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ABSTRACT
A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core
group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate
determined by the properties of the gas at the Bondi radius and the mass of the black hole.
X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster,
indicate a Bondi accretion rate ṀB which roughly matches the total kinetic power of the
jets, suggesting that there is a tight coupling between the jet power and the mass accretion
rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has
some angular momentum, which previous studies have shown could decrease the accretion
rate drastically. We investigate here the possibility that viscosity acts at all radii to transport
angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The
situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends
from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations
in which the gas accretes at just a factor of a few less than ṀB. These solutions assume that
the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the
viscosity parameter is large, α ≥ 0.1, both of which are reasonable for the problem at hand.
The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus,
the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight
feedback to occur. We show that jet powers of a few per cent of ṀBc2 are expected if either a
fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped
by a strong magnetic field pressed against the black hole by the pressure of the accretion flow.
We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that
these as well as magnetohydrodynamic effects may invalidate the model. If the latter comes
to pass, it would imply that the rough agreement between observed jet powers and the Bondi
accretion rate is a coincidence and jet power is determined by factors other than the mass
accretion rate.

Key words: accretion, accretion discs – black hole physics – galaxies: clusters: intracluster
medium – galaxies: jets – galaxies: nuclei – X-rays: galaxies.

1 IN T RO D U C T I O N

The nuclei of massive elliptical galaxies at the centres of cool-
core groups and clusters of galaxies have powerful relativistic jets
which inject energy into the surrounding hot gas. This prevents the
intracluster gas from radiatively cooling and collapsing on to the
galaxy, thus stifling its growth (McNamara & Nulsen 2007, and
references therein). Such feedback is now a common ingredient in
our understanding of the evolution of massive galaxies (Croton et al.
2006; Hopkins et al. 2006).

�E-mail: rnarayan@cfa.harvard.edu (RN); acf@ast.cam.ac.uk (ACF)

The mode of fuelling of the massive black hole at the galaxy nu-
cleus, which energizes the jets, is unclear. Bondi (1952) accretion is
often invoked since the black hole is sitting in the densest part of the
hot cluster (or group) atmosphere. Observations of the gas around
the Bondi radius in M87 indicate that Bondi accretion may indeed
provide a suitable mass supply rate (di Matteo et al. 2003). Others
argue that it cannot provide enough fuel to power more powerful,
distant objects (Rafferty et al. 2006), and that cold gas clouds may
instead be required (Pizzolato & Soker 2005). Regardless, the Bondi
model considers gas with vanishing angular momentum, whereas in
a realistic situation the incoming gas is likely to have non-negligible
rotation. Hence, it is not clear that the Bondi accretion rate ṀB is at
all relevant.

C© 2011 The Authors
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Most nuclei in the centres of cool-core clusters show no sign
of a dense, radiatively efficient accretion disc. Some of the most
powerful ones do not even show any detectable X-ray point source
(Hlavecek-Larrondo & Fabian 2011), which is difficult to explain
in cold-mode accretion. In the case of M87, there is clear evidence
that both the accretion flow and the jets themselves are radiatively
inefficient (di Matteo et al. 2003). This indicates that the flow must
be advection-dominated, i.e. the gravitational energy released in
the flow must be carried into the centre rather than radiated lo-
cally [see Narayan, Mahadevan & Quataert 1998; Kato, Fukue
& Mineshige 2008; Narayan & McClintock 2008 for reviews of
advection-dominated accretion flows (ADAFs)]. A fraction of the
energy must then be efficiently transferred to the jets once the ac-
creting gas reaches the centre.

The above conclusion is supported by a study of eight other
massive nearby elliptical galaxies where the gas properties close
to the Bondi radius can be observed or reasonably extrapolated
(Allen et al. 2006). In all these cases, the Bondi mass accretion
rate ṀB determined at the Bondi radius rB correlates well with the
power of the jets Pj, where the latter is measured from the bubbles
inflated by the jets in the surrounding gas. Writing the jet power as
Pj = ηjṀBc2, the jet production efficiency factor ηj is found to be
about 2 per cent. This is a rather large efficiency and underscores the
need for mass at approximately the Bondi accretion rate reaching
the gravitational radius of the black hole rg. There is little room for
any inefficiency in the transport of mass to the centre, e.g., through
mass loss in outflows along the way.

We are concerned here whether an ADAF can be established in
galactic nuclei and whether the mass accretion rate is comparable to
the Bondi rate. The range of jet power in the systems discussed above
is between 1043 and 1045 erg s−1, so the Eddington ratio (power
emitted to the Eddington limit) is 10−4–10−2 for a black hole of
mass 109 M�, and 10 times less for 1010 M�. This is very much
in the regime where an ADAF is expected (Narayan & Yi 1995b;
Narayan & McClintock 2008). Moreover, as noted by Narayan
& Yi (1994, 1995a) and Fabian & Rees (1995), and confirmed
in more recent investigations (Narayan & McClintock 2008), the
large thermal pressure of an ADAF may be especially good for the
production and collimation of jets. Thus, it is natural to consider an
ADAF-like accretion model for systems with powerful jets.

ADAFs have been well studied since the work of Narayan & Yi
(1994, 1995a,b) and Abramowicz et al. (1995). However, in much
of the previous work, the outer edge of the solution was generally
taken to be either of a self-similar form (e.g. Chen, Abramowicz &
Lasota 1997; Popham & Gammie 1998) or a geometrically thin disc
that evaporates to form the ADAF (e.g. Narayan, Kato & Honma
1997; Manmoto et al. 2000). Neither of these boundary conditions
is relevant for understanding accretion from an external medium.
Since an ADAF is essentially space filling, we expect the accretion
flow to match smoothly on to the external medium without any
shocks or other kinds of discontinuities. We investigate in this paper
exactly how this matching occurs when we have a slowly rotating
external medium (equation 23 gives a quantitative measure of what
we mean by slow rotation).

Previous studies of Bondi-like accretion with angular momen-
tum have generally considered inviscid flows. Proga & Begelman
(2003) carried out two-dimensional axisymmetric simulations and
showed that an equatorial torus forms because of the angular mo-
mentum barrier and that this torus constrains the amount of polar
accretion. Krumholz, McKee & Klein (2005) extended their work
and developed approximate formulae for the mass accretion rate
as a function of the vorticity of the external gas, and Cuadra et al.

(2006) carried out detailed simulations of inviscid accretion on
to Sagittarius A∗ at the Galactic Centre. Recently, Inogamov &
Sunyaev (2010) proposed an accretion model for M87. As in the
other studies cited here, the centrifugal barrier causes the inviscid
accreting gas to form a torus well inside rB. Inogamov & Sunyaev
assume that viscosity then turns on at smaller radii and suggest
that the torus will thus feed a standard thin accretion disc on the
inside, which might evaporate into an ADAF at yet smaller radii.
The presence of the thin disc segment in their model causes the total
inflow time of the gas from the Bondi radius rB to the black hole
gravitational radius rg to be far longer than for a Bondi flow or (as
we shall see) an ADAF. Self-adjustment of the feedback, in which
the jet power responds to conditions (e.g. cooling time) beyond rB,
then becomes very difficult, with large hysteresis expected.

In contrast to the above studies, we are interested in viscous
accretion. The closest paper to our work is Park (2009). For technical
reasons, that work focused on extremely hot external media (Text >

109 K) for which the Bondi radius is much closer to the black hole
than in real systems. We consider more realistic external conditions
(Text ∼ 106−7 K). We also study in more detail the transition from a
Bondi flow to an ADAF as the external rotation is varied.

As in Park (2009), we require the flow to be continuous from
the event horizon of the black hole to beyond the Bondi radius rB.
Such a model ensures that the accretion power is as well coupled
with the conditions in the outer gas as possible, thereby allow-
ing for the most efficient feedback. We, moreover, require that
outflows, and significant radial exchanges of energy within the
ADAF, are suppressed. We postulate that relativistic jets are cre-
ated and mechanically powered very efficiently (but very radia-
tively inefficiently) by the accreting gas close to the black hole,
but how this occurs is beyond the scope of the present work. We
limit ourselves to a more basic question: can an idealized ADAF
transfer a high enough mass accretion rate from beyond rB down
to rg?

2 SP H E R I C A L A DA F M O D E L

2.1 Viscous accretion flow: conservation laws

Since we are primarily interested in slowly rotating, steady, viscous
accretion flows, we assume that the density and pressure of the gas
are distributed spherically at each radius. We also assume that all
quantities are independent of time (steady-state assumption). We
thus focus only on radial variations. Under these assumptions, the
mass accretion rate Ṁ at radius r is given by

Ṁ = −4πr2ρv = constant, (1)

where ρ(r) is the density and v(r) is the radial velocity; the latter
is taken to be negative when gas flows inwards. When considering
accretion flows in which rotational support is important, e.g. geo-
metrically thin discs, or ADAFs with more rotation than we consider
here, the factor 4πr2 in the above relation is replaced by (2πr)(2H ),
where H(r) is the ‘vertical’ scaleheight of the gas at radius r. In the
simpler approximation considered here, we effectively set H = r,
which could be interpreted as a geometrically very thick disc. Ex-
cept for this difference, the equations we consider are identical to
those described in Narayan et al. (1997).

To mock up relativistic gravity in our Newtonian model, we
assume a gravitational potential (Paczyński & Wiita 1980)

φ(r) = − GM

(r − rg)
, rg = 2GM

c2
, (2)

C© 2011 The Authors, MNRAS 415, 3721–3730
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where M is the mass of the central black hole. Correspondingly, the
Keplerian angular frequency �K is given by

�2
K = GM

(r − rg)2r
. (3)

Making the replacement p = ρc2
s , where cs is the (isothermal)

sound speed, we write the steady-state radial momentum equation
as

v
dv

dr
= − (

�2
K − �2

)
r − 1

ρ

d

dr

(
ρc2

s

)
, (4)

where � is the angular velocity of the gas on the equatorial plane.
Our spherical model is most accurate when the centrifugal acceler-
ation on the gas is much weaker than the gravitational acceleration;
this corresponds to the condition �2 � �2

K.
We model viscosity via the standard α-prescription (Shakura &

Sunyaev 1973) in which the kinematic coefficient of viscosity ν is
written as

ν = αcsH = αcsr, (5)

with α taken to be a constant. However, we do not set the shear
stress equal to αp, but use a more physical prescription in which the
stress is proportional to the angular velocity gradient:

shear stress ≡ σrφ = νρr d�/dr. (6)

The angular momentum equation then takes the form (Narayan et al.
1997)

v
d

dr
(�r2) = 1

ρr2

d

dr

(
αρcsr

5 d�

dr

)
, (7)

which on integration gives

d�

dr
= v(�r2 − j )

αr3cs
. (8)

The quantity j is an integration constant with dimensions of specific
angular momentum.

Finally, energy conservation gives

ρv

(γ − 1)

dc2
s

dr
− c2

s v
dρ

dr
= αρcsr

3

(
d�

dr

)2

, (9)

where γ is the adiabatic index of the gas, which is set to 5/3 for all the
numerical models presented here. The left-hand side of equation (9)
represents the Lagrangian time derivative of the entropy of the gas.
This term is usually referred to as the energy advection term. The
term on the right-hand side of the equation describes the heating rate
due to viscous dissipation. In the spirit of a radiatively inefficient
flow (ADAF), we ignore radiative cooling altogether. Thus, we set
advection equal to heating to obtain equation (9).

We should note the following inconsistency in the above equa-
tions.1 While we have included the effect of viscosity through the
shear stress in the angular momentum equation (7), we have ne-
glected corresponding terms in the radial momentum equation (4).
Under the assumptions of our model (pure radial flow, no gradients
in the transverse direction, etc.), the rr component of the stress takes
the form (Landau & Lifshitz 1959)

σrr = −ρc2
s + 4

3
ηρr

d(v/r)

dr
+ ξρ

1

r2

d(r2v)

dr
, (10)

where ξ is the kinematic bulk viscosity. The last term in equation (4)
should thus be written as (1/ρ) d(σ rr)/dr with the above form of σ rr,
not just as −(1/ρ) d(ρc2

s )/dr .

1 We thank the referee for pointing this out to us.

Traditionally, in accretion disc models, the viscous terms in σ rr

are neglected on the grounds that v is much smaller than cs and so
these terms are small compared to the pressure. This is no longer
obvious for the slowly rotating solutions presented here, for which
v is fairly large. Nevertheless, we make this assumption for easy
comparison with previous work. A major goal of the present work is
to study the transition from the rapidly rotating ADAF regime to the
non-rotating Bondi regime. The viscous terms in σ rr survive even
for pure radial flow and ought to be included in a self-consistent
model of spherical inflow. Since these terms are neglected in the
Bondi model, in the same spirit we neglect them in our model as
well. We leave for the future an investigation of the effect of these
terms on both the Bondi solution and our slowly rotating solution.

2.2 The inner supersonic region

The equations in Subsection 2.1 correspond to a viscous rotating
accretion flow. Once the accreting gas passes inside the sonic radius
rs and becomes supersonic, we expect viscosity to be much reduced
and perhaps even to vanish (Narayan 1992; Kato & Inagaki 1994;
Kley & Papaloizou 1997). For this region of the flow, we simplify
the equations by setting α = 0, thus dropping all terms related to
viscosity. From the angular momentum equation (7), we see that
the specific angular momentum is then a constant:

r < rs : �in ≡ �r2 = constant. (11)

Similarly, from the energy equation (9), we see that the entropy of
the gas is constant:

r < rs : sin ≡ c2
s

ρ(γ−1)
= constant. (12)

Finally, by combining the various conservation laws, we can show
that the Bernoulli parameter B of the gas is also constant. This gives
the condition

r < rs : B ≡ v2

2
+ �2

in

2r2
− GM

(r − rg)

+ γ sin

(γ − 1) r2(γ−1) |v|(γ−1)

(
Ṁ

4π

)(γ−1)

= constant.
(13)

Using the final relation, along with the values of the conserved
quantities Ṁ , �in, sin and B, we can solve for the radial velocity v

as a function of r in the supersonic region. This immediately gives
all the other quantities.

2.3 Boundary conditions

Our model accretion flow consists of two regions: a viscous subsonic
region which extends from the sonic radius rs out to some large
outer radius rout and an inviscid supersonic region which extends
from the sonic radius down to the black hole. Finding the solution
in the viscous region requires solving a boundary value problem
involving a number of differential equations.2 Equations (4), (8) and
(9) represent three first-order ordinary differential equations, which
require three boundary conditions. In addition, the constants Ṁ and
j are eigenvalues, which require two more boundary conditions.

2 Once we have the solution in the viscous subsonic region, we can compute
the values of Ṁ , �in, sin andB at rs. We can then directly calculate the solution
in the supersonic region. The latter involves only algebraic equations (see
Subsection 2.2), not differential equations.
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Finally, the location of the sonic radius rs has to be determined as
part of the solution, so this requires yet another boundary condition.
Thus, we need to supply a total of six boundary conditions.

The three differential equations (4), (8) and (9), in combination
with equation (1), can be reduced to the following relation:

(
γ c2

s − v2
) d ln |v|

dr
= (

�2
K − �2

)
r − 2γ c2

s

r
+ (γ − 1)(�r2 − j )2v

αr3cs
,

(14)

which becomes singular when γ c2
s −v2 = 0. The radius at which this

happens is the sonic radius rs, where the flow speed |v| is equal to the
adiabatic sound speed cs

√
γ . In order to have a smooth flow through

rs, the quantity on the right-hand side of equation (14) should vanish.
We thus obtain the following two boundary conditions:

r = rs : γ c2
s − v2 = 0, (15)

r = rs :
(
�2

K − �2
)
rs − 2γ c2

s

rs
+ (γ − 1)

(
�r2

s − j
)2

v

αr3
s cs

= 0.

(16)
Viscous accretion flows have another boundary condition on the

inside, which is usually applied as a no-torque condition at some
radius.3 In the most elaborate version of the theory, one would apply
the no-torque condition at the black hole horizon (r = rg); however,
this tends to make the numerical computations very difficult. It also
introduces some subtlety into the problem since the behaviour of
viscosity in the supersonic plunging region of the flow is poorly
understood (Narayan 1992; Kato & Inagaki 1994). In this paper, we
have assumed for simplicity that viscosity vanishes inside the sonic
radius. One consequence of this approximation is that the specific
angular momentum of the gas �r2 becomes constant in the plunging
region. Motivated by this fact, we set d(�r2)/dr = 0 as a boundary
condition on the viscous solution at r = rs. This ensures a smooth
transition across the sonic radius. Making use of equation (8), the
condition can be written as

r = rs : �r2
s − j = −2αcs�r2

s

v
. (17)

The remaining three boundary conditions are applied at the outer
radius rout of the solution (Yuan 1999). We choose rout to be large
enough that it lies well into the external uniform medium. In analogy
with the Bondi problem, the temperature of the external gas, or
equivalently the sound speed, and the density of the gas provide
two outer boundary conditions:

r = rout : cs = cout, (18)

r = rout : ρ = ρout. (19)

In the numerical solutions presented here, we set cout = 10−3c, which
corresponds to a temperature of 6.5 × 106 K (assuming a mean
molecular weight of 0.6), a reasonable choice for the interstellar
medium at the centre of a galaxy. In the case of the density, we
arbitrarily select ρout = 1. After obtaining the solution, we can
rescale the density profile by a constant factor so as to satisfy the
required value of ρout. This approach is allowed by the fact that the
equations are linear in the density.4

3 This boundary condition is needed only for the more physical viscous
stress prescription (equation 6) used here. If the shear stress is written in the
simpler form αp, there is one fewer differential equation and the additional
boundary condition is not needed (see Narayan et al. 1997 for a discussion).
In fact, since pressure never vanishes in an accretion solution, the αp stress
prescription does not have vanishing stress at any radius.
4 This is true only because we have ignored all cooling terms. If we include
a detailed cooling model, the physics will no longer be linear in ρ.

For the third boundary condition, we fix the angular velocity of
the external gas:

r = rout : � = �out. (20)

However, we note the following complication. Because we are solv-
ing viscous accretion equations with a constant α, the solution natu-
rally tends to a state of rigid rotation on the outside. For radii outside
the Bondi radius,

rB = GM

c2
out

= 1

2

(
c

cout

)2

rg, (21)

the black hole gravity is too weak to influence the dynamics of the
gas – pressure is more important here. As a result, viscosity drives
the gas towards d�/dr = 0. In a real galactic nucleus, this is precisely
the region where the gravitational potential of the galaxy will take
over and the gas will transition to the rotation curve of the galaxy
(see Quataert & Narayan 2000 for a study of Bondi accretion in such
a potential). Since we have not included the galactic contribution to
the potential (2), our equations enforce a rigidly rotating external
medium. The problem with this is that the centrifugal acceleration
�2r increases without bound at large radius, which is unphysical.
To avoid this problem we choose rout to be only a factor of a few
(not more than 10) larger than rB. By making this choice, we ensure
that the centrifugal acceleration does not become too large on the
outside. At the same time, we make sure that rout is large enough for
the solution to asymptote to the conditions in the external medium.

The parameter �out determines whether the external gas is rotat-
ing slowly or rapidly. The boundary between the black hole domi-
nated accretion flow and the external medium is located at r ∼ rB,
and the Keplerian angular velocity �K,B at this radius is given by

�K,B =
(

GM

r3
B

)1/2

= 2

(
c

cout

)−3
c

rg
. (22)

We thus define the following dimensionless rotation parameter R:

R ≡ �out

�K,B
= 1

2
�out

(
c

cout

)3

. (23)

When R � 1, we say that the external medium rotates slowly,
whereas as R approaches unity, the medium rotates rapidly. We are
primarily interested in the slowly rotating case.

If the external medium rotates slowly enough, the gas may be able
to accrete directly into the black hole without any need for viscous
transport of angular momentum. We would then have something
very similar to the Bondi solution. The critical angular momentum
of the external gas at which we expect this transition to take place is
the specific angular momentum of the marginally stable orbit �ms,
which for the potential (2) is

�ms =
√

27

8
crg. (24)

Correspondingly, we can express the angular momentum of the
external gas as the following dimensionless ratio:

L ≡ �out

�ms
= �outr

2
B

�ms
= 0.136 �out

(
c

cout

)4

. (25)

When L 
 1, we expect the flow to be viscously driven and to
resemble an ADAF solution, whereas when L � 1, the flow should
be practically identical to the Bondi solution. These expectations
are borne out by the numerical solutions described in Section 3. For
our choice of cout = 10−3c, L = 1 corresponds to R = 0.0037.
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Figure 1. Representative solutions of the model equations for α = 0.1,
γ = 5/3, cout = 10−3c. The four solutions shown have (�out,R,L, rs) =
(0.624 × 10−9, 0.31, 85, 3.436), (0.851 × 10−10, 0.043, 12, 3.663), (0.132 ×
10−10, 0.0066, 1.8, 142.0) and (0.831 × 10−12, 0.00042, 0.11, 416.7),
respectively. The solid dots indicate the positions of the sonic radii and are
helpful for identifying the solutions. In addition, a few curves are labelled
by their values of L. The vertical dotted lines correspond to the location
of the Bondi radius rB (equation 21), and the sloping dotted line in the top
left-hand panel shows the Keplerian angular frequency �K.

3 N U M E R I C A L R E S U LTS

Since the viscous accretion equations tend to be very stiff, we use a
relaxation method (Press et al. 1992) to solve them.5 Fig. 1 shows
sample solutions corresponding to α = 0.1, γ = 5/3, cout = 10−3c
and ρout = 1 (the value of ρout is arbitrary since we can rescale the
density profile to any external density as needed, Subsection 2.3).
Four solutions are shown, corresponding to L = 85, 12, 1.8 and
0.11, respectively (compare with fig. 1 in Park 2009). Note that
the rotation parameter R is small for all the solutions, so these
truly represent slowly rotating flows. Even the most rapidly rotating
solution (R = 0.31) has a centrifugal support of only 10 per cent
of Keplerian at r = rB.

The solution with L = 0.11 – the lowest curve in the top left-
hand panel of Fig. 1 – is clearly in the Bondi regime since the
gas has negligible outer specific angular momentum relative to �ms.
The sonic radius rs, shown by the black dot, is located at 417rg,
which is almost exactly where a pure non-rotating Bondi flow has
its sonic radius for our choice of (r), cout and γ . The two solu-
tions with L = 85 and 12 (the highest two curves) are definitely
rotation-dominated. The gas in these solutions has too much angular
momentum to permit steady accretion in the absence of viscosity,
so the accretion flow settles down to a viscously driven ADAF so-
lution. Correspondingly, the sonic radius is close to the marginally
stable orbit, rms = 3rg. The solution with L = 1.8 represents a

5 The simpler shooting method is adequate if the outer radius is not too
large, e.g. rout/rg < 103. However, for realistic external media with cout/c ∼
10−3, we need to calculate solutions out to rout/rg > 106. In our experience,
relaxation is the only sure way to obtain such solutions.

Figure 2. Left: shows the location of the sonic radius rs as a function of
the angular momentum parameter L for solutions with α = 0.1, γ = 5/3,
cout = 10−3c. The upper dotted line indicates the sonic radius for a pure
non-rotating Bondi solution, and the lower dotted line shows the radius of
the marginally stable orbit rms. Note the sudden transition from a Bondi-like
flow for L < 1 to a rotation-supported ADAF for L > 2. Right: shows the
corresponding mass accretion rates Ṁ in units of the Bondi accretion rate
ṀB. The mass accretion rate is only a factor of 3 smaller than the Bondi rate
even when L is as large as ∼102.

transition state between the Bondi and ADAF regimes. Its sonic
radius is at an intermediate location, rs = 142rg.

In Fig. 2, the top left-hand panel shows how the sonic radius
moves as we change L. For all values of L < 1, rs is located at the
position one would calculate for the non-rotating Bondi problem
(upper dotted line), while for L greater than a few, rs is close to
rms (lower dotted line). The transition between these two regimes
is quite sudden, with most of the change happening over the range
1.5 < L < 2.

The bottom two panels in Fig. 1 show the profiles of density ρ

and pressure p = ρc2
s for the same four solutions as in the top

left-hand panel. Even though the rotation profiles of these solutions
are very different, and their sonic radii move around considerably,
the profiles of ρ and p are nearly identical. The insensitivity to the
location of rs is at least in part because we selected γ = 5/3, which
is known to be a critical value of the adiabatic index both for the
Bondi problem and for ADAFs. Nevertheless, it is clear that in many
respects an ADAF is very similar to a Bondi flow.

The top right-hand panel in Fig. 1 shows the radial velocity pro-
files of the four solutions. We see that the radial velocity is smaller
for a rotating ADAF (the solutions with L = 85, 12) compared
to a slowly rotating Bondi-like flow (L = 0.11). Since the density
profiles of both kinds of solution are nearly the same, this means
that the mass accretion rates are different. This is illustrated in the
right-hand panel in Fig. 2 (compare with fig. 2 in Park 2009), which
shows that Ṁ decreases as the rotation of the external gas increases.
The effect is quite modest, however – the total range of Ṁ in our
solutions is only a factor of 3, though this is an artefact of our choice
of a relatively large value of α = 0.1.

To illustrate the effect of α, Figs 3 and 4 show results correspond-
ing to L = 13.5 (R = 0.05) and six values of α: 0.316, 0.1, 0.0316,
0.01, 0.00316 and 0.001. The rotation profiles are nearly the same
for different values of α, with only small variations. More interesting
is the behaviour of the sonic radius, which moves in a very system-
atic way as α is varied. For α = 0.316, we find rs = 17.5, which is
well outside the radius of the marginally stable orbit rms = 3rg. With
decreasing α, rs moves in until it is well inside rms. The pattern is
very similar to that seen in the ADAF models described in Narayan
et al. (1997) and noted in many other papers (e.g. discussion of the
slim disc model by Abramowicz et al. 2010).
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Figure 3. Solutions for γ = 5/3, cout = 10−3c, �out = 10−10, R = 0.05,
L = 13.5 and six values of α: 0.316, 0.1, 0.0316, 0.01, 0.00316 and 0.001.
The six solutions have rs = 17.54, 3.656, 2.694, 2.335, 2.174 and 2.114,
respectively. The solid dots indicate the positions of the sonic radii and are
helpful for identifying the solutions. In addition, a few curves are labelled
by their values of α. The vertical dotted lines correspond to the location of
the Bondi radius rB, and the sloping dotted line in the top left-hand panel
shows the Keplerian angular frequency �K.

Figure 4. Left: shows the location of the sonic radius rs as a function of
the viscosity parameter α for the solutions described in Fig. 3. The dotted
line indicates the radius of the marginally stable orbit rms. Large values of
α cause the sonic radius to move outside rms, while small values of α have
the opposite effect. Right: shows the corresponding mass accretion rates Ṁ

in units of the Bondi accretion rate ṀB. Note that Ṁ is a steep function of
α, varying almost linearly. This is expected for an ADAF.

The radial velocities shown in Fig. 3 decrease proportional to α,
and so do the mass accretion rates (Fig. 4, right-hand panel). This
is consistent with the predictions of the analytical ADAF model
described in Narayan & Yi (1994), and is in qualitative agreement
with Park (2009). In particular, we agree with Park’s conclusion
that low angular momentum flows resemble Bondi accretion, and
that their accretion rates approach the Bondi rate ṀB (which is
equal to 3.65 × 108 in our units where rg = c = ρout = 1) as the
external rotation decreases. However, we also see some quantitative
differences. Park suggests on the basis of his numerical solutions
that the accretion rate scales approximately as Ṁ/ṀB ∼ 9α/R
(our parameter R is the same as λ in Park’s notation). We do not

reproduce the scaling with R. For instance, Fig. 2 shows that, at
fixed α = 0.1, Ṁ changes by only a factor of ∼3 as R changes
by nearly a factor of 100. One reason for this difference could
be that we have considered solutions with rB/rg = 105.7, whereas
Park’s solutions are closer to 103. A more thorough exploration
of solutions in the three-dimensional space of α–R–(rB/rg) would
be worthwhile to map out how the accretion rate varies with these
parameters.

The bottom two panels of Fig. 3 show that, with varying α, the
density and pressure are largely independent of α, just as we earlier
found them to be independent of �out. The insensitivity of the central
pressure to any parameter other than the external density ρout and
sound speed cout is a strong result and may have implications for
jets (Section 4).

4 D ISCUSSION

The primary goal of this paper was to estimate the rate at which
mass accretes on to a supermassive black hole from rotating gas in
the nucleus of a galaxy. We find that the answer depends on both the
dimensionless rotation parameter of the gasR (equation 23) and the
viscosity parameter α (equation 5). For fixed α = 0.1, the accretion
rate is within a factor of a few of the Bondi rate for all values of R
(Fig. 2), i.e. for this value of α accretion is nearly as efficient in the
presence of rotation as in its absence (the classic Bondi problem).
Fig. 4 shows the variation of Ṁ for fixed R = 0.05 (a reasonable
value; see Inogamov & Sunyaev 2010) and different values of α.
Here the variation is much larger. The accretion rate is suppressed
by a large factor when α � 1. Hence, the answer to our primary
question depends very much on the value of α.

King, Pringle & Livio (2007) have examined a variety of ob-
servational evidence and conclude that many observed accretion
discs have α ∼ 0.1–0.4. In addition, Sharma et al. (2006) argue that
ADAFs have, if at all, even larger values of α compared to standard
thin discs. Thus, the models with α = 0.316 and 0.1 in Fig. 4 may
be the best match to real radiatively inefficient accretion flows in
galactic nuclei. If so, we can expect viscous accretion via an ADAF
to be quite efficient in galactic nuclei: ṀADAF ∼ (0.3 − 1) × ṀB.

As discussed in Section 1, our picture is that a fraction ηacc of the
accretion energy near the black hole is somehow converted to jet
mechanical energy. If the accretion rate is equal to the Bondi rate,
then observations require about 2 per cent of ṀBc2 to be transferred
to the jet. From the estimates given above, we see that accretion of
rotating gas via an ADAF requires an efficiency of perhaps ηacc ∼
5 per cent. While we do not have a model of how the jet is actually
launched, an efficiency of 5 per cent does not appear implausible.

It should be emphasized that the present study differs from most
previous discussions of this problem in the literature in that we con-
sider a steady viscous flow extending from beyond the Bondi radius
down to the black hole horizon. Viscosity enables our solutions to
overcome the centrifugal barrier and to accrete steadily, just as in
the standard thin accretion disc model (Shakura & Sunyaev 1973;
Frank, King & Raine 2002). In contrast, most other studies of quasi-
spherical accretion with rotation (except Park 2009, see Section 1)
have considered inviscid accretion. Those results depend critically
on the assumption that accretion is arrested once the gas hits the
centrifugal barrier.

From our numerical solutions, we can calculate the time required
for gas to travel from the Bondi radius down to the black hole. For
the two models with α = 0.316 and 0.1 in Fig. 4, the accretion time
tADAF for the ADAF solution is no more than twice as long as the
accretion time tB in the non-rotating Bondi solution. Even for the
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rapidly rotating solution with R = 0.31 in Fig. 2, tADAF is only
∼3tB.6 This is very encouraging. For a turbulent external medium,
we expect the rotation of the external gas near the Bondi radius to
vary on a time-scale of the order of tens of tB (assuming a turbulent
Mach number ∼0.1; Inogamov & Sunyaev 2010). Since our ADAF
solutions have an accretion time much shorter than the turbulence
time, there is no problem setting up the steady-state conditions we
assume. More importantly, the short accretion time guarantees that
any feedback from the ADAF via jets will occur rapidly compared
to the dynamical time of the external medium. Such instantaneous
feedback is generally assumed in most current models of feedback.

While we have focused so far on the accretion flow as the source
of jet power, a popular alternative hypothesis involves the black
hole. Blandford & Znajek (1977) developed a scenario in which the
rotational energy of a spinning black hole is tapped by a magnetic
field and carried away in a magnetized jet. For a magnetic flux B

threading the horizon, Tchekhovskoy, Narayan & McKinney (2010)
give a fairly accurate estimate of the jet power in geometrized units
(GM = c = 1):

Pj = k2
B�2

H, �H = a∗
2rH

, rH = 2M
[
1 + (1 − a∗)2

]1/2
, (26)

where k ≈ 0.05 is a dimensionless number that depends weakly on
the field geometry, a∗ ≡ a/M is the dimensionless spin parameter of
the black hole, and rH and �H are the radius and angular frequency
of the black hole horizon. The magnetic flux is given by B =
4πr2

H|B|H, where |B|H is the field strength at the horizon. Thus,

Pj = 32π3kpmagr
2
Ha2

∗ ≈ 50pmagr
2
Ha2

∗, (27)

where pmag = |B|2H/8π is the magnetic pressure at the horizon.
To maintain a magnetic field on the horizon, it is necessary to keep

the field lines in place by means of an external pressure. We assume
that this pressure is supplied by the accretion flow. Consider first the
Bondi non-rotating solution. In our units (rg = c = ρout = 1), the
thermal pressure of the Bondi solution at r = 2rg is7 ptherm(2rg) =
3.34 × 105, and the ram pressure is pram(2rg) = ρv2 = 6.51 × 106,
giving a total pressure of ptot(2rg) = 6.85 × 106. We assume that
the total pressure is what confines the central field and write the
magnetic pressure at the base of the jet as PB = ηBptot(2rg), where
ηB < 1 is a proportionality constant. We also replace rH by rg in
equation (27), which is an overestimate for a rapidly spinning hole
but is probably a reasonable simplification. We then find

Bondi : Pj ≈ 3.4 × 108ηBa2
∗ ≈ ηBa2

∗ṀBc2. (28)

This interesting result shows that the jet power scales directly with
the Bondi accretion energy rate ṀBc2 and varies strongly with the
spin of the black hole. Our guess is that ηB is probably in the range
0.1–1. Therefore, provided the black hole does not rotate too slowly,
a Bondi flow could easily support the jets seen in observations.

We now compute the central pressures in the ADAF solutions.
The four solutions shown in Fig. 2 have pressures ranging from
ptot(2rg) = 1.49 × 106 for R = 0.31 to ptot(2rg) = 6.84 × 106

for R = 0.00046, while the α = 0.316 and 0.1 solutions in Fig. 4
have ptot(2rg) = 6.27 × 106 and 2.59 × 106, respectively. These
are the solutions most relevant for our problem, and their pressures
are between 20 and 100 per cent of the Bondi pressure. Thus, we

6 For very small values of α, we do we find tADAF 
 tB, e.g. for α = 0.001,
R = 0.05, we obtain tADAF/tB = 156. However, such low values of α seem
unlikely.
7 We cannot use r = rg because our Newtonian potential (2) is singular
there.

obtain the following estimate for the jet power in the presence of an
ADAF:

ADAF : Pj ≈ (0.2 − 1) × ηBa2
∗ṀBc2. (29)

The jet efficiency factor in this model is ηj = (0.2 − 1) × ηB and a
net efficiency of 2 per cent seems quite plausible.

To summarize, in terms of energetics at least, we have two viable
mechanisms to power jets via accretion in galactic nuclei: (i) by
tapping a fraction of the accretion energy and (ii) by confining a
strong magnetic field around a spinning black hole and extracting
energy from the hole. Neither mechanism requires us to postulate
extreme conditions or to stretch parameters. However, all of our
results are based on the simple one-dimensional model described
in Section 2. Unfortunately, there are several important caveats that
need to be discussed.

Narayan & Yi (1994, 1995a) showed that the accreting gas in an
ADAF has a positive Bernoulli parameter B (see equation 13 for the
definition). This means that the gas is gravitationally unbound, and
so these authors suggested that ADAFs would have strong outflows
and jets. The mass conservation equation (1) explicitly ignores such
outflows. How strong the outflows are is difficult to estimate from
first principles, though Blandford & Begelman (1999) suggested
that the effect may be so strong that ṀADAF at the black hole might
be reduced by orders of magnitude.

Numerical hydrodynamic simulations have confirmed that the
mass accretion rate is indeed suppressed (Igumenshchev &
Abramowicz 1999, 2000; Stone, Pringle & Begelman 1999;
Igumenshchev 2000), though there is no consensus on whether
gas truly escapes to infinity, or if the Bernoulli parameter is even
relevant (Abramowicz, Lasota & Igumenshchev 2000). If outflows
are as strong as Blandford & Begelman (1999) suggest, both jet
mechanisms we have discussed here are impossible. One mecha-
nism depends directly on ṀADAF, while the other depends on the
central pressure ptot which is roughly proportional to ṀADAF. If
there are heavy outflows, there is just not enough energy to power
the observed jets.

Fig. 5 shows the variation of B with r for the solutions shown
in Figs 1 and 3. We have normalized B by the local gravitational
potential |(r)| to obtain a dimensionless measure of how unbound
the gas is at each radius. All the solutions start with a large value
of B/|| outside the Bondi radius, but this just means that the gas
out there has a finite thermal energy but very little gravitational
binding energy. As the gas flows in, B hardly changes, while 

increases rapidly in magnitude, so the ratioB/|| decreases rapidly.

Figure 5. Variation with radius of the Bernoulli parameter B (equation 13),
normalized by the gravitational potential, for the four solutions shown in
Fig. 1 (left-hand panel) and the six solutions shown in Fig. 3 (right-hand
panel). The solid dots indicate the positions of the sonic radii. Curves are
labelled by their values of L in the left-hand panel and α in the right-hand
panel.
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In the case of the Bondi-like solution with L = 0.11, the decrease
continues all the way down to the horizon and there is no tendency to
form an outflow. The ADAF solutions, on the other hand, follow the
Bondi solution down to r ∼ 103rg, after which viscous dissipation
causes B/|| to increase up to a maximum value of about 0.1.
We do not know if this value is large enough to strongly suppress
the mass accretion rate on to the black hole. However, since the
Bernoulli parameter is large only over a limited range of radius, it
is conceivable that outflows reduce the mass accretion rate in the
ADAF solutions by no more than a factor of a few, rather than by
orders of magnitude. In this case, both of our jet mechanisms are
likely to survive.

Our model assumes a single point source of gravitation, whereas
a realistic galactic nucleus has significant stellar mass from the in-
ner galaxy and any nuclear star cluster. This will make the outer
gas more gravitationally bound than appears from Fig. 5. Radiative
cooling (which is ignored in our model) can also have an effect. Us-
ing the gas properties at the Bondi radius given in Allen et al. (2006)
for M87 we find that the radiative cooling time is about 2.5 per cent
of the flow time (r/cs). The ratio of these time-scales increases at
smaller radii, making radiative cooling unimportant there. Comp-
ton cooling, however, increases with decreasing radius and may be
important at precisely those inner radii where B shows an increase
in Fig. 5. Thus, the importance of the Bernoulli parameter may be
reduced even further.

Another important effect pointed out by Narayan & Yi (1994) is
that viscous dissipation, coupled with the lack of radiative cooling,
causes the entropy of the gas in an ADAF to increase inwards, mak-
ing the flow convectively unstable by the Schwarzschild criterion.
Convective effects have not been included in the one-dimensional
model we have considered in this paper. Narayan, Igumenshchev
& Abramowicz (2000) and Quataert & Gruzinov (2000) discussed
the physics of convection-dominated accretion flows (CDAFs) and
concluded that such flows would differ enormously from ADAFs.
In particular, if one considers a self-similar model, the density, pres-
sure and mass accretion rate of a CDAF, as measured at the black
hole, are predicted to be a factor of ∼rg/rB ∼ 10−5 (for our models)
times the corresponding values for an ADAF with the same outer
boundary conditions. Even if the real effect is only a small fraction
of this analytical prediction, it would reduce jet power to a level far
below that observed.

Numerical hydrodynamic simulations confirm the presence of
convection in ADAFs (Igumenshchev & Abramowicz 1999, 2000;
Stone et al. 1999; Igumenshchev, Abramowicz & Narayan 2000)
and indicate substantial suppression of the mass accretion rate into
the black hole. This is problematic for jet production. However, the
relative importance of ADAFs versus CDAFs has been debated (e.g.
Igumenshchev & Abramowicz 1999; Abramowicz et al. 2002; Lu,
Li & Gu 2004), and the issue is still unresolved.

A measure of convective instability is the Brunt–Vaisala fre-
quency N which for a spherically symmetric system is given by

N 2 = − 1

ρ

dp

dr

d ln(p1/γ /ρ)

dr
. (30)

A system is convectively unstable if N2 < 0. When this happens, the
quantity |N | ≡ √−N 2 measures the growth rate of the instability.
We imagine that convection is important and takes over the dynam-
ics of the flow only when the growth time-scale of the instability is
shorter than the accretion time tacc ≡ r/|v|, whereas in the opposite
limit, we expect convection to be a minor perturbation. Motivated
by this argument, we show in Fig. 6 the profiles of the dimensionless
quantity −N2t2

acc versus r for a selection of our numerical solutions.

Figure 6. Left: variation with radius of the quantity −N2t2acc, which is a
measure of convective instability, for two of the four solutions shown in
Fig. 1. (The other two are below the bottom of the plot.) The dotted line
indicates our nominal threshold for becoming convection-dominated. The
more rapidly spinning solution (L = 85) goes above the dotted line over a
range of radius, and we expect it to become a CDAF in this zone. The less
rapidly rotating solution (L = 12) lies below the dotted line and probably
will not become a CDAF. Right: corresponding results for the solutions
shown in Fig. 3. The two solutions with α = 0.316 and 0.1 lie below the
dotted line and will not be convection-dominated, while the solutions with
smaller values of α are expected to become CDAFs. Note that none of the
curves in the two panels extends inside the sonic radius. This is because
we have assumed the flow to be inviscid once it becomes supersonic. The
specific entropy is then constant (Subsection 2.2) and N2 = 0.

Most of the solutions of interest to us, viz. those with relatively
large values of α and small rotation parameters R, have −N2t2

acc <

1. Convection is probably unimportant in these cases. The results
shown in the right-hand panel agree with the α trend discussed by
Igumenshchev & Abramowicz (1999) and Lu et al. (2004).

In the discussion so far, we have ignored the effect of
magnetic fields. Magnetohydrodynamic (MHD) simulations of
ADAFs (Hawley, Balbus & Stone 2001; Stone & Pringle 2001;
Igumenshchev & Narayan 2002; Igumenshchev, Narayan &
Abramowicz 2003; Pen, Matzner & Wong 2003; Igumenshchev
2006, 2008; Pang et al. 2010) have not so far exhibited strong un-
bound winds, but they nevertheless have shallow density profiles
and reduced Ṁ . The flows exhibit vigorous turbulence and they
transport energy outwards, just as one expects with a convective
flow. However, whether or not the turbulence can be described as
convection is unclear (Balbus & Hawley 2002; Narayan et al. 2002;
Pen et al. 2003).

From the point of view of our present study, the relevant question
is how much is the mass accretion rate suppressed relative to the
Bondi rate as a result of MHD effects. The best scalings from current
simulations suggest that the accretion rate, and therefore the jet
power, is reduced by at least three orders of magnitude. Moreover, Ṁ
is found to be reduced substantially even in the case of a non-rotating
Bondi flow (Igumenshchev & Narayan 2002; Igumenshchev 2006).
This last result is particularly worrisome in view of the results shown
in Fig. 6. There it appeared that, so long as α is relatively large and
the rotation is small, hydrodynamic convection and the consequent
suppression of Ṁ are not an issue. However, it appears that magnetic
fields completely alter the situation and strongly suppress even
Bondi accretion. This effect needs to be confirmed with further
studies and the physics of the phenomenon needs to be identified.

Apart from convection, thermal conduction might also modify
the dynamics of radiatively inefficient accretion (e.g. Johnson &
Quataert 2007; Sharma, Quataert & Stone 2008; Shcherbakov &
Baganoff 2010). Numerical MHD simulations including conduction
and covering an adequate range of radius are yet to be carried out.
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If any of the effects discussed here succeeds in strongly sup-
pressing the mass accretion rate in quasi-spherical accretion flows,
we would be left with the puzzle of why the observed jet power
Pj in many nearby low-luminosity galactic nuclei tracks the esti-
mated Bondi mass accretion rate ṀB (Section 1): ηj ≡ Pj/ṀBc2 ∼
2 per cent. The observed jets would require a different explanation
that is not related to a hot accretion flow, and the apparent cor-
relation with properties of hot gas at the Bondi radius must be a
coincidence.

A disc of dense cool gas emitting optical lines is often seen in the
nuclei of elliptical galaxies. Macchetto et al. (1997) have studied
the gas distribution in M87 and used the kinematics of the gas to
estimate the mass of the black hole. The result is slightly less than
that now determined from stellar kinematics by Gebhardt & Thomas
(2009). The gas disc has a central hole a few pc in size. Linewidths
are large, possibly indicating the action of non-gravitational forces
in this and other elliptical galaxies (Verdoes-Kleijn, van der Marel
& Noel-Storr 2006). We do not think that small masses of such cool
gas are incompatible with the existence of a giant ADAF.

Finally, we note that estimates showing that Bondi accretion
cannot yield a sufficient mass accretion rate (e.g. Rafferty et al.
2006) are based on the temperature and density values inferred at
radii far outside rB. Small quantities of cooler gas at the centre, say
at 0.7 keV instead of 3 keV, which is in pressure equilibrium with
the surrounding gas would have a correspondingly higher density
and allow a much higher Bondi flow rate (ṀB ∝ T −5/2). Such cool
gas is often observed in nearby clusters where the innermost regions
are spatially resolved. The rate will in practice be even higher than
this simple scaling as the pressure will be higher at the Bondi radius
due to the weight of intervening gas.

5 SU M M A RY

We have shown in this paper that accretion can occur from a hot
atmosphere at close to the Bondi rate, provided the external gas
near the Bondi radius rotates relatively slowly (less than a few tens
of per cent of the Keplerian rate) and the viscosity parameter α is
fairly large (≥0.1). The non-radiative numerical ADAF solutions
computed here may be relevant to the nuclei of massive elliptical
galaxies hosting a central black hole surrounded by a hot gaseous
atmosphere. The mass accretion rate is large enough that it requires
only a small fraction (∼2–5 per cent) of the accretion energy to
power the observed jets in nearby elliptical galaxies. At the same
time, the jets can heat the surrounding gas and prevent the hot
atmosphere from radiatively cooling and collapsing into the centre.
This feedback mechanism could also have an effect on the evolution
of the galaxy itself. These results require that mass outflows (other
than that associated with the jets), convective energy transport and
MHD effects are weaker than usually assumed.
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