first describe two Bayesian inference problems that we selected

as nontrivial benchmarks – the first uses synthetic data and the second uses real data. One

challenge for our evaluation was to design benchmarks representative of realistic scenarios

involving MH sampling. This led to our adoption of an adaptive MH algorithm, which we

implemented as a small extension to our original framework for standard MH. We justify

and describe this algorithm and its implementation. We also provide a thorough explanation

of how we assess chain convergence, use this framework to provide a definition of burn-in,

and assess the quality of samples obtained after convergence. Next, we evaluate our system’s

implementation, described in Chapter 4, with up to 64 worker cores in a multicore cluster

environment. We report our main speedup results relative to serial computation in our sys-

74

tem, i.e., with one master and one worker. We then characterize the behavior of the adaptive

MH algorithm over the course of execution. This in turn helps us understand the behavior

of our predictor, which is the primary determinant behind our speedup results. To under-

stand our implementation’s inefficiencies, we present further measurements of our system’s

performance that decouple the effect of inaccurate predictions from other system overheads.

We conclude with a discussion of these overheads and suggest methods for addressing them.

5.1 Example Bayesian inference problems

We evaluate our system on both synthetic and real Bayesian inference problems. For each

problem, the posterior is a standard but interesting probabilistic model that is described

by a multidimensional parameter vector (d > 50) and whose likelihood is a function of a

large dataset (N ≥ 106). During the development of our system, we employed several other

problems as benchmarks, but do not include them in our evaluation here because they

relied on either synthetic data generated from a simple posterior model or real datasets with

relatively small numbers of data points.

5.1.1 Mixture of multidimensional Gaussians

Our first target distribution is the posterior density of the eight-component mixture of

eight-dimensional Gaussians used by Nishihara et al. (2014), where the likelihood is a

function of N = 106 samples drawn from this model. The data is thus described by a ma-

trix X ∈ RN×d, where d = 8. The posterior density over the model parameters θ is

π(θ |X) ∝ π0(θ)π(X | θ).

75

We use a uniform prior, π0(θ) ∝ 1, and the likelihood function is

π(X | θ) =
8∑

k=1

wd N (X |µk, 1) ∝
8∑

k=1

wk

N∏
n=1

e−
1
2

(xn−µk)>(xn−µk).

We use equal mixture weights, setting wk = 1 and place the means at µk = `φk − `/2,

where ` = 4 and every component of each φk is drawn uniformly at random from the in-

terval [0, 1). See Appendix A for the φk values used in our experiments. The parameter

vector θ concatenates the means µk, thus is 64-dimensional and real-valued.

5.1.2 Bayesian Lasso for photovoltaic activity

Our second target distribution is the posterior density of a Bayesian Lasso (least absolute

shrinkage and selection operator) regression that models molecular photovoltaic activity. The

likelihood involves a dataset of N = 1.8× 106 molecules described by 56-dimensional real-

valued cheminformatic features (Olivares-Amaya et al., 2011; Amador-Bedolla et al., 2013);

each response is real-valued and corresponds to a lengthy density functional theory calcu-

lation (Hachmann et al., 2011, 2014).1 Thus, the data is described by a matrix X ∈ RN×d,

where d = 56, and the responses are a (column) vector y ∈ RN .

The Lasso is a linear regression method that penalizes the absolute values of the re-

gression coefficients through an `1 penalty (Tibshirani, 1994). Assuming mean-centered

data X = x1, . . . ,xn, linear regression models the response data y = y1, . . . , yn according

to yn ∼ N (x>nβ, σ
2), where β ∈ Rd. Ordinary least squares solves for the coefficient vector β

that minimizes the sum of squared residuals,

min
β

N∑
n=1

(yn − x>nβ)2 = min
β

(y −Xβ)>(y −Xβ).

1For the specific features used here, we thank Michael Tingley.

76

Lasso adds an `1 penalty on β,

min
β

(y −Xβ)>(y −Xβ) + λ|β|1,

where |β|1 =
∑d

i=1 |βi|, for some λ ≥ 0. This penalty has the effect of encouraging β to be

sparse. Park and Casella (2008) take a Bayesian approach to the Lasso by placing a Laplace

prior on β,

π0(β |σ2) =

(
λ

2
√
σ2

)d
e−λ|β|1/

√
σ2
.

We use their hierarchical model, which places on σ2 the noninformative scale-invariant

marginal prior, π0(σ2) = 1/σ2. Thus, the full posterior for the Bayesian Lasso is

π(θ |X,y) ∝ π0(θ)π(X | θ,y) = π0(β, σ2)π(X | β, σ2,y)

= π0(σ2)π0(β |σ2)π(X | β, σ2,y)

=

(
1

σ2

)(
λ

2
√
σ2

)d
e−λ|β|1/

√
σ2

(
1√

2πσ2

)N
e(y−Xβ)>(y−Xβ),

where the likelihood term π(X | β, σ2,y) comes from the normal model y ∼ N (Xβ, σ2). The

parameter vector θ concatenates σ and β, thus it is 57-dimensional and real-valued. In our

experiments, we calculate the log posterior as the sum of the log prior,

log π0(θ) = log π0(β, σ2) = log π0(σ2) + log π0(β |σ2)

= log

(
1

σ2

)
+ d log

(
λ

2
√
σ2

)
− λ|β|1√

σ2
,

setting λ = 5.0, and the log likelihood,

log π(X,y | θ) = log π(X,y | β, σ2) = N log

(
1√

2πσ2

)
+ (y −Xβ)>(y −Xβ),

77

which is evaluated in batches as

N∑
n=1

log π(xn, yn | θ) =
N∑
n=1

log π(xn, yn | β, σ2) =
N∑
n=1

log

(
1√

2πσ2

)
+ (yn − x>nβ)2.

5.2 Adaptive proposal distribution

In all of our experiments, we use a spherical, axis-aligned Gaussian for the proposal distri-

bution, i.e.,

θ′ ∼ q(θ′ | θ) = N (θ′ | θ, λ2Id), (5.1)

where λ ∈ R+ is the standard deviation, Id is the d-dimensional identity matrix and d is the

dimension of θ. In our preliminary experiments, which we don’t include in our evaluation

here, we used a fixed proposal distribution. This was problematic because – as we discussed

in Section 2.4.1 – the behavior of MH is both sensitive to the proposal distribution and

changes over the course of execution. As a result, it was difficult to tune the parameters

of the proposal distribution to yield experiments satisfying our requirements stated at the

beginning of this chapter: each MH simulation starts away from convergence, progresses

through burn-in and eventually converges, while achieving a meaningful acceptance rate and

number of effective samples. Specifically, suppose we set the proposal distribution to achieve

an acceptance rate of about 0.234 during the burn-in phase. MH advances until it is close to

a mode of the target, but there the proposals tend to be far from the mode and thus have

low probability. This results in a high rate of rejection and the algorithm becomes stuck.

Alternately, if we tune the proposal distribution to sample well around such a mode of the

target distribution, then the characteristic step size tends to be much smaller than before

and progress is artificially slow during burn-in.

Our solution employs a simple adaptive scheme to set the parameters of the proposal

distribution, improving convergence relative to standard MH. This approach falls under the

provably convergent adaptive algorithms studied by Andrieu and Moulines (2006) and was

78

easily incorporated into our framework. The general idea behind adaptive MH is to improve

performance by tuning the proposal distribution during execution, using information from

the samples as they are generated, in a way that converges asymptotically. Often, it is

desirable for the proposal distribution to be close to the target. This motivates adaptive

schemes that fit a distribution to the observed samples and use this fitted model as the

proposal distribution. For example, a simple online procedure can update the mean µ and

covariance Σ of a multidimensional Gaussian model as follows:

µt+1 = µt + γt+1(θt+1 − µt) t ≥ 0

Σt+1 = Σk + γt+1((θt+1 − µt)(θt+1 − µt)> − Σt),

where t indexes the MH iterations and γt+1 controls the speed with which the adaptation van-

ishes. An appropriate choice is γt = t−α for α ∈ [1/2, 1). The tutorial by Andrieu and Thoms

(2008) provides a review of this and other, more sophisticated, adaptive MH algorithms.

Our adaptive scheme directly uses information about whether proposals are accepted

or rejected to tune the proposal distribution to achieve an acceptance rate of approxi-

mately 0.234. Let ρ be a node in the MH binary tree. Denote by 1ρ the indicator for whether θρ

corresponds to an accepted or rejected state, i.e.,

1ρ =

1 if ρ is a right child in the MH binary tree

0 if ρ is a left child in the MH binary tree.

Our strategy is to increase λ, the scale of our proposal distribution in Equation 5.1, if the

acceptance rate is too high and decrease it if the acceptance rate is too low. Our adaptive

rule achieves this by modifying ` = log λ2, the log of the variance, as follows:

`t+1 = γt+1(1ρ − 0.234).

79

We set `0 = log(2.382/d), which corresponds to the proposal distribution with the “optimal”

acceptance rate of 0.234, derived for the case where the target is a standard d-dimensional

normal distribution, in the limits where the chain has converged and d→∞ (Roberts et al.,

1997). We empirically found γt = t−1/2 to work well. Our adaptive approach can be general-

ized to more complicated proposal distributions, but we did not need any for our experiments.

To support this adaptive MH algorithm within our prefetching framework, we made a

simple extension to our system. In general, adaptive MH depends on the history of the

simulated chain. Our adaptive scheme depends on the sequence of accepted and rejected

states, i.e., the chain’s path through the MH binary state tree. Given an initial value for `0,

the trajectory of `t is completely determined by this path. Thus, whenever we create a

new node ρ in the jobtree, we generate the corresponding value of `ρ and store it on the

node. This information, which is stored on the master, is communicated to a worker, via

a HAVE-WORK message, when called upon to generate the proposal at ρ.

For our mixture of Gaussians problem, we follow the standard convention of additionally

permuting the dimension labels each time a proposal is generated. In the Bayesian Lasso

problem, the first coordinate of θ is a standard deviation and must be positive, so we truncate

this dimension of the proposal distribution accordingly.

5.3 Assessing chain convergence and quality

We assess chain convergence using the Gelman-Rubin statistic known as R̂ (Gelman and

Rubin, 1992); the description here follows that in their classic textbook (Gelman et al.,

2003). Suppose we run S separate chains such that each produces T samples. Let θts ∈ Rd

refer to sample t in chain s. Let ψts = f(θts) where f : Rd → R is some scalar function of θts,

e.g., f could be the log posterior, or alternatively, the first coordinate of θts. First, we compute

80

the between-chain variance

B =
T

S − 1

S∑
s=1

(ψ̄·s − ψ̄··)2, where ψ̄·s =
1

T

T∑
t=1

ψts and ψ̄·· =
1

S

S∑
s=1

ψ̄·s,

and the within-chain variance

W =
1

S

S∑
s=1

δ2
s , where δ2

s =
1

T − 1

T∑
t=1

(ψts − ψ̄·s)2.

Now we can estimate the marginal posterior variance of ψ as

ν =
T − 1

T
W +

1

T
B.

The estimate of the scale of the distribution of ψ is then
√
ν. Notice that limT→∞ ν = W .

This makes sense because each chain asymptotically samples from the correct distribution.

Furthermore, ν > W whenever B > W , which tends to be true before the chains have con-

verged, i.e., differences between samples from different chains are greater than differences

within chains. The quantity R̂ =
√
ν/W estimates the amount by which this scale would

decrease if the simulations were continued to the limit T →∞. Notice that in this limit, R̂

converges to 1. Furthermore, R̂ tends to decrease toward 1, following the above reasoning

about ν. A common heuristic is to consider values of R̂ < 1.1 as acceptable; lower cut-off

values are considered better.

In our experiments, S ≥ 2 and we run each chain for at least 50000 iterations. We

define ψ
(i)
ts to be the ith coordinate of θts ∈ Rd and assess convergence for each dimension

of θ separately; define R̂(i) to be R̂ evaluated for the ith coordinate. Our objective is to

identify a point at which R̂(i) reaches a reasonable value across all dimensions of θ. For

each dimension, we compute R̂(i) for increasingly longer subsequences of ψ
(i)
·s . We consider

subsequences of length L starting at t = 1 and always discard the first half, thus T = L/2;

this sort of discarding of samples is another commonly used guideline. Using the second half

81

of the subsequence, we compute R̂(i) for increasing values of L, until we observe R̂(i) < 1.05

for all dimensions i = 1, . . . , d. We define burn-in to be the period before we observe this to

be true.

We also assess the quality of the samples obtained after burn-in. For each dimension, we

measure the effective number of samples, defined by Gelman et al. (2003) as neff = STν/B.

We consider increasingly shorter subsequences of samples that start at varying points after

burn-in and extend to the end of the experiment; we do not discard any additional samples.

We note that neff does not monotonically decrease as we consider these shorter subsequences.

Therefore, we identify a subsequence of samples that approximately maximizes the average

value of neff across dimensions.

5.4 Speedup results

We evaluate our system with up to 64 worker cores in a multicore cluster environment in

which machines are connected by 10Gb ethernet and each machine has 32 cores (four 8-core

Intel Xeon E7-8837 processors).

We expect predictive prefetching to perform best when the densities at a proposal and

corresponding current point are significantly different, which is common in the initial burn-in

phase of chain evaluation. In this phase, early estimates based on small subsamples effectively

predict whether the proposal is accepted or rejected. When the density at the proposal is close

to that at the current point – for example, as the proposal distribution approaches the target

distribution – the outcome is inherently difficult to predict; early estimates will be uncertain

or even wrong. Incorrect estimates could destroy speedup (no precomputations would be

useful). We hope to do better than this worst case, and to at least achieve logarithmic

speedup. In our experiments, we divide the evaluation of the target function into 100 batches.

Thus, for the Gaussian mixture problem, each subsample contains 104 data items, and for

the Bayesian Lasso problem, each subsample contains 1.8× 104 data items.

82

Burn-in
J i1 = 9575 i2 = 24000 i3 = 50000

1 16674 — 41978 — 87500 —
16 2730 6.1× 8678 4.3× 20318 4.3×
32 1731 9.6× 7539 5.6× 19046 4.6×
64 989 16.8× 5894 7.1× 15146 5.8×

Table 5.1: Cumulative time (in seconds) and speedup for evaluating the Gaussian mixture
model with different numbers of workers J .

standard
mean deviation min max

neff 3405 7253 50 26000

R̂ 1.005 0.006 1.000 1.020

Table 5.2: Convergence statistics after burn-in (over iterations i2–i3) for the Gaussian mixture
model, computed over the 64 dimensions of the model.

Table 5.1 shows the results for the Gaussian mixture model. We run the model with the

same initial conditions and pseudorandom sequences with varying numbers of worker threads.

All experiments produce identical chains. We evaluate the cumulative time and speedup

obtained at three different iteration counts. The first, i1 = 9575 iterations, is burn-in. After i1

iterations, all dimensions of samples achieve the Gelman-Rubin statistic R̂ < 1.05, computed

using two independent chains, where the first i1/2 samples have been discarded (Gelman

and Rubin, 1992). We then run the model further to i3 iterations. Iterations i2 = 24000

through i3 = 50000 are used to compute an effective number of samples neff. (Table 5.2

shows convergence statistics after i3 iterations.) The results are as we hoped. The initial

burn-in phase obtains better-than-logarithmic speedup (though not perfect linear speedup).

With 64 workers, the chain achieves burn-in 16.8× faster than with one worker. After burn-

in, efficiency drops as expected, but we still achieve logarithmic speedup (rather than sub-

logarithmic). At 50000 iterations, speedup for each number of workers J rounds to log2 J .

Figure 5.1 explains these results by graphing cumulative speedup over the whole range of

iterations. The initial speedup is good – we briefly achieve more than 30× or 40× speedup, de-

pending on the initial condition, at J = 64 workers. As burn-in proceeds, cumulative speedup

83

0 10000 20000 30000 40000 50000
iteration

0

10

20

30

40

50

sp
e
e
d
u
p

64 workers
32 workers
16 workers
1 worker

0 10000 20000 30000 40000 50000
iteration

0

10

20

30

40

50

sp
e
e
d
u
p

64 workers
32 workers
16 workers
1 worker

Figure 5.1: Cumulative speedup relative to our baseline, as a function of the number of MH
iterations, for the mixture of Gaussians problem. The two figures correspond to different
initial conditions, and the different curves correspond to different numbers of workers. Pale
blue shading highlights the burn-in phase, i.e., the first i1 = 9575 iterations.

falls off to logarithmic in J . Figure 5.2 shows cumulative speedup for the Gaussian mixture

model with several different initial conditions. Each initial condition is drawn from the same

generative model as the model parameters, as described in Section 5.1.1. We see a range of

variation due to differences in the adaptive scheme during burn-in. The overall pattern is sta-

ble, however: good speedup during burn-in followed by logarithmic speedup later. Also note

84

0 10000 20000 30000 40000 50000
iteration

0

10

20

30

40

50

sp
e
e
d
u
p

Figure 5.2: Cumulative speedup relative to our baseline, as a function of the number of
MH iterations, for the mixture of Gaussians problem. The different curves correspond to
different initial conditions; all curves are for 64 workers. Pale blue shading highlights the
burn-in phase, i.e., the first i1 = 9575 iterations.

that speedup does not necessarily decrease steadily, or even monotonically. At some initial

conditions, the chain enters an easier-to-predict region before truly burning in; while in such

a region, speedup is maintained. Our system takes advantage of these regions effectively.

Figure 5.3 shows that good speedups are achievable for real problems. The speedup be-

havior for the Bayesian Lasso problem appears similar to that of the mixture of Gaussians.

There are differences, however: Lasso evaluation did not converge by 50000 iterations ac-

cording to standard convergence statistics. On several initial conditions, the chain started

taking small steps, and therefore dropped to logarithmic speedup, before achieving conver-

gence. Overall performance might be improved by detecting this case and switching some

speculative resources over to other initial conditions, an idea we leave for future work.

85

0 10000 20000 30000 40000 50000
iteration

0

10

20

30

40

50

sp
e
e
d
u
p

64 workers
32 workers
16 workers
1 worker

0 10000 20000 30000 40000 50000
iteration

0

10

20

30

40

50

sp
e
e
d
u
p

64 workers
32 workers
16 workers
1 worker

0 10000 20000 30000 40000 50000
iteration

0

10

20

30

40

50

sp
e
e
d
u
p

64 workers
32 workers
16 workers
1 worker

Figure 5.3: Cumulative speedup relative to our baseline, as a function of the number of
MH iterations, for the Bayesian Lasso problem. The different curves correspond to different
numbers of workers. The different figures are for different initial conditions.

86

5.5 Adaptive Metropolis–Hastings behavior

Figure 5.4 illustrates the behavior of our adaptive Metropolis–Hastings algorithm for the

mixture of Gaussians problem. This procedure, described in Section 5.2, adaptively tunes the

proposal distribution to achieve an acceptance rate of 0.234. Specifically, it tunes ` = log λ2,

where λ is the scale of the spherical Gaussian proposal distribution. Note that the adaptation

is not affected by prefetching. Figure 5.4a plots a trace of the local acceptance rate, which

we defined in Section 4.4 to be the empirical acceptance rate observed during the simulation

of the k most recent MH samples. In our experiments, k = min{t, 100}, where t is total

number of MH samples obtained thus far. During burn-in, the local acceptance rate varies

broadly, nearly over the entire range of [0.0, 0.5], and afterward settles around the target

value of 0.234. Recall that we define burn-in as the first i1 = 9575 iterations, as described

in Section 5.4 and reported in Table 5.1. Figure 5.4b plots the trajectory of the adapted

parameter. As expected, the values of ` are larger during burn-in – when proposals can be

made father away without suffering from rejection – than afterward. From its initial value, `

generally decreases during burn-in, though not monotonically, until it stabilizes to a small

value after convergence.

87

0 5000 10000 15000 20000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

lo
ca

l
a
cc

e
p
t

ra
te

(a) Adaptation during execution of the local acceptance rate.

0 5000 10000 15000 20000
iteration

16

14

12

10

8

6

4

2

0

sc
a
le

(b) Adaptation during execution of the proposal distribution’s scale parameter, ` = log λ2.

Figure 5.4: Behavior of our adaptive Metropolis–Hastings algorithm, which (a) achieves the
target acceptance rate of 0.234 by (b) tuning the proposal distribution. Pale blue shading
highlights the burn-in phase, after which the local acceptance rate settles around the target
value and the proposal scale parameter stabilizes.

88

102 103 104 105 106

-4 ×105

-2 ×105

0

2 ×105

4 ×105

lo
g
(M

H
 r

a
ti

o
)

e
st

im
a
te

Model of the MH ratio and acceptance probability

102 103 104 105 106

subsample size (m)

0.0

0.2

0.4

0.6

0.8

1.0

p
re

d
ic

to
r

(ψ
(m

)
ρ

)

Figure 5.5: Example predictor trajectories for the mixture of Gaussians problem during burn-
in. The upper subfigure plots the estimate of log of the MH ratio as a function of subsample
size m. The shaded region around each trace indicates one standard deviation in our error
model. The lower subfigure plots the predictor ψ

(m)
ρ as a function of m. Different colors

indicate different (θ, θ′) pairs. Each set of traces corresponds to a sequence of MH iterations.

5.6 Estimate, error model and predictor behavior

In this section, we describe the behavior of our predictor for the mixture of Gaussians

problem. The predictor depends on the estimate for the log of the Metropolis–Hastings ratio,

the normal error model for this estimate and a uniform random variate u. Figures 5.5 and 5.6

show the behavior of the estimate, its error and the subsequent predictors (for randomly

chosen u) during and after burn-in, respectively. At the beginning of burn-in, estimates are

89

102 103 104 105 1061000

500

0

500

1000

lo
g
(M

H
 r

a
ti

o
)

e
st

im
a
te

Model of the MH ratio and acceptance probability

102 103 104 105 106

subsample size (m)

0.0

0.2

0.4

0.6

0.8

1.0

p
re

d
ic

to
r

(ψ
(m

)
ρ

)

Figure 5.6: Example predictor trajectories for the mixture of Gaussians problem after burn-
in. The upper subfigure plots the estimate of log of the MH ratio as a function of subsample
size m. The shaded region around each trace indicates one standard deviation in our error
model. The lower subfigure plots the predictor ψ

(m)
ρ as a function of m. Different colors

indicate different (θ, θ′) pairs. Each set of traces corresponds to a sequence of MH iterations.

effective, and the predictor converges quite quickly to the correct (final) indicator. After

burn-in, the new proposal’s target density is close to the old proposal’s, and the estimates

are similarly hard to distinguish. Notice that the scale of the log of their ratio is orders of

magnitude smaller after burn-in compared to the beginning of burn-in. The random variate u

could be small enough for the predictor to converge quickly to 1; more often, the predictor

varies widely over time, and does not converge to 0 or 1 until almost all data are evaluated.

This behavior makes logarithmic speedup a best case. Luckily, the predictor is more typically

uncertain (with an intermediate value) than wrong (with an extreme value that eventually

90

102 103 104 105 106
-6.5 ×106

-6.0 ×106

-5.5 ×106

lo
g
(p

o
st

)
e
st

im
a
te

Example trajectories of estimates and error

current state, θ

proposal, θ′

102 103 104 105 106

-1 ×105

0

1 ×105

lo
g
(M

H
 r

a
ti

o
) estimate

102 103 104 105 106

subsample size (m)

10-4

10-2

100

|r
e
la

ti
v
e
 e

rr
o
r|

(l
o
g
 s

ca
le

)

actual model (1σ) model (2σ)

Figure 5.7: Estimates and error during burn-in. Each subfigure plots traces as a function of
subsample size. The upper subfigure plots the estimates of the log posterior at the current
state (solid blue) and proposal (dotted red). The middle subfigure plots the estimate of the
log MH ratio (solid line), with shaded regions indicating one (dark) and two (light) times the
standard error. The lower subfigure plots on a log scale the absolute error of this estimate
relative to the true (final) value (solid blue), as well as one (dashed green) and two (dotted
cyan) times the standard error.

flips to the opposite value): incorrect predictors could lead to sublogarithmic speedup.

Our estimates depend on the order in which the data are evaluated. In general, we might

be worried about malicious orderings of the data, which could lead to biased estimates, bad

predictors and performance degradation. In our experiments, we permute the data once at

the very beginning. A more sophisticated solution would be to occasionally re-permute the

data during execution, e.g., every 20 iterations or so. Our current implementation could be

91

102 103 104 105 106

-3.8 ×106

-3.7 ×106

-3.6 ×106

-3.5 ×106

lo
g
(p

o
st

)
e
st

im
a
te

Example trajectories of estimates and error

current state, θ

proposal, θ′

102 103 104 105 106

500

0

500

lo
g
(M

H
 r

a
ti

o
) estimate

102 103 104 105 106

subsample size (m)

10-1

101

103

|r
e
la

ti
v
e
 e

rr
o
r|

(l
o
g
 s

ca
le

)

actual model (1σ) model (2σ)

Figure 5.8: Estimates and error at convergence, analogous to Figure 5.7.

modified to support this, but care would be required to avoid hurting performance. For ex-

ample, suppose we decide to permute the data after accepting state θ′. At the next iteration,

MH compares θ to θ′, but each is now associated with a different ordering of the data. This

is unfavorable because our predictors work best when the data are evaluated in the same

order for both θ and θ′.

Figures 5.7 and 5.8 illustrate, in greater detail, the evolution of the MH ratio estimate,

during and after burn-in, respectively. Each upper subfigure separately plots the estimates

of the log posterior at the current state and the proposal. These traces are highly correlated,

since the log likelihoods at the current state and proposal are highly correlated for each

datum. At the beginning of burn-in, the correlation between log π(θ |xi) and log π(θ′ |xi)

92

102 103 104 105 106
-6.5 ×106

-6.0 ×106

-5.5 ×106

lo
g
(p

o
st

)
e
st

im
a
te

Example trajectories of estimates and error

current state, θ

proposal, θ′

102 103 104 105 106

-1 ×105

0

1 ×105

lo
g
(M

H
 r

a
ti

o
) estimate

102 103 104 105 106

subsample size (m)

10-4

10-2

100

102

|r
e
la

ti
v
e
 e

rr
o
r|

(l
o
g
 s

ca
le

)

actual model (1σ) model (2σ)

Figure 5.9: Estimates and näıve error model during burn-in. The estimates are the same as
in Figure 5.7, but the error is significantly worse. Note that the scales of all the axes are the
same as those in Figure 5.7.

is greater than 0.9; after convergence, it is greater than 0.9999. This summarizes why it

becomes more difficult to predict whether a proposal will be accepted or rejected – the

target evaluations at θ and θ′ are practically indistinguishable. Each middle subfigure plots

the corresponding estimate of the log MH ratio, which cross the dotted line at zero whenever

the above estimates cross. Shading around the estimate corresponds to our error model. Each

lower subfigure plots the error of this estimate relative to the true (final) value on a log scale;

our model is consistent with the actual error.

Our choice of error model has a significant impact on the predictors we form to make

scheduling decisions. Figure 5.9 illustrates a näıve approach, briefly mentioned in Section 3.4,

93

102 103 104 105 106

-4 ×105

-2 ×105

0

2 ×105

4 ×105

lo
g
(M

H
 r

a
ti

o
)

e
st

im
a
te

Model of the MH ratio and acceptance probability

102 103 104 105 106

subsample size (m)

0.0

0.2

0.4

0.6

0.8

1.0

p
re

d
ic

to
r

(ψ
(m

)
ρ

)

Figure 5.10: Example predictor trajectories for the mixture of Gaussians problem during
burn-in. The trajectories and estimates are the same as in Figure 5.5, but here we use the
näıve error model, as in Figure 5.9.

that separately models the estimates for the log posteriors at θ and θ′ without capturing

the correlation between log π(θ |xi) and log π(θ′ |xi). As expected, the estimates for the full

log posteriors are the same as before, but the estimated error is dramatically larger. This

translates to inaccurately high uncertainty in the estimates and would result in needlessly

conservative speculation. This is illustrated in Figure 5.10, which by comparison to Fig-

ure 5.5 shows that the näıve error model results in predictors that must evaluate about an

order of magnitude more data to converge. Note that these examples are representative of

the beginning of burn-in; we expect the predictors to require even more data to converge

as the execution progresses. Thus with the näıve error model, we would expect predictive

94

prefetching to yield smaller benefits.

To see how predictor behavior changes over the course of execution, we track two quan-

tities during execution that summarize the trajectory of each predictor concerned with an

accept/reject decision on the true Markov chain path. Figure 5.11a plots the threshold posi-

tion, which we define as the smallest number of batches evaluated after which the predictor

does not cross 0.5, i.e., one greater than the last batch leading to an incorrect prediction. Re-

call that in our experiments, the total number of batches is 100. The threshold position tends

to increase over the course of execution, with a relatively sharp phase transition from burn-in

to convergence. After convergence, essentially all the data must be inspected. Figure 5.11b

plots the flip count, which we define as the number of times the predictor crosses 0.5, i.e., the

number of times it “changes its mind” about whether the proposal will be accepted or re-

jected. The flip count also tends to increase over the course of execution, though it doesn’t

exhibit quite the dramatic transition as the threshold position. Both threshold position and

flip count exhibit behavior consistent with Figures 5.5 and 5.6.

95

0 5000 10000 15000 20000
iteration

0

20

40

60

80

100

th
re

sh
o
ld

 p
o
si

ti
o
n

(a) Threshold position.

0 5000 10000 15000 20000
iteration

0

5

10

15

20

25

30

fl
ip

 c
o
u
n
t

(b) Flip count.

Figure 5.11: Summaries of predictor behavior. Note that the data have been downsampled
by a factor of five, and pale blue shading highlights burn-in. (a) The threshold position tends
to increase over the course of execution. (b) The flip count tends to increase over the course
of execution. For visual clarity, we have added a small amount of jitter, distributed uniformly
and randomly on [0, 0.4), to the integer-valued counts.

96

5.7 System measurements

In the previous section, we presented our main evaluation in terms of speedup. Here, we

explain these results through measurements that characterize our system’s behavior. As

expected, we do not achieve perfect speedup, and the dominant reason is that only some

of the speculative computation performed by workers is useful ; any extra computation is

not useful and we call it wasted. Figure 5.12 illustrates the distribution of useful (blue) and

wasted (light gray) work on the Metropolis–Hastings binary tree, for a particular simulation

path corresponding to the true output (thick arrows). Ignoring communication and other

system overheads, perfect speedup is achieved when computation is performed only at the

useful nodes. Lower efficiency is the result of wasted computation at other nodes and is given

by the fraction of total computational time spent on useful work. Ideally, efficiency would

equal 1, leading to perfect speedup. In practice, efficiency is less than 1 due to wasted work

and other overheads. The measurements below explain these inefficiencies. In this section

we focus on the mixture of Gaussians problem with 64 workers, specifically, the experiment

using the second initial condition shown in Figure 5.1, with N = 106 data in the likelihood,

evaluated in 100 batches.

During execution, our system exhibits different phases of behavior. Figure 5.13 plots

overall progress as a function of wall clock time. There are two main phases: during and

after burn-in. Progress is roughly constant within each phase and at least three times faster

during burn-in than afterward; at least the first 10% of burn-in is even faster. From this

trace, we choose iteration counts representative of these three phases: 500, 5000 and 15000.

Below, we present a decomposition of how computational resources are utilized, at each of

these iteration counts, on both the workers and the master.

Over the course of execution, we measured the total time all worker cores spent on

five different tasks: generating useful proposals, wasted proposals, useful target evaluation,

wasted target evaluation and waiting for a work assignment from the master. Figure 5.14

summarizes these results by plotting the fraction of time spent performing useful work (blue),

97

xtε

xt+1
0

xt+2
00

xt+3
000 xt+3

001

xt+2
01

xt+3
010 xt+3

011

xt+1
1

xt+2
10

xt+3
100 xt+3

101

xt+2
11

xt+3
110 xt+3

111

Figure 5.12: Metropolis–Hastings binary tree. Suppose that the thick arrows connect samples
output by the algorithm. The blue circles then highlight nodes where computation must be
performed, corresponding to useful work. When a prefetching scheme performs computation
at the light gray nodes, this wasted work does not advance computation. Each remaining
node is a copy of its parent and thus does not demand new computation.

0 1000 2000 3000 4000
wall clock time (s)

0

5000

10000

15000

20000

it
e
ra

ti
o
n

Progress during execution

Figure 5.13: Progress as a function of wall clock time, in seconds, for the mixture of Gaussians
problem with 64 workers. This experiment is the same as the second in Figure 5.1. The dotted
horizontal lines are at 500, 5000 and 15000 iterations and correspond to the three iteration
counts highlighted in Figures 5.14 and 5.15. We plot the progress out to 20000 iterations;
the behavior remains stable for the remainder of the experiment, out to 50000 iterations.

98

500 5000 15000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
ti

m
e

Utilization on average worker

worker wait

wasted work

useful work

Figure 5.14: Cumulative fraction of time an average worker (64 total) spent performing useful
(blue) or wasted (light gray, hatched) work, and waiting for work (light gray), normalized
with respect to wall clock time, at three representative iteration counts. These measurements
do not include the initial start-up time before each worker sends its first WANT-WORK message.
After 500 iterations, this corresponds to less than 5% of the elapsed time.

wasted work (light gray, hatched) and waiting (light gray, solid). The fraction of time spent

on useful work corresponds to efficiency and decreases as execution progresses. Figure 5.15

shows utilization on the master, divided into time spent acting in response to worker messages

(blue) and time spent waiting for worker messages (light gray). Utilization on the master is

stable for the entire execution; the master is active for less than 5% of the time.

Finally, Figure 5.16 plots the number of allocated jobtree nodes, i.e., nodes explicitly rep-

resented in the jobtree stored on the master, over the course of execution, for 64 workers. We

record this number at the end of each MH iteration. During burn-in, there are usually hun-

dreds of allocated jobtree nodes, spanning less than 100 to greater than 500 during this time.

In this phase, the prefetching is more aggressive, leading to irregular but deeper tree shapes

that grow in the number of allocated nodes as predictions change. The number of allocated

nodes decreases, sometimes sharply, whenever portions of the jobtree are trimmed. After

convergence, the number of allocated nodes stabilizes to a much smaller range around 64,

99

500 5000 15000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
ti

m
e

Utilization on master

master wait

master work

Figure 5.15: Cumulative fraction of time on master spent acting in response to messages
from 64 workers (blue) and waiting for worker messages (light gray), normalized with respect
to wall clock time, at three representative iteration counts.

0 5000 10000 15000 20000
iteration

0

100

200

300

400

500

600

700

a
llo

ca
te

d
 n

o
d
e
s

Figure 5.16: The number of allocated jobtree nodes during execution. Note that the data
have been collected upon completion of each iteration and downsampled by a factor of five.

the number of workers. Then, the predictions are more or less ambiguous, and our prefetch-

ing scheme eventually looks more like the näıve scheme that densely allocates nodes starting

at the root of the tree.

100

5.8 System overheads

The primary bottleneck in our implementation is due to the fan-in at the master. Specifically,

our performance is sensitive to the rate at which the master must process messages from

the workers, which scales with both the number of workers and the number of batches per

target function evaluation. When the master is overwhelmed by messages, the workers end

up waiting for work assignments, which decreases the fraction of time they spend on useful

work. In Section 5.7, we summarized utilization on an average worker and the master, for

the mixture of Gaussians problem with 64 workers, where the likelihood is evaluated in 100

batches. In this case, the average worker waits for less than 1% of the time and the master

works for less than 5% of the time. Figures 5.17 and 5.18 illustrate the behavior for the same

problem,2 where we have decreased the batch size by a factor of 10, i.e., increased to 1000

batches per likelihood evaluation. By 10000 iterations, the average worker spends about 10

times longer waiting (8% of the time) and the master spends 5 to 6 times longer working

(25% of the time).

We could address this issue in several ways: decreasing the number of batches per tar-

get evaluation, eliminating the need for WANT-WORK messages and dividing the work of the

master among multiple cores. In our current design, we use a constant batch size for our

updates. However, this does not reflect information from our error model, which character-

izes predictor uncertainty. For example, once we are relatively confident that a predictor has

converged, then there isn’t much advantage to sending updates in batches. Alternatively,

when the error model indicates high uncertainty, the predictions carry little weight and not

much information is gained until essentially all the data are evaluated. With larger batch

sizes, we would probably want workers to periodically check for ABANDON messages during the

evaluation of the batch – recall that these can be triggered by any update in the jobtree asso-

ciated with any ancestral node. Also currently, the master does not assign work to a worker

until it receives a WANT-WORK message, even though the master knows via UPDATE messages

2We note that the initial conditions are different.

101

500 5000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
ti

m
e

Utilization on average worker

worker wait

wasted work

useful work

Figure 5.17: Cumulative fraction of time an average worker (64 total) spent performing useful
(blue) or wasted (light gray, hatched) work, and waiting for work (light gray), normalized
with respect to wall clock time. The number of batches per likelihood evaluation is 10 times
greater than in Figure 5.14, and the workers spend about 10 times longer waiting for work.

when the worker is approaching the end of an assignment or alternately decides when the

worker should stop its current assignment. Thus, potential improvements could come from

two modifications: the master could eagerly send a HAVE-WORK message to a worker as soon

as it recognizes that the worker is nearing the end of the assignment, and it could also

combine a HAVE-WORK message with an ABANDON message. Note that in the first of these, we

wouldn’t want the HAVE-WORK messages to be sent too eagerly, since they would be based

on potentially stale predictions. Another strategy for achieving better scalability would be

to introduce multiple submasters, where each is responsible for managing a portion of the

jobtree. We leave investigation of all these ideas as future work.

102

500 5000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
ti

m
e

Utilization on master

master wait

master work

Figure 5.18: Cumulative fraction of time on master spent acting in response to messages
from 64 workers (blue) and waiting for worker messages (light gray), normalized with respect
to wall clock time. The number of batches per likelihood evaluation is 10 times greater than
in Figure 5.15, and utilization of the master is 5 to 6 times higher.

103

Chapter 6

Conclusions and generalizations

We presented parallel predictive prefetching, a general framework for accelerating many

widely used MCMC algorithms that are inherently serial and often slow to converge. Our

approach applies to MCMC algorithms whose transition operator can be decomposed into

two functions: one that produces a countable set of candidate proposal states and a second

that chooses the next state from among these. Predictive prefetching uses parallel cores and

speculative computation to exploit the common setting in which generating proposals is

computationally fast compared to the evaluation required to choose from among them and

this latter evaluation can be approximated quickly. Our first focus has been on the MH algo-

rithm, in which predictive prefetching exploits a sequence of increasingly accurate predictors

for the decision to accept or reject a proposed state. Our second focus has been on large-scale

Bayesian inference, for which we identified an effective predictive model that estimates the

likelihood from a subset of data. The key insight is that we model the uncertainty of these

predictions with respect to the difference between the likelihood of each datum evaluated at

the proposal and current state. As these evaluations are highly correlated, the variance of

the differences is much smaller than the variance of the states evaluated separately, leading

to significantly higher confidence in our predictions. This allows us to justify more aggressive

use of parallel resources, leading to greater speedup with respect to serial execution or more

104

näıve prefetching schemes.

The best speedup that is realistically achievable for this problem is sublinear in the

number of cores but better than logarithmic, and our results achieve this. As noted in Sec-

tion 3.5.3, it would be straightforward to combine predictive prefetching with parallelism at

each node; we would expect this to yield much better speedups for the Bayesian inference

problems we considered, which lend themselves to this kind of parallelism. Our empirical

evaluation only studied Bayesian inference problems, for which we constructed fast approxi-

mations to the target density via data subsets. Other common approximations for probability

distributions are formed from Taylor series expansions, e.g., as used by Christen and Fox

(2005), and linear or Gaussian process regressions, e.g., as used by (Conrad et al., 2014).

Our approach generalizes both to schemes that learn an approximation to the target density

and to other MCMC algorithms with more complex structure, such as slice sampling and

more sophisticated adaptive techniques.

In predictive prefetching, we maintain a tree data structure where each node corresponds

to a set of parameters at which it might be useful to evaluate the target density; each node

is associated with a utility. In our system, the master core represents the tree and sched-

ules workers to the highest utility nodes. Each worker incrementally evaluates the assigned

target, and each partial computation updates node utilities. Subsequently, the master might

instruct workers to abandon their current work and reassign them to different nodes. The

master caches partial computations at abandoned nodes and can later have other workers

recommence where previous workers were stopped. Our approach is reminiscent of a recent

Bayesian optimization algorithm by Swersky et al. (2014). Bayesian optimization alternates

between proposing a set of parameters and evaluating them with respect to some potentially

expensive objective function. In particular, these could be the hyperparameters to a machine

learning model that take a long time to fit (Snoek et al., 2012). Swersky et al. combine a

cache of ‘frozen’ partial evaluations, the ability to ‘thaw’ and continue these evaluations, a

pool of new candidate parameters that haven’t been evaluated at all, and an information

105

theoretic utility model to decide what to evaluate next, i.e., something frozen or something

new. In this setting, all potential evaluations yield some information, but the amount of in-

formation gained depends on the evaluations that have been performed already – e.g., once

a particular parameter setting has been (partially) evaluated, other nearby parameter evalu-

ations may not be expected to add much information. In contrast, in our setting, a constant

but a priori unknown subset of potential computations must be performed; all other specu-

lative computations are wasteful and eventually known to have zero utility. We note that the

parallel Bayesian optimization strategy developed by Snoek et al. (2012), which sequentially

decides what parameters to evaluate next, could be extended to incorporate the freeze-thaw

framework.

An important contribution of our research has been to provide greater exposure to

prefetching ideas, which did not appear to be well-known when we began. In response to our

publication of a short version of this work on arXiv,1 a statistician published a review of our

work on his blog, indicating that he had previously been unfamiliar with prefetching (Robert,

2014). We are happy to report that, with colleagues, he has since combined näıve prefetching

with a delayed acceptance method (Banterle et al., 2014). We hope that other researchers

will also find prefetching ideas to be useful and develop more powerful predictive prefetching

techniques, in particular.

Our curiosity in speculative execution is not limited to prefetching for MCMC – we are

broadly interested in it as a general computational technique. In fact, this dissertation grew

out of prior research that developed a computational model for exploiting speculative ex-

ecution to parallelize serial programs (Waterland et al., 2013, 2014). This dissertation is a

focused study of the power of speculative execution, applied to a particular class of algo-

rithms. Our system architecture presented in Chapter 4 shares some similarities with the

architecture developed in our prior work. In both, a master manages the state of compu-

tation and schedules workers to perform (speculative) computation; workers also generate

1This article has since been published in peer-reviewed conference proceedings (Angelino et al., 2014).

106

information used to form probabilistic predictions about what work to perform next. There

are also significant differences; in particular, our work with MCMC makes explicit use of

algorithm-level semantics and structure – this information is distilled in our central data

structure, the jobtree.

Our study of MCMC in the context of speculative execution is in the spirit of a recent

area of work that develops new parallel machine learning algorithms by adapting ideas from

the systems community, especially database research. Most of this work focuses on optimiza-

tion problems, rather than Bayesian inference. In particular, Pan et al. (2013) describe three

different parallel approaches to leveraging data parallelism. When a parallel version of a

serial algorithm enforces serializability, it maintains a strict but partial order on operations

to yield output equivalent to serial execution; the partial order specifies groups of operations

that may run concurrently (in parallel). The first method, mutual exclusion, maintains se-

rializability via locks. It limits the amount of achievable parallelism and incurs potentially

significant overhead due to locking, but straightforwardly maintains properties of the original

algorithm, e.g., correctness, if applicable. Alternatively, a coordination-free approach throws

away locks, and with them, their associated overheads as well as the automatic retention of

desirable algorithmic properties. Recht et al. (2011) applied this idea to stochastic gradient

descent, rebranding it as “hogwild,” and developed theoretical tools to prove its correctness

under certain conditions. Both the name and general approach have gained popularity in the

machine learning community. A third method, optimistic concurrency control (OCC), guar-

antees serializability while remaining lock-free. Developed by Kung and Robinson (1981),

OCC proceeds similarly to the coordination-free approach, but it checks for actions that

violate serializability constraints and must correct for any such actions. Machine learning

algorithms that have only weak dependencies between computations on different (groups

of) data items can be good candidates for coordination-free or OCC approaches. Pan et al.

implement a policy that is inspired by OCC; using knowledge about specific serial machine

learning algorithms, they develop concurrency control mechanisms that preserve algorithm

107

semantics. For example, a clustering algorithm updates a global variable indicating the clus-

ter centers. In the serial algorithm, these are always up-to-date. In their algorithm, the data

are partitioned across machines, each of which maintains a possibly out-of-date, or stale,

version of the global variable. No constraints are violated unless this variable changes in a

way that affects computations on machines that don’t yet know about the change, e.g., when

a new cluster center is introduced. When this happens, a special master core discards com-

putations in conflict with required constraints and ensures that the correct computations are

performed. Ultimately, Pan et al. suggest that we might be able to develop a continuum of

concurrency policies that trade-off between correctness and speed.

To recapitulate, speculative execution is a general approach for accelerating computation

by optimistically performing computation that might be useful. We view the original form of

OCC as similar to a restricted form of speculative execution where the optimistic computa-

tions are based on a possibly stale understanding of the true state and pursued in a depth-first

manner. In our research, we drive speculative scheduling decisions by actively predicting what

computations to do and furthermore coherently qualify our predictions within a Bayesian

probabilistic framework. Thus far, we have limited ourselves to speculative techniques that

yield output invariant to the number of parallel cores. We agree with Pan et al. (2013) that

it could be fruitful to relax hard serializability constraints, especially for machine learning

algorithms, as “we may be able to partially or probabilistically accept non-serializable opera-

tions in a way that preserves underlying algorithm invariants.” A complementary perspective

suggests that areas of approximate computation or heuristic algorithms might tolerate more

aggressive forms of speculative execution. Beyond machine learning algorithms, differential

equation solvers present an intriguing area for further study. These computational workhorses

perform forward numerical integration of systems of differential equations – an inherently

serial procedure. Schober et al. (2014) recently developed a probabilistic ordinary differential

equation solver that could be a good candidate for a prediction-based speculative execution

framework and furthermore suggests trade-offs between accuracy and speed.

108

Many computational problems, especially in but not limited to machine learning, may

benefit from being revisited with the arsenal of techniques from the systems community.

Simultaneously, many existing systems ideas may be augmented by viewing them through

the principled twin lenses of machine learning and information theory. We speculate that

these complementary approaches will yield novel and useful algorithms more fully capable

of exploiting future computational resources.

109

Bibliography

S. Ahn, A. K. Balan, and M. Welling. Bayesian posterior sampling via stochastic gradient

Fisher scoring. In Proceedings of the 29th International Conference on Machine Learning,

ICML ’12, 2012.

C. Amador-Bedolla, R. Olivares-Amaya, J. Hachmann, and A. Aspuru-Guzik. Towards ma-

terials informatics for organic photovoltaics. In K. Rajan, editor, Informatics for Materials

Science and Engineering. Elsevier, Amsterdam, 2013.

C. Andrieu and E. Moulines. On the ergodicity properties of some adaptive MCMC algo-

rithms. The Annals of Applied Probability, 16(3):1462–1505, 2006.

C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18(4):

343–373, 2008.

E. Angelino, E. Kohler, A. Waterland, M. Seltzer, and R. P. Adams. Accelerating MCMC via

parallel predictive prefetching. In 30th Conference on Uncertainty in Artificial Intelligence,

UAI ’14, 2014.

M. Banterle, C. Grazian, and C. P. Robert. Accelerating Metropolis-Hastings algorithms:

Delayed acceptance with prefetching. June 2014. Available at arXiv:1406.2660.

R. Bardenet, A. Doucet, and C. Holmes. Towards scaling up Markov chain Monte Carlo:

An adaptive subsampling approach. In Proceedings of the 31st International Conference

on Machine Learning, ICML ’14, 2014.

110

A. E. Brockwell. Parallel Markov chain Monte Carlo simulation by pre-fetching. Journal of

Computational and Graphical Statistics, 15(1):246–261, March 2006.

J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. Reducing the run-time of MCMC programs

by multithreading on SMP architectures. In IPDPS, pages 1–8. IEEE, 2008.

J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. On the parallelisation of MCMC by

speculative chain execution. In IPDPS Workshops, pages 1–8. IEEE, 2010.

J. A. Christen and C. Fox. Markov chain Monte Carlo using an approximation. Journal of

Computational and Graphical Statistics, 14(4):795–810, 2005.

P. R. Conrad, Y. M. Marzouk, N. S. Pillai, and A. Smith. Asymptotically exact MCMC algo-

rithms via local approximations of computationally intensive models. Feb. 2014. Available

at arXiv:1402.1694.

J. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization and non-

linear equations. Prentice-Hall Series in Computational Mathematics, 1983.

P. Diaconis. The Markov chain Monte Carlo revolution. Bulletin of the American Mathe-

matical Society, (2):179–205, Nov. 2008.

P. Diaconis, S. Holmes, and R. M. Neal. Analysis of a non-reversible Markov chain sampler.

The Annals of Applied Probability, 10(3):726–752, 08 2000.

A. Doucet, M. Pitt, R. Kohn, and G. Deligiannidis. Efficient implementation of Markov

chain Monte Carlo when using an unbiased likelihood estimator. 2014. Available at

arXiv:1210.1871.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics

Letters B, 195(2):216–222, 1987.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC hammer.

2012. Available at arXiv:1202.3665.

111

A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences.

Statistical Science, pages 457–472, 1992.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis, Second

Edition. Chapman and Hall/CRC, July 2003.

C. J. Geyer and A. Mira. On non-reversible Markov chains. In Institute Communications,

Volume 26: Monte Carlo Methods, pages 93–108. American Mathematical Society, 2000.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Communications in

Applied Mathematics and Computational Science, 5(1):65–80, 2010.

P. J. Green and A. Mira. Delayed rejection in reversible jump Metropolis-Hastings.

Biometrika, 88(4):pp. 1035–1053, 2001.

J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sánchez-

Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik. The Harvard

Clean Energy Project: Large-scale computational screening and design of organic photo-

voltaics on the world community grid. The Journal of Physical Chemistry Letters, 2(17):

2241–2251, 2011.

J. Hachmann, R. Olivares-Amaya, A. Jinich, A. L. Appleton, M. A. Blood-Forsythe, L. R.

Seress, C. Román-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha, R. Mon-

dal, A. Sokolov, Z. Bao, and A. Aspuru-Guzik. Lead candidates for high-performance

organic photovoltaics from high-throughput quantum chemistry - the Harvard Clean En-

ergy Project. Energy Environ. Sci., 7:698–704, 2014.

H. Haramoto, M. Matsumoto, and P. L’Ecuyer. A fast jump ahead algorithm for linear

recurrences in a polynomial space. In Proceedings of the 5th International Conference on

Sequences and Their Applications, SETA ’08, pages 290–298, Berlin, Heidelberg, 2008a.

Springer-Verlag.

112

H. Haramoto, M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer. Efficient jump

ahead for F2-linear random number generators. INFORMS J. on Computing, 20(3):385–

390, July 2008b.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109, Apr. 1970.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal

of Machine Learning Research, 14(1):1303–1347, May 2013.

Y. Iba. Extended ensemble Monte Carlo. International Journal of Modern Physics C, 12

(05):623–656, 2001.

A. Korattikara, Y. Chen, and M. Welling. Austerity in MCMC land: Cutting the Metropolis-

Hastings budget. In Proceedings of the 31st International Conference on Machine Learning,

ICML ’14, 2014.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical

Statistics, 22(1):79–86, 03 1951.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM

Transactions on Database Systems, 6(2):213–226, June 1981. ISSN 0362-5915.

J. S. Liu, F. Liang, and W. H. Wong. The multiple-try method and local optimization in

Metropolis sampling. Journal of the American Statistical Association, 95(449):121–134,

2000.

D. Maclaurin and R. P. Adams. Firefly Monte Carlo: Exact MCMC with subsets of data. In

Proceedings of 30th Conference on Uncertainty in Artificial Intelligence, UAI ’14, 2014.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation

of state calculations by fast computing machines. The Journal of Chemical Physics, 21

(6):1087–1092, 1953.

113

S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications

and Control Engineering Series. Springer-Verlag London Ltd., London, 1993.

N. Murata. A Statistical Study on On-line Learning. Cambridge University Press, Cambridge,

UK, 1998.

I. Murray. Advances in Markov chain Monte Carlo methods. PhD thesis, Gatsby Computa-

tional Neuroscience Unit, University College London, 2007.

R. M. Neal. Slice sampling. The Annals of Statistics, 31:705–767, 2003.

R. M. Neal. Improving asymptotic variance of MCMC estimators: Non-reversible chains are

better. Technical Report 0406, University of Toronto, 2004.

R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,

54:113–162, 2010.

R. M. Neal. How to view an MCMC simulation as a permutation, with applications to

parallel simulation and improved importance sampling. Technical Report 1201, Dept. of

Statistics, University of Toronto, 2012.

W. Neiswanger, C. Wang, and E. Xing. Asymptotically exact, embarrassingly parallel

MCMC. In 30th Conference on Uncertainty in Artificial Intelligence, UAI ’14, 2014.

R. Nishihara, I. Murray, and R. P. Adams. Parallel MCMC with generalized elliptical slice

sampling. Journal of Machine Learning Research, 15:2087–2112, 2014.

R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R. S. Sánchez-

Carrera, L. Vogt, and A. Aspuru-Guzik. Accelerated computational discovery of high-

performance materials for organic photovoltaics by means of cheminformatics. Energy

Environ. Sci., 4:4849–4861, 2011.

114

X. Pan, J. E. Gonzalez, S. Jegelka, T. Broderick, and M. I. Jordan. Optimistic concur-

rency control for distributed unsupervised learning. In Advances in Neural Information

Processing Systems 26, NIPS ’13, pages 1403–1411, 2013.

T. Park and G. Casella. The Bayesian Lasso. Journal of the American Statistical Association,

103(482):681–686, 2008.

J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and applications

to statistical mechanics. Random Structures and Algorithms, 9(1&2):223–252, 1996.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing

stochastic gradient descent. In Advances in Neural Information Processing Systems 23,

NIPS ’10, pages 693–701, 2011.

C. Robert. Accelerating MCMC via parallel predictive prefetching, Apr. 2014. URL http:

//xianblog.wordpress.com/.

G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling of

random walk Metropolis algorithms. Annals of Applied Probability, 7:110–120, 1997.

M. Schober, D. Duvenaud, and P. Hennig. Probabilistic ODE solvers with Runge-Kutta

means. 2014. Available at arXiv:1406.2582.

S. L. Scott, A. W. Blocker, and F. V. Bonassi. Bayes and big data: The consensus Monte

Carlo algorithm. In Bayes 250, 2013.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine

learning algorithms. In Advances in Neural Information Processing Systems 25, NIPS ’12,

pages 2951–2959, 2012.

I. Strid. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching ap-

proach. Computational Statistics & Data Analysis, 54(11):2814–2835, Nov. 2010.

115

http://xianblog.wordpress.com/
http://xianblog.wordpress.com/

Y. Sun, F. J. Gomez, and J. Schmidhuber. Improving the asymptotic performance of Markov

chain Monte-Carlo by inserting vortices. In Advances in Neural Information Processing

Systems 23, NIPS ’10, pages 2235–2243, 2010.

K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw Bayesian optimization. June 2014.

Available at arXiv:1406.3896.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society, Series B, 58:267–288, 1994.

L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian inference. Statis-

tics in Medicine, 18:2507–2515, 1999.

M. Tingley. Towards the Quantum Machine: Using Scalable Machine Learning Methods

to Predict Photovoltaic Efficacy of Organic Molecules. Undergraduate thesis, Harvard

College, 2014.

J. von Neumann. Various techniques used in connection with random digits. Journal of

Research of the National Bureau of Standards. Applied Mathematics Series, 12:36–38, 1951.

X. Wang and D. B. Dunson. Parallel MCMC via Weierstrass sampler. 2013. Available at

arXiv:1312.4605.

A. Waterland, E. Angelino, E. D. Cubuk, E. Kaxiras, R. P. Adams, J. Appavoo, and

M. Seltzer. Computational caches. In Proceedings of the 6th International Systems and

Storage Conference, SYSTOR ’13, pages 8:1–8:7, New York, NY, USA, 2013. ACM.

A. Waterland, E. Angelino, R. P. Adams, J. Appavoo, and M. Seltzer. ASC: Automatically

scalable computation. In Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’14, pages 575–590,

New York, NY, USA, 2014. ACM.

116

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In

Proceedings of the 28th International Conference on Machine Learning, ICML ’11, 2011.

E. Witte, R. Chamberlain, and M. Franklin. Parallel simulated annealing using speculative

computation. IEEE Transactions on Parallel and Distributed Systems, 2(4):483–494, 1991.

117

Appendix A

Additional parameters in experiments

The mixture of eight, eight-dimensional Gaussians follows that by Nishihara et al. (2014).

The φk values1 are set to

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

=

0.2456 0.8211 0.3065 0.9171 0.9674 0.5055 0.535 0.7781

0.1852 0.774 0.9248 0.8285 0.7948 0.460 0.9904 0.6430

0.7135 0.8969 0.7882 0.7179 0.8707 0.1549 0.364 0.7309

0.3507 0.8099 0.0669 0.2366 0.7635 0.5878 0.5188 0.7846

0.186 0.3913 0.7746 0.3846 0.1483 0.4110 0.5936 0.5528

0.2550 0.7924 0.5779 0.5291 0.2643 0.7684 0.3859 0.9556

0.3698 0.1247 0.1504 0.8657 0.9061 0.2281 0.9170 0.9552

0.354 0.3176 0.2076 0.0267 0.6507 0.0931 0.2434 0.2387

.

1Personal communication with Robert Nishihara.

118

	Motivation and summary
	Markov chain Monte Carlo
	Markov chains
	Monte Carlo methods
	Rejection sampling
	Importance sampling
	Limitations of Monte Carlo sampling

	Markov chain Monte Carlo
	Metropolis-Hastings (MH)
	Factors affecting the behavior of MH

	MCMC methods for faster convergence
	Auxiliary variable methods
	Ensemble methods
	Non-reversible methods

	Parallel MCMC
	Parallel ensemble samplers
	Prefetching

	Approximations and large-scale Bayesian inference
	Embarrassingly parallel, approximate MCMC
	MCMC with mini-batches

	Predictive prefetching with transition operator approximation
	Mathematical framework
	Metropolis–Hastings simulation
	Bit string notation
	Mapping states to bit strings
	Computation with respect to a simulation path
	Using pseudo-randomness
	Representing computation with the jobtree
	Metropolis–Hastings with prefetching

	Predictive prefetching: Exploiting predictions
	An estimator for large-scale Bayesian inference
	Speedup with instantaneous, imperfect predictions
	Worker depth and simple bounds on speedup
	Worker allocation and expected speedup
	Speculation plus parallelism at each node

	System architecture and implementation
	Architectural overview
	Master state machine
	Worker state machine
	Practical considerations

	The jobtree
	Selecting high-utility pending nodes
	Execution and messaging protocol
	Managing pseudo-randomness
	Generating proposals
	Predictor implementation
	Implementation details and plug-in interface

	Empirical evaluation
	Example Bayesian inference problems
	Mixture of multidimensional Gaussians
	Bayesian Lasso for photovoltaic activity

	Adaptive proposal distribution
	Assessing chain convergence and quality
	Speedup results
	Adaptive Metropolis–Hastings behavior
	Estimate, error model and predictor behavior
	System measurements
	System overheads

	Conclusions and generalizations
	Additional parameters in experiments

