
 

Regression Discontinuity Designs in Epidemiology: Causal
Inference Without Randomized Trials

 

 

(Article begins on next page)

The Harvard community has made this article openly
available.

Please share how this access benefits you. Your story
matters.

Citation Bor, Jacob, Ellen Moscoe, Portia Mutevedzi, Marie-Louise
Newell, and Till Bärnighausen. 2014. “Regression
Discontinuity Designs in Epidemiology: Causal Inference
Without Randomized Trials.” Epidemiology (Cambridge,
Mass.) 25 (5): 729-737. doi:10.1097/EDE.0000000000000138.
http://dx.doi.org/10.1097/EDE.0000000000000138.

Published Version doi:10.1097/EDE.0000000000000138

Accessed February 16, 2015 10:20:25 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12987270

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and
conditions applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-
of-use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28951251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/12987270&title=Regression+Discontinuity+Designs+in+Epidemiology%3A+Causal+Inference+Without+Randomized+Trials
http://dx.doi.org/10.1097/EDE.0000000000000138
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12987270
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Epidemiology  •  Volume 25, Number 5, September 2014	 www.epidem.com  |  729

Original Article

Abstract: When patients receive an intervention based on whether they 
score below or above some threshold value on a continuously measured 
random variable, the intervention will be randomly assigned for patients 
close to the threshold. The regression discontinuity design exploits this 
fact to estimate causal treatment effects. In spite of its recent prolif-
eration in economics, the regression discontinuity design has not been 
widely adopted in epidemiology. We describe regression discontinuity, 
its implementation, and the assumptions required for causal inference. 
We show that regression discontinuity is generalizable to the survival and 
nonlinear models that are mainstays of epidemiologic analysis. We then 
present an application of regression discontinuity to the much-debated 
epidemiologic question of when to start HIV patients on antiretroviral 
therapy. Using data from a large South African cohort (2007–2011), we 
estimate the causal effect of early versus deferred treatment eligibility 
on mortality. Patients whose first CD4 count was just below the 200 
cells/μL CD4 count threshold had a 35% lower hazard of death (hazard 
ratio = 0.65 [95% confidence interval = 0.45–0.94]) than patients pre-
senting with CD4 counts just above the threshold. We close by discuss-
ing the strengths and limitations of regression discontinuity designs for 
epidemiology.

(Epidemiology 2014;25: 729–737)

Causal inference in nonexperimental studies typically 
requires a strong, untestable assumption: that no unobserved 

factors confound the relationship between the exposure and the 
outcome.1 Violations of this assumption will lead to biased esti-
mation of causal effects. The regression discontinuity design is 
one important quasi-experimental study design in which this 
assumption is not required for causal inference. Regression dis-
continuity designs can be implemented when the exposure of 
interest is assigned—at least in part—by the value of a continu-
ously measured random variable and whether that variable lies 
above (or below) some threshold value. Provided that subjects 
cannot precisely manipulate the value of this variable, assign-
ment of the exposure is as good as random for observations close 
to the threshold, and valid causal effects can be identified.2

The regression discontinuity design first appeared in 
the educational psychology literature in 1960,3–5 was further 
developed in the 1970s and 1980s,6,7 and has become well 
established in economics over the last 2 decades.2,8,9 In recent 
years, a number of clinical and population health studies have 
been published in economics journals using regression dis-
continuity designs.10–17 These studies have used regression 
discontinuity to estimate the health effects of clinical care,10,11 
health behaviors,12,13 social determinants,14,15 and environ-
mental exposures16—questions of interest to epidemiologists. 
Yet regression discontinuity has not been widely adopted in 
epidemiology. To date, no empirical regression discontinuity 
studies have been published in leading epidemiology journals, 
and, when economics journals are excluded, just 8 such stud-
ies appear in PubMed.17

This paper serves as an introduction to regression dis-
continuity for application in epidemiology. We describe the 
regression discontinuity approach, the assumptions that enable 
identification of causal effects, and methods of implementa-
tion. To date, regression discontinuity studies have primarily 
used linear regression models for continuous outcomes.2 We 
show that the design is generalizable to binary, count, and 
time-to-event outcomes, and to the models that epidemiolo-
gists commonly use to analyze them. We then present an appli-
cation of regression discontinuity to answer a much-debated 
question: when to start treating HIV patients with antiretrovi-
ral therapy (ART).18 We close by discussing the benefits and 
limitations of regression discontinuity in comparison with 
other study designs and suggest some additional applications.
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REGRESSION DISCONTINUITY DESIGNS: 
THEORY AND PRACTICE

When an exposure or treatment is determined by a thresh-
old rule, the regression discontinuity design can be used to esti-
mate causal effects. Threshold rules are common in medicine. 
Patients are often assigned to a therapeutic regimen if they are 
identified as “high risk” with respect to a continuous biomarker 
such as cholesterol, blood glucose, or birth weight.10 As with 
most measures in nature, the continuous measures that deter-
mine treatment eligibility are subject to random variability due 
to measurement error, sampling variability, and chance factors 
that affect biomarkers such as ambient temperature. Random 
variability implies that patients who score immediately above 
and below the threshold will be similar, in expectation, on all 
observed and unobserved pretreatment characteristics, just as 
in a randomized controlled trial (RCT). Causal effects can be 
estimated by comparing outcomes in these patients. Threshold 
rules also appear in nonclinical settings. Eligibility for a pro-
gram may depend on being born after a certain date,19 residing 
in a sufficiently poor county,14 or on one side of an admin-
istrative boundary.20 Indeed, the assignment variable could be 
any continuous pretreatment measure including the outcome 
variable measured at baseline4 or another measure of risk7,21; 
a baseline covariate that is loosely correlated with the out-
come14,15,19; or even a random number, in which case regres-
sion discontinuity is identical to an RCT.2 In this paper, we use 
as a running example the clinical measurement of CD4 counts 
(cells/μL of blood), which are used to determine eligibility for 
ART. Measured CD4 counts contain substantial random vari-
ability.22,23 For “true” CD4 counts close to the threshold, these 
sources of variability will randomly allocate HIV patients to 
measured CD4 counts above or below the threshold and hence 
to different probabilities of ART initiation.

Causal Inference in Regression Discontinuity 
Designs

We provide a brief introduction to regression disconti-
nuity as a method of causal inference, using the potential-out-
comes framework.24 Detailed discussions have been published 
elsewhere.2,6,8,25 We assume a binary treatment, although results 
can be generalized to continuously valued exposures.14 By 
definition, causal inference requires comparison of outcomes 
for the same patients (or other unit of analysis) in 2 states of 
the world: if treated, Yi ( )1 , and if not treated, Yi ( )0 . Only one 
of these potential outcomes is ever observed: Yi=Yi(1) if Ti=1 
or Yi=Yi(0) if Ti=0, where Ti = { , }0 1  is the treatment indicator, 
as assigned. The challenge faced by nonexperimental studies 
is that if there are unobserved confounders of the relationship 
between Ti and Yi, then the potential outcomes will be correlated 
with treatment assignment and effect estimates will be biased.

Regression discontinuity designs are feasible when the 
probability of treatment assignment changes discontinuously at 
some threshold value, c, of a continuous assignment variable, 

Zi: lim ( | ) lim ( | )Pr Pr
Z c i i Z c i iT Z z T Z z↓ ↑= = ≠ = =1 1 . If the 

probability of treatment assignment changes from 0 to 1 at the 
threshold, then treatment assignment is a deterministic function 
of Zi: T Z ci i= <1[ ], where 1[ ]⋅  is the indicator function; this is 
known as “sharp regression discontinuity (SRD).” When the 
probability of treatment changes at the threshold, but not from 0 
to 1, this is known as “fuzzy regression discontinuity (FRD)”.5,6

The key insight that motivates regression discontinu-
ity is that, in a small neighborhood around c, as that range 
goes toward 0, treatment assignment is ignorable, that is, 
independent of the potential outcomes, just as in randomized 
experiments: limɛ→0Yi(0),Yi(1) ⊥ Ti | c–ɛ < Zi < c + ɛ. This fol-
lows from the 2 identifying assumptions of regression discon-
tinuity: first, that Zi is continuous at c; and second, that the 
relationship between Zi and the potential outcomes Y Yi i( ) ( ),0 1  
is continuous at c. Under these assumptions, the conditional 
distribution f Y Zi i( |( ) )0  is identical as Zi approaches c from 
above and below, and similarly for f Y Zi i( |( ) )1 . Equivalently, 
all potential confounders are balanced in a small area around 
the cutoff. Although continuity at the cutoff may seem like a 
strong assumption, in fact it follows directly if there is ran-
dom noise in Zi (ie, if it is a random variable or if it is mea-
sured with error), and patients are unable to manipulate the 
precise value of Zi.

2,26 If Zi is not measured with error (eg, date 
of birth), if Zi is noncontinuous (eg, ordinal), or if there is a 
phase-in region around the cutoff, then regression discontinu-
ity designs can be implemented under a more stringent but 
often plausible assumption that there are no other reasons for a 
discontinuity in potential outcomes at the threshold other than 
treatment assignment.

Most regression discontinuity applications have been 
concerned with estimating differences in means at the thresh-
old, E Y Z c E Y Z ci i i i[ ] [ ( ) | ]( )1 0| = − = , an average causal effect 
(ACE). If treatment assignment is deterministic (ie, a "sharp" dis-
continuity), then patients are assigned to the treatment with cer-
tainty if they fall below the threshold and to the control condition 
if they fall above the threshold: that is, E Y Z E Y Zi i i i[ ] [ ]( )| |= 1  
when Z ci < , and E Y Z E Y Zi i i i[ ] [ ]( )| |= 0  when Z ci ≥ . Figure 1  
shows the continuous conditional expectation functions for the 
potential outcomes, E Y Zi i[ ]( )0 |  and E Y Zi i[ ]( )1 | . The solid lines 
show the observed data, E Y Zi i[ ]| ; the dotted lines show the 
regions of the potential outcome conditional expectation func-
tions that are not observed. At the threshold, both E Y Zi i[ ]( )1 |  
and E Y Zi i[ ]( )0 |  are identified by limits in the observed data. 
Thus, the sharp regression discontinuity design identifies the 
average causal effect at the threshold:

ACE lim limSRD = = − =↑ ↓{ } { }
[ ] [ ]

z c i i z c i iE Y Z z E Y Z z| | 	 (1)

Often, treatments are not assigned deterministi-
cally but probabilistically (ie, a "fuzzy" discontinuity). This 
would occur if, for example, clinicians prescribed a therapy 
to patients based in part on a threshold rule and in part on 
their clinical judgment. Such is the case with ART for HIV: 
patients are eligible either if their CD4 count falls below a 
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threshold value or if they exhibit clinical symptoms that signal 
the severity of their disease. In the fuzzy regression disconti-
nuity design, Equation 1 is now the intent-to-treat (ITTFRD)  
effect, that is, the effect of the patient presenting just below 
the threshold. ITTFRD measures the effect of treatment eligibil-
ity, as determined by the threshold rule, and is often of inter-
est in its own right. In particular, ITTFRD can be interpreted 
as the effect of raising the threshold on outcomes for the full 
population of patients close to the threshold. In addition, clini-
cians may be interested in the effect of therapy itself on those 
induced to take up the treatment because of the threshold rule 
(so-called compliers). To obtain this complier average causal 
effect (CACEFRD), it is necessary to scale ITTFRD by the dif-
ference in the probability of treatment at the cutoff (ie, the 
Wald instrumental variables estimator, Equation 2). Fuzzy 
regression discontinuity can be thought of as an instrumental-
variables approach, where 1[ | ]Z c Z ci i< →  is the instrument.

CACE
lim lim

limRDD =
= − =↑ ↓

↑

{ } { }

{ }

[ | ] [ | ]

(
z c i i z c i i

z c i

E Y Z z E Y Z z

P T == = − = =↓1 1| ) ( | ){ }Z z P T Z zi z c i ilim
� (2)

When the denominator of Equation 2 is equal to 1, 
we are in the sharp regression discontinuity case, and 
ITT CACE ACEFRD FRD SRD= = ; when it is 0, there is no 
discontinuity, and the causal effect is not identified. In our 
example, CACEFRD measures the casual effect of rapid (vs. 
deferred) ART initiation only for those induced to initiate 
because they had an eligible CD4 count; this effect  may dif-
fer from the (unobserved) treatment effects for patients that 
would have initiated ART regardless of CD4 count, for exam-
ple, because of clinical symptoms (so-called always-takers), 
or patients who would not have initiated ART even if eligi-
ble (so-called never-takers).27 Additionally, identification of 
CACEFRD requires the assumptions of monotonicity (ie, that 
no patients who would have taken up ART if ineligible would 

refuse ART if eligible and vice versa) and of excludability 
(ie, that Z ci <  may affect Yi only through Ti). ITT effects have 
been popular in epidemiology because they do not require 
these assumptions.28

In both sharp regression discontinuity and fuzzy regres-
sion discontinuity designs, causal treatment effects are iden-
tified at the threshold. If treatment effects are constant or 
independent of Zi, then ITTFRD (and equivalently ACESRD) is 
equal to the population average treatment effect identified in 
an RCT. (In fact, an RCT can be thought of as a disconti-
nuity design in which Zi is a random number.) If treatment 
effects are heterogeneous in Zi (ie, E[Yi(0) | Zi] and E[Yi(1) 
| Zi] are not parallel, as in Figure 1), then the regression dis-
continuity estimand should be interpreted as a local treatment 
effect at Z ci = . This local effect is more generalizable than 
it may first appear. Due to random noise in measurements of 
Zi, observations with Z ci =  are drawn from a distribution of 
true Zi

*. Thus, treatment effects identified at a single value 
of the measured Zi can be thought of as a weighted average 
across a wider range of true Zi

*, with the weights proportional 
to Pr( | )*Z c Z zi i= = . Furthermore, even if effects are hetero-
geneous across the full range of Zi, they may be approximately 
constant (on the appropriate scale) for a wide range of values 
around the threshold; the assumption of constant proportional 
or additive effects is often invoked in epidemiologic studies 
(e.g. nonsaturated regression models). The presence of effect 
heterogeneity close to the threshold can be tested by assess-
ing whether the slope of E Y Zi i[ | ] changes at c. We caution, 
however, that local effects may not be generalizable to popu-
lations far from the threshold (eAppendix, http://links.lww.
com/EDE/A808). An alternative to local identification at the 
threshold might be to estimate a global average causal effect 
by extrapolating the conditional expectation functions across 
the entire range of Zi; however, this requires much stronger 
assumptions to identify causal effects—in particular, that the 
functional forms of E Y Zi i[ ]( )1 |  and E Y Zi i[ ]( )0 |  are known 
across the full range of Zi.

6,21,29 Consistent estimation of the 
limits in Equations 1 and 2 does not depend on knowledge of 
the functional form of the conditional expectation functions, 
so long as one is willing to shrink the bandwidth as the sample 
size increases.25

Estimation in Regression Discontinuity Designs
The task for estimation in regression discontinu-

ity designs is to estimate the limits in Equations 1 and 2: 
lim

{ }
[ | ]

z c i iE Y Z z↓ =  and lim
{ }

[ | ]
z c i iE Y Z z↑ = . One approach 

might be to compare means in a range of Zi above and below 
the threshold. However, if the slope of E[Yi | Zi] is non-zero 
on either side of the threshold, then these averages will be 
biased estimates of the true averages at the limit, as Z ci → .  
Estimating local linear (or cubic) regression models sub-
stantially mitigates this problem.30 In practice, ACESRD and 
ITTFRD estimates are typically formed by fitting parametric 
functions of E Y Z Z ci i i[ | , ]≥  and E Y Z Z ci i i[ | , ]<  for a range 

FIGURE 1.  Sharp regression discontinuity design. This figure 
shows the conditional expectation functions for each of the 
potential outcomes E Y Z zi i[ ( ) | ]1 =  and E Y Z zi i[ ( ) | ]0 = . The 
solid lines show the conditional expectation function of the 
observed data, E Y Z zi i[ | ]= .

http://links.lww.com/EDE/A808
http://links.lww.com/EDE/A808
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of data around the threshold and taking the difference in the 
predictions at Z ci = . It is customary to fit models of the form

E Y Z Z c Z c Z c Z ci i i i i i[ | ] ( ) ( ) *= + − + <[ ]+ − <[ ]β β β β0 1 2 31 1  (3)

where β1 is the slope of the line below the threshold, β β1 3+  is 
the slope of the line above the threshold, and β2 is the differ-
ence at the cutoff.8 The interaction term allows for the possibil-
ity that treatment effects are heterogeneous. Unless the correct 
functional forms for E Y Z zi i[ ( ) ]0 | =  and E Y Z zi i[ ( ) ]1 | =  are 
known, the finite sample estimate always runs the risk of 
being biased. However, this problem is considerably reduced 
by estimating the model using a smaller bandwidth (ie, a nar-
rower window of data ( , )c h c h− +  around the cutoff) and 
by assessing the robustness of the results to the inclusion of 
higher order polynomial terms for Zi. CACEFRD is estimated 
by dividing the difference in E Y Zi i|[ ] at the threshold by the 
similarly formed estimate of the difference in E T Zi i[ | ] at the 
threshold.

In regression discontinuity studies, unbiased visual pre-
sentation of the data is essential. In particular, the researcher 
should plot E Y Zi i[ | ] and E T Zi i[ | ] to show the discontinu-
ity in the outcome and in treatment assignment. Research-
ers should also provide visual evidence in support of the key 
identifying assumption (ie, continuity of f Y Z zi i( | )( )0 =  and 
f Y Z zi i( | )( )1 =  in Zi ), which results if there is random noise 
in measurements of Zi. This assumption has two important 
implications that can be tested in the data. The first is that the 
density of the data should be continuous around the thresh-
old; this would be violated if patients (or providers) could pre-
cisely manipulate Zi.

31 The second implication is that baseline 
covariates should be balanced (ie, continuous) at the thresh-
old. As in RCTs, evidence of balance on baseline observables 
provides confidence that patients assigned to treatment and 
control conditions are exchangeable.

Regression Discontinuity with Nonlinear and 
Censored Regression Models

Regression discontinuity studies have typically used 
linear regression models, popular among economists.2,8 There 
are very few examples of regression discontinuity designs 
applied to the binary, count, and survival models most often 
used by epidemiologists.21,32,33

The extension of regression discontinuity to nonlinear 
models is straightforward for ACESRD and ITTFRD. Continu-
ity in the conditional expectation functions, E Y Z zi i[ ]( )0 | =  
and E Y Z zi i[ ]( )1 | = , is sufficient for identification of regres-
sion parameters across the class of generalized linear models, 
which relate the conditional expectation (mean, probability, 
rate) to a linear model via a continuous link function (such 
as the log or logit).34 More generally, continuity in the den-
sity functions f Y Z zi i[ ]( )0 | =  and f Y Z zi i[ ]( )1 | =  implies that 
regression discontinuity can be applied to other estimators 
that do not rely solely on the mean, such as marginal effects 

(risk or rate differences) in multiplicative models and quantile 
regression estimators.35

For applications to survival analysis, Equation 3 can be 
adapted to parametric and semiparametric regression models 
that specify the hazard, cumulative hazard or survivorship as a 
function of the assignment variable and time. A common fea-
ture of time-to-event data is that some durations are censored, 
that is, the failure time exceeds the censoring time Y Ci i> . The 
usual assumption invoked in survival analysis is that the cen-
soring times are noninformative, that is, independent of fail-
ure times. For this to hold in regression discontinuity designs, 
continuity in the distribution of censoring times is required. 
The inability of agents to manipulate the assignment variable 
ensures continuity as long as censoring is not a result of treat-
ment assignment. This exclusion is not so innocuous because 
treatment assignment may influence retention in clinical care 
and hence the availability of follow-up data. However, this 
caution applies to longitudinal data collection in general. 
Validity is enhanced when follow-up data are collected sepa-
rately from routine monitoring of treated patients.

In fuzzy regression discontinuity designs with nonlinear 
models, ITTFRD is often of interest and easily estimated. For 
analysts interested in the effect of the treatment among com-
pliers, rather than the effect of treatment eligibility, CACEFRD 
can be estimated on the risk difference scale using the simple 
Wald estimator evaluated at the threshold. This linear estima-
tor is unbiased for nonlinear models without covariates and is 
identical to the additive structural mean model.36,37 Complier 
causal relative risks (CCRRFRD) can be estimated in multi-
plicative structural mean models.36–39 Instrumental variables 
techniques that account for censoring in survival analysis are 
under development.40 A simple approach is to use predicted 
survival probabilities for the numerator in the Wald estima-
tor40; under some assumptions, predicted hazards could also be 
estimated and plugged in (eAppendix, http://links.lww.com/
EDE/A808). We note that the null hypothesis CACEFRD = 0 
is equivalent to ITTFRD = 0 and the variance of CACEFRD is 
strictly larger than the variance of ITTFRD; if a result is not 
statistically significant in the ITT framework, it will not be 
significant after scaling by take-up.

AN APPLICATION OF THE REGRESSION 
DISCONTINUITY DESIGN: WHEN TO START 

ANTIRETROVIRAL THERAPY FOR HIV
To illustrate the potential for regression discontinuity in 

epidemiology, we present a real-life application to a much-
debated question: when in the course of HIV disease progres-
sion to start life-prolonging ART. We assessed the causal effect 
of early versus delayed ART eligibility on survival using data 
from a large cohort of HIV-infected patients in rural South 
Africa. Our application exploits the threshold rule used to 
determine ART eligibility during the study period 2007–2011.

Our analysis contributes causal evidence to a ques-
tion on which experimental evidence is limited. In an RCT 

http://links.lww.com/EDE/A808
http://links.lww.com/EDE/A808
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in Haiti, Severe et al41 found a 75% reduction in mortality 
among HIV patients who initiated treatment when their CD4 
counts were between 200 and 350 cells/μL, rather than wait-
ing for their CD4 counts to fall below 200 cells/μL. Cohen et 
al42 found a 41% decrease in clinical events among patients 
who began treatment between 350 and 550 cells/μL com-
pared with those who delayed therapy until their CD4 count 
went below 250 cells/μL; however, the study did not have 
sufficient power to detect differences in survival. No RCT 
has evaluated the effect of early versus delayed therapy on 
survival in sub-Saharan Africa where most people receiving 
ART live. Several large clinical cohort studies have reported 
higher mortality for patients who initiated ART at lower CD4 
counts43–47; however, these studies are limited by the poten-
tial for bias due to unobserved confounders that determine 
treatment-seeking behavior and by the exclusion of patients 
who never initiated ART.

CD4 counts at enrollment in care were obtained for all 
patients in the Hlabisa HIV Treatment and Care Programme. 
Dates of ART initiation were obtained for those who initiated 
therapy.48 Patients were eligible for ART if their CD4 count 
was less than 200 cells/μL or if they had stage IV AIDS-
defining illness, as per national guidelines.49 Dates of death 
were obtained from the Africa Centre for Health and Popu-
lation Studies, which maintains a demographic surveillance 
system in the clinical catchment area.50 Survival data were 
linked to clinical records by national ID number, full name, 
age, and sex.51 The study population included all patients who 
had a first CD4 count between 1 January 2007 and 11 August 
2011—regardless of whether they later initiated ART—and 
who were under surveillance at that time. Patients with first 
CD4 counts greater than 350 cells/μL were excluded. Patients 
were followed from the date of their first CD4 count to their 
date of death or the date when their vital status was last 
observed in the population surveillance system. Out of 4391 
patients who sought care, 2874 initiated ART and 820 died 
during 13,139 person-years of follow up. Stata 11 was used 
for all statistical analysis (StataCorp, College Station, TX).

Figure 2 shows the distribution of baseline CD4 counts 
among patients in the study sample. Causal inference would 
be jeopardized if health workers or patients manipulated CD4 
counts, for example, in an effort to access treatment earlier. 
We found no evidence of bunching at the threshold, as would 
result from manipulation. Further analysis revealed balance in 
variables observed at baseline (age and sex) at the cutoff (not 
shown). Figure 3 displays the cumulative probability of ART 
initiation within 3 and 12 months of a patient’s first CD4 count. 
The probability of rapid ART initiation (within 3 months) was 
higher for patients presenting below 200 cells/μL; this discon-
tinuity persisted at 1 year.

We first examined the effect of treatment eligibility (CD4 
< 200 cells/μL) on mortality in an ITT analysis. The Table 
presents the results of hazard regression models, with the log-
hazard replacing E [ | ]Y Zi i  in Equation 3. We present estimates 

limiting the data to several ranges (bandwidths) around the 
cutoff. Smaller bandwidths reduce the potential for bias from 
using a linear function to approximate the relationship between 
first CD4 count and log-mortality rates; however, this reduc-
tion in possible bias is attained at the expense of precision. Fig-
ure 4 displays fitted values from model 2a, superimposed over 
hazards predicted for CD4 count bins of width 10 cells.

In general, mortality was lower for patients presenting with 
higher initial CD4 counts (Table, Figure 4). However, there was 
a discontinuity at 200 cells/μL: patients presenting just below the 
threshold had a 35% lower hazard of death than those present-
ing just above the threshold (ITT HRFRD = 0 65. ; model 2a in 
the Table). This result was robust to varying specifications 
of the hazard function and statistically significant in models 
using wider CD4 count bandwidths. In models with smaller 
bandwidths, the coefficients remained essentially unchanged 
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FIGURE 2.  Distribution of first CD4 counts in the HIV treat-
ment and care program.
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although, as expected, the estimates were less precise. Visual 
inspection of Figure 4 shows no evidence of misspecification. 
The hazard ratios on the interaction terms were close to 1.0, 
suggesting that treatment effects were not heterogeneous close 
to the threshold (Table).

The ITTFRD estimate is arguably the parameter of interest 
from a policy perspective: it is the causal effect of ART eligibility 

for all patients seeking care with CD4 counts close to the thresh-
old. However, clinicians may also be interested in CACEFRD, the 
causal effect of rapid ART initiation on survival among patients 
who initiated based on their CD4 count. To obtain CACEFRD, we 
scaled the difference in mortality hazards at the threshold by the 
difference in the probability of ART initiation within 3 months 
at the threshold. In both cases, we used models with separate lin-
ear terms on either side of the threshold, estimated on the range 
of 50–350 cells. This yielded a causal difference in hazards of 
CACEFRD = =0 010 0 360 0 029. / . .  fewer deaths per person-
year for patients who initiated because they were CD4-count 
eligible, compared with those who were precluded from initiat-
ing because they were ineligible. Mortality hazards for treatment 
and control compliers were calculated to be 0.011 and 0.040, 
respectively, resulting in a complier causal hazard ratio of 0.28. 
(See eAppendix for details on these calculations and robustness 
checks, http://links.lww.com/EDE/A808.) Rapid ART initiation 
thus causally reduced mortality by 72% among patients who ini-
tiated ART because CD4 < 200 cells/μL.

DISCUSSION
Regression discontinuity designs present an opportunity 

for causal inference in epidemiology when randomization is 
beyond the control of the researcher. As a quasi-experimental 
study design, regression discontinuity offers significant benefits 
over nonexperimental approaches based on regression adjust-
ment or matching. Continuity in the assignment variable at the 
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FIGURE 4.  First CD4 count and mortality hazard rate. Pre-
dicted hazards from the Table, model 2a are displayed as solid 
lines. Dashed line shows extrapolated prediction if all patients 
were treatment eligible at first CD4 count. Dots are hazards 
predicted for CD4 count bins of width 10 cells.

TABLE.   Intent-to-Treat Estimates: The Causal Effect of ART Eligibility on Mortalitya

First CD4 Count

Predictor

(a) Exponential (b) Cox

Sample No.Range (cells/μL) HR (95% CI) HR (95% CI)

1 0–350 D
i

0.59 (0.42–0.83) 0.62 (0.45–0.88) 4,391

( )Z c
i

− 0.993 (0.990–0.997) 0.994 (0.990–0.998)

D Z c
i

* ( )− 0.996 (0.992–1.000) 0.996 (0.992–1.000)

2 50–350 D
i
 0.65 (0.45–0.94) 0.67 (0.46–0.96) 3,710

( )Z c
i

−  0.993 (0.990–0.997) 0.994 (0.990–0.998)

D Z c
i

* ( )−  0.997 (0.992–1.001) 0.997 (0.992–1.001)

3 100–300 D
i
 0.66 (0.42–1.04) 0.67 (0.43–1.06) 2,557

( )Z c
i

− 0.994 (0.987–1.000) 0.994 (0.988–1.000)

D Z c
i

* ( )− 0.997 (0.990–1.005) 0.997 (0.989–1.005)

4 150–250 D
i

0.68 (0.35–1.32) 0.72 (0.37–1.38) 1,293

( )Z c
i

− 0.994 (0.978–1.010) 0.995 (0.979–1.011)

D Z c
i

* ( )− 0.997 (0.975–1.020) 0.996 (0.974–1.019)

5 175–225 D
i

0.54 (0.21–1.41) 0.55 (0.21–1.44) 623

( )Z c
i

− 0.988 (0.946–1.032) 0.989 (0.947–1.033)

D Z c
i

* ( )− 0.994 (0.932–1.061) 0.992 (0.930–1.059)

aZi is first CD4 count. D Z ci i= <1[ ]  is an indicator for whether the patient is eligible for ART according to CD4 count. Table displays the results of 10 
regressions—5 ranges of CD4 counts and 2 statistical models for the survival times.

http://links.lww.com/EDE/A808
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threshold breaks all links between treatment assignment and both 
observed and unobserved confounders. Neither ex-post-covariate 
adjustment nor assumptions about the absence of residual con-
founding is required for causal inference, similar to an RCT. 
Regression discontinuity designs also have important benefits 
over other quasi-experimental approaches. In most studies using 
instrumental variables, the assumption that treatment assign-
ment is as-good-as-random is an article of faith; in discontinu-
ity designs, this assumption follows directly from random noise 
in measurements of the assignment variable and can be assessed 
through tests of continuity in variables observed at baseline.2

There are also important cases where regression discon-
tinuity designs may be preferred to RCTs, such as when it 
is unethical to deny a randomized intervention to a control 
group or when an experiment is too expensive or logistically 
difficult to implement. Additionally, regression discontinuity 
designs can evaluate the real-world effectiveness of interven-
tions as implemented, providing causal effect estimates that 
are often more relevant for policy decisions than those derived 
under the highly controlled conditions of an RCT. Although 
regression discontinuity designs require larger sample sizes 
than RCTs to achieve a given level of power,52 they can often 
be implemented using routine clinical or administrative data, 
which are comparatively cheap to collect. Regression discon-
tinuity designs are also more likely to be generalizable to the 
population seeking care than RCTs with opt-in participant 
recruitment and a range of participant inclusion and exclu-
sion criteria. Finally, regression discontinuity designs identify 
a type of causal effect that is of particular interest for policy 
and clinical practice: the effect for patients near the threshold 
(which is also the effect of marginally raising or lowering the 
threshold). In contrast, RCTs estimate average causal effects 
across a wider range of data and thus do not provide the spe-
cific information needed for optimizing treatment thresholds 
(eAppendix, http://links.lww.com/EDE/A808).

Regression discontinuity designs can be implemented 
whenever an exposure is assigned—at least in part—by a 

threshold rule. In spite of many potential applications (Figure 5), 
regression discontinuity has yet to make substantial inroads in 
epidemiology.17 This may be due to (mis)perceptions that the 
range of applications is limited or that the assumptions required 
for causal inference are implausible. Some of the early literature 
on regression discontinuity (and similar designs under other 
names) proposed that (1) treatment assignment must be based 
solely on the threshold rule7,29; (2) treatment assignment must 
be under control of the researcher53; (3) the functional form of 
the relationship between the outcome and assignment variable 
must be known21,29,54; (4) treatment effects must be constant21; 
and (5) measurement error in the assignment variable is a source 
of bias.54,55 In fact, as described in this paper, assignment need 
not be deterministic nor under control of the researcher; causal 
inference can be conducted at the threshold using local linear 
regression, without functional form assumptions; and treatment 
effects may be heterogeneous, with the proviso that effects are 
local to observations near the threshold. Rather than being a 
threat to validity, random noise in the assignment variable 
ensures continuity in potential outcomes—the key assumption 
required for causal inference—and attenuates effect heteroge-
neity, increasing the generalizability of the estimates.

In our illustration of regression discontinuity, we found 
large survival benefits to early versus delayed ART initiation 
at the CD4 count threshold of 200 cells/μL. Our results are 
similar in magnitude to those reported by Severe et al41—the 
only RCT to report survival impacts of delaying ART until 
a patient’s CD4 count is below 200 cells/μL. Several fac-
tors support our interpretation of these results as causal. By 
design, our analysis is robust to any unobserved factors that 
are correlated both with timing of treatment initiation and 
independently correlated with survival. Causal identification 
depends only on the assumption that these factors are smooth 
at the threshold, and this is guaranteed by random noise in 
measurements of CD4 counts. Our results are unlikely to be 
biased due to systematic misclassification, selection into the 
sample, or attrition. Mortality data were collected through 

Threshold rules influence a wide range of epidemiological exposures. In these settings, 
regression discontinuity designs offer epidemiologists a simple but rigorous approach to 
causal inference from observational data. Potential applications include: 

Clinical diagnoses: effect of being diagnosed with high blood pressure on sodium intake 
Clinical treatments: effect of cholesterol lowering medications on cardiovascular disease
Access to harmful substances: effect of being of drinking age on risk of suicide 
Eligibility for programs: effect of income-eligibility for Medicaid on health spending
Government regulations: effect of working for a business with less than 50 employees 
(exempt from health insurance mandate) on insurance status and emergency room use
Elections: effect of union representation (>50% of votes in election) on workplace injury
Environmental hazards: effect of water pollution on birth defects downstream from source

FIGURE 5.  Potential applications of regression-discontinuity designs in epidemiology.

http://links.lww.com/EDE/A808
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semiannual demographic surveillance; CD4 counts were 
reported directly from the laboratory; and dates of ART initia-
tion were captured from clinical records. The study included 
all patients who sought care, not just those who initiated ART. 
And we observed survival in the surveillance system even for 
patients who were not retained clinically. Although we believe 
the internal validity of our results to be high, they may not be 
generalizable to persons who did not seek care and to patients 
presenting with CD4 counts far from 200 cells/μL.

The beauty of the regression discontinuity design lies in 
its simplicity: causal effects can be estimated with very few 
assumptions, and the source of causal identification is trans-
parent and easy to communicate graphically. These qualities 
stand out compared with other nonexperimental methods 
that rely on ex-post statistical adjustment. Threshold rules 
are ubiquitous in clinical practice, in determining eligibility 
for programs, and exposure to risk factors. Combined with 
the tremendous growth in new observational data, regression 
discontinuity designs can play an important role in generat-
ing causal evidence on the health effects of interventions and 
exposures in real-world settings.
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