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Abstract

We present a novel approach for analyzing biological time-series data using a context-free language (CFL) representation
that allows the extraction and quantification of important features from the time-series. This representation results in
Hierarchically AdaPtive (HAP) analysis, a suite of multiple complementary techniques that enable rapid analysis of data and
does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that
allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive
analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics
and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are
introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently
sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis
generated results in seconds and produced dozens of figures for each participant. The results quantify the observed
qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and
identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to
missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series
data types, including oscillatory and other periodic physiological signals.
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Introduction

Extracting physiologically relevant features and understanding

the control underlying biological time-series data is challenging

due to potential multiple time-scale components, non-linear

relationships among physiological measures, and feed-forward/

feed-back control of the system [1]. Analyzing cortisol pulsatility is

challenging due to multiple endocrine systems each with its own

regulatory mechanisms including circadian modulation and

cortisol feedback on the hypothalamus and pituitary gland, [2–

4]. Additional analysis challenges include hormone assay error,

limitations in hormone sampling rate and individual biological

variations. Pulse identification and physiologically based modeling

techniques have been developed to quantify cortisol pharmacoki-

netic parameters and to test plausible physiological mechanisms

controlling cortisol pulsatility [5–25]. Limitations to these analysis

techniques include the need for the user to choose parameters

before beginning analysis, the presence of simplifying assumptions

that may not be appropriate for the data set (e.g. homogenous

compartments), and the need for different methods for different

hormones. Our proposed novel analysis is presented to overcome

these limitations.

In addition, our method is designed to select and quantify key

qualitative features originally identified during visual inspection of

frequently-sampled cortisol hormone time-series data. These

qualitative features include differences in pulse frequency and

amplitude during sleep and wake, and inter-individual differences

in circadian variation in cortisol pulse amplitude. A motivating

observation was that these qualitative differences could be

explained by the concept of hierarchically organized rises and

falls in the data independent of cause (e.g. sleep-wake state, assay

error and difference in the signal to secrete). The goal was to

develop a technique that required a minimum number of

assumptions and that could be applied across a wide number of

conditions including different populations including both healthy

controls and individuals with altered hormone concentration

profiles.

We present our conceptual framework by applying it to cortisol

time-series data (Figure 1). In this paper, we demonstrate that

HAP analysis of cortisol data (a) identifies salient events in multiple
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time-scales (e.g., pulses in one time-scale and trends in another), (b)

quantifies accumulation and dissipation rates, some of which

correspond to standard pharmacokinetic parameters, and (c)

characterizes a hierarchical organization of the data. Although

HAP is motivated by cortisol concentration profiles, the analysis

structure is general enough to apply to other signals.

Methods

Overview
We propose a context free language (CFL) data representation

[26–28] for curating and analyzing pulsatile biological and non-

biological data. The CFL is a ‘model free’ approach and is used to

identify features in the data series. CFLs are commonly used to

specify the structure of programming languages and for natural

language processing [29–31] (See Text S1 Section A for a brief

introduction, Figure S1 for a CFL example, and Figure S2 for a

CFL string processing example). Our novel CFL framework,

Hierarchically AdaPtive (HAP) analysis, converts the pulsatile

time-series into a symbolic form that allows for quantitative and

qualitative analyses based on novel text-based and graph-based

representations of the time-series. Collectively, the tools and

techniques generate rapid semi-automatic analyses of data.

A CFL-derived algorithm for data processing is defined and

allows for analyses of individual and group data. The CFL is

designed to capture the multi-scale features present in embedded

hormone pulses: one or more secretory episodes are embedded

within a longer time-scale and a larger concentration-scale rise and

fall in hormone concentration values. Our CFL-based framework

is extendable to oscillatory and other periodic biological and non-

Figure 1. Hierarchically embedded cortisol pulses. An example adapted from experimental data (black line) with six major cortisol pulses. For a
Single Pulse Rise (U1) starting at time ,3.5 hours, the single pulse peak is identified with P1 and the starting nadir/valley is identified with a V1.
The pulse rise is defined as the rise in cortisol concentration from the nadir (V1) to peak (P1). The pulse rise time (Uw1) is the time required for the
cortisol concentration levels to rise from a sequence of pulses starting with the local nadir (V1) to the peak (P1). The Hierarchical (multiple) Pulse
Rise (U2) occurs as the change in concentration from the first nadir (V2) to last nadir (P2), which is a local maximum nadir, in the rise portion of this
hierarchically organized segment. The hierarchical pulse rise time (Uw2) is the elapsed time between V2 and P2 of the rising portion. The effect of the
hierarchical pulses between V2 and P2 is an accumulation or increase in cortisol. Similarly, sequences of pulses associated with the dissipation or
decrease in cortisol begin at time ,4.8 hours.
doi:10.1371/journal.pone.0104087.g001
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biological signals and can be used to quantify and understand

underlying mechanisms. The rapid and semi-automatic approach

within HAP analysis is also of general scientific importance due to

the need for analytic tools that can be applied to the increasing size

and number of data sets available.

HAP is presented as suite of integrated tools that characterize

individual and group time-series. It contains more than 20,000

lines of MATLAB code that result in an analysis pipeline. One tool

converts the data into an appropriate MATLAB structure to allow

users to quickly use the other components of HAP. Pulsicons, a

signal text representation, provides a framework for pattern

analysis; the hierarchical aspect of the pulsicons allows identifica-

tion of embedded patterns. Lastly, the analysis pipeline is

developed with modern software techniques that include version-

ing and testing of core routines. For example, core routines are

written as classes. Using classes is an approach to writing software

that allows the core methods to be modified quickly. These

software development techniques are recommended by United

States Department of Health and Human Services for computer

systems used in clinical investigation [32]. Thus, these software

tools are structured to enable extensions to include existing and

new analysis techniques within the analysis pipeline. HAP is also

designed to be complementary to existing data analysis and

modeling techniques. For example, its outputs can be used as input

to other methods.

Analytical Methods –HAP Analysis
HAP analysis (Figure 2) is an analysis framework that includes

theoretical and computational steps. The theoretical steps required

to generate the computational steps are:

Step 1: A CFL is defined to represent pulsatility within a

time-series.

Step 2: A data parser is defined to convert the time-series

into a symbolic representation.

Step 3: A production graph is generated from the

symbolic representation of data.

Step 4: A text representation of the time-series

(pulsicons) is generated from the production graph.

Step 5: Hierarchically organized parameters are com-

puted from traditional equations integrated within the

data parser (Domain Specific Step). Note that this is the

only domain specific step; it will need to be modified for

each type of data.

Details of these methods are described in the Results section

since they are major results of the paper.

Software
HAP Software. HAP analysis was implemented as a collec-

tion of software tools assembled into a computational pipeline.

The components of the pipeline include: (1) a general hormone

database structure for organizing hormone time-series data and

experiment details including experimental protocol, participant

demographics and sleep-wake state, (2) tools for applying HAP to

data stored in the database, (3) tools for visualizing the hormone

data contained in the database, (4) tools for visualizing the results

from the HAP analysis, and (5) tools for creating summaries of

individual and group data results.

The HAP analysis pipeline was written with MATLAB ver. 7.3

and contains 87 MATLAB script files. The Graphical User’s

Interface Development Environment (Guide) toolbox was used to

create an interface for selecting, visualizing, and analyzing the

hormone database structure. The HAP_Analysis program used in

this analysis and the source code can be found at https://github.

com/DennisDean/HapSource/releases. HAP_Analysis is a win-

dows executable and does not require MATLAB to be installed on

the computer. Text S1 contains additional program details and a

summary of figures that can be generated by the program is shown

in Figure S3. A video of the program executing an analysis is

posted on YouTube (http://youtu.be/ggJDK7alI2M).

Cortisol Model Simulation Software. A published mathe-

matical model of cortisol concentration levels [33] was imple-

mented and used to test the HAP implementation. Features of the

mathematical model include randomly sampled interpulse inter-

vals with circadian amplitude modulation. The MATLAB

simulation script and a test program can be found at https://

github.com/DennisDean/BrownCortisolModel. A brief descrip-

tion of the model and software is included in Text S1.

Data
Experimental Data. Fourteen healthy women were studied

in an inpatient protocol [34]. Blood was sampled through an

indwelling intravenous catheter every ten minutes for 24 hours

and later assayed for cortisol. The first eight hours consisted of a

scheduled sleep period and the remaining 16-hour wake period

employed a constant routine protocol during which participants

remained awake in a semi-recumbent position in dim lights and

were given small regularly spaced meals [35–37].

Ethics Statement
All participants gave informed consent, and the experimental

protocol was approved by the Partners Healthcare Institutional

Review Board.

Results

The derivation for steps 1–4 of HAP analysis are presented first,

followed by their application to cortisol data.

Theoretical Results
Context Free Language for Identifying Hierarchically

Organized Pulses (Step 1). The CFL was motivated by the

observation that a rise or fall in the cortisol concentration profile

can be due to an embedded set of pulses. This multi-scale

embedded feature can be represented as a hierarchical structure.

The detailed construction and steps involved in a CFL example of

embedded parentheses is included in Section A of Text S1. The

details of the CFL for HAP are presented here.

Let LC be the set of the CFL that can identify hierarchical rises

and falls in a time-series representing cortisol concentration

measurements. LC is composed of a grammar that can generate

strings to represent any valid cortisol concentration or other

pulsatile time-series; these strings can be transformed into a

computation for recognizing the CFL directly from the pulsatile

time-series.

The CFL grammar that generates these strings in the language

LC is composed of a quadruple, where a quadruple is a set of four

definitions, that includes the alphabet V? (,)f g, the set of

terminals S ? (,)f g , the set of rules

R? S?SS,S? Sð Þ,S? ( ),S?S : Sf g, and the start symbol

S? Sf g. The components of the CFL grammar are shown in

Equations (1)–(4).

V ? ( : )f g ð1Þ

Pulsatile Time-Series Analysis Using a Context Free Language
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S ? ( : )f g ð2Þ

R ?

S ? SS

S ? Sð Þ
S ? ðÞ
S ? S : S

8>>><
>>>:

9>>>=
>>>;

ð3Þ

S ? Sf g ð4Þ

This CFL provides a symbolic and compact representation of

hierarchically organized pulses. Thus, the CFL is a way to

represent pulsatile time-series by discrete sections or tokens, where

each section describes features present in the data as defined in the

language’s alphabet.

Nadir Selection Algorithm Specification (Step 2). CFL
and Nadir Selection Algorithm Relationship. The CFL described

above is a compact representation of pulsatile data and can be

used with time-series. However, direct application is problematic

since it is not possible to deterministically identify the next valid

CFL production when examining a portion of the time-series from

left to right (i.e., earlier to later in time). Additional information is

required to determine the next valid production according to the

theory of computation [26,28]. The nondeterministic nature or

use of a push-down automata (i.e., embedded parentheses example

in Section A of Text S1), which is the usual means of analyzing a

CFL, may require more computational resources than a deter-

ministic algorithm, and therefore computation speed can be slow.

Instead the inherent structure in matched parentheses can be used

to construct an efficient and deterministic algorithm for recogniz-

ing the CFL. For these pulsatile data, a deterministic partitioning

algorithm is used. The idea behind our specific partitioning

algorithm, the Nadir Selection Algorithm, is that processing the

entire time-series simultaneously allows matching pairs of rises,

peaks, and falls in the data to be determined recursively. Thus, the

Nadir Selection Algorithm is a time-series parser for converting

the data into a symbolic representation. In addition, since we

observed that the relationship between time and amplitude of

nadirs in 24 hour cortisol profiles varied substantially by

individuals (details below), we conjectured that this context free

representation of pulsatility could be useful as a non-parametric

Figure 2. Hierarchically AdaPtive (HAP) Analysis Schematic. The figure is divided into 3 sections: Time-series (left panel), Theory – Symbolic
Representation (right panel) and Computational Steps (bottom panel). Solid arrows indicate theoretical steps; dotted lines with numbers indicate
computational steps listed in the bottom panel.
doi:10.1371/journal.pone.0104087.g002
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approach to represent the multi-scale relationship of features (e.g.,

nadirs and peaks) in a pulsatile time-series. Note that an equally

valid algorithm anchored on peaks could have been derived. The

nadirs in the time-series were selected to anchor the partitioning

algorithm since hormone pulse start times are traditionally

associated with nadirs.

Nadir Selection Algorithm. The Nadir Selection Algorithm is

based on a recursive algorithm for identifying and classifying peaks

and troughs within the time-series data. The first step of the

algorithm is to identify local peaks and nadirs. The algorithm is

recursively called with nadirs as input until no rises or falls in the

data are identified (Figure 3). The recursion results are used to

reconstruct the productions (i.e., rises and falls) required to

generate the time-series. Quantitative comparisons identify relative

changes within the time-series within this hierarchy of recursion

results. The quantitative comparisons include expressions for

identifying concentration rises and falls, plateaus, flat regions, and

missing data. The recursive algorithm was designed to exploit

parallelism in the data and results in an efficient method for

processing data [27,38–40].

Let ~YY~ ~TT ,~CC
h i

, where the time-series ~YY is composed of the

time vector ~TT and the concentration vector ~CC. The time vector ~TT
is the set of concentration sampling times t1,t2, . . . ,tNf g, assumed

to be sampled at a constant interval Dtð Þ, and may have missing

data points. Time-based equations are presented in equations (5)

and (6).

~TT~ t1,t2, . . . ,tNf g ð5Þ

V tiz1{tið Þ?L:Dt where L[Z ð6Þ

Let ~CC be the set of hormone concentrations values c1,c2,f
. . . cNg that correspond to the sampling times ~tt as shown in

equation (7).

C~ c1,c2, . . . ,cNf g ð7Þ

A comparator operator Jð Þ which is a function of the

concentration data Cð Þ and a set of comparators Oð Þ is defined

in equations (8) and (9). The comparator is a tuple where each

entry is a member of the set of simple comparators defined as

v,w,~f g. Specific pairs of operators are selected that corre-

spond to visually relevant features of hormone concentration data

relative to the center point, namely nadirs v,vð Þ, peaks w,wð Þ,
rising plateaus w,~ð Þ, descending plateaus v,~ð Þ, and flat

regions ~,~ð Þ. Details regarding the interpretation of the

comparator operators are described in Section B of Text S1
and the comparator operators are summarized in Figure S4.

~JJ Cð Þ?~JJ ci,~ooað Þ?

ciz1oa1
ci

� �
, ciz1oa2

ciz2

� �h i
Vi,1ƒiƒN; Va,oa[O

~OO? ~oo1,~oo2, . . . ,~oo9f g?
v,vð Þ w,wð Þ ~,~ð Þ v,wð Þ w,vð Þ

~,wð Þ ~,vð Þ v,~ð Þ w,~ð Þ

� �

Let ~AA correspond to the features that are identifiable in the data

as shown in equation (10):

A? a1,a2, . . . ,a9f g? P,N,F ,R,D,DF ,RF ,FR,FDf g ð10Þ

where each feature a1 corresponds to the following one of the 9

operators described above.

Let ~AA0 correspond to the features identified in the data by

applying the comparator operator Jð Þ with the set of operators

Oð Þ to the concentration data Cð Þ.
Let ~TT0 and ~CCO correspond respectively to the times and

concentration values of the q features identified in ~AA0. The

features that identified corresponding times and corresponding

concentration values are defined by equations (11)–(13).

~AA0? a01
,a02

, . . . ,a0q

n o
Vi,a0i

[J C,Oð Þ;

Vi,a0i
[ C,Oð Þ; Vi,a0i

[~AA

~TT
O
? t1,t2, . . . ,tq

� �
Vi,ti[T ; tivtiz1 ð12Þ

~CC0? c1,c2, . . . ,cq

� �
Vi,ci[C ð13Þ

A family of recursions is defined by recursing on a subset of the

identified features. A subscripted S is used to designate the selected

features with corresponding times and corresponding concentra-

tion values as shown in equations (14)–(16).

~AA0S
? a0s1

,a0s2
, . . . ,a0sr

n o
Vi,a0si

[~AA ð14Þ

~TT0S
? t1,t2, . . . ,tq

� �
Vi,ti[; tivtiz1 ð15Þ

Figure 3. Qualitative time-series representations for a single participant (ID6). The dotted vertical lines with lower case Roman numerals
represent the same time points in the Time-Series, the Pulsicon, and the Production Graph for participant ID6. Shaded rectangles labeled with
uppercase roman numerals represent the same temporal interval in the Time-Series, the Pulsicon, and the Production Graph. Time-Series: The 24-
hour cortisol time-series. Nadirs identified in each of the four HAP iterations are connected with lines. The terminal HAP nadirs are identified with
black circles. Pulsicon: The pulsicon for the time-series. Production Graph: Each rectangle represents productions: the application of rules defined
in the CFL The five rectangular boxes represent the key features of the time-series. The first two rectangles (Labeled 1 and 2) show that there is a
decreasing portion prior to the main portion of the cortisol time-series with the ‘‘.’’ in rectangle 2 (e.g., before left black circle). The main portion of
the cortisol time-series is represented by the center rectangle (Labeled 3) with the production symbol (S). The production symbol (S) is a variable that
can be replaced with any of the rules defined in the context free language. This section contains a hierarchy of embedded pulses. The last two
rectangles (Labeled 4 and 5) from the production graph show that the cortisol time-series is rising after the main portion (rectangle labeled 3) of the
cortisol time-series (e.g., after right black circle).
doi:10.1371/journal.pone.0104087.g003

(8)

(9)

(11)
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~CC0S
? c1,c2, . . . ,cq

� �
Vi,ci[C ð16Þ

The subset~JJ COS
ð Þ is defined to be the nadirs for the purpose of

partitioning the hormone time-series into distinct pulsatile regions

as described in equation (17).

~JJ C0S

� �
?~JJ ci,~ooað Þ? ciz1oa1

ci

� �
, ciz1oa2

c1z2

� �h i
Vi,

1ƒiƒN; Va,oa[O

Similarly, a partitioning from peak to peak can be defined by

selecting the peak as the subset.

Algorithm Interpretation. The identified nadirs have both a

mathematical and physiological interpretation. At each level of

iteration, two adjacent vertical lines in Figure 3 identify a nadir-

nadir interval with a single intervening peak; these HAP-selected

nadirs identify embedded rising and falling concentration

segments. Mathematically, the same concept is referred to as the

forced state of the system [41]. Nadirs selected at multiple

iterations are identified as fixed points in the sequential dynamical

systems literature [42–44]. The selected nadirs correspond to the

start of an increase in cortisol concentration and are likely to

correspond to the approximate timing of a signal to secrete

cortisol.

Computing Accumulation Rates, Dissipation Rates, and Inter-
nadir Intervals. The extracted hierarchical features provide a

concise definition of pulsatility that can be used to calculate

traditional hormone pharmacokinetic measures. In this section, we

present definitions of accumulation rates, dissipation rates and

inter-nadir intervals derived directly from features extracted from

HAP. These metrics are analogous to secretory rates, clearance

rates, and interpulse intervals, respectively,

The change in cortisol concentration rate DCð Þ over a finite

time interval VtC is equal to the starting concentration level C1ð Þ
plus the cortisol secreted during the interval minus the cortisol

eliminated during the interval. The cortisol generated during the

interval is equal to the secretory rate bIð Þ during secretion

multiplied by the change in time DtSð Þ. Similarly, the cortisol

dissipated is equal to the clearance rate bCð Þ multiplied by the

time cortisol is being cleared from the change in time DtC . This

relationship is shown in equation (18).

DC~C2{C1~b DtSð Þ{b DtCð Þ ð18Þ

For a simple pulse, the duration of secretion is equivalent to the

rise duration while duration of clearance is equivalent to the fall

duration, as in equation (19).

DtS ~tSb
{tSa ~rise duration

DtC ~tCb
{tCa ~fall duration

ð19Þ

tSb
and tSa are the end and start of the rise interval, respectively.

Similarly, tCb
and tCa are the end and start of the fall interval,

respectively. For simplicity, secretion and clearance are assumed to

be temporally distinct.

Figure 4. Accumulation and dissipation rates for a single participant (ID6). (A) Amplitude as a function of the rise or fall duration extracted
from the first iteration of the HAP algorithm for participant ID6. Concentration rises (changes between local nadirs and subsequent local peaks) are
shown with blue circles. Concentration falls (changes between local peaks and subsequent local nadirs) are shown with green triangles. Regression
lines are shown separately for the rises (blue circles) and falls (green triangles). (B) A histogram of the instantaneous accumulation rates ( = rise
amplitude/rise duration) from Panel A. (C) A histogram of the instantaneous dissipation rates ( = fall amplitude/fall duration) from Panel A.
doi:10.1371/journal.pone.0104087.g004

(17)
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Consider a subset of features from ~AAi selected at iteration i

where every entry is a nadir (N), decreasing to flat (DF), or flat to

rising (FR). Then there exists a single peak (P), rising to flat (RF), or

flat to decreasing (FD) within ~AAi that provides sufficient

information to estimate the first order secretory and clearance

rates. For simplicity, consider a subset of features that contains

three entries sequentially consisting of a nadir, peak, and nadir as

shown in equation (20).

~AAiS
~ ai1

,ai2
,ai3

n o
,ai1

[ N,DF ,FRf g,

ai2
[ P,RF ,FDf g,ai3

[ N,DF ,FRf g

If we assume that the effective secretory period corresponds to

the rising portion and the clearance period corresponds to the

descending portion of the interval, then equations (11)–(13), (18),

and (19) can be used to compute the first order secretory rate Sik ,

infusion rate Cik , and inter-nadir interval IPik directly from HAP

outputs as shown in equations (21)–(23).

bIð Þik ~ Cikz1
{Cik

� �.
tikz1

{tik

� �
ð21Þ

bCð Þik ~ Cikz1
{Cikz2

� �.
tikz2

{tikz1

� �
ð22Þ

IPik
~tikz2

{tik
ð23Þ

For the simple example above, there is only one secretory rate,

one clearance rate, and one interpulse interval because there are

no embedded pulses. For a subset of features
~AAiS ~ ai1 ,ai2 , . . . ,aiMf g where each entry Vai[ N,DF ,FRf gð Þ, then

there will be k secretory rates, k clearance rates, and k interpulse

Figure 5. Multi-scale analysis of features identified with HAP from a single participant (ID6). Each analysis iteration for participant ID6 is
shown with a different symbol: 1-circle, 2-square, 3-up triangle, 4-down triangle. The symbol color indicates the timing of the event with the color
code in right-most vertical panel: the sleep episode (blue), the first 8 hours of wake (green), or second 8 hours of wake (white). The dashed lines
connect median value between iterations. (A) Cortisol accumulation rates for nadirs identified at each iteration. Accumulation rates for the first
iteration are analogous to secretory rates. (B) Cortisol dissipation rates for nadirs identified at each iteration. Dissipation rates for the first iteration are
analogous to clearance rates. (C) The nadir intervals identified at each iteration are shown. The event intervals at the first iteration are analogous to
the inter-pulse interval. (D) The relationship between an accumulation rate and the immediately following dissipation rate.
doi:10.1371/journal.pone.0104087.g005

(20)
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intervals where k is equal to the number of local nadirs minus one.

We define the hierarchical secretion rates as accumulation rates,

the hierarchical clearance rates as dissipation rates and hierarchi-

cal interpulse intervals as inter-nadir intervals.

Qualitative Time-Series Representation
The HAP analysis framework includes two visual time-series

representations: production graphs (Step 3) and a text represen-

tation we term pulsicons (Step 4).

Qualitative Features Present in the Production Graph

(Step 3). The CFL production graph is presented as a way to

describe the qualitative features present in a cortisol time-series.

The CFL production graph is a summary of the steps in the

language required to represent the data. The goal of the graph is

to better visualize qualitative features such as the relations of

embedded pulses and could be used to integrate graph-based

analysis algorithms in future analytical work.

The production graph for the example in Figure 3 is organized

in a sequence of 5 rectangles that form a high level description of

the time-series from left to right. Three rectangles - labeled 1, 3,

and 5 in the production graph - contain the productions required

to generate their corresponding pulsicon sections. These three

rectangles are expanded to show the productions required to

produce the pulsicon section that represents this cortisol time-

series. Two rectangles (labeled 2 and 4) identify whether the data

are rising or falling relative to the main section (labeled 3). Both

points in time and temporal intervals are identified to reinforce the

relationship between the time-series, the pulsicon, and the

production graph.

Text Representation of a Single Time-Series (Step

4). HAP analysis generates a pulsicon or text description of the

time-series. A pulsicon is a complete record of rises and falls within

the time-series and can be used to evaluate the relationship among

embedded pulses. Pulsicons are composed of a set of characters

(,), : ,v,wf g. A ‘‘(’’ indicates the start of rise and a ‘‘)’’ indicates

the end of a decreasing pulse. The peak between two nadirs is

identified with a ‘‘:’’. The ‘‘.’’ symbol indicates a decreasing

section of the time-series and the ‘‘,’’ symbol indicates an

increasing section of the time-series. Both ‘‘.’’ and ‘‘,’’ describe

data points at either the start or the end of the time-series. A

pulsicon is generated for each step in the algorithm and at each

hierarchical iteration. The pulsicon generated from the production

graph described above is shown in Figure 3.

The pulsicon text representation of a single pulsatile time-series

is composed of the same alphabet used in the CFL V? (, : ,)f gð Þ
and is generated from the production graphs using standard

production techniques for generating text strings from a graph

representation [26–28]. The pulsicon provides a structure for

Figure 6. Simulated 24-hour cortisol concentration time-series profiles with gamma values from Table 1. Within each panel, the left
figure plots the time and amplitudes of each pulse and the right figure plots the resulting simulated dataset. The gamma value affects the clearance
rate. (A) Gamma = 0.25 (B) Gamma = 0.75 (C) Gamma = 1.0 (D) Gamma = 1.5 (E) Gamma = 2.5, (F) Gamma = 5.0.
doi:10.1371/journal.pone.0104087.g006
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summarizing the quantitative attributes of the time-series in a way

that can be used by automated processing routines. For example,

the pulsicon provides a common interface for automatically

generating summary figures about the specific data set (e.g.,

Figures 4–5). Section D of Text S1 contains (i) an additional

pulsicon example and (ii) an example that demonstrates the

relationship between production graphs and pulsicons (Figure
S5).

Application of HAP analysis to simulated data
HAP Analysis output was tested with a simulated data set for

which the number, timing, and amplitude of pulses were known.

The simulated cortisol test set shown in Figure 6. The interpulse

interval and circadian amplitude variation were sampled randomly

from published distributions with different gamma parameter

values. The amplitudes and simulated secretion times are shown in

Table 1. The gamma parameter is defined as a renewal process

that affects the clearance of the simulated pulse. The MATLAB

script files used to generate the simulated data can be found at

https://github.com/DennisDean/BrownCortisolModel. A brief

description the model and location for the simulation code are

in Section B of Text S1. We used these simulated parameters to

validate both the HAP analysis approach and the program

implementation

HAP_Analysis Verification. HAP analysis converged for

each simulated data set. The program identified rise time and

inter-pulse intervals for 97% percent of the pulses (116 of 120,

Table 1, Figure 7). The pulses missed by the algorithm had

secretion amplitudes of less than 0.27 ug/dL. The amplitude of

the missed pulses was not sufficient to impact the simulated time

series profile. We would not expect HAP to identify these low

amplitude events.

Application of HAP analysis to experimental cortisol data
(Step 5)

Within seconds HAP generated individualized accumulation

and dissipation rates for all participants. Tables 2 and 3 show

results for all participants; single participant results are shown in

Table 4 and Figures 4–5. The Nadir Selection Algorithm

parsed the data for all participants in either 3 or 4 recursive steps

(Table 2). In addition, the software pipeline automatically created

graphs, summary tables, and text descriptions of each cortisol

profile in minutes.

There is a difference in patterns for participant patterns with 3

vs. 4 iterations. Participants with 4 iterations have more pulses that

are embedded (i.e., ( ( ) ) ) while those with 3 iterations have more

simple rises and falls (i.e., ( ) ( ) ( ) ).

As an example, for participant ID6, the Nadir Selection

Algorithm identifies 27 peaks and 28 nadirs from the 145 points

present in the data at the first recursive step. In the second

recursive step, 7 peaks and 7 nadirs were identified. In the third

step of the algorithm, 3 peaks and 3 nadirs were identified. In the

fourth and terminal recursive step, 1 peak and 1 nadir were

identified. (Table 4)

Accumulation and Dissipation Rates. The accumulation

rate and dissipation rates are calculated from the first HAP

iteration (Figure 4) for participant ID6. The median accumula-

tion and dissipation rates across all points are 0.067 and 0.059 mg/

(dL min), respectively for this individual. Fitting a regression line to

the rise points results in a 0.322 mg/(dL min) accumulation rate

Figure 7. HAP analysis of simulated cortisol test set. (A–F) Simulated data generated from the data sets shown in Fig. 4 panels A–F. Simulated
data are identified with blue markers. Peaks identified during the nadir selection algorithm are in red. Nadirs identified at a given recursive step are
joined with a line, where line color represents a different recursive step.
doi:10.1371/journal.pone.0104087.g007

Table 2. Pulsicons for All Participants.

Pulsicon by Iteration Level

ID 1 2 3 4

1 (((()()():())(():()()):(():())(():()()()()())(():()())(():())(():()()()()()))) ((()():()()()()())) (())

2 (((()()():())(()()():()()):(():()()()())(()():()()()()()()())(():()))) ((()():()()())) (())

4 (((():())(()():()()):(()()()()():()())(():()())(():())(():()()())(():()()()))) ((()():()()()()())) (())

5 (((()()()()()():()):(()():()()()()()()())(()()()():()()()())(():()()()()))) ((():()()())) (())

6 (((()()()()()():())(():()()()):(()()()():()()())(():()()()()()()))) ((()():()())) (())

8 (((()():())(()():()):(():()()()()())(():()())(():()()()()()()()())(():()))) ((()():()()()())) (())

11 (((():())(()():()()):(():()()()())(():()()())(()():()()()()()()()()))) ((()():()()())) (())

12 (((():())(()()():()()):(():()()()())(()():()()())(():()()))) ((()():()()())) (())

13 (((()():())(()():())(():()()):(():())(():()())(():()()()()))) ((()()():()()())) (())

3 ((((()():())(()():()())(():()()):(():())):((():()()())(()():()):(():()())))) (((()()():()):(()():()))) ((():())) (())

6 ((((()():()):(():()())(():()())):((():()()):(()()()()()()()()())))) (((():()()):(():()))) ((():())) (())

7 ((((()()()()()():())(():()()):(()():())):((():()()):(():()()()())))) (((()():()):(():()))) ((():())) (())

9 ((((():())(():()):(():()))((():()):(():())):((():()()()()):(():()()())(():())(()():()()()()()())))) (((()():())(():()):(():()()()))) ((()():())) (())

10 ((((():())(()()()():()):(():()())(():())):((()():()):(()():()())(()():())))) (((()():()()):(():()()))) ((():())) (())

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Simpler Time-Series Representation

The table is organized by number of iterations: 3 for 9 participants and 4 for 5 participants. As iteration level increases, the representation appears simpler.
doi:10.1371/journal.pone.0104087.t002
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(R2 = 0.78). Fitting a regression line to the falling points results in a

0.098 mg/(dL min) dissipation rate (R2 = 0.71). . Fitting regression

lines allows computing average accumulation and dissipation rates

for the time-series. The slope of the regression is analogous to

secretion and clearance rates.

Multi-Scale Analysis. Using equations 17–19 the accumu-

lation rate, dissipation rate, and inter-nadir interval at each

iteration for participant ID6 are shown in Figure 5 A–C. At each

iteration, the accumulation and dissipation rates and the point

spread decrease. This decrease in point deviation is due to the

change in time-scale at each iteration. The fastest accumulation

rates occur at the end of scheduled sleep time and many of the

fastest dissipation rates occur during sleep. The dissipation-

accumulation plot (Figure 5D) shows an approximately log-log

relationship between accumulation and dissipation across alliter-

ations. The multi-scale analysis provides a way to assess the effect

of a sequence of pulses on concentration profiles.

Accumulation Rates and Dissipation Rates. The average

accumulation rate for the 14 participants was 0.20 mg/(dL min)

and ranged between 0.07 and 0.33 mg/(dL min) when all the

points from the first iteration are included (Table 3). The R2

value for each participant, as computed during the linear

regression of rises and falls in the data, ranged between 0.14

and 0.86. The average dissipation rate was 0.08 mg/(dL min) and

ranged between 0.05 and 0.10 mg/(dL min); its R2 value ranged

between 0.28 and 0.73. There was a positive correlation between

the accumulation and dissipation rate (Pearson = 0.44).

Multi-Scale Analysis. HAP analyses produces results on at

least two time scales: the pulse scale in the order of minutes and

the ultradian scale (less than 24 hours). For the 9 participants that

converged in 3 iterations, the pulse scale and ultradian scale

components are, 0.67 and 2.67 hours, respectively. In the 5

participants that converged in 4 iterations, HAP computed a pulse

scale and two ultradian scale components corresponding to 0.67,

2.33, and 8.17 hours. We postulate that the participants whose

hormone time series converge in 3 vs. 4 iterations may have

differences in cortisol control. These inter-participant differences

appear at the second iteration index in the pulsicons (Table 2);

pulse clustering (i.e., start of a new pulse before the effects of

previous pulses are completely dissipated) occurs in those who

converge in 4 iterations. Further details of how pulsicons represent

these differences are included in Text S1.

Discussion

HAP analysis demonstrates the applicability of CFLs to

biological time-series data. This CFL for representing pulsatile

time-series is novel and complementary to CFL methods

developed for other fields [45–49]. HAP analysis is an objectively

reproducible time domain method that efficiently characterizes the

visually salient features in the data. Additional advantages are that

HAP requires a minimum set of assumptions and does not require

the user to set analysis parameters such as range or threshold.

HAP analysis partitions the time-series temporally into hierarchi-

cally organized segments that may facilitate insight into the

individual and group nature of pulsatility. The CFL provides a

seamless interface for subsequent multi-scale analysis. HAP is

efficient, providing individualized estimates of parameters in

seconds of computing time. When applied to pulsatile time-series

data, HAP provides quantitative estimates analogous to pharma-

cokinetic parameters and qualitative information through the use

of production graphs and the novel text representation called

pulsicons.

Novel concepts introduced
Language-Based Pulse Analysis Technique and Analysis

Pipeline. The ability to automatically describe pulsatility

formally is a novel HAP analysis feature. This feature facilitates

Table 3. Accumulation and dissipation rates computed from the Level 1 iteration for all participants.

Accumulation Rates Dissipation Rates

Participant Mean (95% Confidence) R2 Mean (95% Confidence) R2

ID mg/(dL N min) mg/(dL N min)

1 0.18 (0.11, 0.26) 0.41 0.06 (0.03, 0.09) 0.28

2 0.15 (0.11, 0.20) 0.58 0.05 (0.03, 0.07) 0.49

3 0.14 (0.06, 0.22) 0.27 0.08 (0.04, 0.12) 0.35

4 0.25 (0.18, 0.32) 0.59 0.10 (0.08, 0.12) 0.64

5 0.24 (0.18, 0.29) 0.74 0.10 (0.06, 0.13) 0.53

6 0.32 (0.25, 0.39) 0.78 0.10 (0.07, 0.12) 0.71

7 0.21 (0.15, 0.27) 0.67 0.08 (0.05, 0.11) 0.56

8 0.13 (0.07, 0.19) 0.43 0.10 (0.08, 0.13) 0.73

9 0.17 (0.15, 0.39) 0.73 0.08 (0.05, 0.11) 0.52

10 0.17 (0.09, 0.26) 0.45 0.07 (0.03, 0.11) 0.39

11 0.27 (0.18, 0.36) 0.54 0.06 (0.03, 0.09) 0.42

12 0.33 (0.27, 0.39) 0.84 0.09 (0.05, 0.19) 0.54

13 0.07 (20.12, 0.15) 0.14 0.05 (0.02, 0.09) 0.34

14 0.11 (0.09, 0.13) 0.86 0.06 (0.03, 0.09) 0.43

mean: 0.20 mg/(dL N min) mean: 0.08 mg/(dL N min)

minimum: 0.07 mg/(dL N min) minimum: 0.05 mg/(dL N min)

maximum: 0.33 mg/(dL N min) maximum: 0.10 mg/(dL N min)

doi:10.1371/journal.pone.0104087.t003
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the development of an analysis pipeline, and it is intrinsically tied

to visualizations. This theoretical framework for HAP is imple-

mented as an extendable analysis pipeline whose design is

motivated by automated methods derived from CFLs and current

hormone analysis programs [15,16] and with the aim of

translating HAP methods into use. Our pipeline provides support

for analyzing data collected in a database, which differs from many

current interfaces that analyze data from one participant at a time

[15,16].

Hierarchically Organized Results. The hierarchically or-

ganized results from HAP analysis motivated a system of

visualizations for summarizing pulsatility present in a time-series.

For example, plots that illustrate the multi-scale nature of

pulsatility (e.g., Figure 5) both provide a way to evaluate how

features and parameters of the system are changing at different

time-scales and provide insight into the number and organization

of pulses. Visualizations for identifying the embedded nature of

cortisol pulsatility (e.g., Figure 3) are another novel application of

CFL production graphs. Pulsicons provide a new tool for

understanding the pulsatility embedded within a hormone time-

series through the ability to view the time-series as a text string.

The pulsicons provide a framework to characterize and to

potentially search time-series; this is a topic for future work.

Linking HAP analysis output to visualizations is designed to

facilitate verifying, validating, and analyzing results and to

empower the user to explore features present in their data. The

interface between generating HAP results and generating graphs is

designed to employ grammar generated visualizations [50], which

will allow for new visualizations to be generated interactively by

the user.

Implications of cortisol pulsatility results
The HAP analysis presented in this paper demonstrates that the

approach can identify known quantitative and qualitative cortisol

pulsatility features [13,51,52]. (i) Mortlola et. al presented pulse

secretion durations and amplitudes from women that are

consistent with analogous values presented in this paper [51]. (ii)

HAP analysis identified the same range of ultradian components of

a 24 hour cortisol time-series as reported in Veldhuis et. al [13]. (ii)

Our result of cortisol concentration levels in healthy participants

rising during sleep, spiking to highest levels upon wake time, and

falling to lowest levels near bedtime or early in the sleep episode is

also consistent with findings from other methods. This quiescent

period is seen in healthy individuals, and its absence is associated

with depression in women [51].These classic features of cortisol

pulsatility can be identified in both the production graph and the

pulsicon representation of the time-series. The quiescent period,

where there are few or no pulses, in the later day is clearly

identified in the production graph representation and the

associated pulsicon (section VI of Figure 3).

Novel HAP Generated Cortisol Findings
The qualitative and quantitative HAP analysis presented in this

paper supports a complex view of cortisol pulsatility. The

production graphs and pulsicons for each individual suggest a

range of patterns in cortisol pulsatility over a 24-hour period that

may reflect individual differences, different physiologic states (e.g.,

sleep or stress), pharmacology and/or response to environmental

exposures. This suggests that methods for analyzing cortisol may

need to adapt to individual differences present in the time-series.

Specific HAP-identified findings are described below.

Expression of an Eight Hour Ultradian Rhythm in a

Subset of Participants. HAP identified an 8-hour periodicity

in the subset of participants that converged in 4 iterations and that

T
a

b
le

4
.

H
ie

ra
rc

h
ic

al
Fe

at
u

re
s

Su
m

m
ar

y
b

y
It

e
ra

ti
o

n
Le

ve
l

fo
r

a
si

n
g

le
p

ar
ti

ci
p

an
t

(I
D

6
).

It
e

ra
ti

o
n

L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

L
e

v
e

l
4

*

M
in

.
M

e
d

ia
n

M
a

x
.

M
in

.
M

e
d

ia
n

M
a

x
.

M
in

.
M

e
d

ia
n

M
a

x
.

M
e

d
ia

n

R
is

e
d

u
ra

ti
o

n
(m

in
u

te
s)

1
0

1
0

4
0

3
0

6
0

1
4

0
9

0
1

6
0

2
1

0
6

2
0

Fa
ll

d
u

ra
ti

o
n

(m
in

u
te

s)
1

0
3

0
1

1
0

4
0

1
3

0
4

0
0

4
1

0
4

2
0

4
3

0
5

2
0

In
te

r-
n

ad
ir

in
te

rv
al

(m
in

u
te

s)
2

0
4

0
1

5
0

9
0

1
8

5
4

3
0

5
2

0
5

7
0

6
2

0
1

1
4

0

R
is

e
am

p
lit

u
d

e
(m

g
/d

l)
0

.0
4

0
.9

3
1

0
.9

8
0

.9
2

4
.6

6
8

.5
7

2
.5

7
5

.9
7

8
.0

4
3

.0
9

Fa
ll

am
p

lit
u

d
e

fa
ll

(m
g

/d
l)

0
.0

1
1

.2
2

1
1

.8
6

0
.1

4
2

.5
8

.5
7

4
.9

6
5

.3
8

5
.8

1
3

.2
4

*L
e

ve
l

4
is

th
e

te
rm

in
al

it
e

ra
ti

o
n

fo
r

p
ar

ti
ci

p
an

t
ID

6
.

Si
n

ce
th

e
re

ar
e

o
n

ly
tw

o
p

o
in

ts
at

th
e

te
rm

in
al

it
e

ra
ti

o
n

,
o

n
ly

th
e

m
e

d
ia

n
(d

e
fi

n
e

d
fo

r
tw

o
p

o
in

ts
as

th
e

av
e

ra
g

e
)

is
sh

o
w

n
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

4
0

8
7

.t
0

0
4

Pulsatile Time-Series Analysis Using a Context Free Language

PLOS ONE | www.plosone.org 14 September 2014 | Volume 9 | Issue 9 | e104087



was not present in the group that converged in 3 iterations. The

approximate 0.7 and 2.5 hour signals were identified in all

participants by HAP; Veldhuis identified similar periodicities in

24-hour cortisol concentration profiles [13]. However, Veldhuis

did not report an 8 hour periodicity (See Multi-scale Analysis
section in Group Results). We conjecture that the inter-

individual difference in ultradian signal could be due to individual

differences in how time-of-day affects the Hypothalamic-Pituitary-

Adrenal (HPA) axis or in the effect of the 8-hour sleep episode on

cortisol pulsatility. Our conjecture that sleep is implicated is

supported by a recent article that reports ultradian components in

rodent sleep [53].Future work including more than 24 hours of

data and more than one sleep episode per person will be needed to

define the characteristics of this finding.
Qualitative Structure of Cortisol. In this paper, we report

an objectively derived qualitative structure of cortisol pulsatility

that is applicable to a range of cortisol profiles and is represented

visually as a production graph and text string. These qualitative

structures are representation patterns of pulsatility. Since patterns

of hormone pulsatility affect responsiveness to the hormone [54–

56], it is important to understand and define the underlying

patterns. We hypothesized that the qualitative structure of cortisol

pulsatility reflects the effect of sleep on cortisol production and is

associated with ultradian signals.

Method Limitations
The formal pulsatility definition in this method requires an

extension to the traditional definitions of pulsatility to include

multiple time-scales and the pharmacokinetic measures of

accumulation, dissipation, and inter-nadir interval. Because the

method does not distinguish between ‘pulse counting’ and noise

within the time-series, the results from the output of the first

iteration may include both pulses and noise. Thus, the results from

the first iteration are individualized lower and upper bound of

values that include noise. Although noise, such as assay noise, may

not be physiologically meaningful, the inclusion of low amplitude

events within the results does have advantages. For example, the

presence of a significant number of low amplitude events may

suggest increased negative feedback, suppression of the firing

signal, or sensitivity changes in the system’s response to input,

either hypothalamic or from the pituitary gland. The large

quantity of low amplitude events within the cortisol data suggests

that noise is an important feature of the system; a challenge is that

noise characteristics may change with time of day or disease state.

Traditional ‘smoothing’ of the data may eliminate or minimize

noise may destroy information required to understand HPA axis

control. So as to better differentiate between assay and system

noise, future versions of HAP could include an assay error term or

other error term suitable for the signal under study.

Future work
Further research is required to link hierarchically organized

segments with mathematical statements of relevant physiology.

Linking HAP to physiological concepts through the use of

observational dynamical models [12,13,24,33,57] and cellular

models could provide an approach to testing relationships between

HAP partitions and mechanisms of HPA control. For example,

observational dynamical models could link ACTH, which

stimulates cortisol release, with cortisol time-series. These models

could be used to estimate higher order pharmacokinetic terms as

well as to test specific hypotheses about different elements within a

hierarchical control system that includes feedback as well as other

elements, such as circadian rhythms or sleep-wake state, that affect

their production. Application of HAP to different physiologic and

pathophysiologic cortisol time-series data, including segments with

and without sleep, will reveal how HAP can be used to

quantitatively and qualitatively explore changes associated with

these conditions [13,58–68].
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