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The perturbation of a gene in an organism’s genome often causes changes in the organism’s
observable properties or phenotypes. It is not obvious a priori whether the simultaneous perturba-
tion of two genes produces a phenotypic change that is easily predictable from the changes caused
by individual perturbations. In fact, this is often not the case: the nonlinearity and interdependence
between genetic variants in determining phenotypes, also known as epistasis, is a prevalent phe-
nomenon in biological systems. This focus issue presents recent developments in the study of
epistasis and genetic interactions, emphasizing the broad implications of this phenomenon in evo-
lutionary biology, functional genomics, and human diseases. © 2010 American Institute of Physics.
�doi:10.1063/1.3456057�

A long-standing question in biology is how the instruc-
tions written in the heritable blueprint of a living system
(its genotype) determine its observable properties (its
phenotype).1,2 The genotype-phenotype mapping is im-
portant for many reasons, from gaining fundamental un-
derstanding of how evolution works,1,3 to uncovering the
molecular mechanisms of genetic disease,4,5 and identify-
ing the “Achilles’ heels” of microbial pathogens.6,7 One
way of probing this mapping is to study how different
versions of the genotype (either naturally occurring or
artificially generated) produce different phenotypes.8,9

This focus issue brings together different viewpoints and
approaches to understanding epistasis,3,10–12 i.e., the non-
linearities often present in the genotype-phenotype
mapping.

To introduce the concept of epistasis, let us start with a
highly oversimplified view where the myriad instructions
written in a genome can be thought of as discrete, binary
units �“genes”�, whose values determine an array of quanti-
tative phenotypic traits. Assume for simplicity that an unper-
turbed organism has all genes set to zero. Single perturbation
experiments may then be performed, switching individual
genes to the value one. In a “first order” approximation of
biology, one may be satisfied with knowing how the pertur-
bation of each gene affects the phenotypes. For example,
imagine that gene A exerts some control over metabolic rate,
such that switching A from zero to one decreases the meta-
bolic rate by 10%. It may be the case that another gene B
influences metabolic rate to the same extent. The first order
approximation might still work if the perturbations of mul-
tiple genes combine according to a simple, general law. For
example, the metabolic rate may be affected additively, so
that simultaneous switching of A or B decreases metabolic
rate by 20%.

Yet, since the early days of genetics, it is known that
living systems can deviate quite dramatically from such a
simple linear behavior. An extreme case is one in which the
effect of a double perturbation is drastically enhanced rela-

tive to the effects of individual perturbations �synergistic ef-
fect�. In the example above, this may mean that the simulta-
neous switching of A and B gives a metabolic rate of zero,
killing the organism. Or conversely, it may be the case that,
even if switching A or B individually causes a 10% reduction
in metabolic rate, the combined effect is still a 10% reduc-
tion. This is often called an antagonistic effect. Both the
synergistic and antagonistic deviations from simple additiv-
ity constitute examples of epistasis between genes A and B.
One can also say that there is an epistatic �or genetic� inter-
action between A and B. Note that two epistatically interact-
ing genes do not necessarily have to interact in a physical
sense. The “interaction” here means a mutual dependence in
determining the phenotypic effects. Taking into account
epistasis may be seen as a “second order” approach to biol-
ogy, one in which effects of pairwise perturbations cannot be
simply inferred from individual perturbations, but have to be
explicitly evaluated.

Simplified descriptions of genotype-phenotype mapping,
such as the one illustrated above, are useful for introducing
the concept of epistasis. However, defining, quantifying, and
understanding epistasis in real biological systems can be
quite a different story, and involves a number of thorny is-
sues. Here we do not aim at a rigorous and comprehensive
review of epistasis, better left for several already existing
books and reviews.10,3,11–17 However, we wish to list some of
the complications that accompany this concept. �i� First one
should remember that, far from the abstraction of binary
switches, epistasis was initially discovered through laborious
genetics experiments, involving actual breeding of animals,
plants, or microbes �see Ref. 10�. �ii� While in the above
example, interactions are defined between genes that are
deliberately perturbed, one should think of epistasis as a per-
vasive phenomenon that occurs between natural variants of
different genes, influencing organismal fitness and evolution-
ary dynamics.18–21 �iii� Moreover, while in abstract terms,
and in some laboratory experiments, it may be feasible to
compare two individuals that truly differ in only one or two
genes, individuals in a real population will generally differ at
a large number of loci in their genomes. In fact, the study of
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epistasis in populations of individuals constitutes almost a
discipline on its own, with a strong statistical flavor, and
major potential population genetics implications.10,11,16 �iv�
In the above example, we have assumed an additive behavior
as the null hypothesis of how two genes would combine in
absence of epistasis. Other null hypotheses �e.g., a multipli-
cative behavior� are widely employed. This is a debated is-
sue, and the subject of active research. Defining and under-
standing the baseline of how one would expect perturbations
to combine is a key aspect of defining deviations from such
null expectation.12 �v� Epistasis is introduced above in the
case where both mutations, as well as their combination,
decrease fitness; this does not have to be the case. More
complex cases of epistasis can be contemplated and ob-
served, such as sign epistasis, where a mutation could in-
crease or decrease fitness based on the underlying genetic
background.22 �vi� Epistasis can occur between any two mu-
tations in a genome, including within a single protein.23,24

Intra-allelic dominance in diploid organisms could be seen as
a special case of epistasis as well. �vii� Finally, although
epistasis is formally defined as a genetic interaction, analo-
gous phenomena occur between pairs of environmental per-
turbations �such as the combined effects of different drugs�
or between genetic and environmental changes �termed
genotype-by-environment interactions or G�E�.25–29

The study of epistasis has been the subject of ongoing
research for more than a hundred years.10 Recently, the ad-
vent of high throughput technologies �such as cheap DNA
sequencing and sophisticated robotics� and the increasing
awareness that epistasis may play a central role in under-
standing and fighting genetic and infectious diseases have
brought this field to the forefront of multidisciplinary bio-
logical research.14,30–38 From a functional genomics perspec-
tive, the study of epistasis is motivated by the intuition that
the lack of independence entailed by an epistatic interaction
conveys useful information about functional relatedness of
the interacting genes. In yeast, this intuition was confirmed
experimentally by high-throughput studies of synthetic le-
thality �an extreme case of epistasis where single genes are
dispensable, while the double deletion is lethal�. Notably, the
availability of high-throughput experimental and computa-
tional technologies makes it possible to explore simulta-
neously several epistatic interactions between individual
genes, giving rise to epistatic interaction networks.

This capacity to efficiently screen phenotypes for thou-
sands of different mutant strains or chemical perturbations
has produced large amounts of genetic interaction data.39 Or-
ganizing these data and interpreting its biological meaning is
a nontrivial task. Two articles in this focus issue address the
problem of how to organize genetic interaction data into bio-
logically meaningful modules. The contribution by Carter
et al.40 highlights the relevance of information theory to
tease out the differences between genetic modules and clas-
sically defined pathways. The work by Guo et al.41 intro-
duces a new recursive maximum-likelihood approach to par-
tition an interaction network into modules, and applies it to a
gene-drug interaction data set. Both papers emphasize that
research beyond classical clustering algorithms is necessary
in order to understand how genetic interactions are orga-
nized, and how to gain novel biological and medical insight
out of them. While experimental efforts are blooming, sev-

eral aspects of epistasis are still beyond experimental reach.
A notable example is the question of whether the second
order biology of pairwise interactions is sufficient to under-
stand the complexity of cellular organization. Genome scale
models of metabolism are a good platform for investigating
computationally large numbers of enzyme perturbations in
search for patterns of epistasis.38 Imielinski and Belta42 in
this issue use genome-scale stoichiometric models to search
for sets �rather than pairs� of synthetic lethal genes in human
metabolism, i.e., sets of genes whose individual effect is neg-
ligible, but which can collectively impair cell growth. By
implementing a search for minimal cut sets, they map alter-
native routes in metabolic networks, with potential applica-
tions in the study of metabolic disease.

In addition to mapping and interpreting cell-scale genetic
interaction networks, it is important to understand how indi-
vidual epistatic links, or overall trends in epistasis between
genes in a system, affect evolutionary adaptation.3,18–23,43–49

The relationship between epistasis and evolution has been
studied in many different contexts, ranging from the adaptive
evolution of viruses to the emergence of recombination and
sexual reproduction, often using formal approaches. Since
evolution cannot foresee the potential synergistic or antago-
nistic effects on one mutation on the background of another,
the interplay between rate of mutations, population param-
eters, and epistasis can dramatically affect evolutionary dy-
namics. A notable, extremely active research area along these
lines is the study of antibiotic resistance of microbes. For
example, it has been recently found that interactions between
drugs may surprisingly reverse the evolution and rise of re-
sistant strains.6

In this issue, Dawid et al.50 explore the connection be-
tween epistasis and ruggedness of the fitness landscape in a
classical bacterial genetic regulatory network system. In ad-
dition to mapping a multipeak fitness landscape based on
mutation data, they identify epistatic effects that may play a
fundamental role in dictating the adaptation dynamics on this
landscape. As addressed by the work by Elena et al.,51 spe-
cific patterns of epistasis can be identified in RNA viruses,
with predictable evolutionary consequences. In particular,
epistasis in RNA viruses seems to be dominated by antago-
nistic effects, possibly leading to an increase in the cost of
mutations �the mutational load�.

A fascinating aspect of recent research on epistasis and
evolution is the possibility to perform long-term evolutionary
adaptation experiments on microbial systems, in order to
study evolutionary dynamics and epistasis under controlled
laboratory settings, and �almost� arbitrarily tailored selection
pressure.52,53 Two examples of this type of experiment are
reported in this issue. The work by Pena et al.54 shows that
the nonlinearity in the function relating enzyme activity to
fitness is sufficient to explain at a population level the dy-
namics of sweeps and clonal interference seen during adap-
tation to a changing environment. From a different perspec-
tive, Ogbunugafor et al.55 describe the concept of
environmental robustness. By evolving viruses under UV
light, they explore the possibility of performing selection for
genetic robustness, with potential important consequences in
the fight against infectious diseases.

In conclusion, the concept of epistasis captures some key
aspects of the nonlinearity of living systems. A combination
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of experimental, computational, and theoretical studies will
continue to uncover fundamental biological principles asso-
ciated with epistasis. This may happen for example through
the search for a modular organization of nonlinearities mea-
sured in high throughput experiments, or through the study
of the interplay between epistasis and evolutionary dynam-
ics. One should keep in mind, though, that in the jungle of
biology idiosyncrasies and details matter, and that beauty,
fundamental understanding, and biomedical applications will
likely be hidden in those details as well.

The authors would like to acknowledge the support from
the National Institutes of Health �Grant No. 1R01
GM078209�. D.S. also acknowledges funding from NIH
Grant No. 1RC2GM092602-01, and NASA �NASA Astrobi-
ology Institute, NNA08CN84A

1D. L. Hartl and A. G. Clark, Principles of Population Genetics, 3rd ed.
�Sinauer Associates, Sunderland, Massachusetts, 1997�.

2R. D. Dowell, O. Ryan, A. Jansen, D. Cheung, S. Agarwala, T. Danford,
D. A. Bernstein, P. A. Rolfe, L. E. Heisler, B. Chin, C. Nislow, G. Giae-
ver, P. C. Phillips, G. R. Fink, D. K. Gifford, and C. Boone, Science 328,
469 �2010�.

3J. B. Wolf, E. D. Brodie III, and M. J. Wade, Epistasis and the Evolution-
ary Process, 1st ed. �Oxford University Press, New York, 2000�.

4R. L. Nagel, C. R. Biol. 328, 606 �2005�.
5S. K. Sieberts and E. E. Schadt, Mamm Genome 18, 389 �2007�.
6R. Chait, A. Craney, and R. Kishony, Nature �London� 446, 668 �2007�.
7R. T. Cirz, J. K. Chin, D. R. Andes, V. de Crécy-Lagard, W. A. Craig, and
F. E. Romesberg, PLoS Biol. 3, e176 �2005�.

8A. M. Dudley, D. M. Janse, A. Tanay, R. Shamir, and G. M. Church, Mol.
Syst. Biol. 1:0001 �2005�.

9I. M. Ehrenreich, N. Torabi, Y. Jia, J. Kent, S. Martis, J. A. Shapiro, D.
Gresham, A. A. Caudy, and L. Kruglyak, Nature �London� 464, 1039
�2010�.

10P. C. Phillips, Nat. Rev. Genet. 9, 855 �2008�.
11H. J. Cordell, Hum. Mol. Genet. 11, 2463 �2002�.
12R. Mani, R. P. St. Onge, J. L. Hartman, G. Giaever, and F. P. Roth, Proc.

Natl. Acad. Sci. U.S.A. 105, 3461 �2008�.
13J. H. Moore and S. M. Williams, Am. J. Hum. Genet. 85, 309 �2009�.
14C. Boone, H. Bussey, and B. J. Andrews, Nat. Rev. Genet. 8, 437 �2007�.
15H. Shao, L. C. Burrage, D. S. Sinasac, A. E. Hill, S. R. Ernest, W.

O’Brien, H. Courtland, K. J. Jepsen, A. Kirby, E. J. Kulbokas, M. J. Daly,
K. W. Broman, E. S. Lander, and J. H. Nadeau, Proc. Natl. Acad. Sci.
U.S.A. 105, 19910 �2008�.

16J. H. Moore and S. M. Williams, BioEssays 27, 637 �2005�.
17J. M. Pérez-Pérez, H. Candela, and J. L. Micol, Trends Genet. 25, 368

�2009�.
18G. Martin, S. F. Elena, and T. Lenormand, Nat. Genet. 39, 555 �2007�.
19A. DeLuna, K. Vetsigian, N. Shoresh, M. Hegreness, M. Colón-González,

S. Chao, and R. Kishony, Nat. Genet. 40, 676 �2008�.
20S. F. Elena and R. E. Lenski, Nature �London� 390, 395 �1997�.
21J. A. G. M. de Visser and S. F. Elena, Nat. Rev. Genet. 8, 139 �2007�.
22D. M. Weinreich, R. A. Watson, and L. Chao, Evolution �Lawrence,

Kans.� 59, 1165 �2005�.
23D. M. Weinreich, N. F. Delaney, M. A. Depristo, and D. L. Hartl, Science

312, 111 �2006�.
24S. Bershtein, M. Segal, R. Bekerman, N. Tokuriki, and D. S. Tawfik,

Nature �London� 444, 929 �2006�.
25P. Yeh, A. I. Tschumi, and R. Kishony, Nat. Genet. 38, 489 �2006�.
26P. Yeh and R. Kishony, Mol. Syst. Biol. 3, 85 �2007�.
27J. Lehár, G. R. Zimmermann, A. S. Krueger, R. A. Molnar, J. T. Ledell, A.

M. Heilbut, G. F. Short, L. C. Giusti, G. P. Nolan, O. A. Magid, M. S. Lee,
A. A. Borisy, B. R. Stockwell, and C. T. Keith, Mol. Syst. Biol. 3, 80
�2007�.

28A. Lopez, A. B. Parsons, C. Nislow, G. Giaever, and C. Boone, Prog.
Drug Res. 66, 237 �2008�.

29M. E. Hillenmeyer, E. Ericson, R. W. Davis, C. Nislow, D. Koller, and G.
Giaever, Genome Biol. 11, R30 �2010�.

30S. L. Ooi, X. Pan, B. D. Peyser, P. Ye, P. B. Meluh, D. S. Yuan, R. A.

Irizarry, J. S. Bader, F. A. Spencer, and J. D. Boeke, Trends Genet. 22, 56
�2006�.

31G. Giaever, A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Véronneau, S.
Dow, A. Lucau-Danila, K. Anderson, B. André, A. P. Arkin, A. Astro-
moff, M. El-Bakkoury, R. Bangham, R. Benito, S. Brachat, S. Campanaro,
M. Curtiss, K. Davis, A. Deutschbauer, K. Entian, P. Flaherty, F. Foury, D.
J. Garfinkel, M. Gerstein, D. Gotte, U. Güldener, J. H. Hegemann, S.
Hempel, Z. Herman, D. F. Jaramillo, D. E. Kelly, S. L. Kelly, P. Kötter, D.
LaBonte, D. C. Lamb, N. Lan, H. Liang, H. Liao, L. Liu, C. Luo, M.
Lussier, R. Mao, P. Menard, S. L. Ooi, J. L. Revuelta, C. J. Roberts, M.
Rose, P. Ross-Macdonald, B. Scherens, G. Schimmack, B. Shafer, D. D.
Shoemaker, S. Sookhai-Mahadeo, R. K. Storms, J. N. Strathern, G. Valle,
M. Voet, G. Volckaert, C. Wang, T. R. Ward, J. Wilhelmy, E. A. Winzeler,
Y. Yang, G. Yen, E. Youngman, K. Yu, H. Bussey, J. D. Boeke, M. Snyder,
P. Philippsen, R. W. Davis, and M. Johnston, Nature �London� 418, 387
�2002�.

32X. Pan, D. S. Yuan, S. Ooi, X. Wang, S. Sookhai-Mahadeo, P. Meluh, and
J. D. Boeke, Methods 41, 206 �2007�.

33D. K. Breslow, D. M. Cameron, S. R. Collins, M. Schuldiner, J. Stewart-
Ornstein, H. W. Newman, S. Braun, H. D. Madhani, N. J. Krogan, and J.
S. Weissman, Nat. Methods 5, 711 �2008�.

34S. R. Collins, M. Schuldiner, N. J. Krogan, and J. S. Weissman, Genome
Biol. 7, R63 �2006�.

35M. Schuldiner, S. R. Collins, N. J. Thompson, V. Denic, A. Bhamidipati,
T. Punna, J. Ihmels, B. Andrews, C. Boone, J. F. Greenblatt, J. S. Weiss-
man, and N. J. Krogan, Cell 123, 507 �2005�.

36A. H. Y. Tong, G. Lesage, G. D. Bader, H. Ding, H. Xu, X. Xin, J. Young,
G. F. Berriz, R. L. Brost, M. Chang, Y. Chen, X. Cheng, G. Chua, H.
Friesen, D. S. Goldberg, J. Haynes, C. Humphries, G. He, S. Hussein, L.
Ke, N. Krogan, Z. Li, J. N. Levinson, H. Lu, P. Ménard, C. Munyana, A.
B. Parsons, O. Ryan, R. Tonikian, T. Roberts, A. Sdicu, J. Shapiro, B.
Sheikh, B. Suter, S. L. Wong, L. V. Zhang, H. Zhu, C. G. Burd, S. Munro,
C. Sander, J. Rine, J. Greenblatt, M. Peter, A. Bretscher, G. Bell, F. P.
Roth, G. W. Brown, B. Andrews, H. Bussey, and C. Boone, Science 303,
808 �2004�.

37M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S.
Sevier, H. Ding, J. L. Y. Koh, K. Toufighi, S. Mostafavi, J. Prinz, R. P. St.
Onge, B. VanderSluis, T. Makhnevych, F. J. Vizeacoumar, S. Alizadeh, S.
Bahr, R. L. Brost, Y. Chen, M. Cokol, R. Deshpande, Z. Li, Z. Lin, W.
Liang, M. Marback, J. Paw, B. San Luis, E. Shuteriqi, A. H. Y. Tong, N.
van Dyk, I. M. Wallace, J. A. Whitney, M. T. Weirauch, G. Zhong, H.
Zhu, W. A. Houry, M. Brudno, S. Ragibizadeh, B. Papp, C. Pál, F. P. Roth,
G. Giaever, C. Nislow, O. G. Troyanskaya, H. Bussey, G. D. Bader, A.
Gingras, Q. D. Morris, P. M. Kim, C. A. Kaiser, C. L. Myers, B. J.
Andrews, and C. Boone, Science 327, 425 �2010�.

38D. Segrè, A. Deluna, G. M. Church, and R. Kishony, Nat. Genet. 37, 77
�2005�.

39J. L. Y. Koh, H. Ding, M. Costanzo, A. Baryshnikova, K. Toufighi, G. D.
Bader, C. L. Myers, B. J. Andrews, and C. Boone, Nucleic Acids Res. 38,
D502 �2010�.

40G. W. Carter, C. G. Rush, F. Uygun, N. A. Sakhanenko, D. J. Galas, and
T. Galitski, Chaos 20, 026102 �2010�.

41J. Guo, D. Tian, B. A. McKinney, and J. L. I. Hartman, Chaos 20, 026103
�2010�.

42M. Imielinski and C. Belta, Chaos 20, 026104 �2010�.
43S. Kryazhimskiy, G. Tkacik, and J. B. Plotkin, Proc. Natl. Acad. Sci.

U.S.A. 106, 18638 �2009�.
44N. Price and I. Shmulevich, Curr. Opin. Biotechnol. 18, 365 �2007�.
45L. Jasnos and R. Korona, Nat. Genet. 39, 550 �2007�.
46T. F. Cooper, S. K. Remold, R. E. Lenski, and D. Schneider, PLoS Genet.

4:e35 �2008�.
47P. Gros, H. Le Nagard, and O. Tenaillon, Genetics 182, 277 �2009�.
48C. Adami, Nat. Rev. Genet. 7, 109 �2006�.
49S. S. Chow, C. O. Wilke, C. Ofria, R. E. Lenski, and C. Adami, Science

305, 84 �2004�.
50A. Dawid, D. Kiviet, M. Kogenaru, and S. Tans, Chaos 20, 026105

�2010�.
51S. F. Elena, R. V. Sole, and J. Sardanyes, Chaos 20, 026106 �2010�.
52H. Chou, J. Berthet, and C. J. Marx, PLoS Genet. 5:e1000652 �2009�.
53J. E. Barrick, D. S. Yu, S. H. Yoon, H. Jeong, T. K. Oh, D. Schneider, R.

E. Lenski, and J. F. Kim, Nature �London� 461, 1243 �2009�.
54M. I. Pena, E. V. Itallie, M. R. Bennett, and Y. Shamoo, Chaos 20, 026107

�2010�.
55C. B. Ogbunugafor, J. B. Pease, and P. E. Turner, Chaos 20, 026108

�2010�.

026101-3 Focus issue: Genetic interactions Chaos 20, 026101 �2010�

Downloaded 16 Jul 2010 to 66.31.20.180. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1126/science.1189015
http://dx.doi.org/10.1016/j.crvi.2005.05.003
http://dx.doi.org/10.1007/s00335-007-9040-6
http://dx.doi.org/10.1038/nature05685
http://dx.doi.org/10.1371/journal.pbio.0030176
http://dx.doi.org/10.1038/msb4100004
http://dx.doi.org/10.1038/msb4100004
http://dx.doi.org/10.1038/nature08923
http://dx.doi.org/10.1038/nrg2452
http://dx.doi.org/10.1093/hmg/11.20.2463
http://dx.doi.org/10.1073/pnas.0712255105
http://dx.doi.org/10.1073/pnas.0712255105
http://dx.doi.org/10.1016/j.ajhg.2009.08.006
http://dx.doi.org/10.1038/nrg2085
http://dx.doi.org/10.1073/pnas.0810388105
http://dx.doi.org/10.1073/pnas.0810388105
http://dx.doi.org/10.1002/bies.20236
http://dx.doi.org/10.1016/j.tig.2009.06.004
http://dx.doi.org/10.1038/ng1998
http://dx.doi.org/10.1038/ng.123
http://dx.doi.org/10.1038/37108
http://dx.doi.org/10.1038/nrg1985
http://dx.doi.org/10.1126/science.1123539
http://dx.doi.org/10.1038/nature05385
http://dx.doi.org/10.1038/ng1755
http://dx.doi.org/10.1038/msb4100133
http://dx.doi.org/10.1038/msb4100116
http://dx.doi.org/10.1186/gb-2010-11-3-r30
http://dx.doi.org/10.1016/j.tig.2005.11.003
http://dx.doi.org/10.1038/nature00935
http://dx.doi.org/10.1016/j.ymeth.2006.07.033
http://dx.doi.org/10.1038/nmeth.1234
http://dx.doi.org/10.1186/gb-2006-7-7-r63
http://dx.doi.org/10.1186/gb-2006-7-7-r63
http://dx.doi.org/10.1016/j.cell.2005.08.031
http://dx.doi.org/10.1126/science.1091317
http://dx.doi.org/10.1126/science.1180823
http://dx.doi.org/10.1093/nar/gkp820
http://dx.doi.org/10.1073/pnas.0905497106
http://dx.doi.org/10.1073/pnas.0905497106
http://dx.doi.org/10.1016/j.copbio.2007.07.009
http://dx.doi.org/10.1038/ng1986
http://dx.doi.org/10.1371/journal.pgen.0040035
http://dx.doi.org/10.1534/genetics.108.099127
http://dx.doi.org/10.1038/nrg1771
http://dx.doi.org/10.1126/science.1096307
http://dx.doi.org/10.1371/journal.pgen.1000652

