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Large hypomethylated blocks as a universal
defining epigenetic alteration in human solid
tumors
Winston Timp1,2,3, Hector Corrada Bravo5, Oliver G McDonald1,4, Michael Goggins4, Chris Umbricht6,
Martha Zeiger6, Andrew P Feinberg1,3,7*† and Rafael A Irizarry1,8,9*†
Abstract

Background: One of the most provocative recent observations in cancer epigenetics is the discovery of large
hypomethylated blocks, including single copy genes, in colorectal cancer, that correspond in location to
heterochromatic LOCKs (large organized chromatin lysine-modifications) and LADs (lamin-associated domains).

Methods: Here we performed a comprehensive genome-scale analysis of 10 breast, 28 colon, nine lung, 38 thyroid,
18 pancreas cancers, and five pancreas neuroendocrine tumors as well as matched normal tissue from most of
these cases, as well as 51 premalignant lesions. We used a new statistical approach that allows the identification of
large hypomethylated blocks on the Illumina HumanMethylation450 BeadChip platform.

Results: We find that hypomethylated blocks are a universal feature of common solid human cancer, and that they
occur at the earliest stage of premalignant tumors and progress through clinical stages of thyroid and colon cancer
development. We also find that the disrupted CpG islands widely reported previously, including hypermethylated
island bodies and hypomethylated shores, are enriched in hypomethylated blocks, with flattening of the
methylation signal within and flanking the islands. Finally, we found that genes showing higher between individual
gene expression variability are enriched within these hypomethylated blocks.

Conclusion: Thus hypomethylated blocks appear to be a universal defining epigenetic alteration in human cancer,
at least for common solid tumors.
Background
The original observation of altered DNA methylation in
cancer was widespread hypomethylation affecting as
many as one-third of single copy genes and arising at
the earliest stages [1]. Later studies identified CpG island
hypermethylation as well [2]. More recently large hetero-
chromatin regions termed LOCKs were found to become
euchromatic in cancer cell lines [3] and partially methyl-
ated domains in embryonic stem cell lines [4]. Recent
whole genome bisulfite sequencing studies of human colo-
rectal cancer showed that hypomethylation affects large
genomic regions corresponding to chromatin regions
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(LOCKs) and nuclear organization (LADs), accounting
for >95% of the DNA methylation change in cancer [5,6].
This manifests itself as an intersample as an erosion of the
normal methylation profile (hence increase in local/
sequence related variation). Other work has identified
similar hypomethylated blocks in breast cancer cell
lines, and found direct correlation to chromatin modifica-
tions in the same population, [7]. More recent work has
even identified these blocks in medulloblastomas without
obvious genetic drivers, underscoring the importance of
this type of epigenetic change in cancer, [8]. Large-scale
hypomethylated blocks have also been associated with
Epstein-Barr virus-induced B-cell immortalization [9],
neuronally expressed genes [10], epigenetic changes prior
to morphological transformation [11] age-related drift in
the pathogenesis of MDS and AML [12].
Here we present the first integrated whole genome ana-

lysis of six different tumor types. We examined breast,
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colon, lung, pancreas adenocarcinoma (ACA), pancreas
neuroendocrine tumor (PNET), and thyroid cancer sam-
ples. For the breast, colon, pancreas, and thyroid we also
examined early stage samples (Table 1). Using these data,
we have been able to identify blocks of altered methylation
occurring in all of these cancer samples. Furthermore, it
appears that many of the commonly reported hyper-
methylated areas (CpG islands) found in cancer are a sub-
set of these blocks of altered methylation - we found that
CpGs islands with altered methylation in these cancer
samples were enriched within blocks, whereas most out-
side of blocks have unaltered methylation. A similar find-
ing was reported for colon cancer [6]. This suggests a
large scale phenomenon of methylation dysregulation in
cancer, rather than a specific targeting of methylation
change at given sites. Furthermore, this dysregulation is
occurring early in cancer - even samples taken at early
stages of cancer development, and thought to be benign,
have evidence of these methylation blocks. This suggests
changes may be occurring even before full cancer develop-
ment - hints of this already appear in the literature with
cancer DMRs correlating with areas of age-related methy-
lation drift [13].
The methylation changes within the blocks are pro-

gressive over time, showing a greater drift away from the
normal profile as the cancer progresses.

Methods
DNA isolation
DNA was isolated from tissue samples using either the
MasterPure DNA Purification Kit (Epicentre) or DNeasy
Blood and Tissue Kit (Qiagen) according the manufac-
turer’s protocol.

Microarray processing
Purity and quantity of DNA was measured using nano-
drop spectroscopy.
A total of 500 ng of gDNA was bisulfite treated using

the EZ-DNA Gold methylation kit (Zymo Research).
The resulting bisulfite treated DNA was then subjected
to the manufacture’s protocol for the Illumina Infinium
HumanMethylation450 BeadChip Kit. The data are publi-
cally available from GEO repository GSE53051, processed
data can be browsed at [14].
Table 1 Tissue samples analyzed in this study

Normal Hyperplastic Adenoma Cancer Metastatic

Breast 10 0 4 10 0

Colon 18 0 10 9 16

Lung 11 0 0 9 0

Pancreas NET 4 0 0 5 0

Pancreas ACA 8 0 6 18 0

Thyroid 12 10 21 24 4
Single CpG analysis
We preprocessed the Illumina HumanMethylation450
BeadChip methylation data using the Illumina default
procedure implemented in the Bioconductor minfi pack-
age [15]. For the probe level analysis (Figure 1, Table 2) we
averaged the values across all individuals within each cat-
egory (for example, normal colon, breast cancer, thyroid
adenoma, and so on) to produce one methylation profile
for each. For each tissue, we computed the cancer, aden-
omas, and hyperplastic versus normal differences along
with t-tests from which we obtained P values and then q
values. For Table 2 we defined as significant probes show-
ing a q value < 0.05 and with a difference magnitude larger
than 0.1. The latter filter was performed to avoid including
CpGs with differences not considered to be biologically
meaningful. We re-ran our analysis with other cutoffs
(data not shown) and the main conclusions did not
change. For the analysis related to variance, we defined
across individual standard deviation for each category as
we did for the average values. R code for analysis is
available upon request.

Collapsed CpGs analysis
For each sample we collapsed measurements from
islands, shores, and shelves into one value. Specifically,
we averaged all the measurements within each of these
regions to produce one measure per region. We then
grouped any open sea probe that was within 500 bp
from each other. If one of these regions exceeded
1,500 bp we broke them up into subsets. Details are
available in the code of the cpgCollapse function in
minfi [15]. This resulted in 223,497 collapsed regions:
26,571 CGIs, 47,344 CGI shores, 35,725 shelves, and
113,857 open sea. We then computed differences, stand-
ard deviations, and t-tests in the same way as we did for
the single CpG analyses. R code for analysis is available
upon request.

Detecting blocks
To detect blocks (Figure 2) we used the method imple-
mented in the blockFinder function in minfi [15]. Briefly,
the 113,857 open sea collapsed values are split into re-
gions. Then collapsed region that are within 250 kb from
each other are grouped together. Finally the Bumphun-
ter algorithm [16] is applied to detect regions exhibiting
average differences between cases (for example, cancer
samples) and controls (normal samples). To account for
the large resolution character of blocks we loess-smoothed
the data with a 250 kb window. Finally, a permutation test
is run to determine which blocks have dimensions that are
unlikely to occur by chance. We report blocks with q
values <0.05 and containing at least five data points (col-
lapsed regions). Note that this is an ad-hoc algorithm that
does not use the standard definition of a P value [15]. Also
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Figure 1 Many of the methylation changes at single probes between cancer and normal are far from CpG islands. (A-C) Scatter graph of
individual probe average values in normal (x-axis) and cancer (y-axis) for island (A), shore (B), and open sea (C) probes. A random sampling of
10,000 probes is used for each region to illustrate the pattern. Panels A-C, D-F, G-I, J-L, M-O, P-R correspond to breast, colon, lung, pancreas
adenocarcinoma, pancreas neuroendocrine tumor, and thyroid, respectively.

Timp et al. Genome Medicine 2014, 6:61 Page 3 of 11
http://genomemedicine.com/content/6/8/61



Table 2 Percent of single CpGs that result in a q value <0.05 and effect size >0.10 when comparing cancer to normal
samples with a t-test

Colon Lung Pancreas NET Pancreas ACA Thyroid Breast

OpenSea-hypo 26 9.9 6.3 10 1.5 1.2

Shelf-hypo 22 8.7 5.6 7.6 1.5 1

Shore-hypo 13 6.2 3.7 7.5 0.94 1.1

Island-hypo 2.9 1.4 1.8 3 0.15 0.3

OpenSea-hyper 2 3.5 2.2 12 1.4 3.7

Shelf-hyper 2.1 2.5 2.3 11 0.87 2.7

Shore-hyper 8.2 4.7 2.4 14 1.5 4

Island-hyper 15 6.5 0.62 11 1.2 5
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note that the blockFinder algorithm reports candidate
block regions that do not achieve these cutoffs. For the
purposes of defining block and non-block regions we left
these gray area regions outside of both categories. R code
for analysis is available upon request.

Block intersection P values
To calculate the P values shown in the caption of Table 3
we performed a Monte Carlo simulation. Specifically, for
each list of blocks we created 1,000 equally sized lists of
random blocks. In each of the random lists, each ob-
served block in the original list had one region that was
matched for genomic size (within 10% of the original
size) and number of collapsed regions. For each region
in the original list, we did this by sampling uniformly
from all candidate genomic regions with the same num-
ber of collapsed regions and within 10% of the genomic
width. Since the original list of observed blocks contains
non-overlapping regions, we constrained the randomly
generated block list to be non-overlapping as well (this
was enforced by resampling until non-overlapping lists
were created). With the 1,000 lists in place we computed
the percent of regions in common with the colon blocks
and kept these percentages to form the null distribution.
P values were then calculated as the percent of values in
the null distribution larger than the observed % agree-
ment. All P values were less than 1/1,000 since none of
the randomly created blocks had as many overlaps as
the original lists. Note that this approach avoids biases
due to the construction of the 450 K array since it uses
matched regions that contain probes.

Gene expression hyper-variability analysis
We obtained frma [17] -normalized Affymetrix HGU133-
plus2 gene expression data for colon, breast, lung, pancreas,
and thyroid tumors (curation and preprocessing of these
data were previously described in [18]. We calculated
the log ratio of observed to expected variability as de-
scribed in Alemu et al. [19]. This method, which fits a
local-likelihood regression method to estimate expected
variability as a function of each gene’s mean expression
level was shown to better control for variability of lowly-
expressed genes than the commonly used coefficient of
variation. To calculate enrichment in hypo-methylation
domains we only considered probesets of genes with
transcription start sites within the collapsed 450 k
regions (described above) since these are the genomic
regions covered by the 450 k array within which blocks
can be detected [15].

Profiles around CpG islands
To study the profile surrounding CpG islands (Figure 3)
we averaged across islands in the following way. We first
obtained across-individual averages for each probe on
each tissue category. We then separated islands into
those inside blocks and those outside. For every CpG
island we saved the value m of every probe within 10 kb
and stored the distance d giving us several pairs (d,m)
for each island. These were aggregated across all islands
in consideration and a loess line was fit to these data.
Then the average was computed for each island by
aggregating all the values falling inside the CpG island.
We did this analysis for islands inside and outside (not
in grey area) hypomethylated. R code for analysis is
available upon request.

Results
At the single CpG level many cancer to normal
differences are far from CpG islands
We used the Illumina HumanMethylation450 BeadChip
methylation array to probe cancer methylation 10 breast,
28 colon, nine lung, 38 thyroid, 18 pancreas cancers,
and five pancreas neuroendocrine tumors as well as
matched normal tissue from most of these cases and 51
premalignant lesions (Table 1). We stratified the 485,512
probes included in the array into CpG islands, CpG
island shores (1 to 2,000 bp from island), CpG island
shelves (2,001to 4,000 bp from island) and CpG open
seas (>4,000 bp from island). For each tissue we com-
puted cancer and normal across-individual averages for
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Figure 2 Illustrative blocks of aberrant methylation in cancer. Examples of a hypomethylated block. (A) Methylation values in normal and
cancer samples for a block found in breast cancer, which is highlighted with a thicker line. (B) As (A) but showing difference between cancer and
normal samples. The same plots are shown for colon (C, D), lung (E, F), pancreas (G, H), and thyroid (I, J).
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Table 3 Large blocks of aberrant methylation identified in normal versus hyperplastic, adenoma, or cancer samples

Blocks (n) Total Mb
inside blocks

Intersection with
colon blocks (%)

25% length
quartile (Mb)

50% length
quartile (Mb)

75% length
quartile (Mb)

Median
diff value

Hypo-meth. (%)

Breast
(Cancer-normal)

150 42.87 92 0.15 0.2 0.36 −0.097 83

Breast
(DCIS-normal)

349 77.94 91 0.11 0.17 0.28 −0.078 79

Colon
(Cancer-normal)

1889 746.93 100 0.16 0.28 0.53 −0.11 100

Colon
(Adenoma-normal)

1917 576.63 79 0.13 0.22 0.38 −0.068 100

Lung
(Cancer-normal)

702 217.72 87 0.14 0.23 0.38 −0.088 98

Pancreas
(ACA-normal)

1114 183 53 0.087 0.14 0.2 −0.061 52

Pancreas
(IPMN-normal)

1349 274.09 55 0.099 0.16 0.26 −0.09 99

Pancreas
(NET-normal)

683 136.9 69 0.0955 0.16 0.25 −0.16 98

Thyroid
(Cancer-normal)

351 63.25 82 0.091 0.15 0.235 −0.054 78

Thyroid
(Adenoma-normal)

266 49.9 90 0.09275 0.15 0.24 −0.049 77

The ‘Blocks (n)’ column reports the total number of regions classified as blocks by our algorithm. ‘Total Mb inside blocks’ is the total number of megabases
contained by these blocks. The ‘Intersection with colon blocks (%)’ represents a comparison of the hypomethylated blocks for the comparison represented by the
row, to the hypomethylated blocks identified between colon normal and cancer samples; note that 100% of colon blocks are inside colon blocks. We tested if
overlaps this extreme can be due to chance and found P values <0.001 (0 occurrences in 1,000 permutations). The next three columns are the 25th, 50th, and
75th percentiles of block region sizes. The ‘Median diff value’ is the median of the average difference between cases and controls are all regions defined as
blocks. The ‘Hypo-meth. (%)’ column shows the percent of blocks that are hypomethylated.
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each probe. We then examined the differences between
these pairs and declared a difference statistically and bio-
logically significant when the q value was below 0.05 and
the observed difference above 0.10 or below −0.10. We
found that the majority were either hypomethylated
probes located in open sea sites or hypermethylated
CpG island probes (Table 2). For colon, lung, thyroid,
and PNET there were more significantly hypomethy-
lated probes than hypermethylated probes and for pan-
creas adenocarcinoma it was about the same. For breast
there were more significantly hypermethylated probes
than hypomethylated probes. In general, the hypomethy-
lated probes were characterized by average methylation of
approximately 75% in normal samples that dropped to ap-
proximately 60% in cancer samples (Figure 1). In contrast,
the hypermethylated CpG island probes were character-
ized by approximately 10% methylation values for the nor-
mal samples increasing to approximately 40% in cancer
(Figure 1). In both cases the methylation pattern moved
from the extremes to the middle. The probes in CpG
island shores are a hybrid of the other two types.
We computed the same summaries for the difference

between early neoplastic tissue and normal tissue - specifically
breast ductal carcinoma in situ (DCIS) and normal breast
tissue, colon tubular adenoma and colon normal, intra-
ductal papillary mucinous neoplasms (IPMNs) and normal
pancreas, and follicular thyroid adenomas, and normal
thyroid tissue. We observed the same trend of methylation
changes in these early neoplasms as in the fully developed
cancers (Additional file 1: Figure S1).

Hypomethylated blocks are present in six cancer types
To determine if the observed hypomethylation is related
to large hypomethylated blocks, previously identified for
colon cancer using whole-genome bisulfite sequencing
[5,6], we applied a new method that permits the detec-
tion of large differentially methylated regions using
450 k Methylation microarray data [15] (see Methods
Section). To declare a region statistically and biologically
significant, or blocks, we required a q value <0.05 and
inclusion of at least five measurements (See methods).
We also excluded the X and Y chromosomes. In the
majority of cases, these blocks were hypomethylated
regions, with median length on the order of hundreds of
kb (Table 3); a full tabulation of identified blocks is in-
cluded as Additional file 2: Data 1–11. Hypomethylated
blocks were observed in each of the six cancer types as
well as in the early stage samples (Table 3). Typically,
blocks had an average methylation of approximately 75%
in all the normal tissues (Figure 2A; solid lines), but in
cancer became distinctly hypomethylated (Figure 2A;
dotted liens). The difference between cancer and normal
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Figure 3 Methylation changes in islands are enriched in the blocks. (A, B) Average methylation in normal breast (green) vs. breast cancer
(orange) samples plotted against distance from CpG islands both inside (A) and outside (B) of blocks. (C, D) Difference between cancer and
normal sample methylation plotted against distance from CpG islands both inside (C) and outside (D) of blocks.
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samples varied between types, with colon cancer show-
ing the greatest area difference, and thyroid showing the
least (Figure 2B). The great majority of detected blocks
were hypomethylated (83%, 99% 98%, 99%, and 78% for
breast, colon, lung, PNET, and thyroid, respectively) ex-
cept for pancreas adenocarcinoma for which 48% were
hypermethylated. For each hypomethylated block, we
determined if it intersected with a colon hypomethylated
block (at least 5,000 bps in common) and found these
were highly co-localized (Table 3). This co-localization is
observed in the top ranked blocks for each tissue type
(Figure 2).

For colon, lung, and breast hypermethylated islands are
enriched inside blocks
We calculated the methylation distribution for cancer sam-
ples and normal samples and noted that while the distribu-
tion changed dramatically within hypomethylated blocks, it
remained about the same outside blocks (Additional file 3:
Figure S2). The methylation distributions in normal tissues
were bimodal, with a peak near 10% – primarily unmethy-
lated CpG islands, and a peak at around 80% methylated
(Additional file 3: Figure S2). In contrast, inside of blocks,
the normal tissue was characterized by a unimodal dis-
tribution centered approximately 80% methylated, while
cancer methylation is hypomethylated with different
distributions for the different samples (Additional file 3:
Figure S2). This was confirmed by studying the location
of CpG islands showing statistically significant differ-
ences, with effect sizes surpassing 0.10. Samples that
had a high level of hypermethylated islands, specifically,
breast, colon, and lung, showed strong enrichment of
hypermethylated islands within blocks (Table 4).

Inside blocks, methylation profiles flatten around CpG
islands
We divided CpG islands into those inside and outside
hypomethylated blocks. For each cancer type, for dis-
tances ranging from 1 bp to 15,000 bp in both genomic
directions, we then computed the average methylation
value across all islands for normal and cancer. We also
computed this average for probes within CpG islands.
We found that across all examined tissues these average
methylation profiles went from a pattern of methylated
outside islands to unmethylated inside islands back to
methylated outside islands in normal tissues (Figure 3;



Table 4 Hypermethylated CpG island location relative to blocks

Cancer type CGIs in testable area (n) Testable CGIs significantly
(q <0.05; deltaM >0.1)
hypermethylated (%)

CGIs in blocks (n) Hypermethylated
CGIs in blocks (%)

Odds ratio of CGI
being in block and
hypermethylated

P value
(Chi-squared test)

Breast 24,206 11 316 20 2.5 <0.0001

Colon 19,827 19 3,769 30 4.1 <0.0001

Lung 22,661 8 1,310 12 2 <0.0001

The ‘CGIs in testable area (n)’ column shows the number of CpGs that are included in the analysis for that tissue. Note that CpGs that were inside region that
were borderline from being called blocks are not included (see Methods for details). The next column shows the percentage of these CpG that were statistically
significantly hypermethylated. The fourth column shows the number of the CGIs that were inside hypomethylated blocks. The next column shows the % that
were hypermethylated among the CGIs that were in blocks (fourth column). The odds ratio and P value shown in the final two columns are based on the two by
two table represented in each row: each CGI can be either hypermehtylated or not and inside a block or not.
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Additional file 4: Figure S3). Outside blocks this pattern
remained about the same for cancer samples, but within
blocks the island methylation went up while the methy-
lation right outside went down; both going from extreme
to middle. The general trend is one of hypermethylation
in islands, and hypomethylation of the surrounding area
(Figure 3; Additional file 4: Figure S3).

Hyper-variably expressed genes are enriched inside
blocks
Gene expression hyper-variability in colon cancer was
reported to be enriched in long hypomethylation blocks
obtained from whole genome bisulfite sequencing [5]. To
establish how consistent this association is across solid
tumor types, we performed a similar association test for
the five tissues profiled here. We obtained publicly avail-
able gene expression microarray data for tumors in each
of the five tumors from the Gene Expression Barcode pro-
ject [20,21]. Since expression is not available for normal
samples in all tissues in this platform, we defined hyper-
variability by calculating the log-ratio of observed variability
to expected variability (conditioned on mean expression
level) across tumor samples for each gene [19], and then
tested association between hyper-variability (observed is
twice the expected variability) and the gene’s TSS being in-
side a hypo-methylation block in each cancer type. We
found that hyper-variability is enriched in the hypomethy-
lation blocks in each cancer type (P <0.05) except breast
cancer (P = 0.5) where the small number of hypomethy-
lation domains results in lack of power. We also ob-
served that the odds ratio for hypomethylation domain
presence increases along with hyper-variability for all
tissues (Additional file 5: Figure S4).

The blocks occur in early neoplasms
We examined several precursor lesions, including 10 co-
lonic tubular adenomas, six pancreatic intraductal mu-
cinous neoplasms (IPMNs), four breast ductal carcinoma
in situ (DCIS), and 21 thyroid follicular adenomas. We
found large numbers of hypomethylated blocks present
even in these early neoplastic lesions, 1,880 blocks (23%
of covered area) in colon tubular adenoma, 1,642 blocks
(15% of covered area) in pancreas IPMNs, 327 blocks
(3.7% of covered area) in breast DCIS, and 145 blocks
(1% of covered area) in thyroid follicular adenomas. An
example of this is plotted in Figure 4A - an 800 kbp block
shows a progressive hypomethylation from normal colon tis-
sue, to tubular adenoma, through to colon adenocarcinoma.
We wanted to further stratify the different stages of can-

cer to determine number, size, and magnitude of blocks
during cancer progression. We divided the thyroid sam-
ples into benign thyroid lesions, thyroid follicular aden-
omas, minimally invasive thyroid carcinoma, capsular
invasive thyroid carcinoma, vascular invasive thyroid car-
cinoma, and metastatic thyroid cancer and detected large
numbers of blocks (Table 5). The number of blocks and
the magnitude of changes increase in later stage cancers,
but surprisingly we detected 51 blocks in benign hyper-
plastic adenomatoid nodules, which are not thought to
have a pro-malignant potential [22]. Note that there may
be even more dysregulated regions with methylation alter-
ation too small to detect above noise in these samples.
To summarize and evaluate how average methylation

in blocks changes with progression (Figure 4A-B); we
calculated a value for each sample using the average
methylation level inside all blocks and inside all islands.
Each sample then had a single value for blocks and a
single value for islands. We performed this analysis for
colon (Figure 4C-D) and thyroid (Figure 4E-F) with in-
creasing stages of progression plotted along the x-axis.
The normal samples in both cases had a clear tight clus-
tering. However, even the earliest lesions showed marked
alterations of large domains as seen in the later cancers.

Discussion
There are three major results of this study. First, we have
found that large hypomethylated blocks in cancer, which
we first described in three colorectal cancers, are a univer-
sal feature of solid tumors. Blocks were found in all five
tumor types, and in every cancer within them and hyper-
variably expressed genes are enriched within hypomethy-
lated blocks in all tumor types. Second, the hypomethylated
blocks occur early in cancer: all four groups of premalig-
nant lesions also showed the hypomethylated blocks. Thus



Table 5 Large blocks of aberrant methylation arise early in carcinogenesis and develop along with cancer

Blocks (n) Total Mb
inside blocks

Intersection with
colon blocks (%)

25% length
quartile (Mb)

50% length
quartile (Mb)

75% length
quartile (Mb)

Median
diff value

Hypo. (%)

Benign 142 25.3 90 0.098 0.14 0.21 −0.047 58

Follicular
adenoma

270 50.17 90 0.08825 0.15 0.24 −0.048 77

Minimally invasive
carcinoma

297 56.3 79 0.098 0.15 0.24 −0.054 94

Capsular invasive
carcinoma

599 109.37 80 0.09 0.15 0.23 −0.074 90

Vascular invasive
carcinoma

376 67.85 82 0.091 0.15 0.24 −0.053 78

Metastatic cancer 729 125.42 67 0.088 0.14 0.22 −0.066 92

Columns are as in Table 3. As in Table 3, P values were all below 0.001.

A)

B)

C) E)

D) F)

Figure 4 Hypomethylated blocks occur early in cancer and increase with progression. (A) Across-individual methylation averages for colon
normal (green), adenoma (orange), and cancer (purple). The hypomethylated block in cancer is shown in pink. The points represent sample-specific
values. Thick lines represent the sample type average, thin lines are each sample. (B) As (A) but the difference from the average normal.
(C, D) Summarized average methylation values for blocks (C) and islands (D) in colon normal, adenoma, carcinoma, and metastasis
samples. (E, F) Summarized average methylation values for blocks (E) and islands (F) in thyroid normal, benign hyperplastic (adenomatoid nodules),
adenoma, minimally invasive carcinoma, capsular invasive carcinoma, vascular invasive carcinoma, and metastatic samples.
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more than any other mutation, copy number change, or
individual methylation change, hypomethylated blocks
represent the genetic signature of human solid tumors.
Third, in breast, colon, and lung cancer, altered DNA

methylation in CpG islands are enriched in hypomethy-
lated blocks. The hypermethylated islands contained in
the blocks do not show hypermethylation per se, but
flattening, that is, hypermethylation of the islands, and
hypomethylation of the shores and shelves that flank
them. Note that we may be underestimating the enrich-
ment. First, we may be underestimating the genomic
coverage of the blocks due to the statistically conserva-
tive threshold we use for defining them and because the
array does not cover the entire genome (approximately
two-thirds of the genome). Second, is the somewhat
arbitrary choice of effect-size we used to define a hyper-
methylated CpG islands.
Note that these large domains defined by the hypo-

methylated blocks in cancer have been previously shown
[5,6] to co-localize with regions showing heterochromatin
modifications such as H3K9Me2 or H3K9Me3 (LOCKs)
[3] or lamin-associated domains (LADs) [23] in normal
cells. A recent report on epithelial-mesenchymal transi-
tion (EMT) showed that the loss of LOCKs is associated
with this process reversibly, and the properties of cell
spreading and chemoresistance can be inhibited by bio-
chemical modification of LOCK demethylation [24]. In
the original report of LOCKs, their loss was also described
in cancer cell lines [3]. A recent report in prostate cancer
demonstrates both hypo- and hypermethylation associated
with reduced chromatin acetylation [25]. These results
motivate a relatively new view of cancer epigenetics in
which large-scale heterochromatin structures are disrupted
generally, at least in solid tumors, leading to loss of both
epigenetic and gene expression regulation, resulting in
hyper-variability of gene expression [5]. These changes
could even have interaction with large scale genetic do-
mains important in cancer [26].
The data in this paper also offer a new perspective of

the role of CpG island methylation in cancer. While his-
torically the focus was on island hypermethylation, we
see that: (1) much of the methylation change in cancer
involves hypomethylated blocks; (2) many of the methy-
lation changes at islands are more a flattening out of
methylation rather than simply hypermethylation. The
presence of these regions within the block domains sug-
gests that the mechanism for island disruption is not ne-
cessarily island-specific but could be part of the loss of
structural integrity of heterochromatin in these regions.
That would explain the lack of data for specific muta-
tions at islands or of island modifying or recognizing
genes in most solid tumors. It is intriguing to speculate
that the blocks might be the functional target of many of
the chromatin modifiers already known to be disrupted
in cancer. In particular, the advent of histone lysine
demethylase therapy [27] seems particularly relevant to
these structures [24].

Conclusions
In summary, this is the first genome-scale analysis of DNA
methylation in a large number of cancers and matched tis-
sues, spanning six tumor types, and including premalig-
nant lesions from four of the tumor types. This analysis
allowed us to identify common features of the cancer epi-
genome in solid tumors and assess the timing of those
changes. We also took advantage of new software that le-
verages the power of statistical smoothing and resampling
to detect large statistically significant regions that are dif-
ferentially methylated.

Ethics and consent
Cryogenically stored freshly frozen samples were obtained
from the Cooperative Human Tissue Network (National
Cancer Institute (NCI)), and Johns Hopkins Hospital under
an institutional review board–approved waiver of consent.
This conforms to the Helsinki Declaration as well as local
legislation.

Additional files

Additional file 1: Figure S1. As in main Figure 1 but for
premalignant lesions. (A-D) Scatter graph of individual probe average
values in normal (x-axis) and cancer (y-axis) for islands (left), shore
(middle), and open sea (right) probes. A, B, C, and D correspond to
breast DCIS, colon tubular adenoma, pancreas IPMNs, and thyroid
follicular adenomas, respectively.

Additional file 2: Data 1–11. Listing of individual blocks identified in
comparisons between sample datasets. Columns in order are:
chromosome, start coordinate of block, end coordinate of block,
difference of average probe methylation per set within block, area (block
length X difference of average probe methylation per set within block),
P value for block difference significance, family-wise error rate of block
difference, P value area and family-wise error rate area. Datasets are
determined by comparisons between: (1) breast cancer vs. breast normal,
(2) breast ductal carcinoma in situ vs. breast normal, (3) colon cancer vs.
colon normal, (4) colon tubular adenoma vs. colon normal, (5) lung
cancer vs. lung normal, (6) pancreas adenocarcinoma vs. pancreas normal,
(7) pancreas intraductal papillary mucinous neoplasm vs. pancreas normal,
(8) Pancreas neuroendocrine tumor vs. pancreas normal, (9) thyroid cancer
vs. thyroid normal, (10) thyroid follicular adenoma vs. thyroid normal, (11)
thyroid adenomatoid nodule (benign) vs. thyroid normal.

Additional file 3: Figure S2. Methylation density plot for normal (green
solid lines) and cancer samples (orange dotted lines) for (left) all CpGs,
(middle) CpGs outside of blocks and (right) CpGs inside blocks. A, B, C, D,
E, and F correspond to breast, colon, lung, pancreas adenocarcinoma,
pancreas neuroendocrine tumor, and thyroid, respectively.

Additional file 4: Figure S3. As Figure 3 but for (A) colon, (B) lung, (C)
pancreas, and (D) thyroid.

Additional file 5: Figure S4. Cancer gene expression hyper-variability
is enriched in large hypomethylation domains in most solid tumor types.
We obtained publicly available gene expression microarray data for each
of the five tissues profiled and computed the log ratio of observed
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variability to expected variability (conditioned on mean expression) for
each gene in each of the five cancer types. We plot the odds ratio of a
gene's TSS being located within a detected hypomethylation block in
each tissue given that observed to expected variability (OEV) is above
increasing thresholds. We observed consistent increase in the odds ratio
as the OEV threshold increases suggesting that gene expression
hyper-variability is enriched in each tissue’s hypomethylation blocks.
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