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Abstract
The recent demonstration of strong interactions between optical force and me-

chanical motion of an optomechanical structure has led to the triumphant result of

mechanical ground-state cooling, where the quantum nature of a macroscopic object

is revealed. Another intriguing demonstration of quantum physics on a macroscopic

level is the measurement of the Casimir force which is a manifestation of the zero-

point energy. An interesting aspect of the Casimir effect is that the anharmonic-

ity of the Casimir potential becomes significant when the separation of microscale

objects is in the sub-100nm regime. This regime is readily accessible by many of

the realized gradient-force-based optomechanical structures. Hence, a new avenue of

probing the Casimir effect on-chip all-optically has become available. We propose

an integrated optomechanical platform, consisting of a suspended photonic crystal

membrane evanescently coupled with a silicon-on-insulator substrate, for (i) measur-

ing the Casimir force gradient and (ii) counteracting the attractive force by exerting

a resonantly enhanced repulsive optical gradient force. This thesis first presents the

full characterization of the optomechanical properties of the system in vacuo. The

interplay of the optical gradient force (optomechanical coupling strength gom/2π=-

66GHz/nm) and the photothermal force manifested in the optical spring effect and dy-
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namic backaction is elucidated. Static displacement by the repulsive force of 1nm/mW

is also demonstrated.

In the second part of the thesis, the nonlinear mechanical signatures upon a strong

coherent drive are reported. By resonantly driving the photonic crystal membrane

with a piezo-actuator and an optical gradient force, we observed mechanical frequency

mixing, mechanical bistability and non-trivial interactions of the Brownian peak with

the driving signal. Finally we present our recent progress in establishing electro-

static control of individual photonic crystal membranes to reduce and calibrate the

electrostatic artifact which plagues Casimir measurements.

The results discussed in this thesis point towards an auspicious future of a com-

plete realization of a Casimir optomechanical structure and novel applications with

nonlinearity afforded by the Casimir force and the optical gradient force.
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Chapter 1

Introduction and summary

1.1 Introduction of optomechanics mediated by the

optical gradient force

In the late 19th century, James Maxwell formulated the wave theory for elec-

tromagnetism, where one of the implications is that light as electromagnetic wave

carries energy and momentum [1]. The fascinating history of demonstrating the me-

chanical effects of light started from the experiments performed by Lebedew [2] and

Nichols and Hull [3] by 1903. Albeit the small momentum p carried by light, e.g.

h/λ=4.28×10−28kg m/s per telecom photon, the invention of lasers to provide light

with high intensities facilitated one of the first applications of the mechanical effect of

light on macroscopic objects. In the early 80’s, Ashkin demonstrated the trapping of

micron-sized particles by a tightly focused laser light in both normal and tangential

directions which requires the balance of the optical scattering and gradient forces
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on the particles [4]. Shortly laser cooling and trapping of ions and neutral atoms

[5, 6, 7, 8] was demonstrated, leading to breakthroughs in various aspects of atomic

physics, including the realization of Bose-Einstein condensates [9], quantum simula-

tion of arrays of atoms trapped in optical lattices, and a new field of atom optics

[10]. The physics of optomechanics has strong resemblance with Doppler cooling in

atomic/optical physics [11, 12, 13] whose groundbreaking development preceded op-

tomechanics by two decades, but here the predicted quantum nature is manifested in

macroscopic objects. Instead of the atomic energy levels being dressed due to strong

atom-light interactions, in optomechanics, the photonic resonant states are dressed

due to strong optomechanical interactions [11].

Similar to conventional optical trapping, optical forces could be categorized into

scattering force/ radiation pressure and gradient force. For the scattering-force-based

approach, the small momentum imparted by one photon on a compliant object can

be drastically enhanced by introducing an optical cavity where the photon, while

not being absorbed and assuming elastic collision, keeps exchanging momentum with

the movable element within the cavity lifetime τ . The corresponding optical force

exerted on the movable element is given by Nh̄k/τ . Often, the canonical example of

the optomechanical effect is a Fabry-Perot cavity which consists of a movable mirror

[13]: the optical force is maximal when the wavelength of light is resonant with

the cavity. Hence the movable mirror is displaced which in turn detunes the cavity

and hence the radiation pressure on the mirror. The mirror then moves towards its

initial equilibrium as a result of the restoring mechanical spring force. The radiation-

pressure-based optomechanics are manifested in a variety of familiar photonic devices
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spanning over a large range of length scale and frequency. In Fig. 1.1 we highlight

some of the demonstrations in the past decade.

For the gradient-force based approach, both attractive and repulsive forces can

be exerted in coupled optomechanical devices [14, 15, 16, 17, 18, 20, 30, 31, 32]. In

the same spirit of obtaining large radiation pressure by constructing a high-finesse

optical cavity with highly reflective mirrors/ total internal reflection, the forces can

be enhanced with optical resonances. The working principle is described in the next

section. Some representative structures are displayed in Fig. 1.1(a-h).

Finally, light can lead to mechanical deformation through photothermal inter-

actions, in which the movable structure absorbs part of the incident light which is

converted to heat. As a result of thermal expansion and difference in thermal ex-

pansion coefficients between the device layer and the bottom supporting substrate,

thermal stress arises. It causes bending of the movable structure. Similar optome-

chanical properties can occur in such system as one introduces a Fabry-Perot cavity

to enhance and modulate the light absorption. Examples include the excitation of a

gold-coated cantilever excited by a gold-coated optical fiber placed in close proxim-

ity (Fig. 1.1(m)) [29], and a silicon cantilever excited with a laser whose frequency

corresponds to photon energy beyond silicons bandgap (Fig. 1.1(n)) [28]. While the

photothermal effect also allows for optical spring tuning and dynamic back-action

(mediated by delay due to its finite thermal time constant), the photothermal effect

presents itself as a competing effect in the demonstration of several optomechanical

devices [33, 29, 34].
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(a) (b) (c)

(d) (e) (f)

(m)

(n)

(a) (b) (c)( )

! !

(i-1) (j-1) (k-1)

(g)

(i-2) (j-2) (k-2)

(h)

Gradient force

Radiation pressure Photothermal force

Figure 1.1: Optomechanical structures actuated by radiation pressure, optical gra-
dient and photothermal force. Gradient-force based: (a) Si waveguide (WG) act-
ing as a doubly-clamped beam couples light with the underlying buried oxide layer,
demonstrating attractive optical force and Duffing nonlinearity[14]; (b) Coupled Si
WGs where attractive and repulsive optical forces are exerted by controlling the rel-
ative phase of incoming electric field[15]; (c) Coupled Si PhC cavity WGs where
atmospheric operation of attractive optical force with an incoherent light source
is demonstrated[16]; (d) Coupled SiN ring resonators where attractive and repul-
sive forces are related to corresponding mode (anti-)symmetry[17]; (e) Coupled silica
microdisks[18]; (f) Dispersive and dissipative optomechanical coupling with Si WGs
coupled to a Si microdisk[19]; (g) Au-coated SiN plasmonic WG[20]; (h) Si slot WGs
where electric field is tightly confined in the air gap [21]. The effective refractive in-
dex increases as the slot size decreases. Radiation-pressure based: (i-1) Fabry-Perot
(FP)interferometer in Laser Interferometer Gravitation Wave Observatory[22] (i-2)
FP cavity formed by a gold-palladium mirror[23]; (j-1) Silica microtoroid demonstrat-
ing quantum coherent coupling[24]; (j-2) Silica microsphere supporting both optical
and acoustical whispering gallery modes; excitation of mechanical modes mediated
by stimulated Brillouin scattering[25]; (k-1) Si optomechanical crystal with phononic
shield optomechanically cooled to the quantum ground state[26]; (k-2) InP PhC cav-
ity with strongly co-localized optical and mechanical modes[27]. Photothermal-force
based: (m) A Si cantilever actuated by thermal stress as Si absorbs HeNe light[28].
The effect is modulated by the FP cavity formed by the cantilever and the bottom
substrate. (n) Combination of radiation pressure and photothermal effect in a FP
cavity formed by a Au-coated cantilever and optical fiber[29].
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1.1.1 Optical gradient force in coupled systems

(a) (b)

Figure 1.2: (Adapted from [31], [35])(a) Dispersion diagram for coupled waveguides
with separations of d/a = ∞ (black solid), 1 (red dashed) and 0.1 (blue dashed),
where a is the width of the individual waveguide. Insets are the mode profiles of
the major field component which can be characterized as bonding/ symmetric (below
the black solid line) and anti-bonding/ anti-symmetric (above the black solid line)
[31]. As the coupling distance decreases, the bonding mode red-shifts where the anti-
bonding mode blue-shifts. (b) Normalized gradient force per unit length per excitation
power over different waveguide separations s for a particular wavevector [35]. Positive
optical force denotes repulsive force where negative force denotes attractive force. The
corresponding mode profiles of the bonding and the anti-bonding modes are shown.
Note that the bonding mode has increasingly large attractive force as the waveguide
separation decreases, where the anti-bonding mode has increasingly large repulsive
force only up to s/a = 0.03 and the force switches sign with even small separations.

To illustrate the origin of the optical gradient force, we start by considering two

identical waveguides placed in close proximity [31]. Here the waveguides become cou-

pled via the evanescent fields extending outside of them. As a result of the evanescent

perturbation, the degeneracy of the propagating modes supported by the waveguides

is lifted causing level repulsion, where the initial eigenmode is split into a pair of

modes with frequency detuning from the initial eigen-frequency dependent on the

coupling strength and degree of field perturbation [32]. The idea is illustrated in
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the dispersion diagram in Fig. 1.2(a) as two waveguides approach each other from

infinity. Quantitatively with perturbation theory, the frequency shift ∆ω) is given by

[36]

∆ω

ω
= −1

2

�E�|∆s(�1 − �2)|E�� − �D⊥|∆s(�−1
1 − �−1

2 |D⊥�
�E|�|E� (1.1)

when a boundary is moved ∆s from a dielectric �1 to �2. When mechanical degrees

of freedom are introduced to such coupled structures, i.e. the waveguides are partially

released from the bottom substrate, attractive or repulsive optical forces lead to the

reconfiguration of the waveguides in an effort of lowering the mode’s optical energy

and red-shifting the mode. The work done by the optical force causes a change in

the optical energy. The polarity of the optical force is predominantly determined by

the relative phases of the electric field in the respective waveguides. In particular,

when the electric field in the coupled waveguide mode is in phase, it corresponds

to a bonding/ symmetric mode which gives an attractive optical force. This can

be understood by the fact that the optical mode’s energy is reduced when more of

the electric field resides in the high-index dielectric. Hence, pushing the waveguides

together encourages more electromagnetic field to be concentrated in the waveguides,

and thus lowers the systems’ overall optical energy. In Fig. 1.2(b), the attractive

optical force (red-line) is shown to rapidly increase as the waveguide becomes more

coupled. On the contrary, when the field in the coupled waveguide mode is out

of phase, we obtain an anti-bonding/ anti-symmetric mode which corresponds to a

repulsive optical force. As seen in the corresponding mode profile in Fig. 1.2b, a

nodal plane bisecting the mode exists and the electric field is found closer to the far

side of the waveguides [35]. Yet there is a caveat about the repulsive force which we
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will detail in a later section.

The energy principle of understanding and calculating the attractive and repul-

sive optical forces is helpful in gaining physical insights about the origin and design

strategies (to be discussed shortly) of the forces. However, this method only works for

closed systems which include most of the optomechanical structures in the literature.

For open systems where leaky modes and dissipative effects play a significant role in

the optical force, Maxwell stress tensors are employed for the force calculations, by

first attaining the electromagnetic field distribution everywhere in all directions upon

certain excitations [1]. It can be shown that for closed systems the Maxwell stress

tensor approach is equivalent to the energy principle aforementioned.

1.1.2 Frequency-dependent polarity of gradient force

Since the first demonstration of attractive and repulsive optical gradient forces by

the Tang group with a silicon waveguide coupled to a silica substrate [14] in the same

spirit of the coupled waveguide system described above, a deluge of optomechanical

structures actuated by resonantly enhanced optical gradient forces rapidly emerged.

Geometries and materials explored to attain optomechanical transduction and actu-

ation in coupled systems range from silica and GaAs microdisks [18, 37, 38], silicon

nitride microrings [17], silicon and InGaAsP photonic crystal (PhC) membranes and

cavities [34, 39, 16, 40], etc. Each coupled system has its own competitive edge suited

for particular sets of application, but share the general feature of frequency-dependent

polarity of gradient forces. In the same way as level repulsion in guided modes of cou-

pled waveguides, resonances with finite lifetime, be they whispering gallery modes,

7
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(a) (b) (c)

Figure 1.3: (a) Resonant frequency (normalized to periodicity a of the bonding (red)
and anti-bonding (black) modes in i. asymmetric coupled PhC-slab system (solid
line) and ii. symmetric coupled PhC-PhC system as a function of membrane separa-
tion s [32]. The corresponding mode profiles delineating the relative phase in a unit
cell of both systems are illustrated. Note that in the asymmetric system, the electric
field is concentrated in the bottom slab layer for the bonding mode whereas the field
is concentrated in the top PhC layer for the anti-bonding mode. (b) Spectra of the
optical gradient force for various PhC-slab separations from s = 0.1a to s = 0.5a,
which are calculated by a delta-pulse excitation in time to obtain a broadband re-
sponse. Inset shows the corresponding change of quality factor Q of both the bonding
and anti-bonding resonances as a function of PhC-slab separation s: Change of Q for
the bonding modeis is drastic compared to the anti-bonding mode as a result of the
interactions of the leaky guided resonance in the PhC and lossless guided mode in
the slab. (c) Absolute value of pptical spring —κo— as a function of pump frequency
ω+ due to a two-mode excitation of an attractive and a repulsive force pumped at
ω+ and fixed ω− respectively, plotted for different power ratios η = Pω−/Pω+ . Solid
lines represent stable solutions where dashes lines represent unstable solutions.

guided resonances in 1-D and 2-D photonic crystal or localized modes in photonic

crystal cavity, split into attractive and repulsive force pairs upon evanescent coupling

[32, 30]. In other words, one can simply actuate an optomechanical device with an

attractive and a repulsive force by choosing the corresponding excitation frequencies.

Each of these force pairs could have different responsivity with response to mechani-

cal deformation (dω/ds or optomechanical coupling gom), which is intimately related

to the electromagnetic field distribution of the resonance concerned. We reported

that attractive and repulsive force pairs also arise in highly asymmetric systems [32].

8
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The system we consider, shown in Fig. 1.3a, is a photonic crystal membrane coupled

to layered substrate where guided resonances (with radiative loss) can couple with

lossless guided modes (possibly of frequency different from the guided resonances)

supported by an asymmetric slab waveguide (a silicon-on-insulator substrate with a

thin device layer in this case). Similar to the symmetric case of two coupled photonic

crystal membranes, we observe in our asymmetric system that a pair of bonding and

antibonding resonances which move apart from each other in frequency as the PhC

membrane approaches the substrate. The force enhancement by introducing a guided

resonance is more than a hundred fold. Two interesting features stemming from the

asymmetry are highlighted here: 1). From the mode profile illustrated in Figure 1.3b,

the bonding mode bears more resemblance to the slab waveguide mode while the an-

tibonding mode bears more resemblance to the leaky PhC guided resonance. Thus,

the bonding mode has a strong response in the quality factor (from 104 to 102 in the

inset of Fig. 1.3b) with respect to the slab separation upon increasing perturbation

by the leaky mode. 2). As a result of the strong coupling-dependent variation in

Q of the bonding mode, while the repulsive force (antibonding mode) increases in

strength as the membrane separation decreases, the attractive force (bonding mode)

amplitude decreases, as shown in Fig. 1.3b. Such non-trivial interactions between

a lossless waveguide mode and a leaky guided resonance shed light for new strate-

gies of engineering resonantly enhanced gradient forces. Furthermore, for photonic

structures which support many resonances, e.g. microdisks [37, 18], photonic crystal

slabs [34, 39], microspheres [30, 41], the coupling-induced frequency-splitting quickly

complicates the force spectrum, especially in the higher frequency range where the
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density of states increases. With this gallery of bipolar force pairs of varying gom

across a wide frequency range, it is possible to perform multi-modal excitations to

engineer the net optical force exerted on the optomechanical structure and tune the

mechanical spring constant dramatically without perturbing the initial mechanical

equilibrium [32, 42]. This opens up a new avenue of optomechanical trapping and

exposing the systems mechanical nonlinearity as the linear response is suppressed.

1.1.3 Novel approaches of gradient force enhancement

A commonality of the current demonstrations of coupled optomechanical devices

is the strategy of enhancing the optomechanical interactions. Specifically, since the

strength of the optical force is related to the change of the optical energy with respect

to the mechanical deformation in optomechanical devices, techniques of resonantly en-

hancing the system’s optical energy to achieve strong coupling in photonic-chip-based

light-atom interactions [44, 45] were immediately translated to boost the optomechan-

ical coupling and force amplitude. For the camp of radiation-pressured-based optome-

chanics, much emphasis is placed on obtaining a high-finesse cavity and designing

phoxonic structures where ultrahigh-Q optical and mechanical modes are co-localized

[27, 46, 47]. The combination of high optical quality factor (in the range of tens of

thousands or above) and excitation of high-frequency (MHz-GHz) mechanical mode

with low damping loss enabled the exciting demonstration of optical spring effect,

optomechanically induced self-oscillations, cooling of macroscopic objects, etc [13].

For optomechanics with gradient force, force enhancement can be pursued by novel

approaches. To motivate this, we consider the bipolar gradient forces in a coupled
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(a) (b)

(c) (d)

Figure 1.4: (a) Comparison of the normalized optical force as a function of waveguide
separations s (measured from the closest points of the waveguides) for two geometries:
circle-circle (thin lines) and hemicircle-hemicircle (thick lines)[35]. The mode profiles
of both the bonding and the anti-bonding modes of both touching and separated
waveguides are illustrated. It shows the expected trend of increasing attractive force
when waveguides are placed closer, but the repulsive force also increases monotonically
as opposed to the case of coupled square waveguides in Fig. 1.2(b). The convex
inner surface of the waveguides pushes more electric field of the anti-bonding mode
into air which increases the mode’s frequency. (b) Comparison of the normalized
optical force due to the anti-bonding mode as a function of waveguide separation
s for coupled photonic crystal waveguides, one with a square cross section, and the
other with a hemicircular cross section[35]. The slow-light mode as a result of the hole
periodicity are excited for enhancing the mode energy, but the force enhancement is
more prominent for the PhC waveguides with a hemicircular cross section (a factor
of 30 with a slow-light mode with group velocity vg of 0.024c which highlights the
combined effect of altering waveguide morphology and the slow-light mode excitation.
(c) Illustration of slab waveguides cladded with a layer of metamaterials made of
split-ring resonators which reduces the optical distance perceived by the evanescent
field [43]. The field in the metamaterial layer is amplified before decaying in the air
region. (d) Demonstration of the equivalence of the optical gradient force achieved
in a non-transformed geometry (with separation d) and in a metamaterial-mediated
transformed geometry (with separation dwith) [43]. Note the reduction in the optical
space is 0.5a where a is the thickness of the slab waveguide.
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waveguide system again. While the attractive force of a bonding mode monotonically

increases in strength as the waveguides approach each other, it is shown, however,

that an antibonding mode does not guarantee to generate a repulsive force [31, 35]:

when the waveguides are in very close proximity (e.g. tens of nanometers for telecom

excitation), the evanescent field in the air slot between the waveguides has significant

contribution to establishing a net attractive force instead. Nonetheless, Oskooi and

Favuzzi et al. demonstrate that by tailoring the waveguides’ interacting surfaces the

evanescent field enhancement of the slot mode can be suppressed while maintaining

the strength of the repulsive force [35, 48]. In fact other new directions of enhancing

the transverse attractive and repulsive optical gradient forces, apart from the typi-

cal approach of employing ultrahigh-Q optical modes (e.g. whispering gallery mode),

emerged in recent years. These strategies include 1). adopting slow-light Bloch modes

to enhance the intra-cavity optical energy [31]; 2). designing more complex morpholo-

gies which engineer the boundary conditions and hence the electric field distribution

[35, 48], 3). incorporating metamaterials to the waveguide boundary surfaces which

locally engineer the dielectric profile experienced by the evanescent field [49], and 4).

adopting transformation optics to effectively reduce the coupling distance perceived

by the resonant electric field, which lessens the challenge of fabricating free-standing

devices with a small sacrificial layer [43].

Another notable approach of force enhancement can be found in exploiting sym-

metry in periodic structures. Liu et al. [50] and Sun et al. [51] numerically demon-

strated that by perturbing the alignment of the periodic holes between two photonic

crystals (e.g. gratings and nano-beams) longitudinal optical force can be excited. Liu

12



Chapter 1: Introduction and summary

(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Access to large normal and lateral optical gradient forces via dark states
[50]: (a) Transmission spectrum of coupled PhC slabs separated by d = 0.65a (where a
is the hole periodicity) and the corresponding mode profile at normalized frequency of
ω = 0.58; (b) Transmission spectrum of coupled PhC slabs separated by d = 0.5a and
the corresponding mode profile at normalized frequency of ω = 0.58; (c) Resonance
frequency and linewidth of the “dark mode as a function of the slab separation. The
rapid change of the mode quality factor with slab separation is due to the Fabry-Perot
interference of the bright modes of the individual PhC. d∞ is the slab separation where
the resonance does not couple to external radiation. (d) Resonance frequency and
linewidth of the pair of dark modes at each lateral shift ∆x/a. The in-plane symmetry
of the resonance is reflected in the plot. (e) Variation of the normal optical force and
the quality factor pumped at ω = 0.58 (solid line) as the slab separation varies about
d∞. Optical force pumped at a slightly detuned frequency (dotted line) is shown to
illustrate force enhancement mediated by the high Q. (f) Variation of the normal and
lateral gradient forces and quality factor as a function of the relative lateral shift of
the PhC ∆x/a.
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et al. considered two coupled photonic crystal slabs supporting guided resonances

[50]. Depending on the in-plane modal symmetry relative to the symmetry of an

incident plane wave, some (bright) guided resonances couple to external radiation by

band-folding where some do not and they are known as dark modes. When the two

photonic crystal slabs are vertically aligned and evanescently coupled, two interesting

phenomena related to dark states occur. First, both coupled bright guided resonances

and coupled dark guided resonances could create a dark state at a specific slab sep-

aration d∞ as a result of Fabry-Perot resonances with unity slab reflectivity. For

slab separations near d∞, one may take advantage of the high-Q “near-dark” modes

for force enhancement in the normal directions. Second, the dark guided resonances

remain uncoupled to external excitation until the in-plane rotational symmetry is

broken by laterally offsetting the slab alignment. The emergence of such “near-dark”

modes lead to a longitudinal force on the slab which follows the periodicity of the

perforation. We envision that the system having the versatility of actuation and sen-

sitivity of transverse and lateral optical forces allows for an all-optical 3-dimensional

accelerometer. Certainly the realization of optomechanical structures with greater

design complexities demands more sophisticated fabrication techniques. We antici-

pate the ongoing development of experimental demonstrations of metamaterials in

the micron-scale [52], multi-layer thin-film assembly assisted by soft lithography [53],

and other micro-fabrication advancement pave a promising path for demonstrating

pronounced force enhancement with optimized optical designs.

As a summary of the discussion of various approaches of gradient force enhance-

ment, Table 1.1 highlights a few of the recently studied and representative gradient-
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Team  
    Structure 
- coupling distance 

Mechanical 
frequency 

fm (MHz) 

Mechanical 
quality factor 

Qm 

Optical 
quality 

factor Qopt 

gom/2  
(GHz/nm) 

Optical 
force Fopt 

(nN/mW) 

Static 
displacement/ 

driven amplitude 
(nm/mW) 

Eichenfield et al. 
2007  

SiN disk resonator with tapered fiber 
– 702nm 

0.193X10-6 - 1.1x106 -0.02 -324 (static) 

Li et al 2008 Si waveguide with SiO2 substrate – 
360nm 

8.87 1850 - - 0.005 2 (driven) 

Li et al 2009  Laterally coupled Si waveguides – 
100nm 

17.05 5300 - -  -2.2 
1.1 

~9.6 (driven) 

Rosenberg/ Liang 
et al 2009 

Vertically coupled SiO2 ring 
resonator – 138nm 

8.3 3.95 
(in air) 

1.8x106 33 -244 

Wiederhecker er al 
2009 

Vertically coupled SiN ring resonator 
– 640nm 

0.6 2 (in air) 6.8x104 
2.1x104 

1.4 
-2 

-20 (static) 
1 

Eichenfield et al 
2009 

Laterally coupled SiN zipper 
nanobeam cavity – 120nm 

8 11600 (in 
vacuo) 

50/150 (in air) 
 

3x105 123 - -  

Roh et al 2010 Bilayer InP PhC membranes – 
200nm 

1.8 2 (in air) 1600 
700 

44 
- 

-0.83 
- 

-0.26 (static) 

Deotare et al 2012 Laterally coupled Si nanobeam PhC 
cavity – 70nm 

8 17 (in air) 15000 96 - - 

Woolf/ Hui et al 
2013 

Si PhC membrane vertically coupled 
with SOI substrate – 160nm 

0.16 2000 3400 -66 1 (static) 

Table 1.1: Table highlighting several gradient-force-based optomechanical devices in
the literature. Information about the photonic structure employed and the separa-
tion of coupled elements, mechanical frequency and quality factor, optical quality
factor, optomechanical coupling strength (positive for bonding mode), amplitude of
attractive (negative)/ repulsive (positive) gradient force achieved and static/ dynamic
motion amplitude demonstrated is recorded. [16, 34, 17, 54, 40, 14, 15, 18, 37]

force-actuated optomechanical devices, comparing their fundamental mechanical fre-

quencies and quality factors, optical lifetimes, optomechanical coupling strength, and

maximum force/mechanical amplitudes. One observation is that various material

systems are chosen for considerations such as thermo-optic effect, free carrier exci-

tation and stress management. Another feature is the successful demonstration of

atmospheric operations of these optomechanical devices which circumvent the need

for hermetic vacuum packaging for sensing applications.

1.1.4 Technological impact

The conspicuous expression of the optical force in nanophotonic devices facilitates

new strategies of achieving reconfigurable and programmable optical devices, along
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(a) (b) (c)

(d) (e)

Figure 1.6: (a) Optical waveguide coupler where on-chip tuning is achieved by strong
optomechanical coupling in silicon slot waveguides [55]; (b) Optomechanical switch-
ing with switching time of tens of nanoseconds, where resonance tuning is achieved
by controlling the coupling between the silicon resonator and the underlying buried
oxide layer with the gradient force [56]; (c) Optomechanical memory where mechan-
ical bistable transitions are chosen by optomechanical amplification and cooling [57];
(d) Picogram mass detection with toroidal resonators in air where higher harmonics
from optomechanical self-oscillations are employed for enhanced detection resolution
[58]; (e) Optomechanics with stimulated Brillouin scattering realized in microfluidic
environment for detecting solutions with varying concentrations [59, 60].

with the advancing field of nano-optoelectromechanical systems (NOEMS). Reconfig-

urable passive optical elements demonstrated include couplers with a pair of coupled

optomechanical slot waveguides [55], bandband all-optical filters that can be con-
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trolled by incoherent light [16], and on-chip resonance tuning of neighboring devices.

Thus far, albeit the relatively large degree of actuation achieved by optical forces along

on nanophotonic devices, electrostatic actuation still outperforms optomechanics in

the extent of actuation. However in applications where operating environments are

adverse to systems with metallization, an all-optical platform could still be desirable.

A subtle effect the community of optomechanics learnt in the past years is buckling

of the optomechanical devices caused by compressive stress in the device layer, e.g. in

typical silicon-on-insulator substrate, indium phosphide, etc. The compressive stress

causes deviation of the fabricated structures from the desired geometry. Solutions

to this problem may be resorting to material systems with tensile stress instead

(e.g. silicon nitride), depositing a thin layer of materials to compensate the stress, or

developing stress-relief techniques. However some proposals in fact take advantage of

the presence of buckling to create two mechanical bistable states for switching and

sensing that basically eliminates the consumption of holding power. Examples are

mechanical memory demonstrated by Bagheri et al. [57], optical shock sensor [61],

and Intaraprasonk et al. [62].

On the other hand, the strong optomechanical strength offers high readout sensi-

tivity of mechanical motions, even in atmospheric conditions where mechanical signals

could still be detected above the noise floor in the presence of strong viscous damping.

Accelerometry with broad bandwidth in optomechanical slot waveguides [63], parti-

cle detection with self-oscillating toroidal resonators in air [58], and shock-sensing

by mechanical buckling transitions are some of the recent demonstrations that ex-

ploit the readout sensitivity that is hard to reach by conventional electromechanical
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schemes. Some other examples include optomechanical AFM [64, 65], microfluidic

optomechanical sensing in a liquid environment [59, 60].

There is also strong drive to seek applications of optomechanics in the classical

and quantum regimes, particularly in the radio-frequency window. However, scaling

of optomechanical devices to from MHz to GHz range while ensuring large optome-

chanical transduction efficiency is not trivial. There are significant endeavors to

design optomechanical structures which feature strong colocalization of photonic and

phononic modes to maximize the dispersive coupling. From there, wavelength con-

versation (telecom to telecom and telecom to microwave) via quantum state transfer

mediated by GHz mechanical modes in the sideband-resolved regime were proposed

and demonstrated [66, 67, 68, 69, 70, 46, 71, 72]. Self-oscillating optomechanical os-

cillators for timing applications in the radio-frequency window are also explored with

phase-noise suppression schemes incorporated to rival existing technology of crystal

oscillators [73, 74, 75, 76, 77, 78, 79, 80, 81].

1.2 Introduction of the Casimir force detection

According to quantum mechanics, the universe is filled with the zero-point energy,

even when all quantum mechanical systems are settled in their ground states [82].

This zero-point energy, intimately related to the Heisenberg’s Uncertainty Principle,

is composed of a continuum of fluctuating electromagnetic (EM) fields propagating

in free space. The vast time scale of the fluctuation allows one to decompose the

fields over a very broadband of frequencies in the frequency domain. The discussion

of fluctuation-induced electromagnetic forces is often motivated by considering two
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neutral particles with no permanent dipole moments placed in close proximity d with

each other [83, 84]. Instantaneous dipole moments due to the quantum-mechanically

agitated electrons causes spontaneous radiation of electromagnetic fields. The elec-

tromagnetic fields in turn transiently polarize the neighboring particle. The instan-

taneous dipoles rotate to align themselves to the lowest energy configuration. As a

result, an electromagnetic force that scales as 1/d6 arises. This is the basis of the van

der Waals force, where the electromagnetic fields instantaneously arrive at neighbor-

ing particle in the quasi-static limit. However, the retardation effect (i.e. the finite

propagating time of EM waves) has to be accounted for when the particles are farther

apart. This is the so-called Casimir-Polder limit where the EM force scales as 1/d7.

In 1948, Hendrik Casimir considered a situation in which two perfectly conducting

metallic plates were placed closely to each other with a separation of d [85]. Due to

the boundary conditions set by the metallic plates, the system naturally filters out

many of the free-space modes, only allowing an infinite countable number of bounded

modes within the metallic plates. By considering the energy densities outside of the

plates (sum of EM energy density over a continuum) and inside (sum of EM energy

density over a countable set of modes), the energy difference leads to the famously

known Casimir effect, where the metallic plates are pushed towards each other. The

effect does not involve any actuation of real photons. In this case, the Casimir force

is given by

FCas = − π2h̄c

240d4
A, (1.2)

where c is the speed of light in vacuum and A is the interaction area. As a simple

illustration of the Casimir effect in MEMS, for two perfectly conducting metallic
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plates with the interaction dimensions of 30µm×30µm and a separation of 100nm,

the attractive force magnitude is ≈11.7nN, which is readily detectable with current

force detection techniques of ever higher force sensitivity.

As for the Casimir force on realistic dielectric test bodies, Lifshitz extended

Casimir’s result by including the dielectric response which has resonances over a wide

frequency range [86]. The computation of the Casimir force with the Lifshitz formu-

lation requires one to account for the EM energies of all supported surface modes of

both polarizations and wave vectors as well. In this formulation, repulsive Casimir

force is also possible by filling the gap between two test bodies with a fluid whose

dielectric response strength is in between that of the test bodies concerned over a

broadband of frequencies. The Lifshitz formulation has been verified by numerous

experimental demonstrations in the past two decades, thanks to the vast advancement

in microfabrication and high-precision, nanoscale motion control. A large variety of

material systems have been explored including real metals like gold, nickel and cop-

per, and semiconductors like highly doped (poly-)silicon, germanium, and indium tin

oxide [87, 88, 89, 90, 91, 92, 93, 94, 95, 96]. Recently the geometrical effects on the

Casimir force are actively pursued as well, for instance, by considering the interactions

of trenches with various depths [97, 98, 99]. While almost all Casimir demonstrations

are performed by introducing an external object to a test body, there has been re-

cent efforts in developing on-chip platforms for probing and taking advantage of the

Casimir force [89, 100, 101].

Apart from the shear theoretical interest in probing such quantum electrodynam-

ical phenomenon manifested on macroscopic objects, the Casimir effect has relevance
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in the prospect of scaling down nano-devices which are subjected to this attractive,

highly nonlinear force [102, 103]. With novel computation tools developed to consider

the Casimir effect with non-trivial geometry and boundary conditions [84], one may

be interested in designing structures that minimize the Casimir effect and in exploring

the large mechanical nonlinearity of the Casimir force.

1.3 Theme and structure of the thesis

This thesis is motivated by the ambition of developing a platform for probing and

counteracting the Casimir force in an on-chip setting. We propose the application of

an enhanced repulsive optical force to counteract the attractive interactions in MEMS

and NEMS due to electrostatics and the Casimir force. Our goal is to monitor the

position of a mechanical device via the superb optomechanical readout sensitivity and

exert a counteracting repulsive force in real-time as the mechanical part is subjected

to an overwhelming large attractive potential.

In the study of Casimir interactions and counteraction, we carried out extensive

study with asymmetric coupled silicon photonic crystal membranes. Most Casimir

experiments were conducted with a sphere-plate geometry eliminating the need for

correcting parallelism of interacting surfaces when compared to theoretical calcula-

tions. Here with the goal of enhanced readout sensitivity and exerting a sufficiently

large, counteracting optical force to prevent stiction, we devise an on-chip integrated

platform to perform Casimir measurements of a plate-plate geometry with a novel

optomechanical degree of freedom. It features a tethered silicon photonic crystal

membrane (30um×30um) suspended above a typical silicon-on-insulator (SOI) sub-
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strate. The large interaction area allows for strong expression of the Casimir effect

that relaxes the signal-to-noise requirement in our detection. It also has a convenient

optical coupling scheme: The square lattice of perforation serves as a polarization-

insensitive second-order grating for coupling normally incident light, in contrast to

the typical tapered fiber-coupled optomechanical structures.

This thesis elucidates the optomechanics of this proposed system, the effort of

detecting the Casimir force via various approaches, and the nonlinear mechanics

associated with it. The structure of the thesis is as follows: Chapter 2 describes

the details of the experimental setup employed for interrogating the coupled PhC

membranes. Chapter 3 shows the full characterization of the optomechanics of the

PhC membranes, including the static and dynamic behaviors, which demonstrates

the potential of optically controlling a Casimir optomechanical oscillator. Chapter

4 describes our effort in probing the Casimir effect by measuring a large ensemble

of devices with different membrane-substrate separations. It also displays various

mechanically nonlinear behavior when resonantly driven by a piezoactuator and an

optical gradient force. Chapter 5 reports the progress in establishing the capability of

electrically addressing individual PhC membranes to minimize the artifacts in Casimir

measurements. Finally, we conclude this thesis in Chapter 6 with a discussion of the

future outlook.
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Experimental setup

This chapter describes the experimental techniques and setups employed for in-

vestigating the optomechanics and nonlinear dynamics of suspended photonic crystal

membranes. In particular, the details of fiber interferometry and the vacuum setup

are discussed.

2.1 Fiber interferometry

2.1.1 Working principles

A technique pioneered by Rugar in the late 80s [104], fiber interferometry has

become a popular technique that finds applications ranging from commercial atomic

force microscopy to high-sensitivity motion detection and fiber-based low-temperature

confocal microscopy for studying excitonic dynamics in quantum dots [105, 106].

As illustrated in Figure 2.1, the working principle is based on establishing a low-

finesse Fabry-Perot cavity between the device-under-test and the cleaved bare fiber
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d

Figure 2.1: Working principle of a fiber interferometer.

(which has a reflectance of 3.6% using the Fresnel coefficient of reflection, and can be

drastically boosted by evaporating a thin layer (≈100nm) of gold for a high-finesse

cavity [29]). The interference signal between the reflected signal from the bare fiber

tip and that from the DUT is recorded by a fast photodetector at the reflected port.

The AC motion of the DUT modulates the cavity length and hence the interferometric

signals (fringes).

A mathematical description of the interferometric signal is as follows: The re-

flected signal Rref is given by

Rref =
Rfb +R(λ)− 2

�
RfbR(λ)cos(4πd

λ
)

1 +RfbR(λ)− 2
�

RfbR(λ)cos(4πd
λ
)
, (2.1)

where Rfb is the reflectance of the cleaved fiber facet (≈ 0.036), d is the fiber facet-

device separation (or the Fabry-Perot cavity length), and R(λ) is the reflectance

spectrum of the device. Here we assume light exiting from the fiber has no spa-
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tial divergence and multiple reflections between the fiber and DUT are accounted

for. However in the case of low reflectivity, the interference signal can be well ap-

proximated by the case of two-beam interference because the multiply reflected light

amplitude is weakened by the fibers low reflectivity, and hence multiple reflections do

not contribute significantly to the interference signal.

2.1.2 Experimental realization

Figure 2.2(a) shows the schematic of a typical fiber interferometer setup. A 2×2

fiber coupler is employed. Input light with power I1 is first split by a certain coupling

ratio α which is dependent on the wavelength. One arm is spliced to an angle-polished

fiber connector to minimize reflection (60dB attenuation) that could otherwise add

to the detected signal as noise. The output light (1 − αR(λ)I1) may be used as a

power reference to obtain the actual total reflectance of the device. The other arm is

cleaved to provide a smooth, flat surface which forms a low-reflectance mirror for the

fiber interferometry. The reflected light is then collected by the same fiber tip and

split by the coupler again. Light that goes back to the laser will be rejected by the

laser’s isolator, whereas the other path is detected by a photodetector. The reflected,

split power detected is given by α(1-α)R(λ)I1. By dividing the photodetector signal

of the device by the photodetector signal of the power reference, one can retrieve the

actual total reflectance at the device detection end, given α can be trivially calibrated.

Experimentally we observe that the splitting ratio of the nominally 50:50 fiber coupler

over the wavelength range of 1480-1680nm varies by at most 3%.

Figure 2.2(b) shows the photographs of the placement of the cleaved optical fiber
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Figure 2.2: (a) Schematic of circuitry of the fiber interferometer and the normalization
method. (b) Photographs of the placement of the cleaved optical fiber where minute
motion control is enabled by closed-loop motorized and manual linear and angular
stages with tip/tilt control.

and the instruments (e.g. goniometer, motorized stage) in the experimental setup.

2.1.3 Static transduction of mechanical displacement

Assume that we operate in a regime where dR(λ)/dλ ≈ 0 (which can be inspected

from the background envelope of the reflected signal), the static fiber facet-device
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Figure 2.3: Interferometric signal of a device interrogated by fiber interferometry.

separation d0 can be estimated by

d0 =
1

2

�
λnλn+1

λn − λn+1

�
, (2.2)

where λn and λn+1 are wavelengths of neighboring peaks or valleys. In order to

attain nm precision to independently measure the device’s static displacement, we

conducted a simple error propagation analysis to evaluate the accuracy we need in

extracting the wavelengths λn and λn+1.

δd = 2d2

��
δλn

λ2
n

�2
+

�
δλn+1

λ2
n+1

�2
. (2.3)

With this analysis we can show that pm precision in extracting the peak/ valley

wavelengths is needed to attain nm accuracy in the measurement of d0. [107] While

this is within the reach of our tunable laser sources, we were not able to perform

this independent measurement of the static displacement due to the following reason:

The finite back-reflection of the incident laser light (with long coherence length)
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from the bottom of the silicon handle wafer (approximately 550µm thick) appears as

high-frequency nuances with small amplitudes laying over the main fringes. These

oscillations introduce uncertainty in fitting the interference fringes of 0.1-0.2nm. This

translates to an uncertainty of the fiber-device separation of 89-178nm, rendering

the inapplicability of this interferometric method of independently measuring the

nanometer optical-force-induced displacement.

Another interferometry technique to calibrate the device displacement is by ad-

justing the fiber position relative to the device until it rests on the quadrature point

which is the most sensitive to displacement [107]. With a similar analysis as above

while assuming little change in the reflectance of silicon due to thermo-optic effect by

the optical pump, we estimated that about 0.8% change in the maximum voltage sig-

nal indicates a 1nm displacement. In this experimental condition, our system suffered

a 3% fluctuation in the signal due to the high frequency oscillations which drowns

out the displacement signal. Recently, by mounting our samples on holders using an

adhesive known as Electrodag 502 which consists of carbon particles, we observe the

telecom light exiting the sample bottom surface is absorbed. Hence the fringes due to

the back-reflection become minimized. Further work to demonstrate sub-nanometer

static displacement is in progress. Alternately using a intensity-stabilized light source

with low coherence length (e.g. a superluminescent laser diode) or introducing am-

plitude/ phase modulation may suppress the interferences of reflections from the ≈

0.6 mm range.
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2.1.4 Dynamic transduction of mechanical oscillatory motion

An important application of the supreme readout sensitivity of fiber interferometry

is the detection of sub-nanometer oscillatory movements [104]. It is demonstrated by

placing the optical fiber ≈ 70µm above a blank area of a double-SOI sample, which

is piezo-driven at 620kHz. The silicon surface is probed with a range of wavelengths

of light from 1580nm to 1640nm with an increment of wavelengths of 1nm. At each

probe wavelength, the reflected light is analyzed with a real-time spectrum analyzer.

The spectral peak at the driven frequency 620kHz is due to the modulation of the

fiber-sample separation due to the piezo actuator. The amplitude of the spectral peak

at each wavelength is then plotted in Figure 2.4. The signal sensitivity is the strongest

at the quadrature point of the fringes. This demonstration verifies the feasibility of

the detection of mechanical motion of free-standing devices without optomechanical

coupling. Note that the variation in the peak sensitivity over the spectral range (at

the quadrature points) could be due to the variation of reflectance of the double-SOI

sample over this wavelength range.

2.1.5 Other experimental details

Fiber alignment for optimal coupling

To maximize the coupling and collection efficiency of light to and from the device

under study, we manually adjust the tilt of the sample stage relative to the fiber facet.

The degree of tilt in both the x-axis and y-axis can first be evaluated by allowing

the sample to traverse back and forth by 400µm [108]. When tilt exists, the relative

separation of the fiber facet and the sample should vary linearly over the traveling
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Figure 2.4: Transduction of time-varying mechanical motion by means of fiber inter-
ferometry with probe wavelengths from 1580nm to 1640nm. The signal strength is
extracted from the amplitude of the detected driven peak signal. It varies sinusoidally
with the probe wavelengths. More fringes are intentionally packed into this detection
range by positioning the fiber ≈70µm from the sample.

distance. Hence a sinusoidal interferometric fringe signal can be observed. The largest

the tilt is, the shorter is the period of the fringes. The goal is to minimize the

appearance of the fringe signal by adjusting the tip/tilt knob for the x-direction. The

same routine is then repeated for the y-direction. An example of the interferometric

fringes during the parallelity adjustment is illustrated in Figure 2.5. Typically the

fiber is placed ≈400µm away from the sample such that the fiber tip does not come

into contact with the sample during the tilt adjustment, and the effect of the tilt on

the fringes can be exaggerated for the correction.

Apart from the tip/tilt correction, the alignment of the fiber tip over the photonic
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Figure 2.5: (a) An illustration of the tip/tilt alignment: The sample traverse by
400µm back and forth relative to the fiber tip. Tilt in the sample holder is manifested
as fiber facet/ sample height variations which produces interferometric signals. The
tip/tilt in each axis is then finely adjusted until the signal recorded during the stage’s
traverse movement becomes as flat as the signal recorded during the stage’s rest state.
(b) Raster scan automated by a LabVIEW routine for locating the devices under test
and aligning the fiber tip at the optimized location with sub-micron resolutions for
maximal coupling of light to the photonic devices.

device concerned is performed by performing a raster scan to roughly outline the

device map [108], illustrated by a screenshot of the LabVIEW routine developed for

this purpose (Figure 2.5(b)). It is possible due to the sufficiently different reflectance/
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scattering of the the devices throughout the sample. Then a high-resolution scan over

the device interested allows one to choose the most optimal coupling location on an

extended device. In particular, if the device is resonant at a certain excitation wave-

length, the scan image taken at such wavelength shows a large contrast of reflectance

at the best coupling location.

2.2 Vacuum components for fiber interferometry

Vacuum chamber and electrical feedthrough

The detection of the mechanical properties of the optomechanical oscillator is

performed in vacuum to minimize the effect of viscous damping. To accommodate

the long-range, vacuum-compatible motorized stages, an aluminum vacuum chamber,

18” in diameter and 18” in height illustrated in Figure 2.6(a) and (b), is employed.

The initial stage of the experiment soldered all the electrical connections from the

linear stages and the encoders to 2 50-pin sub-D connectors. Yet they were fragile and

caused minute damage to one of the motorized stages. To save future labor cost in

repair, all the electrical connections are directly plugged to five electrical feedthroughs

mounted on a 5-way cross, as shown in Figure 2.6(b).

Telescope for monitoring the fiber position

To facilitate placement and monitoring the relative position of the optical fiber

to the sample, a telescope is built to relay the image of the optical fiber from the

vacuum chamber to the outside. The shortest distance from the center of the vacuum

chamber, through the viewport, to the outside is at least 20cm. Hence a lens of
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(a) (b)

5-way cross for elec-
trical feedthrough

Optical fiber 
feedthrough

(d)(c)
A lens for relaying the 

image of the fiber

Figure 2.6: (a) An aluminum vacuum chamber, 18” in diameter and 18” in height,
capable of high vacuum operation down to 1µTorr. (b) Electrical feedthrough to
communicate with the five-axis closed-loop motorized stages via a five-way cross with
multiple flanges with D-sub connectors. A simple, home-made teflon ferrule fitted in
a swagelock nut is used for optical fiber feedthrough. (c) Telescope for relaying the
image of the optical fiber tip to a CCD camera. The relay lens has a focal length of
20cm, and the Mitutoyo objective has a working distance of 3.3cm. (d) CCD image
of a cleaved optical fiber tip above a sample. The fiber cladding’s diameter is 125µm
for an SMF-28 fiber.

focal length = 20cm is inserted to relay the fiber’s image to the focal point of a 5x

Mitutoyo objective (with long working distance). The setup is shown in Figure 2.6(c)

with the imaged cleaved fiber tip hovering over a sample displayed in Figure 2.6(c).
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A reflective film (e.g. aluminum foil, or white cardboard) is placed behind the optical

fiber to improve image contrast by enhanced scattering.

Optical fiber feedthrough

Access of light to the inside of the vacuum chamber is enabled by using a swagelock

nut fitted with a custom-made teflon ferrule [109]. A hole is bore through the ferrule

which allows the optical fiber to feed into it. A good vacuum seal is obtained by

tightening the swagelock nut.

Vacuum pumps

It suffices to attain a vacuum level as low as 10−3Torr to observe the Brownian

motion of the optomechanical devices. In our setup, we can reach 4×10−6Torr. It

is achieved by pumping the vacuum chamber with a turbo pump (Agilent TV-301

Navigator) backed by a roughing pump. Due to the sensitive nature of a fiber inter-

ferometer, the strong vibrations from the vacuum pump have to be damped out by

connecting the vacuum lines to a heavy concrete mass. Otherwise the pump vibrations

can lead to oscillatory amplitude as large as 10% of the detected signal.

Other maintenance issues

Finally, proper care of the vacuum chamber includes never exposing the inside of

the vacuum chamber to the atmosphere with the chamber lid removed for an extended

period of time. The nuts and bolts provided for tightening the chamber lid are not

necessary. The heavy weight of the chamber lid is sufficient to ensure a good seal

as the chamber is pumped. In fact the uneven tightening of the nuts and bolts can
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warp the O-ring and lead to significant leak. Finally, with the inclusion of a good

vacuum valve and assuming little virtual leak, a high vacuum with the pressure as

low as 10−5Torr can be maintained over two weeks without the vacuum pumps on.
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Optomechanics with photonic

crystal membranes

3.1 Brief history of the project

In the development of an integrated platform for studying the Casimir force and

counteracting it by optical means, we focused on the zeroth-order static effect of

exerting an attractive optical force to a mechanically compliant membrane. We were

interested in observing the nontrivial effect of the Casimir potential and an optical

potential to the equilibrium position of the photonic crystal membrane [110]. The

balance of the attractive potential due to the Casimir force and the optical force and

the restoring mechanical spring force causes the development of bistable mechanical

states. In particular, switching between these bistable states manifests itself as optical

bistability. Another means of probing the effect of the Casimir force is to observe the

Casimir-induced force gradient as the PhC membrane comes closer to the neighboring
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substrate and experiences a stronger Casimir potential [100]. The initial phase of the

investigation focused on eliminating and even taking advantage of the presence of

compressive stress in silicon-on-insulator substrates which would otherwise prevent

the formation of structures with sufficiently small gaps to probe the Casimir effect and

achieve sufficiently large optical force. The breakthrough in stress engineering in turn

achieved for us unprecedentedly wide tunability of optomechanical coupling strength

for vertically coupled structures. Moreover, originally considered as negligible or

irrelevant, the rich dynamics of optomechanics demanded proper characterization

which had proved to provide us with realistic details for developing and actuating

an on-chip Casimir oscillator. In this chapter, we report a full description of the

optomechanical properties of our proposed Casimir membrane oscillator 1.

3.2 Stress-relief strategies for suspended thin sili-

con membranes and device fabrication

Our devices, illustrated in Fig. 3.1(a), consist of a square silicon PhC slab sus-

pended by four support arms ≈ 250 nm above a Silicon-on-Insulator (SOI) substrate.2

They are fabricated (Fig. 3.1(b)) from a double-SOI platform, formed by oxide-oxide

bonding of two thermally oxidized SOI wafers. (See Appendix 1 for details of the

fabrication of double-SOI wafers.) Here the sacrificial silicon dioxide layer between

1Most of the results shown in this chapter is joint work with Dr. David Woolf and Dr. Eiji Iwase,
which are published in [34, 39]

2The sacrificial oxide layer in the second generation of double-SOI substrates is 100nm thick.
Experimental results with devices fabricated with those platforms are reported in Chapter 4.

37



Chapter 3: Optomechanics with photonic crystal membranes

Figure 3.1: (a) An electron micrograph of a free-standing photonic crystal membrane,
consisting of a silicon membrane (thickness h = 185nm) patterned with a square
lattice with a 30×30 periodic hole array of period p = 0.92 µm and hole diameter d
= 0.414 µm. The membrane is suspended over an SOI substrate (silicon device layer
185 nm thick; buried oxide layer 3 µm thick). The membrane is tethered by four
arms (L = 19.3 µm, W = 2.75 µm) whose anchors are terminated by arrays of etch
holes for engineering the torque due to stress gradient from the uneven oxide etch
profile. On the ends close to the membrane the arms are supported by accordion-like
structures (inset i). These combined features provide versatile lithographic control of
membrane-substrate separations. (c) A 3D illustration of the simulated optical mode
of a single unit cell of the geometry in (b) with s = 100 nm. The x-component of the
electric field is plotted for an antibonding mode at λ0=1570 nm. The field symmetry
with respect to the plane parallel to the membrane and the substrate is antisymmetric
which corresponds to a repulsive optical gradient force. (d) The simulated resonant
wavelength λ0 (red line) of the mode in (c) is plotted. Experimentally extracted
resonant wavelengths of 16 devices with different membrane-substrate separations
are overlayed over the simulated result. The corresponding optomechanical coupling
coefficient of the mode is obtained from simulation (blue line).
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the two silicon device layers is s0 = 265 nm thick. Well known to the MEMS commu-

nity, compressive stress in the device layer of SOI causes buckling to released devices.

Moreover, due to the preferential hydrofluoric-acid etch along the bonded plane, the

stress gradient along the sacrificial oxide layer leads to upward turning moments and

deflects the released devices. Hence stress management techniques [111, 34] were in-

corporated which allow us to lithographically control the membrane-substrate gaps of

various devices. The result is that vertical optomechanical strength tuning becomes

possible which is otherwise hard to achieve controllably.

3.2.1 Effect of compressive stress to suspended photonic crys-

tal membranes

In the development of suspended photonic crystal membranes for probing the

Casimir effect, it is crucial that the membranes (i) remain flat (or have a very large

radius of curvature) and (ii) maintain a small separation distance (≤200nm) from the

neighboring substrate for strong manifestation of the Casimir effect. Moreover, the

photonic crystal membrane should be sufficiently large to reduce the finite-size effect

on guided resonances and to allow a conspicuous exhibition of the Casimir force (scales

directly with the interaction area). With these considerations, the photonic crystal

membranes are designed to be about 30µm×30µm large to accommodate sufficient

number of periodically perforated holes, whereas the support arms are soft enough for

the expression of the Casimir effect but strong enough to survive when subjected to

large attractive potentials including the Casimir force, electrostatic force and optical

force. Finally the membranes are supported by four identical arms to provide ample
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mechanical support and reduce the membranes’ torsional degrees of freedom.

Our starting substrate is a doubly-bonded silicon-on-insulator (SOI) wafer which

consists of two thin silicon device layers (185nm thick) separated by a sacrificial oxide

layer (265nm thick). In an ideal material, a photonic crystal membrane defined in the

silicon device layer should remain flat upon release, and maintain a separation distance

of 265nm from the bottom substrate. However, we identified that the compressive

stress in the silicon device layer and the stress gradient at the material boundaries

caused significant deviations from our designs.

The effect of the compressive stress is first demonstrated using typical commercial

SOI wafers, on which an array of cantilevers and doubly clamped beams are fabri-

cated. As shown in Figure 3.2(a), an array of cantilevers of different lengths appear

to have rainbow colors along their lengths. In fact, the longest cantilever appears to

be out of focused in the optical image. It is because of the large degree of buckling

of the cantilever as the compressive stress is released which caused the free cantilever

end to be out of the focal plane compared to other shorter cantilevers. As for the rain-

bow color, it is due to the interference of the white light illumination reflected from

the top cantilever surface and the bottom substrate, where the separation between

these surfaces vary continuously along the lengths due to the release of the compres-

sive stress. Each repetition of the rainbow color roughly corresponds to changes in

the cantilever-substrate separation by half the wavelength of the visible light. The

implication of this demonstration is that without any stress-relief mechanism, the

compressive stress in a tethered photonic crystal membrane is released toward the

membrane itself as illustrated in the cartoon of Figure 3.2(e). It causes the mem-
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Figure 3.2: (a) Optical image of an array of cantilever of varying lengths to demon-
strate the degree of buckling due to compressive stress in a silicon-on-insulator plat-
form. The interference patterns across the beam lengths reflect the buckling ampli-
tudes of the beams. (b) An electron micrograph of a suspended PhC membrane which
is 30×30µm2 large and supported by four arms without stress-relief designs. (c) 3D
optical profiler image of the PhC membrane where the red color shows its upward
deflection relative to the surrounding flat surfaces. (d) Quantitative measurement of
the membrane’s deflection through a cross section along the support beams and the
slab. The slab is deflected upward by 568nm due to the release of the compressive
stress toward the membrane.

brane to buckle (upward or downward) and become domed, which is illustrated in

the scanning electron micrograph in Figure 3.2(b) and the optical profiler image in

(c). Quantitatively measurement across the support beam and the membrane (Figure

3.2(d)) shows that the membrane is buckled upward by 568nm and is not flat across
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the entire slab.

The prominent influence of the stress gradients, however, stems from the pref-

erential etching of the silicon dioxide along the bonded oxide-oxide interface in a

double-SOI platform. Figure 3.2(f) shows the electron micrograph of the cross sec-

tion of a double-SOI wafer subjected to hydrofluoric acid immersion for ≈ 2 minutes.

A widening crack between the two silicon device layers can be seen where some oxide

residues with varying thickness are observed. The residue thickness gradient causes a

stress gradient across the oxide layer which creates a bending moment on the released

device layer. Figure 3.2(e) summarizes the stress-related sources acting on the top

silicon membrane and how they each contribute to the out-of-plane deformation, i.e

through the axial load and through the bending moment.

3.2.2 Strategies for mitigating in-plane compressive stress

and stress gradients

We first tackle the issue of compressive stress. As a result of the in-plane compres-

sive stress being released toward the suspended membrane, the membrane experiences

out-of-plane buckling. Hence, a simple principle of eliminating the effect of compres-

sive stress acting directly on the membrane is to provide an alternate pathway for the

stress to be released in a preferential direction away from the membrane itself. This

can be accomplished by introducing an array of thinner support structures which are

more compliant, and hence preferentially subjected to the compressive stress which

in turn experiences in-plane deformation instead. Two designs we adopted are sup-

port arms formed by (i) narrow curved beams and (ii) narrow lateral beams. How
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(a - i)

(a - ii) (b - ii)

(b - i)

Figure 3.3: (a-i) Schematics of narrow curved beams subject to axial load which lead
to in-plane deformation of the beams. (a-ii) Electron micrograph of PhC membranes
with multiple narrow curved beams as support arms. The membrane’s deflection
profile is measured by a 3D optical profilometer. A cross-sectional profile along the
support arms and the membrane is recorded, and shows a mere upward deflection of
49nm which is a huge decrease from the unmodified situation. (b-i) Schematics of
narrow lateral beams subject to axial load which is perpendicular to the deformable
beams’ lengths. (b-ii) Electron micrograph of PhC membranes with multiple nar-
row lateral beams as support arms. Similarly, the membrane’s deflection profile is
measured. Here the recorded cross-sectional profile along the support arms and the
membrane shows an upward deflection of 33nm.

the stress is relieved and causes in-plane deformation instead of out-of-plane buck-

ling with these two designs are respectively illustrated with the cartoons in Figure

3.3(a-i) and (b-i). To maintain the out-of-plane stiffness of the support arms in the

actual PhC membranes, a number of multiple narrow beams are placed parallel to

each other in close proximity. The effectiveness of both stress-relief designs in dras-

tically reducing the out-of-plane buckling of the PhC membranes is shown in Figure

3.3(a-ii) and (b-ii). The electron micrographs of PhC membranes supported by mul-

tiple narrow curved beams and by multiple narrow lateral beams depict the actual
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mechanical designs. The degree of buckling of the membranes is inspected by a 3D

optical profilometer. It is clear that the membranes are flat and leveled with respect

to their surrounding blank surfaces of silicon. Quantitatively, the amount of buckling

went from 568nm in the unmodified design to 49nm and 33nm respectively in the

modified designs.

It should be noted that in the stress-relief design with multiple narrow curved

beams, the support arms function both in allowing for mechanical deformation to

relieve in the compressive stress and in providing the out-of-plane stiffness and me-

chanical support for the PhC membrane. For the other design with multiple narrow

lateral beams, the deformable stress-relief features are perpendicular to the direction

of the axial load due to the compressive stress, and are secondary in providing the

out-of-plane stiffness and mechanical support to the PhC membrane. Throughout

this thesis, we mostly adopted the the latter design for demonstrating the optome-

chanical properties and other nonlinear phenomena of the PhC membranes, but also

demonstrated interesting optically induced mechanical nonlinear phenomena with the

previous design.

Now we tackle the issue of stress gradients in double-SOI platforms. As discussed

previously, the preferential etch of the oxide-oxide bonded interface, during the release

of the PhC membrane in vapor hydrogen fluoride, causes a bending moment that

tangentially torques the support arms and leads to large upward buckling of the PhC

membrane. This is illustrated in Figure 3.4(a). One elegant solution is to isolate

the bending moments from torquing the long support arms by placing an array of

etch holes at the anchors. Now even the bending moments are still developed at the
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Figure 3.4: Control of membrane deflection by engineering the etch hole arrangement
at the anchors.(a) For an unmodified structure, the bending moment caused by the
stress gradient at the oxide-silicon interface leads to a large torque on the support
arms, and hence a large degree of upward buckling of the membrane. (b) By adding
in a rectangular array of etch holes at the end of the anchors, the bending moments
are isolated from the support arms, but instead act on the small, stiff region of the
etch holes. The membrane is expected to be leveled and flat with respect to its nearby
surfaces. (c) It is also possible to create a torque gradient profile by arranging the
etch hole array into a triangular shape. With the wide base of the triangle pointing
away from the membrane, a net downward torque and hence a downward deflection
of the membrane can be attained. Varying the width of the base of the triangle leads
to controllable membrane deflection.

end of the etch hole arrays, the moments no longer act on the arms. Instead the

moments are now rotated by 90◦ and act on the much stiffer released regions of the

hole arrays. As a result, by placing a rectangular array of etch holes, the membrane’s

upward deflection is greatly reduced and the membrane-substrate separation can be

kept small as a result. What is interesting is that one may arrange the etch holes into
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a triangular array, as shown in the schematics in Figure 3.4(c). The torque developed

at the wide triangular base is larger than that at the apex of the triangular array.

This torque gradient leads to a net downward torque on the support arms of the

membrane. Hence, the membrane is bent downward. By controlling the base width

of the triangular array, the net torque on the support arms and hence the membrane

downward deflection can be engineered. This feature opens up a new avenue of

lithographically tunable optomechanical coupling in vertically coupled systems by

engineering the geometry of the etch hole arrays at the anchors.

Combining the strategies discussed above including incorporating multiple narrow

beams and engineering the anchor etch holes, we demonstrated control in membrane

deflections with various etch hole arrangements in a double-SOI platform. Figure

3.5(a) and (b) correspond to the case where there is no stress-relief design or etch

hole added. Optical profilometry reveals an upward buckling of 365nm. Figure 3.5(c)

and (d) correspond to the case where multiple narrow lateral beams are added for

stress relief and rectangular arrays of etch holes are placed at the anchors. Here

the amount of upward deflection is merely 35nm. Figure 3.5(e) and (f) correspond

to the case which is similar to the previous case but the etch holes at the anchors

are arranged in a triangular form. The membrane is now deflected downward by

105nm. This versatile technique facilitates a systematic investigation of optomechan-

ics with tunable coupling strength and other near-field interactions whose strengths

of expression depend strongly on the membrane-substrate separations. As we will see

in the following chapters, these stress-relief strategies were heavily employed in the

fabrication of the structures studied throughout the thesis.
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(b)

(c)

(e)

(d)

(f)

Figure 3.5: Comparison of the deflections of PhC membranes with different stress-
relief and stress-gradient controls: (a) An SEM image of a PhC membrane with no
stress-relief design or etch hole at the anchors. (b) The corresponding optical profiler
image which shows an upward deflection of 365nm. (c) An SEM image of a PhC
membrane where stress relief is achieved by incorporating multiple narrow lateral
beams and the stress gradient is re-diverted by adding a rectangular array of etch
holes. (d) The corresponding optical profiler image which shows a small upward
deflection of 35nm. (e) An SEM image of a PhC membrane with similar stress-relief
design but the etch holes at the anchors are arranged into triangular arrays. (f) The
corresponding optical profiler image which shows a significant downward deflection
of 105nm.

3.2.3 Device fabrication

The photonic crystal and other mechanical support patterns are defined by electron-

beam lithography where a positive resist ZEP-520A is used. After developing in O-
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xylene, the patterns are transferred to the top silicon layer by reactive-ion etch with a

fluorine-based chemistry. The device is then released by undercutting the perforated

silicon layer with the vapor-phase hydrofluoric acid etch (VHFE). (See Appendix 1

for reliable release techniques of VHFE.) In the demonstration of static displacement

of the photonic crystal membrane due to the repulsive optical force which followed the

initial investigation of the optomechanical properties and dynamics, an annealing step

was performed at 500◦C (slow thermal ramp) for 1 hour in a nitrogen environment to

the same device 3. The results are enhanced optical and mechanical quality factors.

The separations of the released membranes from the substrate are characterized by

a laser confocal microscope (Olympus LEXT OLS-4000). (Typical interferometry-

based optical profilometers common to characterizing microscopic structures do not

apply to our devices due to the presence of multiple thin layers compared to the

interrogating wavelengths.)

3.3 Device characterization

The structure was designed to support an optical antibonding mode in the wave-

length range of 1480-1680nm that results from the hybridization of waveguide modes

in the membrane and substrate [32, 34]. The precise spectral location of the resonance

is determined by the optomechanical coupling between the two modes, the strength

of which is defined as gOM ≡ dω/ds, where ω is the optical resonant frequency. The

distribution of the x-component of the electric field in the top membrane is out-of-

3Pre-annealing and post-annealing measurements were performed on 18 devices. Quantitatively
the mechanical linewidths of chosen devices went from 111Hz, 536Hz and 344Hz to 27Hz, 42Hz and
40Hz respectively.
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phase from that in the bottom membrane, as depicted in the simulation results of

the whole structure in Fig. 3.1(c), which corresponds to the generation of a repulsive

gradient force. Additionally, the field symmetries along the x-z and y-z planes indi-

cate that we are operating with a “dark” mode [112], which theoretically does not

couple to normally incident light because of mismatch in field symmetry. However,

by breaking the periodicity of the full structure, we can couple to the dark mode and

achieve high Qopt [113]. Such devices have been the subject of numerous theoretical

and experimental investigations on subjects ranging from the lowering of the laser

thresholds [114] to increasing the sensitivity of photonic-crystal-based sensors [115].

Here, the dark mode is made accessible due to the finite size of the membrane and

slight fabrication imperfection.

The experimental setup to interrogate the optomechanical properties of the cou-

pled photonic crystal membranes is as follows: An optical fiber (SMF-28) mounted on

a z-axis linear stage (stepper motor) couples light to the PhC membrane by centering

it above the suspended membrane in the Rugar configuration (shown in Figure 3.6,

inset i) [104]. The same fiber also collects the light reflected by the device. (See Ch. 2

for experimental details and analysis of fiber interferometry.) The chip containing the

device rests on a sample holder whose in-plane alignment is by a four-axis (x, y, θx, θy)

stage platform. The motorized x-y stage (stepper motor) contains closed-loop feed-

back for repeatable alignment of the fiber to the sample with sub-100 nm resolution,

where the manual θx and θy tilt controls are adjusted to attain parallelism between

the fiber facet and the sample. Such proper alignment procedures ensure maximum

coupling efficiency. The typical fiber-substrate height is approximately 25 µm (Figure
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Figure 3.6: Experimental setup: A 2×1 fiber coupler, which admits two separate
laser inputs covering the wavelength range of 1480-1680nm (tunable laser TSL500),
is spliced to a 50/50 2×2 fiber coupler. One end goes to Photodetector 2 as a power
reference. The other end is fed into the vacuum chamber through a customized fiber
port. The cleaved optical fiber is mounted vertically and positioned above the PhC
membrane, as illustrated in inset (i). The reflected signal of the PhC membrane is col-
lected by the same end and is measured by Photodetector 1. The optical spectra are
collected by a data acquisition board. An optical resonance centered at λ0=1561.1nm
is shown in inset (ii) (quality factor = 2500). The mechanical spectra are obtained
by measuring the frequency fluctuations of the optical signal, transduced by the me-
chanical motion. The photodetector signal is sent to a real-time spectrum analyzer
to characterize the membrane’s mechanical response in the frequency domain. A
mechanical spectrum of the membrane fundamental mode (measured at 1561.2nm -
shoulder of the optical resonance (red dot in inset (i)) is shown in inset(ii).

3.6, inset i) corresponding to a spot size of approximately 12 µm. The whole setup

is placed inside a high vacuum chamber (10−5 Torr) to reduce the effect of viscous

damping on the detection of mechanical resonances. Optical spectra (Figure 3.6, inset

ii) were collected with a fast, low-noise near-IR photodetector (ThorLabs DET10C)

by sweeping the wavelengths of tunable laser sources (TSL-510). Mechanical spectra

(Figure 3.6, inset iii) were collected at fixed excitation wavelengths on either side

of the optical resonance by analyzing the signal reflected off of our membranes in a
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real-time spectrum analyzer (Tektronix RSA3303B).

3.4 Dynamic behavior

3.4.1 Optical spring and dynamic backaction

Since the optical force has a nonlinear dependence on the membrane-substrate

separation x [31], the optical force can contribute to alter the system’s spring constant

[116, 13]. This can be easily visualized by Taylor-expanding the expression of the

optical force to obtain a Hooke’s-law-like term. Alternately it is simply the first-

order derivative of the optical force expression. Since the optical force is dependent

on the detuning from the optical resonance, the optical spring constant’s magnitude

and polarity depend on the optical detuning of the excitation. It is evident that the

optical spring constant scales linearly with the excitation power as well.

What is unconventional is the occurrence of dynamic backaction which is a con-

sequence of the finite time needed for building up of the optical forces [13]. In our

system, there are two optical forces, namely the repulsive gradient force and the

photothermal force. The photothermal force arises as a result of the finite linear ab-

sorption of the incident light which heats up the suspended PhC membrane. As the

heat diffuses away from the membrane to the support arms, thermal stress is formed

at the silicon and oxide interface due to the difference in thermal conductances. In the

case of a photothermal force, the time needed for heat to be transported for thermal

stress to reach to its maximum is on the scale of the thermal time constant which is

geometry and material dependent [29, 117]. In the case of an optical gradient force,
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the time scale for the build-up of the effect is related to the photon lifetime limited

by available dissipative channels. In any case, the non-instantaneous nature of these

forces that traverse from point A to B then back to A leads to positive/ negative work

done on the optomechanical structure. This is the basis of optomechanical amplifica-

tion/ cooling [118, 119]. Such effect is manifested as mechanical linewidth narrowing/

broadening which means the viscous damping on the system is reduced/ enhanced.

We probe the optical spring effect and dynamic backaction in our system by pumping

the membrane with light over a range of excitation wavelengths across the optical

resonance, maintained at a certain power. We then measure the resultant mechani-

cal frequencies and mechanical linewidth of the transduced Brownian motion, which

corresponds to the fundamental flexural mode of two devices of different membrane-

substrate separations. As illustrated in Figure 3.7(a)( and (b)), the membrane that

deflects upward (downward) has a separation of 300nm (160nm), which is enabled

by stress and torque engineering at the anchors. Their corresponding resonant wave-

lengths (optical quality factors) are 1576.4nm (6600) and 1561nm (4000) and has the

characteristic of an anti-bonding mode (repulsive force). The effect of optical spring

(mechanical frequency Ωm shifts from the unperturbed frequency) and dynamic back-

action (change in the mechanical linewidth Γm) is extracted by fitting the measured

mechanical resonance to a Lorentzian lineshape motivated by the mechanical suscep-

tibility of a classical harmonic oscillator. The best fits for Ωm and Γm are plotted

in Figure 3.7(a) and (b) (green circles) as a function of excitation wavelength. Both

membranes experience mechanical linewidth broadening when the excitation is red-

detuned from the optical resonance and linewidth narrowing when blue-detuned. In
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particular, while self-sustained oscillations, accompanied by linewidth narrowing to

its fundamental minimum, are supposed to occur on the blue-detuned side of the

optical resonances in a fast optomechanical system [118], we observed self-sustained

oscillations on the red-detuned side when the membrane is excited above the thresh-

old power (deflected-downward: ≈15µW; deflected-upward: ≈60µW). This is directly

opposite to what is expected in systems subjected to back-action from fast optical

forces only. Therefore, we conclude that in our system most of the linewidth change

is accounted for by the photothermal force.

With respect to the mechanical frequency shifts, in the deflected-upward case,

mechanical softening occurs on the blue-detuned side of the resonance and stiffening

occurs on the red-detuned side. The reverse effect happens in the deflected-downward

case. Both the gradient force and the photothermal force have comparable contri-

bution to the mechanical frequency shift depending on their relative strengths. In

the deflected-downward case, the two silicon layers become more strongly coupled,

hence the gradient force per photon greatly increases relative to the photothermal

force. Since the back-action due to the fast gradient force dominates, we recover

the expected trend in the mechanical frequency shifts with respect to detuning in

optomechanics with a fast optical force.

To conclude the experimental resutls, typical optomechanical systems whose dy-

namics are subjected to the back-action of a fast optical gradient force or radiation

pressure, the optical spring effect leads to mechanical stiffening and linewidth narrow-

ing when the excitation is blue-detuned from the optical resonance, whereas softening

and linewidth broadening occur when red-detuned. However, when the system is also
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Figure 3.7: Interplay of optical gradient force and photothermal force in the opti-
cal spring effect and dynamic back-action: (a) Photonic crystal membrane deflected
upward (with a membrane-substrate separation of s=300nm) experiences both the
repulsive optical gradient force Fopt and the attractive photothermal force Fptm. The
fitted value of mechanical frequency Ωm/2πand linewidth Γm of the membrane, upon
excitations of P=50µW at different optical wavelengths across the optical resonance
centered at 1576.4nm, are plotted (green circles). ∆�

0 denotes optical detuning. The
experimental results are fitted to Eqs. 3.21 (black solid line). The contributions due
to the gradient force (blue dashed line “OM”) and the photothermal force (red dashed
line “PtM”). (b) Photonic crystal membrane deflected downward (s=160nm). Here
the measurements are performed with P=6µW. Note that the trend of the mechanical
frequency in the downward-deflected case flips compared to the upward-deflected case,
when the membrane becomes more strongly coupled and the optomechanical coupling
strength is enhanced. The mechanical linewidth change is practically entirely due to
the photothermal effect.)

subjected to the back-action of a retarded photothermal force, the optical spring effect

with respect to optical detuning could be reversed. The net optomechanical dynamics
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is a result of the competition between the optical gradient force and photothermal

force which are of very different timescales (e.g. ≈1ps of gradient force vs. ≈10µs

of photothermal force). By designing the optomechanical coupling and the timescale

of the photothermal force, one can tune the dynamics of the oscillator. For our PhC

membrane system, the dynamic backaction effect due to the optical gradient force is

negligible or below the detection limit because of the moderate quality factor of the

optical modes. By taking into account the contribution from the photothermal force,

we elucidate the interplay of the optical gradient force and the photothermal force on

the dynamics of the membranes in the framework of coupled-mode theory [120].

3.4.2 Coupled-mode theory for the dynamics of optomechan-

ics in the presence of the optical gradient force and the

photothermal force

In this model, the thermomechanical force Fptm, driving our membrane together

with the optical gradient force Fopt, is added to the equation of motion. Fptm is mod-

elled to be directly proportional to the temperature increase T of the membrane as a

result of the absorption of stored optical energy |a(t)|2. Since it is important to ac-

count for the delay in the thermomechanical force due to its finite heat diffusion time,

the Newton’s cooling law is included to describe the intricate dynamics of heat with

optics and mechanics. The three governing equations of our optothermomechanical
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system are given by

da

dt
= −Γ

2
a− i(∆0 + gOMx− dω

dT
T )a+ κs (3.1)

dT

dt
= −γthT + c−1

th
(Γlin + ΓTPA)|a|2

= −γthT + c−1
th
(Γlin + σ

βSic2

VTPAn2
g

|a|2)|a|2 (3.2)

d2x

dt2
+ Γm

dx

dt
+ Ω2

m
x = −gOM |a|2

m∗ω0
+

D

m∗T. (3.3)

In the equation for the time evolution of the intracavity field a given by Eqn 3.1,

a(t) is the time-dependent intra-cavity field stored in the PhC, Γ is the total decay

rate of the field due to the external coupling rate κ, the linear absorption by the

PhC Γlin and two-photon absorption ΓTPA which proves to be negligible, ∆0 is the

optical tuning of the excitation light from the optical resonance of the PhC, gom is

the optomechanical coupling coefficient, dω

dT
is the thermo-optic coefficient of silicon,

and |s|2 gives the input power of the excitation light. The first term on the right-

hand side of the Eqn 3.1 describe the total decay (out-coupling) of the intra-cavity

field. The second term accounts for the dispersion of the PhC resonance due to the

optomechanical effect and the thermo-optic effect. The last term is the coupling of

external excitation into the PhC.

As for the equation for the time evolution of the temperature increase T (t) of the

PhC given by Eqn 3.2, γth is diffusion time constant of heat in the PhC, cth is the

specific heat capacity of silicon, σ is the cross-section area for two-photo absorption,

c is the speed of light, ng is the group index of light in silicon, βSi is the bulk silicon

two-photon absorption coefficient, VTPA is the effective volume of the mode that

contributes to two-photon absorption. The equation essentially accounts for heat loss
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by diffusion (first term on the right-hand side) and heat input to the PhC due to

non-radiative processes.

Finally, in the equation of motion of PhC given by Eqn 3.3, x(t) is the time-

dependent displacement of the membrane, Γm is the mechanical decay constant, Ωm

is the angular mechanical frequency, m∗ is the effective mass of the membrane with

respect to the fundamental mode, ω0 is the resonant frequency of the PhC, and D is

a coefficient that relates the magnitude of the photothermal force to the temperature

increase T and has the unit of N/K. The terms on the right-hand side of the equation

of motion accounts for the two forcing terms due to the optical gradient force and the

photothermal force.

Assuming a small perturbation in the membrane’s position around its equilibrium,

we linearize the equations above by separating out the static and the time-varying

components of x(t), a(t) and T (t) by the ansatz x(t) = x0 + δx(t), a(t) = a0 +

δa(t), T (t) = T0 + δT (t).
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Linearizing the intracavity field equation (3.1)

d

dt
(a0 + δa(t))

= −Γ

2
(a0 + δa(t))− i

�
∆0 + gOM (x0 + δx(t))− dω

dT
(T0 + δT (t))

�
(a0 + δa(t)) + κs

(3.4)

⇒






0 = −Γ

2
a0 − i

�
∆0 + gOMx0 −

dω

dT
T0

�
a0 + κs

d

dt
δa(t) = −Γ

2
δa(t)− i

�
gOMδx(t)− dω

dT
δT (t)

�
a0 − i(∆0 + gOMx0 −

dω

dT
T0)δa(t)

(3.5)

Define ∆�
0 = ∆0 + gOMx0 −

dω

dT
T0. Working in the Fourier domain (where

d

dt
→

−iω)






a0 =
κs

Γ

2
+ i

�
∆0 + gOMx0 −

dω

dT
T0

�

� �� �
∆�

0

(−iω + i∆�
0 + Γ/2) δa(ω) = −i(gOMδx(ω)− dω

dT
δT (ω))a0

(3.6)

⇒






a0 =
κs

Γ

2
+ i∆�

0

δa(ω) =

−i

�
gOMδx(ω)− dω

dT
δT (ω)

�

−i(ω −∆�
0) + Γ/2

a0

(3.7)

The quantity a0δa∗(ω)+a∗0δa(ω), soon to be crucial for the rest of the calculation,
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is evaluated to be

a0δa
∗(ω) + a∗0δa(ω) = |a0|2




i(gOMδx(ω)− dω

dT
δT (ω))

−i(ω +∆�
0) + Γ/2

+
−i(gOMδx(ω)− dω

dT
δT (ω))

−i(ω −∆�
0) + Γ/2





=i|a0|2
�
gOMδx(ω)− dω

dT
δT (ω)

��
1

−i(ω +∆�
0) + Γ/2

− 1

−i(ω −∆�
0) + Γ/2

�
(3.8)

=− |a0|2
�
gOMδx(ω)− dω

dT
δT (ω)

�
2∆�

0

(Γ/2− iω)2 +∆�
0

Note that in (3.8), the expression in the square brackets has the property of f(−ω) =

−f ∗(ω).

Linearizing the Newton’s cooling law (3.2)

d

dt
(T0 + δT (t))

= −γth (T0 + δT (t)) + c−1
th
Γlin(a0 + δa(t))(a∗0 + δa∗(t))

+
c−1
th
σβSic2

VTPAn2
g

�
a20 + 2a0δa(t)

� �
a∗20 + 2a∗0δa

∗(t)
�

= −γth (T0 + δT (t)) + c−1
th
Γlin(|a0|2 + a0δa

∗(t) + a∗0δa(t))

+
c−1
th
σβSic2

VTPAn2
g

�
|a0|4 + 2|a0|2(a0δa∗(t) + a∗0δa(t))

�

Working in the Fourier space,





0 = −γthT0 + c−1
th
Γlin|a0|2 + c−1

th
σ

βSic2

VTPAn2
g

|a0|4

d

dt
δT = −γthδT

+c−1
th

�
Γlin +

σβSic2|a0|2

VTPAn2
g

�
(a0δa∗ + a∗0δa)

(3.9)
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⇒






T0 = |a0|2
c−1
th

γth

�
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g
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�

δT (ω) =
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�
Γlin +
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g

|a0|2|
�

−iω + γth
(a0δa∗(ω) + a∗0δa(ω))

(3.10)

Linearizing the equation of motion (3.3)

d2

dt2
δx(t) + Γm

d

dt
δx(t) + Ω2

m
(x0 + δx(t))

= − gOM

m∗ω0

�
|a0|2 + a0δa

∗(t) + a∗0δa(t)
�
+

D

m∗ (T0 + δT (t))






Ω2
m
x0 = −gOM |a0|2

m∗ω0
+

D

m∗T0

d2

dt2
δx(t) + Γm

d

dt
δx(t) + Ω2

m
δx(t) = − gOM

m∗ω0
(a0δa∗(t) + a∗0δa(t)) +

D

m∗ δT (t)

(3.11)

⇒






x0 =
1

m∗Ω2
m

�
−gOM |a0|2

ω0
+

D

m∗T0

�

δx(ω) =

�
− gOM

m∗ω0
(a0δa∗(ω) + a∗0δa(ω)) +

D

m∗ δT (ω)

�

−ω2 − iΓmω + Ω2
m

(3.12)

Sieving out the optical spring effect and dynamical backaction

In (3.12), the dynamics of the membrane motion has an explicit contribution from

the dynamics of light, proportional to a0δa∗(t) + a∗0δa(t), and from the dynamics of

temperature, proportional to δT (t). The calculation can be performed by assuming

δx(t) = cos(Ωmt), work in the Fourier domain and express the quantities a0δa∗(ω) +

a∗0δa(ω) and δT (ω) in terms of δx(ω). Manipulating the expressions in the Fourier
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domain, one should be able to identify an in-plane component and a quadrature

component that correspond to cos(Ωmt) and Ωmsin(Ωmt).

Contribution from the gradient force

To relate (3.8) to δx(ω), one needs to express δT (ω) in terms of a0δa∗(ω)+a∗0δa(ω)

using (3.10).

a0δa
∗(ω) + a∗0δa(ω)

=i|a0|2
�

1

Γ/2− i(ω +∆�
0)

− 1

Γ/2− i(ω −∆�
0)

�

×



gOMδx(ω)− dω

dT

c−1
th

�
Γlin +

2σβSic
2

VTPAn2
g
|a0|2

�

−iω + γth
(a0δa

∗(ω) + a∗0δa(ω))





(3.13)

a0δa
∗(ω) + a∗0δa(ω)

=
igOM |a0|2δx(ω)

�
1
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− 1
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dω
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g

|a0|2
�
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(3.14)

Define H(ω,∆�
0, |a0|2)

=
1

�
1

Γ/2− i(ω +∆�
0)

− 1

Γ/2− i(ω −∆�
0)

�−1

− i|a0|2
dω

dT

c−1
th

�
Γlin +

2σβSic
2

VTPAn2
g
|a0|2

�

−iω + γth
which possesses the properties of f(−ω) = −f ∗(ω). This allows us to reduce (3.14)

to

a0δa
∗(ω) + a∗0δa(ω) = −igOM |a0|2H(ω)δx(ω). (3.15)
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Here, replace x(ω) with x(ω) = 1
2(δ(ω−Ωm) + δ(ω+Ωm)). The quantity a0δa∗(ω) +

a∗0δa(ω) peaks at ω = ±Ωm.

a0δa
∗(ω) + a∗0δa(ω) = − i

2
gOM |a0|2 (H(Ωm)δ(ω − Ωm) +H(−Ωm)δ(ω + Ωm))

=− i

2
gOM |a0|2 (H(Ωm)δ(ω − Ωm)−H∗(Ωm)δ(ω + Ωm))

=− 1

2
gOM |a0|2 [iRe[H(Ωm)](δ(ω − Ωm)− δ(ω + Ωm))− Im[H(Ωm)](δ(ω − Ωm) + δ(ω + Ωm))]

(3.16)

Converting back into the time domain,

a0δa
∗(t) + a∗0δa(t) = −gOM |a0|2

�
Re[H(Ωm)]

Ωm

δẋ(t)− Im[H(Ωm)]δx(t)

�
. (3.17)

Contribution from the thermomechanical force

We could repeat the same procedure of separating out the in-plane and quadrature

components in the previous section for δT (t), but one has to be careful with the front

factor of
1

−iω + γth
in (3.10). Substituting the results in (3.16),

δT (ω) =

c−1
th




Γlin +

2σβSic2

VTPAn2
g

|a0|2|
� �� �

Γ̃abs





−iω + γth
(a0δa

∗(ω) + a∗0δa(ω))

=
i

2
c−1
th
Γ̃abs|a0|2gOM

�
H(Ωm)δ(ω − Ωm)

−iΩm + γth
+

H(−Ωm)δ(ω + Ωm)

iΩm + γth

�

(3.18)
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=− c−1
th
Γ̃abs|a0|2gOM

2i

�
H(Ωm)δ(ω − Ωm)

−iΩm + γth
− H∗(Ωm)δ(ω + Ωm)

iΩm + γth

�

=− c−1
th
Γ̃abs|a0|2gOM

2i(Ω2
m
+ γ2

th
)

×
��

(γthRe[H(Ωm)]− ΩmIm[H(Ωm)]) + i(ΩmRe[H(Ωm)] + γthIm[H(Ωm)])

�
δ(ω − Ωm)

−
�
(γthRe[H(Ωm)]− ΩmIm[H(Ωm)])− i(ΩmRe[H(Ωm)] + γthIm[H(Ωm)])

�
δ(ω + Ωm)

�

=− c−1
th
Γ̃abs|a0|2gOM

Ω2
m
+ γ2

th

��
γthRe[H(Ωm)]− ΩmIm[H(Ωm)]

�
δ(ω − Ωm)− δ(ω + Ωm)

2i

+

�
ΩmRe[H(Ωm)] + γthIm[H(Ωm)]

�
δ(ω − Ωm) + δ(ω + Ωm)

2

�
(3.19)

Converting back into the time domain,

δT (t) = c−1
th
Γ̃abs|a0|2gOM×

�
δẋ(t)

γthRe[H(Ωm)]− ΩmIm[H(Ωm)

Ωm(Ω2
m
+ γ2

th
)

+ δx(t)
ΩmRe[H(Ωm)] + γthIm[H(Ωm)

Ω2
m
+ γ2

th

� .(3.20)

Putting everything together,






∆Ω2
m
= −g2

OM
|a0|2

m∗ω0
Im[H(Ωm)]−

D

m∗ c
−1
th
Γ̃abs|a0|2gOM

ΩmRe[H(Ωm)] + γthIm[H(Ωm)]

Ω2
m
+ γ2

th

∆Γm =
g2
OM

|a0|2

m∗ω0

Re[H(Ωm)]

Ωm

− D

m∗ c
−1
th
Γ̃abs|a0|2gOM

γthRe[H(Ωm)]− ΩmIm[H(Ωm)]

Ωm(Ω2
m
+ γ2

th
)

,

(3.21)

where H(ω,∆�
0, |a0|2)

=
1

�
1

Γ/2− i(ω +∆�
0)

− 1

Γ/2− i(ω −∆�
0)

�−1

− i|a0|2
dω

dT

c−1
th

�
Γlin +

2σβSic
2

VTPAn2
g
|a0|2

�

−iω + γth

and Γ̃abs = Γlin +
2σβSic2

VTPAn2
g

|a0|2.
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Having the expressions derived for the mechanical frequency and linewidth change

as a function of excitation wavelengths in the presence of the optical gradient force,

photothermal force and the thermo-optic effect, we fitted our experimental data shown

in Figure 3.7(a) and (b). The individual contributions from the gradient force and

the photothermal force are plotted explicitly. Γe and Γ are extracted by fitting to

the optical resonance. gom is obtained from simulations. Γth is obtained experimen-

tally. Here we neglected two-photon absorptions due to large mode volumes of guided

resonances and hence low optical intensity.

3.4.3 Photothermal cooling

On the blue-detuned side of the optical resonance, the photothermal force does

negative work to the optomechanical system which effectively further damps the me-

chanical motion of the membrane. Experimentally we observe an increase in the

linewidth of the mechanical resonance concerned as the power of the pumping light in-

creases. To extract the effective temperature of the cooled mechanical mode, one could

perform a simple calculation invoking the equipartition theorem and the fluctuation-

dissipation theorem and obtain a simple expression relating the mechanical linewidth

and the mode’s effective temperature. Alternately, one may opt to use the area under

the curve of the transduced signal to calibrate the effective temperature. Here the

details of the transduction mechanism are presented to obtain a proper understanding

of the normalization procedure.

With an input light of power Pin, the reflected power from the photonic crystal

is simply R(∆)Pin where R is the reflectance of the PhC depending on the optical
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detuning ∆. The reflected light is converted into a photodetector signal, which will

then be sent to a spectrum analyzer that outputs the frequency spectrum of the

photodetector signal. One should note that the frequency spectrum obtained reveals

the power spectrum density (multiplied with the detection window bandwidth) of

the photodetector signal. Hence the amplitude of the power spectrum density scales

linearly with the square of Pin. As a result, to obtain the frequency response of the

displacement noise of the photonic crystal which is embedded in R, one has to nor-

malize the measured frequency spectrum by P 2
in
. In the case of simple optomechanical

transduction with negligible optical spring or dynamic backaction, the power spectra

detected with varying input powers, though appear to drammatically increase in the

signal strength measured at the spectrum analyzer, should all overlap after being

normalized by P 2
in
.

Here we discuss how the displacement fluctuation x(t) is embedded in the re-

flectance R. Due to the optomechanical coupling, any displacement leads to an op-

tomechanical dispersion gomx(t) in the optical resonance. Hence the displacement

fluctuation leads to optical frequency fluctuation, which is measured as fluctuation

in the reflectance. We may relate the change in the reflectance to the displacement

fluctuation by the following algebraic manipulation [63]:

dR(t) =
dR

d∆
∆(t) = −gom

dR

d∆
x(t) (3.22)

where gom is the optomechanical coupling. Consider an underdamped harmonic os-

cillator driven by thermal noise. We may write the following equation of motion

[121]:

d2x

dt2
+ Γm

dx

dt
+ Ω2

m
x = fL(t) (3.23)
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, where the subscript L of fL(t) denotes the Langevin force due to the thermal bath.

Note that the thermal Langevin force averages to zero in time, i.e. < fL(t) >t= 0,

and is delta-correlated in time as a white noise, i.e.

< fL(t)fL(t+ τ) >t= 2meffΓmkBTδ(τ), (3.24)

where meff is the effective motional mass for each mechanical mode concerned, kB

is the Boltzmann constant, T is the mode temperature and τ is the time lag of the

thermal force. From the equipartition theorem, the root-mean-squared oscillation am-

plitude driven by the thermal force at temperature T is related by 1
2meffΩ2

m

�
dt <

|x(t)|2 >= 1
2kBT . To infer the mode’s temperature, we need to calibrate

�
dt <

|x(t)|2 > which is equivalent to finding
�
dΩ|x(Ω)|2 by the Parseval’s theorem. Since

experimentally we have access to the frequency response of the displacement fluctu-

ation, we now work in the frequency domain. From (3.23), we obtain

�
−Ω2 − iΩΓm + Ω2

m

�
x(Ω) = fL(Ω)/m (3.25)

with the correlation function for the Langevin force given by < fL(Ω)fL(Ω�) >=

4πmeffΓmkBTδ(Ω+Ω�). To calculate
�
dΩ|x(Ω)|2, one first obtains the power spectral

density of the displacement fluctuation:

Sxx(Ω) =

�
dΩ� �x(Ω)x(Ω�)�

=

�
dΩ� < FL(Ω)FL(Ω�) > /m2

(Ω2
m
− Ω2 − iΩΓm)(Ω2

m
− Ω�2 − iΩ�Γm)

=
2πΓmkBT

mΩm

1

(Ωm − Ω)2 + (Γm)2
. (3.26)
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By integrating Sxx(Ω) over the entire frequency range, we should retrieve the

equipartition theorem. What this implies experimentally is that finding the area un-

der the curve of a optomechanically transduced Lorentzian response obtains for us

the mode’s temperature, off by a proportionality constant that accounts for the pho-

todetector conversion factor, electrical signal transmission efficiency and the factors

in Eq. 3.22. However, for evaluating a mode’s new effective temperature as a result of

photothermal cooling upon stronger optical excitation, holding all other experimental

parameters constant, there are two methods of calibration which eliminates the need

for the proportionality constant. First, we notice that Sxx peaks at Ω = Ωm from

Eq. 3.26, and evaluates to be Sxx(Ωm) = 2πkBT

mΩmΓm
. Upon photothermal cooling, Γm

increases and Ωm changes (due to both optical gradient force and the photothermal

force in our system). These two parameters can be fitted and the relative ampli-

tude of Sxx(Ω = Ωm) can be read off experimentally. With the proper normalization

procedure (i.e. dividing out the factor of P 2
in
), the relative temperature of the mode

concerned at different pump powers can then be calibrated by comparing the ratio of

the peak amplitudes. Second, we may write

kBTeff

kBT0
=

Ω2
meff

(Pin)

Ω2
m0

|xΩ(Pin)|2

|xΩ(Pin ≈ 0)|2 (3.27)

→ Teff

T0
=

Γm0

Γmeff

. (3.28)

This shows that by merely knowing the mechanical linewidth, we may calibrate the

effective mode temperature.

Here we evaluate the extent of photothermal cooling in our optomechanical sys-

tem. For the purpose of clearer illustration, the extensive data set chosen refers to

a device whose mechanical frequency is 256.3kHz. The PhC membrane is pumped
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Figure 3.8: Evaluation of photothermal cooling: (a) Raw mechanical spectra of the
PhC membrane pumped at 1608.8nm (blue-detuned from resonance) at increasing op-
tical powers up to 345µW. The overal amplitude increases and the linewidth broadens
as the pump power increases. Cyan dots are the experimental data where the purple
lines are Lorentzian fits to the data to extract the mechanical linewidth. (b) Mechani-
cal spectra of the membrane normalized by the square of the excitation powers. While
the linewidth remains broadened, the overall amplitude decreases dramatically as the
pump power increases (from red to purple to blue). (c) Integrated area under the
curve (red squares) over various pump powers of the cooling laser, normalized by the
area obtained at the lowes pump power. The corresponding effective temperature is
plotted on the right axes (green squares). Note the x-axis refers to the power directly
from the laser; it should be scaled by a factor of 0.23 to obtain the true excitation
powers to the membrane.
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by laser light with increasing excitation powers of the wavelength of 1608.8nm, blue-

detuned from the optical resonance. The frequency response at each pump power is

recorded and plotted accordingly in Figure 3.8(a). As discussed above, the frequency

response is expected to rise in overall amplitude and the mechanical linewidth broad-

ens. However, to reveal the true relative amplitude of the thermal motion, we apply

the calibration technique delineated previously to obtain Figure 3.8(b). It shows that

the frequency response indeed increases upon stronger excitations, signifying blue-

detuned optical cooling. To calibrate the temperature of the mode for each pump

power, we first evaluate the area under the Brownian peak for each measured spec-

trum. We obtain an effective temperature as low as 1 Kelvin with a cooling laser

power of 345µW, starting from room temperature.

3.4.4 Self-oscillations mediated by photothermal force

On the red-detuned side of the optical resonance, the photothermal force now

does positive work to the optomechanical system which reduces the damping the

membrane experiences. In Figure 3.9(a-c), the mechanical spectra of the membrane

excited at 1609.3nm (red-detuned from the optical resonance) with 1.59µW, 73.53µW

and 276µW are shown. The mechanical linewidths of the spectrum taken with in-

creasing pump powers are plotted in Figure 3.9(e). The effective mechanical linewidth

decreases linearly with the excitation power, as shown in Eq. 3.21 until it reaches a

minimum bounded by a relation similar to the Schawlow-Townes linewidth in laser

theory. As the power increases further, the membrane undergoes self-oscillation where

a continuous-wave excitation causes it to oscillate as a free oscillator without damp-
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ing. Another lasing-like signature we observe is in the amplitude of the mechanical

peak as a function of pump power: The amplitude increases drastically by orders

of magnitude as the membrane excitation transits from below-threshold to above-

threshold power. As the threshold is crossed, the amplitude increases linearly. Note

that the oscillator is now in an out-of-equilibrium state where the analysis with the

equipartition theorem breaks down.

As the PhC membrane undergoes self-oscillation, harmonics of the fundamental

peaks appear. While it could be a result of nonlinear mechanics, it could also be due

to the nonlinear transduction of the mechanical motion. The nonlinear transduction

occurs when the optomechanical coupling strength is so large that the self-oscillations

cause dispersion in the optical resonances by more than an optical linewidth and the

probe wavelength is away from its initial linear quiescent point. One may distinguish

between the two effects by probing with an optical resonance with lower gom.

3.5 Static behavior: Optical bistability and hys-

teresis

Rapid developments in the field of optomechanics have opened up avenues for fun-

damental research on quantum state manipulation with macroscopic structures [26]

and show promise for optomechanical sensors [63] and technologies for both radio-

frequency [77, 78] and telecom applications.[70] While most attention has been de-

voted to compact structures featuring low (picogram) mass and ultrahigh-frequency

(gigahertz) mechanical modes,[122, 120] the technological implications of static defor-
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Figure 3.9: Self oscillations mediated by photothermal force: Mechanical spectra of
the membrane pumped at 1609.3nm (red-detuned) with (a) 1.59µW, (b) 73.53µW
and (c) 276µW. (d) The peak amplitudes of the mechanical spectra are extracted
and plotted against the pump powers in the linear scale. A clear threshold behav-
ior where the amplitude response is drastically enhanced akin to lasing is observed.
The extrapolated threshold power is 86µW. Above the threshold power, the peak
amplitude increases linearly with the pump power until ≈ 0.6mW, likely due to sig-
nificant optomechanical and photothermal dispersion. Inset shows the same data in
the logarithm scale. (e) Mechanical linewidths fitted/ approximated plotted against
the pump power. The linewidth decreases linearly as the pump power increases and
eventually saturates at a minimum value. Note the x-axis of both (d) and (e) refers
to the power directly from the laser; it should be scaled by a factor of 0.23 to obtain
the true excitation powers to the membrane.
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mation due to optical forces have been less explored.[17] In coupled photonic waveg-

uide geometries,[31, 14] bonding and anti-bonding optical modes are supported and

the corresponding attractive and repulsive optical forces exerted on a pliant structure

(low mechanical frequency) could serve to broaden the range of motion of integrated

microelectromechanical devices. This translates to improvement in the detection

range of pressure and displacement sensors and the actuation range of electrostatic

actuators. In particular, the pull-in limit of electrostatic actuators could be extended

by increasing the plate separation with a repulsive optical force. Additionally, schemes

for preventing stiction, which occurs when attractive forces like the Casimir force and

electrostatic force become overwhelmingly large compared to the mechanical restoring

force, have been proposed [84] using a real-time monitoring of the structure’s displace-

ment and a counteracting feedback repulsive force (of the order of nano-Newtons and

linear with excitation power). In this paper, we demonstrate nanometer-pulling of a

thin silicon photonic crystal (PhC) membrane under low vacuum with a repulsive op-

tical gradient force and an attractive photo-thermo-mechanical force. Furthermore,

optical bistability induced by optical forces and thermo-optic effect is observed at

large excitation powers.

The high Qopt of the dark mode, together with the mode’s large optomechanical

coupling coefficient gOM/2π = −23 GHz/nm (at s0 = 220.6nm), boosts the strength

of the optical force and hence the range of actuation. A low power (25 µW) wave-

length sweep is shown in the inset of Fig. 3.10(d) (red curve) taken with a free-space

resonance scattering setup in a low vacuum condition described in Fig. 3.10(d), re-

vealing a cavity resonance centered at λ0 = 1581.55 nm. To account for interference
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Figure 3.10: (a) Schematic of membrane geometry consisting of a suspended silicon
membrane above a silicon-on-insulator substrate. The top membrane is perforated
by a 30×30 array of holes with diameter d = 0.414µm and period p= 0.92µm. Both
silicon layers have thickness h = 185 nm. The width of the membrane is 27.6 µm on
each side. (b) An electron micrograph of a device. (c) Top diagram shows the FDTD
simulated Ex field profile for the antibonding mode at λ0 = 1584.85 nm in the vertical
cross-section of the full structure. Bottom left diagram shows the zoomed-in view of
Ex field profile in the vertical cross-section of a unit cell. Bottom right diagram shows
the Ex field profile in the horizontal cross-section of a unit cell, revealing the mode
to be a dark mode. (d) Free-space coupling setup. A white-light source and output
from a near-IR laser are combined and sent through a 50-50 beam splitter, sending
half of the signal to an IR power meter and half through a 20x objective placed above
a vacuum chamber. The reflected signal is sent back through the beam splitter and
can be directed onto a CCD camera allowing us to carefully align the laser spot to
the membrane and to a photodetector (PD) to collect optical spectra via the DAq
board and mechanical spectra via the real-time spectrum analyzer (RSA). Inset at
right shows the reflection spectrum of the device around the resonance centered at
λ0 = 1581.55 nm.
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fringes from parasitic reflections, we carefully fit both the optical resonance and the

oscillating background (black line) to an expression which has the form

R = |r|2 =
����rd(λ)e

−iφ +
κe

−i∆0 + κ/2

����
2

(3.29)

where rd(λ) is the background reflectivity, φ is the relative phase between the un-

derlying background reflection and the optical cavity, κ is the full-width half-max

linewidth of the optical resonance, κe is the external coupling rate. ∆0 is the detun-

ing (expressed in frequency) of the sweep wavelength from λ0. Fitting parameters

correspond to an optical cavity with κe = 0.3κ and Qtot

opt
= ω0/κ = 3400.

As previously described[84], the potential of a mechanical harmonic oscillator with

equilibrium position s0, when perturbed by the potential of an optical “spring” [123]

centered at sl for a laser wavelength λl can create a multi-well potential with two stable

mechanical equilibria. The transition between these mechanical equilibria is reflected

by the occurrence of optical bistability, due to the the dependence of the resonance

frequency on s. Yet the direct observation of the optomechanically-induced optical

bistability can easily be obscured in actual systems by other competing mechanisms

including the thermo-optic effect due to two-photon absorption, free-carrier dispersion

and the Kerr nonlinearity[16]. We designed our geometry to minimize these effects by

exciting a guided resonance which is delocalized throughout the PhC membrane. We

estimate the total mode volume to be ≈ 260(λ/ng)3 from simulation. Due to its large

modal volume, the thermal and electronic nonlinearities (which scale inversely with

the modal volume) are dramatically reduced. This is in contrast with many of the

optomechanical structures being studied, which have modal volumes ≈ (λ/ng)3 and
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where thermal nonlinearities could be readily observed at even modest input powers.

Here with the coupled PhC membrane of the current separations, optomechanical

detuning is larger than thermo-optic detuning that originates from linear absorption

due to defects introduced during the fabrication processes, which is two orders of

magnitude larger than the intrinsic material absorption of bulk silicon.

We solve for the the optical and mechanical equilibria in the presence of the

thermo-optic effect within the coupled-mode theory framework [13]. In particular,

the stored optical energy in the system |a|2 is given by

|a|2 = κe

(κ/2)2 +∆2
Pin (3.30)

where Pin is the power incident on the structure, and κe/κ represents the fraction

of incident power coupled into the cavity. The detuning ∆ of the laser excitation

frequency ωl from the perturbed optical resonant frequency can be written as

∆ = ωl − [ω0 + (dω/dT )∆T + gOM∆x]. (3.31)

The third term in Eq. 3.31 is the thermo-optic detuning, with dω/dT = (dω/dn)(dn/dT ),

n is the refractive index of silicon, dω/dn is obtained from simulations and approx-

imately −2π × 1014 Hz and dn/dT is the thermo-optic coefficient of silicon equal to

2× 10−4K−1.[124] The absorbed optical power and hence the temperature change of

the system is given by

∆T =
Γabs|a|2

Cthκt

(3.32)

where Γabs is the absorption coefficient of the system, Cth is the heat capacity, κt

75



Chapter 3: Optomechanics with photonic crystal membranes

is the thermal diffusion rate. The fourth term in Eq. 3.31 is the optomechanical

detuning. In particular, the displacement of the membrane due to the respective

photo-thermo-mechanical force and the repulsive gradient force is given by

∆x =
D∆T

K
+

|a|2gOM

ωlK
(3.33)

where K is the spring constant of the mechanical resonator and D is the thermal-

mechanical force coefficient in units of Newtons per Kelvin.[125] We neglect the Duff-

ing nonlinearity in our mechanical model as the extent of the optical actuation is still

well within the linear regime for our structures: the amplitude is much less than the

membrane thickness (185nm) and the compressive stress in the silicon device layer is

alleviated by thin accordion structures as shown in Fig. 3.10(b). The above equations

can be solved self-consistently to yield ∆ and hence the perturbed optical resonant

frequency ω�
0 = ω0 + (dω/dT )∆T + gOM∆x at a given ωl and Pin.

The values of λ�
0 = 2πc/ω�

0 at which solutions of Eq. 3.31 exist are plotted in Fig.

3.11, as a function of laser wavelength λl = 2πc/ωl for incident powers of 0.275 mW

(green line), 0.775 mW (blue line), 1.275 mW (red line), 1.525 mW (purple line), 1.775

mW (orange line) and 2.275 mW (black line). The unperturbed optical resonance

occurs at λ0 = 1581.55 nm. The dashed portions of the curves correspond to unstable

equilibria. At high powers, a clear bistable region exists in which there are two stable

configurations of the membrane for fixed power and laser wavelength, due to both

optomechanical and thermo-optic detunings whose magnitudes are comparable. The

boundaries of the bistable region are denoted by λf and λb, representing the hysteretic

transition wavelengths for a laser swept forward (left to right) and backward (right

76



Chapter 3: Optomechanics with photonic crystal membranes

1580.5 1581 1581.5 1582 1582.5

221

222

223

1581.5

1582

P = 2.275 mW

 1.775 mW

 1.525 mW

 1.275 mW

 0.775 mW

 0.275 mW

λ   (nm)l

λ
  
(n

m
)

0

s
  
(n

m
)

0

220
λ  b λ  f

Figure 3.11: Calculated stable locations of the optical resonance as a function of laser
wavelength, for six optical powers: 0.275 (green line), 0.775 (blue line), 1.275 (red
line), 1.525 (purple line), 1.775 (orange line) and 2.275 mW (black line). At P ≥ 1.275
mW, the system has three solutions (two stable – solid line, one unstable – dashed
line) for a certain range of wavelengths. Due to the intracavity-power dependence of
optical detunings from optomechanical and thermo-optic effects, the system is bistable
in this wavelength range, and displays hysteresis when the laser is swept continuously
from short to long wavelengths (forward sweep) or vice versa (backward sweep). Two
hysteretic transition points occur at λf for the forward sweep and λb for the backward
sweep.

to left) across the resonance.

We can model the reflectance of the system as a function of laser wavelength at

multiple powers (P = 0.275 mW to 2.275 mW - same powers as in Fig. 3.11) with

Eq. 3.29 (with ∆0 replaced by ∆�
0) and the respective equilibria calculated in Fig.

3.11. The results are shown in Fig. 3.12(a) (offset for clarity), and are compared to

our experimental observations shown in Fig. 3.12(b). The experimental data were
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collected by sweeping the tunable laser output from short to long wavelength (red

curve) and then back (blue curve) at a fixed tuning speed of 1 nm/s. We find excellent

agreement between experiment and theory, which display an overall redshift of the

mode and increasing hysteresis at higher powers. In particular, we directly compare

the locations of the forward and backward bistable jumps, λf and λb respectively, in

Fig. 3.12(c). The locations of these transitions were extracted from the data shown

in Fig. 3.12(b) by finding the minima of the reflectivities of forward and backward

wavelength sweeps at each power. We see strong agreement between experiment (red/

blue circles) and theoretical predictions from Eq. 3.31 (red/ blue line) on the locations

of λf and λb.

Alternately, we can investigate the range of actuation of the optical force by

sweeping the laser power up and down at fixed wavelengths slightly red-detuned

from the unperturbed cavity resonance. Theoretical predictions and experimental

results are plotted in Fig. 3.13(a) and (b), respectively, showing the reflected power

plotted against the incident laser power at nine red-detuned wavelengths: 1581.65

nm (black line), 1581.7 nm (grey line), 1581.75 nm (blue line), 1581.8 nm (cyan

line), 1581.85 nm (green line), 1581.9 nm (magenta line), 1581.95 nm (violet line),

1582 nm (brown line), and 1582.05 nm (red line). The curves for the eight longer

wavelengths are each vertically offset from the λl = 1581.65 nm curves for clarity.

Again, we see good agreement between the calculated and experimental results: For

small detunings (λl = 1581.65 to 1581.9 nm), the path traversed during an increase

in input power from 0-2.25 mW (solid line) and a decrease in power (dashed line)

coincide. At larger detunings, Pout experiences hysteresis. As the power is increased,
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Figure 3.12: Calculated (a) and experimental (b) reflection spectra for forward (red
lines) and backward (blue lines) swept lasers from P =0.275 mW to 2.275 mW at
low vacuum (≈ 10 mTorr). Hysteresis is predicted to onset around 1.525 mW. (c)
Locations of bistable transitions during forward and backward wavelength sweeps.
The transition wavelength during the forward sweep λf (red circles) is linear, and
matches well to calculations from Eq. 3.31 (red line). The backward transition
wavelength λb (blue circles) also show good agreement in the transition wavelength
locations and the onset power for hysteresis.

the membrane enters the bistable region in the lower mechanical state and remains

there until λb has redshifted such that λb = λl, at which point the membrane jumps

to the lower curve, signifying an abrupt increase in the membrane separation. When
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Figure 3.13: Predicted (a) and experimental (b) Pin-Pout curves of the device. Curves
(with equal vertical offsets for easier visualization) are plotted for five red-detuned
wavelengths: λ = 1581.65 nm (black line), 1581.7 nm (grey line), 1581.75 nm (blue
line), 1581.8 nm (cyan line), 1581.85 nm (green line), 1581.9 nm (magenta line),
1581.95 nm (violet line), 1582 nm (brown line), and 1582.05 nm (red line). Solid lines
represent the power output as a function of increasing laser power, while dashed lines
represent power output as a function of decreasing input power. Modeling predicts
hysteresis will occur at all wavelengths longer than 1581.95 nm.

decreasing the power, the membrane remains in the up-state until λf blue-shifts back

to λl, forcing the membrane to jump to the upper curve which indicates an abrupt

hop back to the pulled initial equilibrium position.

When we decompose the perturbation to the optical resonance into its constituent

parts, we find optomechanically induced bistability to be the dominant effect. For
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example, at Pin = 2.275 mW, optomechanical effects correspond to a peak resonance

shift ∆λOM = 0.44 nm, while thermo-optic contributions lead to ∆λPT = 0.23 nm

and photo-thermal-mechanical contributions lead to ∆λPTM = −0.01 nm. This cor-

responds to a membrane which is mechanically pushed upward 2.3 nm by the optical

gradient force and 0.1 nm downward by the photo-thermal-mechanical force, resulting

in a net upward displacement of 2.2 nm. These results hold promise for large actuation

range with repulsive optical forces by designing membranes which are less mechani-

cally stiff and generate larger repulsive forces per mW of incident optical power by

increasing Qopt. For instance, Qopt is currently limited by fabrication imperfections

and the finite size effect of the PhC and could be boosted by simply increasing the

number of unit cells in the membrane [114]. To maintain the same compactness of the

structure which is related to its dynamic range, the optical design could be modified

with a smaller lattice constant and/ or graded hole modulation [126].

In conclusion, we demonstrated actuation of a micron-scale membrane with a

repulsive optical force using an extended guided resonance in a coupled silicon PhC

membrane. The net red-shift displayed in the optical resonance of our doubly-bonded

SOI platform is a result of an optomechanically induced red-shift, a thermo-optic red-

shift, and a photo-thermo-mechanically induced blue-shift. Furthermore, simulations

indicate that absorption in our system is dominated by surface defects and adsor-

bents, resulting in a linear absorption coefficient two orders of magnitude larger than

that expected from bulk silicon. By minimizing these effects through fabrication

process and design modifications, we can further isolate and exploit the unique op-

tomechanical properties of this platform. Since multi-photon nonlinearities do not
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occur until the excitation power exceeds ≈ 1 W with the use of a delocalized optical

mode, the extent of pulling of the PhC membrane can be many tens of nanometers.

Our silicon-based device provides a simple, non-intrusive solution to extending the

actuation range of MEMS devices.

3.6 Summary

We demonstrated an optomechanical structure which features a tethered sili-

con photonic crystal membrane (30um×30um) suspended above a typical silicon-

on-insulator (SOI) substrate. The large interaction area allows for strong expression

of the Casimir effect that relaxes the signal-to-noise requirement in our detection.

The square lattice of perforation serves as a polarization-insensitive second-order

grating for coupling normally incident light, in contrast to the typical tapered fiber-

coupled optomechanical structures. The large mode volume of the delocalized guided

resonance drastically reduces the intracavity optical intensity and hence minimizes

multi-photon events, including two-photon absorption, free carrier absorption, which

plague typical silicon photonic devices as mentioned before. As for the optomechani-

cal properties, we probe and actuate with a bandedge dark guided resonance (which

corresponds to a repulsive force in the telecom range. For vertically coupled op-

tomechanical devices, tunability of the optomechanical coupling strength is not well

controlled or would otherwise require a new substrate with different sacrificial layer

thickness. We achieved wide-range (from 120nm to 300nm) tuning of the optomechan-

ical coupling strength on the same substrate by engineering the in-plane compressive

stress of the silicon device layer and the stress-gradient-induced torque and hence
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controlling the membrane-substrate separations. Measurements of the optical spring

effect and the dynamic back-action in systems with respective gom=-2π×5 GHz/nm

and gom=-2π×66 GHz/nm reveal interesting competition between the gradient force

contribution Fopt and the photothermal force contribution Fptm. In particular, the

polarity of the mechanical linewidth change across the optical resonance is reverse of

what would be expected with the conventional optical force; the amplitude of the effect

is larger what could be achieved with our low-Q optical resonance albeit the large gom.

This suggests the presence of the photothermal force and we attribute the photother-

mal force to linear surface-state absorption of telecom light in silicon. The dynamic

back-action mediated by photothermal coupling led to blue-detuned optomechanically

cooling of the membrane to 1 Kelvin from room temperature or undergo red-detuned

lasing-like self-oscillations with an amplitude greater than 10nm. Furthermore, we

demonstrated nanometer-range pulling ( 1nm/1mW) and optomechanically induced

optically bistability and hysteresis with the repulsive optical gradient force. In the

calculation of the membrane’s equilibrium position upon the exertion of the repulsive

force, care was taken to account for the photothermal force and the thermo-optic

effect due to the linear absorption. This allows one to infer the membrane’s equi-

librium position by inspecting the membrane’s bistable transition wavelength. This

allows one to infer the membranes equilibrium position by inspecting the membranes

bistable transition wavelength. With the ingredients above combined, the prospect

of real-time monitoring and controlling of MEMS/NEMS through this new optome-

chanical degree of freedom is promising.
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Approaches of measuring the

Casimir effect and mechanical

nonlinearity in optomechanical

structures

Some of the earliest Casimir measurement is based on static detection of the

counteracting force required to remain at a certain equilibrium position. Nowadays,

due to more superb signal-to-noise performance, most of the current demonstrations of

the Casimir force rely on the detection of the mechanical resonant frequency shift (or

the force spatial gradient) due to the Casimir potential [127]. The principle works all

forces whose strength is distance-dependent including the electrostatic force, magnetic

force and optical force. The force gradient change is then plotted for each separation

between the interacting objects to extract the power dependence. Unique to the
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Casimir force, there are two signatures experimentalists seek to gain access to such

quantum electrodynamical effect:

1. Casimir-induced mechanical frequency shift;

2. Casimir-induced mechanical nonlinearity at low oscillation amplitude.

We describe the measurements of these signatures and the corresponding chal-

lenges in our coupled silicon photonic crystal platform below.

4.1 Multiple-device measurement

Most experimental demonstrations of the Casimir effect involve controllably plac-

ing an external test body to another object with the help of modern high-precision

(closed-loop), high-resolution (sub-nanometer) motorized stages [87, 88, 89, 90, 91,

92, 93, 94, 95, 127]. Careful calibration procedures of piezo-drivers which display

hysteretical beahviors, and minimizing systematic errors due to thermal drifts in ex-

perimental apparatus during measurements, are required. With the Casimir effect

probed in various material and geometrical systems, it is high time to progress to in-

tegrating Casimir oscillators to a realistic MEMS/NEMS platform. Not only can the

transition to on-chip integration be beneficial to removing the need of sophisticated

instrumentation for external alignment, but it also paves the way of harnessing the

Casimir effect for ultra-compact sensing and studies of nonlinear dynamics. The abil-

ity to controllably displace a test body on-chip can be reaped from the fruitful progress

made in electrostatic and, more recently, optomechanical actuators. Yet, while utiliz-

ing forces with nonlinear separation-dependence, a corresponding spring effect is often
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Figure 4.1: Feasibility of probing the Casimir effect by correlating the optical and
mechanical resonances: (a) The optical spectra and (b) mechanical spectra of a group
of coupled photonic crystal membranes, with hole periodicity of 920nm and diame-
ter of 368nm and membrane-substrate separations of 177nm, 199nm, 212nm, 238nm
and 378nm. The plots are vertically aligned with each other to allow for direct com-
parisons of the relative orders of the optical and mechanical resonances. (c) The
optical spectra and (d) mechanical spectra of a group of coupled photonic crystal
membranes, with membrane-substrate separations of 125nm, 144nm, 215nm, 235nm,
265nm and 425nm. The measured optical resonances may not consistently order with
the membrane-substrate separations whose measurements could be prone to errors.
However the generally consistent relative orders of mechanical and optical resonances
may pave a new approach of uncovering the Casimir effect. Variabilities also exist
in the mechanical response among the fabricated devices which lead to outlying data
points, as shown in the inset of (d). (e) Mechanical and the corresponding optical
resonances of 11 devices are overlayed on the calculated results that correlate the
expected Casimir-shifted mechanical frequencies and the optomechanically sensitive
optical resonances.
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introduced, obscuring the measurement of the force gradient concerned [94]. One may

circumvent such problem by designing the force landscape where the force gradient

is zero at particular conditions. For instance, when an optomechanical resonator is

pumped on resonance, there will only be a change in the equilibrium position without

introducing the optical spring effect. Here we propose adopting a drastically different

method of probing the Casimir effect without external actuation, namely fabricating

numerous Casimir oscillators where the membrane-substrate separation is controlled

by stress/torque-engineering. By achieving PhC membranes with a wide range of

membrane-substrate separations, we could map out the Casimir-induced mechani-

cal frequency shifts as a function of the membrane-substrate separations. Moreover,

due to the strong optomechanical coupling, the optical resonances are indicative of

the membrane-substrate separations. Hence, the trend of the mechanical frequen-

cies against the measured optical resonances may reveal the Casimir-induced force

gradients obtained at low probe powers.

In Chapter 3, we demonstrated the optomechanical properties and dynamics of

the coupled photonic crystal membrane systems where the device layers are 185nm

thick, and the starting sacrificial layer is 265nm thick. We also measured the optical

resonances and mechanical frequencies of devices at low probe powers which have

membrane-substrate separations (measured by the optical profilometer) ranging from

125nm to 425nm. Figure 4.1 shows 11 sets of data to illustrate the feasibility of un-

covering the Casimir effect by correlating the relative positions of the mechanical and

optical resonances. As a quick review, the photonic crystal membranes has a hole

periodicity of 920nm and diameter of 368nm. They support an anti-bonding mode
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whose resonant wavelength blue-shifts as the membranes come closer to the bottom

substrate. Figure 4.1(a) and (b) show the optical spectra of the anti-bonding modes

for five devices with different separations and the corresponding mechanical spectra.

In the optical spectra, we observe that optical resonances of membranes of increasing

separations do not consistently red-shift. In particular, the device with a separation

of 177nm has a longer resonant wavelength than that of 238nm. Otherwise, devices

with separations of 212nm, 238nm and 378nm do show the anti-bonding mode charac-

teristic. However, when we compare the relative orders of the optical and mechanical

resonances’ locations, they are mostly identical. We performed a similar measurement

for six other devices with various membrane separatoins. Their optical and mechan-

ical spectra are plotted in Figure 4.1(c) and (d). There, the optical resonances do

order that reflect the characteristic of an anti-bonding mode. When we consider the

mechanical resonance’s relative order, however, the agreement with the optical res-

onance’s relative order is fair except for two outliers whose frequencies are close to

200kHz as opposed to ≈160kHz. With these observations, we evaluate the feasibility

of probing the Casimir effect by measuring multiple devices of different separations.

First, the consistency of the mechanical resonance orders and the corresponding opti-

cal resonance orders, and the lack of consistency of the optical resonance orders with

respect to the optical profilometer measurements of the membrane separations may

suggest that the profilometer readings could be prone to errors. Alternately, struc-

tural changes may have occurred in between profilometer measurements and device

characterization in the vacuum chamber. Thus, under the shadow of these possible

sources of errors that could affect the interpretation of the trends of the mechanical
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resonances against the supposed membrane separations, the relatively satisfactory

consistency of the orders of the mechanical and optical resonances may lead us to

an alternate form of demonstrating the Casimir effect which uses the optical reso-

nant wavelengths as the indicator of the membrane separations. While outliers do

exist due to fabrication variabilities, we hope that measurements of a large number

of devices may provide a qualitative signature of the Casimir effect. In Figure 4.1(e),

we plot the calculated curve that correlates the expected Casimir-shifted mechani-

cal frequency with the expected optical resonant wavelengths for devices of various

membrane separations. We then overlay the mechanical resonant frequencies and the

corresponding optical resonant wavelengths of 11 different devices on the calculated

results. Preliminary agreement over a small range is observed. We further pursue this

measurement approach with another double-SOI wafer system with a smaller initial

gap to sample the range close to or even below 100nm of membrane separations.

The starting wafer system has a sacrificial oxide layer of 100nm. However, the

yield of surviving devices after vapor hydrogen fluoride etch (VHFE) to release the

PhC membranes was poor. Various experimentations of different support arm de-

signs were conducted, and eventually the yield becomes satisfactory by improving

on the VHFE protocol. Further details can be found in Appendix 1. Structural

changes relevant to the following characterizations include fabricating membranes

with shorter and hence stiffer support arms, slightly modifying the dimensions of the

stress-relief structures and introducing etch holes to the arms for more homogeneous

etch throughout the devices. Applying the stress-relief control techniques developed

for the previous optomechanics experiments to the current photonic crystal mem-
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Figure 4.2: Large variations in mechanical resonant frequencies of small-gap PhC
membranes: (a) Optical micrograph of an array of seven suspended PhC membranes
and the corresponding 3D illustration of the height profiles measured by the pro-
filometer. A series of seven (b) optical spectra and (c) mechanical spectra of de-
vices with membrane separations smaller than 60nm are shown. (d) The mechanical
resonant frequencies of the fundamental peaks are plotted against their measured
membrane-substrate separations for four different mechanical designs. The variance
in the fundamental mechanical frequency spans ≈ 1MHz.

branes, we achieved membrane-substrate separations ranging from 20nm to 140nm

as measured by the laser profilometer (error bar +/- 10nm). The hole periodicity of

the photonic crystal membrane is 840nm and the hole diameter is 334nm. Several

samples, each with hundreds of devices, were fabricated and the devices’ mechanical

and optical responses were recorded. However, we notice that the approach afore-

mentioned of correlating the mechanical and optical resonances to reveal the Casimir

effect in this new substrate was not successful. The mechanical resonance frequencies

were several factors off from the simulation results. Also there is huge variation in
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the mechanical resonant frequencies among devices of similar dimensions. Here we

provide a brief summary of the observed results in two different samples. Figure

4.2(a) shows the optical micrograph of an array of seven released photonic crystal

membranes and a 3D reconstruction of the height profile of the membranes measured

by the laser confocal profilometer. The membranes are properly released with no

apparent oxide left underneath. Figure 4.2(b) shows a series of optical spectra of the

same design but with membrane separations of 38.5nm, 43m, 40nm, 63nm, 47nm,

31nm, and 49.5nm (from bottom to top). A broad resonance is identified in the

1600-1620nm range, and two more weakly coupled ones in the 1650-1670nm range.

The low-Q nature of the stronger resonance causes difficulty in using the mode as

a convincing membrane-separation indicator. The corresponding mechanical spectra

are shown in Figure 4.2(c). The mechanical frequencies of the fundamental peak vary

between 819kHz and 1.32MHz, which is several factors off the simulated value around

160kHz. Also the large variance of the measured frequencies among a group of similar

devices is abnormal. Conclusive correlations cannot be made among the mechanical

resonances, optical resonances and the membrane separations. This is further veri-

fied by plotting the mechanical frequencies of 4 slightly different mechanical designs

against the membrane-substrate separations, shown in Figure 4.2(d).

A similar phenomenon is observed with another sample but here the support arms

are slightly shorter. Figure 4.3(a) and (b) shows the broadband optical and mechan-

ical spectra of a device. Again three pronounced optical resonances are observed.

We attempt to correlate the resonance locations with profilometer readings of the

membrane-substrate separations in Figure 4.3(c-e) for four different mechanical de-
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signs but no obvious trends can be observed. This may mean the optomechanical

coupling strength is too small to guard against fabrication variability among devices.

Figure 4.3(f) plots the fundamental mechanical frequencies over membrane separa-

tions. Interestingly the mechanical resonant frequencies is around 500kHz. Similar

to the previous demonstrations, there is large variance in the mechanical resonant

frequencies from device to device.
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Figure 4.3: Another demonstration of large variance of mechanical resonant frequen-
cies: (a) Broadband optical and (b) mechanical spectra of a typical suspended PhC
membrane. The main optical resonance is in the range of 1590 to 1600nm, whereas
the remaining two are in 1630-1660nm and 1645-1665nm. Their resonant wavelengths
are plotted against the membrane-substrate separations reported by the optical pro-
filometer. (f) Frequencies of the fundamental mechanical mode for four slightly dif-
ferent mechanical designs are plotted against the membrane separations. Similar to
Figure 4.2(d), no conclusive trends can be observed.
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The estimated Casimir-induced shift in the mechanical frequency is in the range

of tens of kHz for membrane-substrate separations in the sub-100nm range. However

the large variance of the mechanical frequencies forbids us to establish convincing

results of the Casimir effect despite the positive outlook from the old substrate and

the availability of small-gap devices in the current substrate. It is hypothesized that

the device layer contains a significant stress gradient across the cross section, causing

in-plane curling of the support arms. A curled support arm is much stiffer than an

uncurled one, causing such large mechanical resonant frequencies. The variability may

be due to the uncontrolled amount of curling acting on the support arms. Careful

measurement of the stress gradient in the device layer is called for. Also support

arms that are composed of multiple narrow beams in parallel may help to reduce

the curling effect. Hence this arm design is adopted for the experiments discussed in

Section 4.2.2. It is also hypothesized that some optically inaccessible oxide residues

are left on the underside of the device layers. Using PDMS to peel off the suspended

membranes to reveal the underside, which is a demonstrated MEMS troubleshooting

technique, may help us verify this speculation.

4.2 Casimir-induced and optical force-induced me-

chanical nonlinearity

The Casimir force landscape is highly nonlinear as the interacting bodies approach

each other in the separation range of hundreds of nanometers. The idea is to sample

the Casimir anharmonicity by coherently driving the flexural motion of the photonic
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crystal membrane whose oscillatory amplitude can reach the nanometer range. Read-

ily read off from the equation of motion in the frequency domain, the response of

the membrane to the force at the mechanical resonant frequency Ωm is amplified

by the mechanical quality factor Qm = Ωm/Γ. Here we adopt two coherent driving

mechanisms, namely piezo-stack drive and optical-gradient-force drive, to harness the

Casimir nonlinearity.

4.2.1 Coherent drive by harmonic piezo-actuation

The piezo-stack actuator employed is the PL022.30 chip actuator whose dimen-

sions are 2mm × 2mm × 2mm. The sample is mounted to the actuator with Elec-

trodag 502. 1 While the option of mounting the sample with the bottom in contact

with air (for reasons explained in Chapter 2) is not available, Electrodag 502 effec-

tively absorbs telecom light as graphite is a good light absorber. This is verified by

the absence of large-amplitude, fast optical fringes due to the back reflections in the

optical spectra. The sinusoidal driving signal is provided by a function generator (HP

33120A) whose amplitude is 10Vpp. Electrical connections for driving signal transmis-

sion are made through spare electrical ports in the vacuum chamber. Setting of the

input drive from the function generator is accordingly incorporated in the LabVIEW

automation.

While PL022.30 is successfully incorporated in laser systems requiring fast re-

sponse in laser cavity stabilization [128], we observe that the chip actuator does

1Electrodag 502 is a graphite-based quick-drying adhesive and can be easily dissolved in acetone.
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not have a flat mechanical response in the frequency window concerned 2, render-

ing studies of driving-power dependent mechanical bistability and hysteresis difficult

3. Instead of studying the dynamics over a full range of excitation frequencies, the

rich nonlinear dynamics of the PhC membranes at single excitation frequencies with

increasing large drive amplitude is presented in this section.

Buried oxide (2 m) 

Si handle (600 m) 

Si device layer (188nm) 

Air gap (~32nm±8nm) 

Figure 4.4: An optical micrograph of the kind of photonic crystal membrane under
study. Note that the arms have added etch holes along the lengths to ensure more
uniform etch throughout the structure. Accordion-like stress-relief structures are
employed. The membrane thickness is close to 200nm where the membrane-substrate
separation is ≈32nm. Hole periodicity = 840nm; hole diameter = 340nm.

Figure 4.4 shows the optical micrograph of a photonic crystal membrane with the

identical design (except the etch hole arrangements at the anchors) and the relevant

dimensions. The hole periodicity is 840nm and the diameter is 340nm. Starting with

2PL022.30 is specifically designed for fast response for static extension instead of AC driving. As
a result of the square profile of the actuator and the composition of multiple piezoelectric layers,
in-plane and out-of-plane interferences of the acoustic waves occur [129]. Hence we observe multiple
resonant features directly from the chip actutator in the spectral domain. Also it is observed that
signal leakage (presence of signals from the function generator despite the absence of probing light)
is significant in some frequency windows above 620kHz.

3While proper adjustment in the driving signal is possible to obtain a flat response, the piezo’s
resonant response at 1.24MHz is at least 10 times larger than other nearby driving frequencies.
Hence the dynamic range of the drive may be limited.
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(a) (b)

Figure 4.5: (a) Optical spectrum of the photonic crystal membrane. The most promi-
nent resonance is centered at λ =1617nm with an optical quality factor of ≈200. Two
other neighboring, less coupled resonances are centered at 1590nm and 1667nm. (b)
Mechanical spectrum of the PhC from 0.5MHz to 10MHz, taken with the probe light
parked at the shoulder of the optical resonance. Inset shows the fundamental peak
of the membrane (resonant at 1.2MHz) which corresponds to the flexural mode. The
small sharp peak at 1.05MHz is from the laser.

100nm of sacrificial oxide layer, the membrane-substrate separation of the device

under study is 32nmpm8nm as measured by the optical profilometer; the gap is small

enough for the pronounced expression of the Casimir effect. Figure 4.5(a) shows the

optical resonances of the PhC in the U-band wavelength range. The most prominent

resonance is centered at λ =1617nm with an optical quality factor of ≈200. Figure

4.5(b) shows the mechanical spectrum of the PhC up to 10MHz where the inset shows

the fundamental peak centered at 1.2MHz.

Given the small membrane-substrate separation of 32nm, the optomechanical cou-

pling strength can be expected to be large. Though optomechanical dispersion by a
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Figure 4.6: (a) Optical spectra of the photonic crystal membrane subjected to differ-
ent piezo excitation frequencies and drive amplitudes. The drive parameters of each
spectrum are tabulated and juxtaposed to the corresponding spectrum. Blue denotes
no drive; red denotes resonant drive; and black denotes off-resonance drive. The opti-
cal resonance at 1617nm shows significant broadening upon large-amplitude resonant
drive where off-resonant drive has no effect to the resonance. The broadening occurs
likely due to time-averaging of the optomechanical dispersion. (b) Optical spectra
with the membrane driven at 1.24MHz with increasing drive amplitude from 1Vpp to
10Vpp (increment of 1Vpp from spectrum to spectrum). Curves are offset to facilitate
direct comparison. The extent of resonance broadening increases as the resonant drive
amplitude increases.

CW optical pump was not observed due to the low-Q of the optical mode and in-

sufficient laser power, when coherently driven close to the mechanical resonance, the

optomechanical dispersion becomes conspicuous. Figure 4.6(a) shows a sequence of

optical spectra (offset for clear illustration) taken at various driving parameters. The

bottommost spectrum is the reference taken without any drive. Then the driving

signal at 1.2MHz (resonant frequency of the PhC) is turned on, first with a medium

drive amplitude 1Vpp, proceeded with 10Vpp and back to 1Vpp. The optical spec-

tra (red, bottom) are recorded respectively. At 1Vpp, the optical resonance around
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1618nm broadens slightly relative to the reference spectrum. At 10Vpp, the resonance

broadens significantly while the neighboring resonances around 1590nm and 1667nm

appear to blue-shift. As the drive strength returns to 1Vpp, we recover the previous

optical spectrum with good consistency. The result of such sequence suggests that the

large amplitude of mechanical oscillations does affect the membrane optically, which is

seldom observed in typical optomechanics experiments. It is postulated that the large

oscillation amplitude x0 causes large optomechanical dispersion of the resonance at

1618nm. For each wavelength around the resonance, the probe light goes in and out of

resonance over the oscillation period. As the optical spectra are taken quasi-statically

(assuming the dwell time of each laser probe wavelength is much longer than the os-

cillation period), the time-varying optical reflected signal is time-averaged, and hence

a much shallower resonance response is observed. Numerically integrating (4.1), the

instantaneous reflectance of a resonantly driven PhC membrane, over the typical laser

dwell time ∆T (e.g. 1ms), we also observe a broadened optical resonance | ¯aout|2 that

qualitatively conforms with the data. We also observe from the computed time series

that the optical output gradually deviates from the sinusoidal shape and eventually

evolves into signals with other harmonic components.

| ¯aout|2 =
�

t+∆T

t

dt

∆T

κePin

(κ/2)2 + (ω − ω0 − gomx0cos(Ωt))2
(4.1)

where κe is the external coupling linewidth, κ the total linewidth of the resonance,

gom the optomechanical coupling strength, Ωdrv the angular mechanical driving fre-

quency. We roughly estimate the oscillation amplitude to be 1-2nm assuming a gom
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of 230GHz/nm. In Figure 4.6(b) the PhC membrane is driven at 1.24MHz 4 with

increasing drive amplitude from 1Vpp to 10Vpp where each spectrum represents an

increment of 1Vpp. The degree of resonance broadening is progressively enhanced as

the drive amplitude grows. We further confirm the broadening effect’s dependence

on the drive frequency by choosing an off-resonance frequency, and record the optical

spectra (shown in Figure 4.6(a)) for both medium 1Vpp and high drive amplitudes

10Vpp, which are identical to what we obtained for the reference

Having established that the resonant drive could generate sufficiently large ampli-

tude of membrane oscillations, we proceed to seek signatures of nonlinear mechanical

response at single frequency excitations. In the following demonstration, we illumi-

nate the membrane with light at 1614nm (blue-detuned from resonance) at 3mW

and piezo-drive the membrane with different drive parameters. The PhC membrane

is driven at fdr =1.24MHz (40kHz detuned from mechanical resonance) where the

drive amplitude increases from 50mVpp to 9.85Vpp with an increment of 0.25Vpp from

scan to scan. From the mechanical response, we observe (i) harmonics of drive signal,

(ii) sum and difference frequency generation, and (iii) non-trivial interactions of the

Brownian peak and the drive signal.

First, in Figure 4.7, the PhC membrane is driven at 0.85Vpp and 6.65Vpp respec-

tively. A train of harmonics (multiples of driving frequency fdrv=1.24MHz) appear

in the measurement bandwidth of 10MHz. At a low drive amplitude, the spectrum

(blue) does not significantly deviate from the weakest drive spectrum (cyan) and

the main drive peak has the strongest response. At a higher drive amplitude, the

4The piezo actuator has its own resonance response at 1.16MHz and 1.24MHz, which allows for
a greater degree of coherent drive.
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Figure 4.7: Emergence of harmonics in the transduced signals: (a) Mechanical spec-
trum of the PhC membrane driven at 1.24MHz with 0.85Vpp (blue) and 0.05Vpp (cyan)
respectively. Emergence of harmonics of 1.24MHz due to nonlinear optical transduc-
tion. b) Mechanical spectrum of the PhC membrane driven at 1.24MHz with 8.65Vpp

(blue) and 0.05Vpp (cyan) respectively. New spectral features generated in the vicinity
of the drive signal also displayed at the higher harmonics. (c) Compilation of mechan-
ical spectra of the membrane driven with increasing drive strength from 50mVpp to
9.85Vpp (increment of 0.2Vpp). Higher harmonics become more apparent upon stronger
drive. White stripes represent missing data for certain drive strengths. Colorbar scale
is in log scale (units of Watt).

spectrum are very different from the low drive case, showing rich, nontrivial interac-

tions in this strongly driven system. The first few harmonics share similar response
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strength with the fundamental drive signal, with new spectral features generated in

the vicinity, and“copied” around the harmonics. It is particularly interesting that

the first harmonic is slightly stronger than the fundamental drive peak. The origin of

the harmonics with a low drive is due to nonlinear optical transduction. As discussed

in the optical resonance broadening experiment in Figure 4.6, higher harmonics are

expected as the probe light samples through the Lorentzian optical lineshape upon

large optomechanical dispersion. However, in the high-drive case, it is possible that

harmonics are generated as a result of mechanical nonlinearity. For instance, odd

harmonics can be generated in the presence of cubic Duffing mechanical nonlinear-

ity O(x3). Thus, to properly differentiate between optical transduction nonlinearity

and bona fide mechanical nonlinearity, we need to resort to probing the mechanical

response with another optical mode with sufficient, yet low optomechanical coupling

strength. While a proper pump-probe experiment with a suitable wavelength-division

multiplexer (WDM) is not available at the moment, this is pursued in section 4.2.2.

Second, in Figure 4.8(a), we show the spectral shape (red) around the fundamental

mode as the membrane is driven at 1.24MHz, 1.05Vpp. Compared to the reference

spectrum (fluorescent green) taken at the weakest drive, the Brownian peak originally

at 1.2MHz now shifts to 1.191MHz. Moreover a similar mirror image of the Brownian

peak emerges on the other side of the drive peak at 1.289MHz (i.e. 49kHz away). At

higher drive at 9.45Vpp, we see in Figure 4.8(b) that not only do the closest sidebands

move further away from the drive peak by ≈ 140kHz, but also a new pair of sidebands

emerges as well. Currently we are not certain of the origin of these phenomena - that

the Brownian peak appears to move away and pairs of sidebands symmetric to the
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central drive peak emerge, but the spectral features are reminiscent of reports of

injection locking of oscillators where a weak oscillator has non-trivial interactions

with a nearby strong drive signal. Their relative phases eventually are locked to each

other in time and sidebands are formed as well [130, 131].

Third, in Figure 4.9(a), we show the mechanical spectrum (blue) of the PhC

membrane driven at 1.05Vpp in a frequency window up to 5MHz. Compared to the

reference spectrum (fluorescent green), we notice new spectral components generated

at 572kHz, 3.052MHz and 4.292MHz. They are sum and different frequencies due

to the mixing of the strong coherent drive fdrv=1.24MHz and the second mechanical

mode f1=1.812MHz, and specifically 572kHz = f1 − fdrv, 3.052MHz = f1 + fdrv and

4.292MHz = f1 + 2fdrv. The mixing of the first two new spectral peaks is mediated

by a quadratic nonlinearity whereas the mixing of the third peak is mediated by a

cubic nonlinearity. In fact the sidebands emerging around the drive peak are also

mixed and “down-converted” to a peak in the low kHz range. At a drive voltage of

5.45Vpp, a relatively large peak is observed at 136kHz, which is the difference frequency

of fside=1.376MHz and the drive fdrv=1.24MHz. With this, we speculate that the

upper sideband that mirrors the Brownian peak relative to the drive signal might be

due to nonlinear mixing of the Brownian peak and the drive signal mediated by a

cubic nonlinearity, namely 2fdrv − f0.

Finally, we characterize the mechanical response of the difference frequency signal

due to fdrv − fside with increasing drive amplitude from 50mVpp to 9.85Vpp (incre-

ment of 0.2Vpp). Here we point out that the mechanical spectrum data below 1MHz

are separately measured as opposed to the large-frequency-window measurements to
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Figure 4.8: Emergence of sidebands around the drive peak: (a) Mechanical spectrum
of the PhC membrane driven at 1.24MHz with 1.05Vpp (blue) and 0.05Vpp (cyan)
respectively. The Brownian peak shifts by 49kHz from 1.2MHz. A sideband mirroring
the Brownian peak is formed at 1.289MHz. b) Mechanical spectrum of the PhC
membrane driven at 1.24MHz with 9.45Vpp (blue) and 0.05Vpp (cyan) respectively.
The Brownian peak moves further out to 1.1MHz and the corresponding sideband
moves accordingly. Another new pair of sidebands is formed upon stronger drive.
White stripes represent missing data for certain drive strengths. Colorbar scale is in
log scale (units of Watt).

obtain much higher frequency resolution for recording subtle frequency shifts and

linewidth variations. Also in the low frequency window, the system is susceptible to
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Figure 4.9: Nonlinear mixing of strong drive signal with mechanical modes: (a) Me-
chanical spectrum of the PhC membrane driven at fdrv 1.24MHz with 1.05Vpp (blue)
and 0.05Vpp (green) respectively. Besides the pronounced harmonics mentioned in Fig-
ure 4.7, new spectral peaks are formed at 572kHz = f1 − fdrv, 3.052MHz = f1 + fdrv
and 4.292MHz = f1+2fdrv, where f1 is the second mechanical mode of the membrane
at 1.812MHz. The mixing is mediated by quadratic and cubic mechanical nonlinear-
ity. b) Mechanical spectrum of the PhC membrane driven with 5.45Vpp featuring the
subharmonic range. The quadratic mixing of the sideband and the drive peak leads
to a difference frequency peak at 136kHz. (c) Mechanical spectra (normalized to that
taken with the lowest drive)in the subharmonic range with increasing drive strength
from 50mVpp to 9.85Vpp (increment of 0.2Vpp). Rich spectral features emerge due to
nonlinear mixing. White stripes represent missing data for certain drive strengths.
Colorbar scale is in log scale (units of Watt).

large laser intensity noise and other electronic noise sources. Thus, while spectral

information buried under the noise floor cannot be retrieved, we normalize each me-

chanical spectrum with that taken at the weakest drive strength to reveal the new
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Figure 4.10: Mechanical response variation of the “down-converted” signal: (a) Ex-
tracted mechanical frequency of the difference frequency signal due to mixing of the
drive peak and the shifted Brownian peak at various drive amplitudes. The sub-
harmonic signal is fitted to a Lorentzian lineshape. (b) Corresponding extracted
mechanical linewidth of the difference frequency signal.

spectral features. The difference signals are fitted to a Lorentzian lineshape. The fit-

ted mechanical frequencies and linewidths at various drive amplitudes are plotted in

Figure 4.10(a) and Figure 4.10(b). The mechanical frequency of the difference signal

increases as the drive becomes stronger but eventually plateau to ≈ 140kHz, whereas

the mechanical linewidth first increases from ≈ 10kHz to 35kHz and slowly reduces

to the initial value upon stronger drive. Since the difference signal reflects changes in

the Brownian peak, we note that the frequency shifts of the Brownian peak from the

drive signal do increase and eventually saturate as shown in Figure 4.8(c).
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4.2.2 Coherent drive by modulating the optical gradient force

Another approach of resonantly driving the PhC membrane without considering

the spectral output homogeneity of a piezo actuator is by exerting a time-varying

optical force. Similar to the piezo scheme, the oscillation amplitude of the membrane

is enhanced by the mechanical factor Qm. Given the sufficiently efficient optomechan-

ical transduction, here we could carry out studies in the mechanical bistability and

hysteresis as we are free from the complications of the piezo’s own resonant response.

Moreover, due to the unique existence of back-action in the optomechanical inter-

actions, both the static/DC component and dynamic/AC component of the optical

force can be modulated to perform not only amplitude modulation but also para-

metric drive. Specifically, in Chapter 3, we illustrate that the optical force, which is

intrinsically nonlinear in the separation of the coupled elements x, can lead to sig-

nificant change to the mechanical resonant frequency and the mechanical linewidth

to the first order. The extent of the frequency and linewidth tuning is dependent

on the excitation power and the optical detuning. Thus, by sending in a harmonic

optical excitation, the optical spring constant and the mechanical linewidth could be

modulated in time accordingly. For instance, we achieve parametric oscillation at

the frequency f0 by modulating the optical spring constant at 2f0 where f0 is chosen

within the bandwidth of the fundamental mechanical mode.

The photonic crystal membrane for the optical-drive experiment is supported by

a different stress-relief arm design where the arms are formed by a collection of thin,

curly strings which are more susceptible to the deformation as the in-plane compres-

sive stress is released. This change in the mechanical design is adopted in view of the
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Figure 4.11: (a) An optical micrograph of the photonic crystal membrane supported
by arms of a new stress-relief design shown in the magnified illustration in (b). The
arms are composed of multiple curved narrow beams which are more compliant and
permit preferential release of in-plane compressive stress. The hole periodicity is
1µm and the diameter is 400nm. (c) Optical resonances of the PhC membrane in the
telecom range, centered at 1561nm and 1606nm. The presence of two traces (blue and
red) is a result of separating the reflected light by a wavelength-division multiplexer.
(d) Fundamental mechanical mode of the membrane (resonant frequency = 384.8kHz)
fitted to a Lorentzian lineshape (red).

drastic deviation of the quantitative values of the mechanical modes from simulations

using the previous mechanical design. Empirically, the current mechanical design

does provide a softer mechanical spring for stronger manifestation of other external
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force gradients. Figure 4.11(a) shows the optical micrograph of a photonic crystal

membrane with the new stress-relief design (illustrated in Figure 4.11(b)). The hole

periodicity is 1µm and the diameter is 400nm. Starting with 100nm of sacrificial oxide

layer, the membrane-substrate separation of the device under study is 104nmpm8nm

as measured by the optical profilometer. Previous designs engineer the arrangement

of the etch holes at the end of the anchors to alter the effect of stress-gradient-induced

torque from the sacrificial oxide underneath. Here in order to preserve a large number

of working devices, we terminated the release process of PhC membrane at the curly

arms. Hence the large degree of controlled gap-substrate tuning is not present on this

particular sample. Figure 4.11(c) shows the two optical resonances of the PhC in the

C/L-band and U-band wavelength range. They are centered at 1561nm and 1606nm

whose quality factors are ≈ 2000. The optomechanical coupling for both modes is

strong, as evidenced by the occurrence optical spring effect and dynamic back-action,

readily observed at low optical powers. Figure 4.11(d) shows the PhC’s fundamental

peak centered at 384.8kHz and the quality factor is ≈6000.

To characterize the optomechanical effects in this current system, we pump the

PhC membrane at various optical detunings across the optical resonance with a spec-

ified excitation power and measure the resultant mechanical response of the PhC

membrane, as performed in the experiments delineated in Chapter 3. Figure 4.12(c,d)

and (e,f) show the respective mechanical frequency and linewidth of the membrane

(extracted from a Lorentzian fit), pumped and probed across the optical resonances

centered at 1561.25 nm (Figure 4.12(a)) and 1606.32nm (Figure 4.12(b)) at 5µW .

First, we note that in both Figure 4.12(e,f) the mechanical linewidth increases non-
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Figure 4.12: Characterization of the optical spring effect and dynamic backaction
on the two optomechanically sensitive optical resonances: (a) and (b) show the
guided resonances supported by the coupled PhC membranes in the C/L band and
in the U band, centered at 1561.25nm and 1606.32nm respectively. (c, d) and (e, f)
show the fitted mechanical frequencies and linewidths of the fundamental mechanical
mode when pumped with 5µW across the optical resonances. As shown in (e), self-
oscillations occur readily at this relatively low excitation powers on the red-detuned
side of the optical resonance.

monotonically on the blue-detuned side of the optical resonance and decreases on

the red-detuned side. We established in Chapter 3 that such trend of the dynamic
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backaction is opposite to what would be expected for the pure gradient-force effect

(regardless of the sign of the optomechanical coupling), and there has to be a pho-

tothermal effect to cause the anomaly. Thus we conclude the photothermal effect

exists in our system (which we will utilize for driving the membrane to sample the

Casimir nonlinearity), and the photothermal effect and the gradient-force effect act

in opposite directions. On the other hand, the mechanical frequency in both Figure

4.12(c,d) also first increases non-monotonically on the blue-detuned side of the optical

resonance and decreases on the red-detuned side. It corroborates with the conven-

tional optical spring effect due to the optical gradient force. This is expected as the

small separation between the silicon device layers facilitates significant optomechani-

cal coupling and the expression of the gradient-force effect should dominate over the

photothermal effect. The relative optomechanical coupling strength of both optical

resonances (of similar quality factor) can be compared by the following observation: In

Figure 4.12(e) the mechanical linewidth reaches the minimal detection-limited value

in the range of 1561.45nm to 1561.9nm, denoting the occurrence of self-oscillations at

an input power as low as 5µW , whereas in Figure 4.12(f), the mechanical lineshape

does narrow in the red-detuned side but is still non-vanishing. Hence we infer that

the resonance centered at 1561.25nm (C/L-band) has a slightly higher optomechani-

cal coupling strength than the other resonance centered at 1606.32nm (U-band). Yet,

due to the constraint of available laser powers (up to 2mW) for the C/L-band mode,

the optical actuation is performed with the U-band mode instead (up to 13mW).

The existence of two optical modes with strong optomechanical response that are

well situated in both the C/L band (1480-1580nm) and the U band (1580-1680nm)
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Fast InGaAs 
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Figure 4.13: Experimental setup for coherently driving the PhC membrane: A tun-
able laser output in the U-band, intensity-modulated by an electro-optic modulator
(EOM), is used to modulate the optical force and hence drive the PhC membrane
resonantly. The modulator signal and DC bias to the EOM are provided by a function
generator. The modulated output and a separate probe laser light from the C/L-band
are combined by a 2×1 fiber coupled, which is then sent to one of the arms of a 2×2
fiber coupler. One of the output arms is used for calibrating the powers sent to the
PhC membranes. The other output arm enters the vacuum chamber with a custom-
made optical fiber feedthrough and illuminates the device under study. The reflected
light is then collected by the same fiber tip and returns to the fiber coupler to reach the
photodetector. The drive and probe signals are separated by a wavelength-division
multiplexer (WDM). The probe signal is sent to a real-time spectrum analyzer, and
the drive signal is sent to a data acquisition board (DAQ) for monitoring the coupling
condition in case of mechanical drifts in the setup.

allows us to perform pump-probe measurements which are useful in (i) calibrating

the membrane’s oscillation amplitude by relating to the thermal motion, and (ii) dif-

ferentiating between the actual nonlinear mechanical response and optical readout

nonlinearity - a difficulty we encountered in the previous piezo-actuation experiment.

As illustrated in Figure 4.13, the original fiber interferometry setup now incorporates

a 2×1 fiber coupler that admits both the pump and probe lights. The signal reflected
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by the device is then passed through a wavelength-division multiplexer (WDM) to

separate out the pump and probe responses. The pump output is sent to a photode-

tector for monitoring the coupling condition to the membrane, which is subjected

to mechanical drifts. The probe output is fed to an RF amplifier and then to the

real-time spectrum analyzer. In the case of resonantly driving the PhC membrane by

intensity-modulating the input light, the pump light will then be sent to an electro-

optic modulator, which intensity-modulates the input laser power by sending in a

sinusoidal drive signal from a function generator (or possibly a network analyzer), is

included for providing a harmonic drive of the optical force.

Having characterized the optomechanical properties of the PhC membrane, we

proceed to sample the mechanical nonlinearity (e.g. Casimir nonlinearity) of the sys-

tem by inducing large-amplitude oscillations. Before we investigate resonance driving

of the PhC membrane by amplitude-modulation of the input excitation power, we first

explore the possibility of inducing large-amplitude motion by means of self-oscillations

which we can easily achieve even at low CW excitation powers. The calibration of the

oscillation amplitude of the membrane can be performed by introducing a separate

probe light whose Brownian peak without any external pump serves as a calibration

reference by relating to the thermal motion amplitude. For the simplicity of first-

order analysis, here we assume the detuning of the probe light remains constant upon

large optical excitation, i.e. optomechanical dispersion and/or thermo-optic effect of

the probe light is negligible.5

5This assumption may be compromised at sufficiently large excitations due to the probe light’s
strong optomechanical coupling strength. In this case the transduction efficiency which is dependent
on the optical detuning needs to be adjusted as the optical resonant frequency shifts as a result of
optomechanical dispersion.
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Figure 4.14: Large-amplitude motion induced by self-oscillations when the PhC mem-
brane is pumped at 125µW: (a) The fitted mechanical linewidth across the optical
resonance. Self-oscillations occur from 1606.2nm to 1608.8nm. (b) Calibrated oscilla-
tion amplitude obtained by comparing the relative areas of the mechanical response
and scaling by the thermal motion. The inset (left-blue) shows the thermal motion
transduced with the probe mode and (right-red) shows the transduced motion during
self-oscillations. The maximum response obtained is 350pm. (c-e) show the mechan-
ical spectra recorded at optical excitation wavelengths of 1606.2nm, 1606.6nm and
1606.9nm, which are on the red-detuned side of the pump mode. Note the increas-
ingly conspicuous asymmetry towards the higher frequency. The side peaks are due
to mixing of the turbo pump’s vibration by the amplified motion of the mechanical
resonance.

We illuminate the PhC membrane with a probe light of 1561nm at 5µW and a

pump light in the U-band at 125µW. Only the transduced response of the probe light
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is monitored with a spectrum analyzer. Figure 4.14(a) shows the optical spectrum of

the resonance in the U-band. When the membrane is pumped off-resonance (e.g. in

the range of 1601-1603nm, 1609-1611nm), the probe response remains unaltered and

hence the response in those ranges can serve as the reference that relates the driven

oscillation amplitudes to thermal motion. Using a motional mass of 3.67×10−13kg,

temperature of 300K, we estimate the unperturbed thermal motion amplitude to be

≈ 44pm. Then we calibrate the membrane’s oscillation amplitudes across the pumped

optical resonance by comparing the area under the curve of the transduced signal.

(Note that the area under the curve gives the squared value of the motion amplitude,

and thus one has to take the square root of the area to obtain the amplification factor

of the reference thermal motion.) The calibrated result of the amplified oscillation

amplitude is plotted in Figure 4.14(b). At the current pump power of 125µW, the

maximum amplitude is ≈0.34nm at 1606.1nm. We observe the the mechanical spec-

tra in the red-detuned range, where mechanical motion is dramatically amplified, are

skewed from the Lorentzian lineshape. Three instances of this asymmetry are shown

in Figure 4.14(c-e) where the respective pump wavelengths are 1606.2nm, 1606.6nm

and 1606.9nm. Careful inspection of the lineshapes leads to the observation of lightly

lopsided lineshapes tilted towards the higher-frequency edge, signifying the occur-

rence of mechanical hardening nonlinearity. This is opposite to what is expected in

the presence of the Casimir force where the mechanical nonlinearity is a softening one

upon large mechanical oscillation. To understand the origin of the hardening nonlin-

earity, we first review the physics of the optomechanically driven self-oscillator. In

the presence of thermal noise, the PhC membrane is excited by CW light which exerts
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an optical gradient force and an “antagonistic” photothermal force whose strengths

explicitly and implicitly depend on the membrane-substrate separation x. The time

delay present in the build-up of the photothermal force is translated to positive or

negative work done on the membrane which amplifies or damps the motion of the

membrane. When the motion is sufficiently amplified that elicits non-negligible re-

sponse from higher-order nonlinear forcing terms (due to the intrinsically nonlinear

gradient force, photothermal force and even the Casimir force), the mechanical sus-

ceptibility now deviates from the Lorentzian form in the linear case: the mechanical

frequency has nonlinear dependence on the oscillation amplitude. The equation of

motion in the presence of nonlinearity now reads

ẍ+ (Γm0 + Γptm

m
)ẋ+

�
Ω2

m0 + (Ωopt

m
)2 +

�

i

αix+
�

i

βix
2

�
x = fL(t) (4.2)

, where Γptm

m
is the mechanical linewidth modification by the photothermal force, Ωptm

m

is the angular mechanical frequency modification by the optical gradient force,
�
i

αix

and
�
i

βix2 represent frequency modification due to the respective quadratic and cubic

nonlinearity from the Casimir force, optical gradient force and the photothermal force.

As we delay the discussion of the optical-force-induced nonlinearity to the following

session, we point out that a simplified situation of a Duffing oscillator driven by a

white noise was studied by Dykman in the 80’s.

Though self-oscillations can be exploited to drive the PhC membrane by a large

amplitude without introducing a modulator and function generator, which is an ap-

pealing approach in a real-life detection environment, the dynamics of such positive-

feedback nonlinear system can be quite complex. To help decipher the different

sources of nonlinearities in our current system, we resort to the conventional reso-
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nant drive scheme. Here we resonantly drive the membrane with an optical force

where the excitation light is intensity-modulated with an electro-optic modulator

(EOM) [55]. The detection method is as follows: A sinusoidal signal is sent to the

EOM to modulate the input laser light. Increasing the signal amplitude increases

the modulation depth. A DC bias is also applied to the EOM to ensure a maximum

linear output. The rest of the pump-probe setup remains the same as the previ-

ous pump-probe experiment. Here the optomechanical system now is driven by a

single-frequency excitation as opposed to the broadband thermal noise in the pre-

vious experiment. To observe the mechanics bistability at large drive amplitude, a

frequency sweep of the modulation signal is provided, while the spectrum analyzer

captures the spectral response for each frequency excitation. The aggregate ampli-

tude response for demonstrating the mechanical bistability is obtained by choosing

the MAXHOLD function of the analyzer where only the maximum response for each

resolved frequency component throughout the entire frequency sweep is recorded. At

an input power of 31.25µW,6 we drive the PhC membrane at several fixed wave-

lengths across the optical resonance centered at 1606.1nm. As for the drive signal,

at each modulation amplitude (0.05Vpp, then an increment of 0.1Vpp from 0.1-0.6Vpp)

the frequency sweeps from 380kHz to 390kHz. Figure 4.15(a) shows the optical res-

onance of the PhC when statically pumped at 31.3µW. Optical bistability occurs at

≈1606.1nm, then self-oscillations take place until 1607.3nm. Figure 4.15(b-d) show

the driven, mechanical response for three different excitation wavelengths, namely

1605.9nm, 1606.1nm and 1606.15nm. At 1605.9nm which is on the blue-detuned side

6Nominally 1mW from the laser but discounted to 1/8 of the power after passing through the
EOM and further reduced through the fiber coupler
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of the optical resonance (Figure 4.15(b)), the mechanical resonance is centered at

386.55kHz, which is different from the value reported earlier due to the optical spring

effect incurred by the pump light. As the drive amplitude increases, the amplitude of

the driven response rapidly increases. Moreover, the frequency at which the driven

resonance peaks gradually decreases, and the lineshape deviates from the Lorentzian

form. At a drive amplitude of 0.3Vpp, mechanical bistability occurs at the transition

frequency of 385.62kHz. This type of mechanical nonlinearity is known as mechanical

softening nonlinearity. At 1606.1nm which is very close to the transition wavelength

of the optically bistable resonance pumped at 31.3µW (Figure 4.15(c)), again the

driven response amplitude increases upon increasing modulation strength. However

the mechanical frequency does not display much shift (from 384.75kHz at low drive

to 384.95kHz at 0.6Vpp) and the lineshape remains Lorentzian. Finally, at 1606.15nm

where the PhC membrane undergoes self-oscillation (signified by the amplified re-

sponse in the mechanical spectrum), mechanical bistability occurs readily at a low

modulation amplitude of 0.1Vpp, but towards the higher frequency side. This type of

nonlinearity is known as mechanical hardening nonlinearity.

A systematic investigation of recording the mechanical driven response at a num-

ber of excitation wavelengths across the optical resonance shows a consistent trend of

mechanical softening nonlinearity on the blue-detuned side of the optical resonance

and hardening nonlinearity on the red-detuned side. Given all other experimental

conditions held constant, we infer that the mechanical nonlinear behaviors observed

are due to the intrinsically nonlinear optical force. In principle, a blue-detuned opti-

cal force excitation leads to stiffening of the spring constant as illustrated in Figure
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4.12(c) [132]. One expects the nonlinear mechanical frequency blue-shifts and even-

tually the bistable transition happens at a frequency higher than the initial resonant

frequency. The same reasoning applies to the red-detuned optical excitation as well.

However the trends we observe are opposite to the expected results. We are still

investigating the origin of such phenomena. The additional physics pertinent to this

system but yet to be considered include (i). the concurrent driving of the optical

spring constant and the mechanical linewidth, (ii). relative strengths and effects of

the quadratic and cubic nonlinearity due to the optical force, and (iii). the role of

photothermal force in the nonlinear dynamics.

As a concluding remark for this section that delineates rich optomechanical non-

linear dynamics, we note that our initial vision of sampling the Casimir (mechanical

softening) nonlinearity may be masked by the nonlinear response due to the optical

force. However when the Casimir nonlinearity is sufficiently large, we expect the

softening nonlinearity could offset or enhance the measured nonlinearity across the

optical resonance depending on the optical detuning of the excitation.
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Figure 4.15: Mechanical nonlinear response of the PhC membrane upon resonant
excitation: (a) Optical resonance excited at 31.3µW for exerting an optical force on
the membrane. Note the occurrence of optical bistability. Mechanical response of
the membrane upon the excitation of an optical force whose amplitude is modulated
from 380kHz-390kHz at (b) 1605.9nm, (c) 1606.1nm and (d) 1606.15nm. The re-
sponse with different modulation depths (0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6Vpp) is
shown (darker shades of red represent larger modulation depths). (b) shows mechan-
ical softening nonlinearity upon blue-detuned excitation; (c) has minute mechanical
nonlinear response; (d) shows mechanical hardening nonlinearity upon red-detuned
excitation.
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Towards calibrating the

electrostatic effects in Casimir

force measurements

5.1 The role of electrostatic effects in Casimir ex-

periments

Virtually, most Casimir experiments in the literature measure the Casimir-induced

frequency gradients over a range of separations of the test bodies. Often, the Casimir

effect is mingled with other competing effects caused by attractive potentials. A

major competing artifact in Casimir measurement is the electrostatic interaction be-

tween the test bodies [133, 134, 135, 127]. Though the power laws for the Casimir

force and the electrostatic force with respect to the test-body separations are dif-
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ferent, the magnitude and gradient of the electrostatic force are comparable to that

of the Casimir force in the range where the test-body separation is above 100nm.

An important step of characterizing the Casimir potential, whether in a static or

dynamic mode of measurement, involves minimizing and calibrating the electrostatic

effects on the Casimir oscillator. Extracting the contributions due to the Casimir and

electrostatic forces could incur much uncertainties without understanding the rele-

vant physics of the system under test. For instance, one of the ongoing controversies

of Casimir physics is the choice between the Drude model and the plasma model in

calculating the Casimir force: the DC (zero-frequency) contribution of the dielectric

function of the test bodies can cause a difference of 200% in the force magnitude

calculation [136]. Hence the existence of the electrostatic artifacts can obscure the

understanding of some unsettled issues in Casimir physics. The sources of such elec-

trostatic effect are contact potential and patch charges. Below we describe the origin

of these sources, how they are quantified and minimized experimentally in typical

Casimir measurements.

5.1.1 Contact Potential

When two metals or dielectrics of different work functions are in contact, a po-

tential is established between them. A simple experiment to illustrate this can be

performed by clamping two different pieces of metals, say potassium and calcium,

with crocodile clips which are connected to a voltmeter; one obtains a finite voltage

measurement. Such potential difference could be minimized, or even balanced out,

by applying a bias across the two bodies concerned. Denoting the contact potential
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as Vm, and the applied bias as V , the energy stored between two parallel plates with

area A separated by distance d is given by

UCP =
1

2
C(V − Vm)

2, (5.1)

where the capacitance of such capacitor is given by C = �0A/d. Thus, the attractive

force on the parallel plates is given by

FCP = −∂UCP

∂d
= −1

2

�0A

d2
(V − Vm)

2. (5.2)

In most Casimir force measurements, a proper calibration is performed by first moving

the bodies (usually a sphere and a plane) sufficiently far away that the Casimir effect

is negligible. A bias is applied to the two bodies which measures the displacement of

the moveable body. By calibrating the absolute separation between the two bodies

interferometrically or electrostatically, one could fit the contact potential by sweeping

over a range of voltages. In particular, when the bias is set at the contact potential,

it eliminates the force contribution due to the potential difference between the two

paralle plates. Alternately, the electrostatic force serves to drive the oscillatory motion

of an object and the freqeuncy shift from its natural mechanical frequency is measured

as the bias varies. The contact potential Vm is extracted likewise.

It is observed in several experiments that Vm, also known as minimizing potential,

could be distance-dependent due to varying contact potential across the membranes

as a result of stresses and membrane curvatures, etc. This might not be problematic

as our case if the membranes are reasonably flat and the effective area is exactly the

area of the membranes. Accounting for the distance dependence in Vm, one rewrites
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the electrostatic force as

FCP = −1

2

�0A

d2
(V − Vm(d))

2. (5.3)

It is suggested that ”although the parabola measurement minimizes the electrostatic

force across the plates, it does not necessarily nullify all the electric forces that pos-

sibly exist.

5.1.2 Patch potential

Patch effects are due to work function variations across a surface due to grain

boundaries in polycrystalline materials (different effective masses in different crystal

directions, dipole moments due to polar molecules on the surface (e.g. native oxide

film on non-passivated silicon surfaces), impurities, etc [137, 138, 139]. One could map

out the surface patch potentials with a scanning Kelvin probe. The state of the art of

the technique has a spatial resolution of several microns and has a sensitivity of about

30mV . In Lamoreaux’s experiment with Ge torsional balance, the root-mean-square

voltage due to such patch effect is fitted to be around 6±2mV [95].

The theoretical treatment is by defining a two-point correlation function in the

k−space. Three important scales are the typical dimension of a patch λ, membrane

separation d and the membrane size A. In the limiting case of the patch size greater

than the membrane separation, the force due to the patch field is given by

Fpatch(λ > d) = −1

2

�0A

d2
V 2
rms

. (5.4)

In the opposite limit where the membrane separation is greater than the patch size,

the force is now exponentially suppressed, i.e. F ∝ e−d/λ. In the intermediate regime,
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the functional form of the interaction energy of the plates due to the patches is given

by

Upp =
�0
4

� ∞

0

dkk2

�
2cosh(kd)

sinh(kd)
− 2

�
S(k) =

�0
2

� ∞

0

dk
k2e−kd

sinh(kd)
S(k), (5.5)

where S(k) is the Fourier transform of V 2
rms

defined via the correlation functions

across isotropic patches in the k−space. However, it is best to avoid this regime

because measuring the correlation function is beyond the technological limit. Yet,

emerging atomic force microscopy technologies like Kelvin Peak Force Microscopy

allows one to map the local potential distribution with a spatial resolution of tens

of nanometers. Being able to map such spatial correlation allows us to even check if

lateral force exists. The application of such nanoscale detection techniques to Casimir

experiments is deemed to bring new understanding of the patch potentials as we verify

various proposed models in explaining the extent of the electrostatic effect observed

as the Casimir effect is carefully distilled.

5.1.3 Model for total electrostatic residual force

Kim et al. proposed a model to account for the electrostatic residual force with

good experimental fits in several different Casimir force measurements [134]:

F el

r
= F0 + FCP + Fpatch = F0 +

1

2

�0A

d2
�
(V1 + Vm(d))

2 + V 2
rms

�
, (5.6)

where F0 is an offset at large distances possibly due to instruments and other D.C. ef-

fects. Vm(d) is measured and could even be non-distance-dependent for inert, smooth,

flat, and highly conducting materials, e.g. gold. As a survey of the empirical data in

various experiments, Table 5.1 summarizes some of the estimated minimizing poten-
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Experiment (Year) Minimizing contact potential, V1 Patch potential
Ge plates, 500nm-5µm, 22-28mV , -34± 3mV 6± 2mV

Kim et al (2009)
Au plates, 700nm-7µm, 20± 0.2mV , NA 5.4±0.1mV
Sushkov et al (2011)

Cr-on-Si plates, 0.5-1.1µm, -68.6mV , NA NA
Bressi et al (2002)

Table 5.1: A table of estimated contact potentials and patch potentials in several
Casimir experiments

tial (range).

5.2 Electrical degree of freedom in Casimir op-

tomechanical oscillators

The strategies of evaluating and minimizing the electrostatic effect in our inte-

grated optomechanical system have to be modified compared to the procedures es-

tablished in previous Casimir demonstrations for the following reasons: First, in a

vertically integrated system, the ability to perform a pure electrostatic calibration by

separating the test bodies to the micron scales is limited by the actuation mechanism

(i.e. the ability to actuate without introducing a significant spring constant which

masks the interested frequency shifts due to residual potentials) and range of the sys-

tem. Second, our approach of averaging out the variability of individual devices by

measuring multiple devices requires new designs that allow for individual electrical

control. In the following sections, we discuss our effort in building an electrically

addressable optomechanical system on the chip level and the hardware level.
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5.2.1 Development of an electrically addressable optomechan-

ical system

Silicon handle layer 

Aluminum contact 

Doped 
silicon device 
layer 

Buried oxide 

(a)

(b)

d

Figure 5.1: (a) Schematic for measuring the contact potential in the photonic crystal
platform. Aluminum contacts are formed. The mechanical frequency of the membrane
is monitored upon different biases. (b) Schematic for the transmission line method
(TLM) for characterizing contacts and extracting the contact resistance. d is the
separation between two neighbor contacts.

The double-SOI substrate we employ to develop the existing optomechanical sys-

tem is intrinsically doped with a doping level of ×1015/cm3. Metallic contacts formed

with such low-doped silicon have large contact resistance and non-Ohmic response.

Significant dissipation at the metal-silicon contact could forbid us from estimating

the contact potential while minimizing the electrostatic effect is still possible. Hence,
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the idea of biasing the top silicon device layer and measuring its interaction with the

bottom substrate is implemented by first establishing the biasing technique and the

detection method of electrostatic force gradients in a simpler, more controlled plat-

form of single SOI substrate. The schematic is illustrated in Figure 5.1(a). Electrical

contacts are formed by forming ohmic contacts with a metal and doped silicon. The

substrate (silicon handle layer) is grounded. Bias is applied between the top silicon

device layer and the handle layer, and the mechanical resonant frequency upon this

biasing is measured accordingly.

Figure 5.2: Multiple ion energies for a flat doping profile obtained by SRIM simula-
tions: the relative doses of 35keV (grey squares), 50keV (green squares) and 80keV
(pink square) ions are adjusted to obtain a flat doping profile (blue line). The x-
axis represents the cross-sectional dimensions of the first few layers of SOI: 100nm
of PECVD oxide; 220nm of silicon device layer; the remaining is part of the buried
oxide layer.

To ensure the formation of good ohmic contacts, we dope the silicon device layer
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Doping level Dose of 35keV ion Dose of 50keV ion Dose of 80keV ion
1017/cm3 5.8×1011/cm2 5.8×1011/cm2 15.4×1011/cm2

1018/cm3 5.8×1012/cm2 5.8×1012/cm2 15.4×1012/cm2

5×1018/cm3 2.9×1013/cm2 2.9×1013/cm2 7.7×1013/cm2

8×1018/cm3 4.6×1013/cm2 4.6×1013/cm2 12.3×1013/cm2

1019/cm3 5.8×1013/cm2 5.8×1013/cm2 15.4×1013/cm2

Table 5.2: Dose of 35keV, 50keV and 80keV ions required for doping levels of
1017/cm3, 1018/cm3, 5×1018/cm3, 8×1018/cm3, and 1019/cm3.

with boron ion to at least 5×1018/cm3. Such doping level forms a good quasi-ohmic

contact with the contact electrode of aluminum. It is known that uneven doping could

generate stress gradient to the device layer which may cause unwanted mechanical

response. Hence, care is taken in creating an even doping profile along the device

layer cross section by multi-dose, multi-energy doping simulated by SRIM. Since the

minimum ion energy allowed for ion implantation already reaches the middle of the

device layer. 100nm of PECVD oxide is first deposited on the SOI substrate, such

that ions with the minimum energy can reach the top side of the silicon layers. The

resultant doping profile is illustrated in Figure 5.2. The energies and the correspond-

ing doses selected to achieve the doping levels of 1017/cm3, 1018/cm3, 5×1018/cm3,

8×1018/cm3, and 1019/cm3 are listed in Table 5.2:

As an initial step of evaluating the ability of detecting force gradients due to the

electrostatic force between the silicon device layers, several single SOI substrates are

sent for boron ion implantation at Materials Diagnostics to the doping levels listed

above. The dopants are then activated by annealing the the doped samples with rapid

thermal annealing at 1000◦C with forming gases for a minute. To ensure compatibility

with the silicon reactive ion etcher, aluminum is chosen as the metal for forming

ohmic contacts with the doped silicon. The ohmicity of the aluminum-silicon contact
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of each doping level was carefully characterized using the transmission line method/

transfer length method (TLM) which is widely used by the semiconductor industry.

Briefly, a series of six 100µm×100µm aluminum squares (with neighboring separations

of 5µm, 10µm, 15µm, 20µm, 25µm) are formed by standard photolithography and

lift-off processes. The contacts formed are then annealed at 420◦C for 1 minute in

forming gases to establish stronger bonding at the interface of aluminum and silicon.

As illustrated in Figure 5.1(b), each pair of neighboring square contacts are then

tested with a semiconductor analyzer to obtain the I-V curves which illustrate the

ohmicity of the aluminum-silicon contact and the differential resistance between two

contacts. A series of I-V curves of the five contact pairs (with neighboring separations

of 5µm, 10µm, 15µm, 20µm, 25µm) made with 1017/cm3 doped silicon and made

with 5×1018/cm3 doped silicon are shown in Figure 5.3 and 5.4 respectively. In the

measurements, the voltage applied goes from -10V to 10V 1. The differential resistance

at each bias voltage is obtained by numerically differentiating the I-V curves as shown

in the bottom panel of Figure 5.3 and 5.4. At the doping level of 1017/cm3, the

aluminum-silicon junction forms a Schottky barrier, which gives the nonlinear I-V

curves shown in Figure 5.3. The differential resistance in the low-voltage range is as

high as 105Ω. On the other hand, at the doping level of 5×1018/cm3, the I-V curves

are more linear which means the Al-Si junction resembles an ohmic contact. From

the differential resistance plots, we notice variations of the resistance over the bias

range, but the values remain fairly consistent overall. For the Casimir measurements,

since we are not interested in applying large voltages to actuate the membranes but in

1The voltage applied only goes from -8V to 8V or even with a smaller range for the contact pair
with a gap of 5µm since the contacts melt upon large bias.
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reducing the contact potential which is usually in the sub-Volt range, the differential

resistance chosen for the TLM extraction of the contact resistance is chosen within

the low-voltage range. Figure 5.5 plots the measured resistance at zero bias for each

contact pair extracted from Figure 5.4 as a function of the contact separations. It is

then fitted to a linear form where the y-intercept gives twice of the contact resistance

at the Al-Si junction according to TLM. Here the extrapolated contact resistance is

50.2Ω. For higher doping levels, we achieved contact resistance ≈5Ω.
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Figure 5.3: I-V curves for contact pairs where the contact metal is aluminum and
the silicon layer is 1017/cm3 boron-doped, with separations (from left to right) of
5µm, 10µm, 15µm, 20µm, 25µm. The bottom panel shows the differential resistance
at each bias voltage. The resistance is plotted in the logscale due to the range the
resistances vary over.

Although the contact resistance can be minimized by choosing the highest doping

levels available, large optical absorption occurs which could diminish the optome-

chanical performance and induce large thermo-optic effect. Hence there is a trade-off

in optimizing the electrical and optical properties. With reference to the results pre-
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Figure 5.4: I-V curves for contact pairs where the contact metal is aluminum and
the silicon layer is 5×1018/cm3 boron-doped, with separations (from left to right) of
5µm, 10µm, 15µm, 20µm, 25µm. The bottom panel shows the differential resistance
at each bias voltage. The resistance is plotted in the linear scale as the resistance is
consistent within a similar magnitude.

sented in [140], we choose the doping level of 8×1018/cm3 for fabricating Casimir

photonic MEMS oscillators.

Our attempt of on-chip integration of arrays of Casimir oscillators and elucidating

other attractive contributions requires us to individually biasing the devices. Address-

ing tens or even hundreds of devices in a vacuum environment could be challenging.

However, as we learnt from the ion-trap communities where on-chip preparation of

multiple RF trap sites in an ultra-high vacuum is not uncommon, we adopt their

architecture for large-scale electrical characterization of the devices in a high vacuum

environment using ceramic pin grid array (CPGA).

Due to the relatively large difference in length scales of the photonic crystal de-
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Figure 5.5: Extrapolation of the contact resistance for contacts made with doping
level of 5×1018/cm3: Transmission line method is applied where the resistance values
of the five contact pairs at zero bias are plotted against the contact pair separations
d. The data are fitted to a linear form. From the y-intercept, the contact resistance
of the Al-Si junction is ≈ 50.2Ω.

vices relative to the metallic contact pads, packaging of hundreds of devices could be

challenging. Figure 5.6(a) shows the layout for fabricating 54 devices on a 1cm × 1cm

sample. Aligned electron-beam lithography and photolithography are performed to

define the photonic crystal patterns, the metallic contacts and the electrical isolation

trenches. Figure 5.6(a) shows the optical micrograph of a partial view of the finished

sample. The sample is then mounted on a 108-pin CPGA 2 with Electrodag-502

(for eliminating the strong coherent reflections from the bottom of the silicon han-

dle layer). Wirebonding (with aluminum threads) is then performed to connect each

2Spectrum Semiconductor Materials, Inc. CPG1081
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metallic contact pad to the designated pins of the CPGA. Finally, the underlying

sacrificial oxide layer is to be removed by vapor hydrogen fluoride etch to release each

individual photonic crystal membrane 3.

5.2.2 Plug-and-play strategy for large-scale electrical char-

acterization in a vacuum environment

On the hardware level, we envision an electrical platform that admits a plug-and-

play solution for quick turn-over of samples. However, the involvement of more than

50 electrical connections poses some challenges to finding the appropriate vacuum

components. Having access to a flange with two 50-pin sub-D electrical feedthrough,

we use a vacuum-compatible teflon ribbon cable 4, connected to two 25-pin sub-D

connectors on one end to the feedthrough, to facilitate multi-site electrical contacts.

The other end of the ribbon cable is soldered to the designated pins of a fiber-glass

chip carrier 5 for the CPGA (shown in Figure 5.6(d)), which is to be permanently

mounted to the experimental setup.

While the samples and components are ready, electrostatic calibration with these

hardware changes will be underway as soon as the study of the nonlinear mechanics

with optical force is finished.

3As noted in Appendix A, the sample needs to be raised to 35◦C. Thermal conduction through
the much reduced contact area should require the sample to be heated on the etchant platen for a
longer time to ensure minimal water condensation which leads to stiction.

4Accuglass 6-101557: 2 X 25 Way FEP Ribbon Cable with Socket (Female) and DAP D-
Connector on one end and female contacts on the other, 19” Long.

5Ironwood Electronics SK-PGA12/108A-01
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Figure 5.6: (a) Layout of 54 devices which can be electrically addressed individually;
(b) Optical micrograph of the fabricated sample. Each aluminum electrode leading
towards the PhC membrane is isolated. (c) Sample wirebonded to a 108-pin CPGA
carrier. (d) A CPGA sample holder soldered to a 50-wire ribbon cable which is to be
connected to an electrical feedthrough.
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6.1 Conclusion

Starting with the ambition of developing an all-integrated optomechanical plat-

form for probing the Casimir force, we developed an asymmetric system of a photonic

crystal membrane coupled to an silicon-on-insulator substrate. With novel stress man-

agement techniques, lithographically defined tunability of optomechanical coupling is

realized and probed with fiber interferometry in vacuum. The optomechanical prop-

erties, including static deformation by the repulsive optical gradient force, optical

spring effect, and dynamic backaction, are fully characterized. Our study reveals the

interplay of the optical gradient force and the photothermal force. Optomechanical

cooling and amplification mediated by the photothermal force are also demonstrated.

The implications of this investigation to the development of a Casimir oscillator are:

1. Displacing the photonic crystal membrane with a repulsive optical force by an am-

plitude of 1nm/mW is possible; 2. probing the Casimir-induced mechanical frequency
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shifts while pumping the membrane to drive it closer to the substrate is susceptible

to large optical spring effect; 3. large-amplitude motion due to self-oscillations may

be exploited for sampling the Casimir nonlinearity.

We explored three different approaches of measuring the Casimir-induced force

gradients, namely multiple-device characterization, piezo-drive and optomechanical

drive. The first approach of measuring the mechanical frequencies for numerous de-

vices with various membrane-substrate separations, though enjoying some initial suc-

cess, is shown to be problematic due to the abnormally large mechanical frequencies

of these suspended membranes.

The second approach involves resonantly driving a photonic crystal membrane

with a piezo-actuator to sample the Casimir nonlinearity. Harmonics of the funda-

mental mechanical mode appear, possibly due to optomechanical readout nonlinear-

ity and/or actual frequency generation mediated by quadratic and cubic nonlinear-

ity. Upon increasing driving strength, the thermal peak moves further away from the

drive signal and eventually a symmetric side peak on the other side of the drive signal

emerges. Finally mechanical mixing mediated by quadratic and cubic nonlinearity

leads to mechanical signatures in the frequency range well below the fundamental

mechanical resonant frequency.

The third approach is to resonantly drive the photonic crystal membrane with

an optical force. A pump-probe system is adopted to separate out nonlinear readout

artifact in the measurements. Optical detuning-dependent mechanical nonlinearity

(blue-detuned softening and red-detuned hardening) can be observed. Further work

is required to understand the origin of optical force nonlinearity and elucidate the
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interplay of such nonlinearity with the Casimir force.’

Finally we reported on the progress of establishing the capability of electrically

addressing photonic crystal membranes in a vacuum environment. The doping level

required for creating ohmic contacts using aluminum as the contact metal is evaluated

using the transmission line method. Photonic crystal membranes with individual,

isolated electrical contacts are fabricated with SOI substrates uniformly doped with

8×1018/cm3. The samples are wirebonded to a CPGA carrier and ready to be released

with vapor hydrogen fluoride etch. A plug-and-play strategy compatible with the

vacuum environment is also developed for interfacing with the wirebonded samples.

6.2 Future outlook

Numerous opportunities arise in the course of developing the Casimir optome-

chanical oscillator. In this section, we consider four areas which are worth exploring,

namely alternate approaches of probing the Casimir force, nonlinear optomechanics,

lateral optomechanical sensing and soft-lithography-enabled hybrid systems.

Alternate approaches of probing the Casimir force

In the piezo-drive experiment, we were not able to demonstrate mechanical bista-

bility and hysteresis due to the multi-resonant features of the piezo-actuator em-

ployed. Recently a piezo-actuator with flat response output well into the MHz range

is available. The ability of demonstrating mechanical nonlinearity (and even mix-

ing) when the membrane is driven by a relatively small amplitude would be a decent

demonstration of a highly nonlinear potential in the system.

137



Chapter 6: Conclusion and future outlook

Another approach is to design a system where the test body for the Casimir

effect is connected to other free-standing structures, which are susceptible to direct

electrostatic actuation. The central test body will then be displaced accordingly

without experiencing the electrostatic spring effect. By probing the mechanical mode

whose motion is largely localized to the test body, an on-chip method of directly

actuating and probing the Casimir effect is proposed.

Nonlinear optomechanics

In Chapter 5, we demonstrate the rich nonlinear mechanical features present in

our current coupled PhC membranes. The full model that explains (i) mechanical

softening nonlinearity on the blue-detuned side of the optical resonance and vice

versa, and (ii) Mollow-triplet-like features due to the non-trivial interactions of a

strong coherent drive and the weak thermal force is yet to be developed.

Lateral optomechanical sensing

As mentioned in Chapter 1, in a system where two identical photonic crystal

membranes are vertically coupled, breaking its lateral symmetry leads to strong op-

tomechanical coupling with a dark mode in the lateral direction [50]. Together with its

strong optomechanical coupling in the vertical direction, a 3D accelerometer may be

enabled through multi-mode interrogation in this system. A simple proof-of-concept

demonstration can be constructed by a doubly clamped photonic crystal membrane

where a comb-drive-like electrostatic actuator can be incorporated to the other two

sides of the membrane for systematic lateral displacement of the membrane. Prelim-

inary RCWA simulations reveal modes with such lateral motion sensitivity.
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Soft-lithography-enabled hybrid system

We demonstrated that free-standing photonic crystal membranes could be peeled

off using PDMS films. The yield of membrane transfer to PDMS is close to 90%. We

have also demonstrated transfer of these photonic crystal membranes to a thermally

oxidized SOI substrate by creating surface bonds with oxygen plasma. This simple

transfer technique of soft-lithography grants much flexibility in creating hybrid sys-

tems [53]. One of the ideas is to transfer a highly doped silicon device layer to an

oxidized SOI platform to create an electro-optomechanical system, which combines

the competitive edge of electrostatic actuation and optomechanical readout.

Other partially investigated topics include the prospective of developing an op-

tomechanical cavity with dissipative coupling via optomechanical control in the opti-

cal quality factor of a bonding mode in our asymmetric coupled system [19]. It can be

realized by forming a Fabry-Perot cavity where one reflector is our coupled asymmet-

ric photonic crystal membrane. One may also explore sub-bandgap photodetection

with silicon photonic crystal membranes with modes that have high concentration of

optical energy at the holes’ sidewalls [141].
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Appendix A

Vapor hydrogen fluoride etch

The release of movable parts in MEMS and NEMS structures cannot be per-

formed in a fluid environment without properly introducing anti-stiction schemes to

the devices. For instance, in the case of removing a sacrificial layer of silicon diox-

ide, hydrofluoric acid is often employed. However, once the wet etch is completed,

the capillary force due to the etchant pulls the movable parts to their neighboring

parts, causing stiction. Two typical approaches of successfully releasing MEMS and

NEMS are critical point drying (CPD) and vapor-phase etch. Critical point drying

is performed by first replacing the etchant fluid by isopropanol. Upon immersing the

wet released device into a critical point dryer, carbon dioxide gas is pumped into the

drying chamber. By applying high pressure to the chamber which turns the carbon

dioxide gas into a liquid form at the critical point, the liquid carbon dioxide displaces

the isopropanol layer in between the movable parts. Reducing the pressure then turns

the carbon dioxide back into a gaseous form, which eliminates the threat of stiction

due to the capillary force. For releasing the photonic crystal membranes fabricated
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Appendix A: Vapor hydrogen fluoride etch

on a silicon-on-insulator platform, we employ vapor hydrogen fluoride etch (VHFE)

which has the merit of minimizing handling of hazardous chemicals.

VHFE was considered difficult to control when first explored in our lab. Vaguely

we understood the etching performance was related to the humidity of the environ-

ment and the platens temperature. However, the principles of etching timing and

the evaluation of the complete removal of the sacrificial oxide layer were not well

established until recently. Here we lay out a reliable set of procedures which have

produced numerous properly released structures.

Basic understanding of the chemistry of anhydrous hydrogen fluoride and water

with silicon dioxide helps to understand the rationales of the VHFE procedures we

adopted. A two-reaction mechanism of the VHFE is presented as follows:

SiO2 + 4HF (g) → SiF4 + 2H20

4HF (g) + 2H20 → 2HF−
2 + 2H30

+

SiO2 + 2HF−
2 + 2H30

+ → 4H20 + SiF4(g)

As we see from above, water serves as a catalyst which first ionizes the anhydrous

hydrogen fluoride to form hydrofluoric acid, and is released after silicon dioxide is

etched. In another words, water initiates the VHFE process. However, condensation

of the water by-product on the sample could be detrimental when it exerts a capillary

force on the structure to be released. Hence prior to loading the sample for VHFE,

baking the sample at 180◦C to remove the excess, adsorbed water molecules for at

least 10 minutes is in order. Also, the platen temperature of the VHFE chamber

set at 35◦C or above discourages water condensation/ re-deposition on the sample.

While higher platen temperature is more effective in reducing water condensation,
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Appendix A: Vapor hydrogen fluoride etch

it comes at a cost of lower etch rate. Currently 35◦C is found to be a good trade-

off temperature which gives a reasonable etch rate and keeps water condensation

low. Finally, it may be beneficial to divide a long session of etch into several shorter

sessions: since the reaction produces extra water molecules, re-setting the chambers

humidity by venting the chamber once in a while helps to reduce water condensation.

Bright field image Dark field image

After minutes 
of HFVE

After minutes 
of HFVE

Figure A.1: Bright and dark field optical images of photonic crystal membranes
subjected to vapor hydrogen fluoride etch for TODO minutes. In the bright field
images, the edges of the membrane’s frame look lighter in color than the rest of the
sample surface due to the oxide removal by VHFE. One may see some darker spots
on the membrane indicating the presence of residual oxide left unetched. In the dark
field image, one can see the non-uniformity of the color throughout the membrane.
It is due to the stronger contrast established by increased scattering of the oxide.

Since the SOI samples we work with have thin silicon device layers (≈ 200nm),

it is possible to monitor the etch progress by directly looking at the remaining oxide

underneath the silicon layer in both the bright and dark field modes. In particular

the dark field modes show a contrast in image brightness locally as light becomes
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scattered. For thin silicon layers the visible light can illuminate through them to

reveal the residual oxide left. See Figure A.1 for details. Another useful indicator of

the oxide removal is by observing the release of cantilevers and doubly clamped beams.

In our double-silicon SOI platform, structures are subjected to in-plane compressive

stress and large turning moment due to a gradient layer of oxide left underneath the

released structures.

Procedures of vapor hydrogen fluoride etch:

1. Bake the sample at 180◦C for at least 10 minutes.

2. Condition the VHFE chamber for around 10 minutes until the desired temper-

ature increase of the platen is reached.

3. Load in a dummy sample to etch for 3 minutes to monitor the etch rate which

might vary due to environmental variations. Carefully observe the color change

in areas where oxide is prone to HF attacks in an optical microscope both in

the bright and dark field.

4. The release of the cantilever and double-clamped beams is also a good indicator

of the etch progress.

5. Note the total time needed for (almost) fully releasing the photonic crystal

membrane with all residual oxide etched.

6. Load in the actual sample to etch for 2 minutes. Monitor the etch rate by

monitoring the progress with the bright and dark field of the optical microscope.

It is important to remain patient lest the devices are stuck due to stiction caused

by water condensation.
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