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Fine-tuning of chemotactic response in E. coli determined by high-throughput 

capillary assay  

 

Abstract: 

In E. coli, chemotactic behavior exhibits perfect adaptation that is robust to changes in the 

intracellular concentration of the chemotactic proteins, such as CheR and CheB. However, 

the robustness of the perfect adaptation does not explicitly imply a robust chemotactic 

response. Previous studies on the robustness of the chemotactic response relied on 

swarming assays, which can be confounded by processes besides chemotaxis, such as 

cellular growth and depletion of nutrients. Here, using a high-throughput capillary assay 

that eliminates the effects of growth, we experimentally studied how the chemotactic 

response depends on the relative concentration of the chemotactic proteins. We 

simultaneously measured both the chemotactic response of E. coli cells to L-aspartate and 

the concentrations of YFP-CheR and CheB-CFP fusion proteins. We found that the 

chemotactic response is fine-tuned to a specific ratio of [CheR]/[CheB] with a maximum 

response comparable to the chemotactic response of wild-type behavior. In contrast to 

adaptation in chemotaxis that is robust and exact, capillary assays revealed that the 

chemotactic response in swimming bacteria is fined-tuned to wild-type level of the 

[CheR]/[CheB] ratio.   
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Introduction 

 

Chemotaxis in E. coli is a locomotion system that allows bacteria to move toward gradients of 

attractant chemicals, such as nutrients, or away from for toxic molecules that act as repellants. 

When bacteria are submerged in a liquid environment, they can swim using flagella that are 

powered by rotary motors. When all motors rotate counterclockwise (CCW), they form a bundle 

of flagella that acts like a propeller. Under this condition, swimming bacteria are described by 

long and smooth trajectories called runs. When most of the motors rotate clockwise (CW), the 

bundle breaks apart, and bacteria tumble. This alternating behavior of runs and tumbles gives rise 

to a random walk, which bacteria use to explore homogenous environments. By contrast, this 

system allows the bacteria to respond to sudden increases in nutrients in the environment by 

lowering the frequency of tumbles, which biases the random trajectory of bacteria towards the 

source of attractants. In this case, an abrupt drop in tumbling frequency is followed by an 

adaptive behavior in which the tumbling frequency returns exactly to its pre-stimulus level. 

Experimental and theoretical studies demonstrated that the property of exact adaptation is robust 

to variations of the chemotactic proteins levels [8,5]. Although perfect adaptation is an important 

characteristic of bacterial chemotaxis in E. coli, it is not clear if it implies that the chemotactic 

response itself is robust to variations in the concentrations of the chemotactic proteins.  

 To investigate how the chemotactic response depends on the concentrations of the 

chemotactic proteins, in an elegant study, Løvdok et al. used swarming assays on agar plates. 

They observed that the chemotactic efficiency varies weakly as a function of the chemotactic 

protein concentrations [16]. Although the swarming assay [1,27] is a convenient and standard 

approach to characterize chemotactic behaviors, it may often be difficult to accurately quantify 

the chemotactic response as a function of protein levels. The main difficulty lies in the fact that 

the swarming behavior of bacteria is accompanied with cell growth [9], which results in a 

population of cells with heterogeneous protein concentrations. These conditions make the 

swarming assay difficult to quantitatively interpret because we do not know whether the 

observed results are due to chemotaxis or the growth of bacteria or both. 

An alternative assay commonly used is the capillary assay, initially developed by [3,19,2]. 

While this assay allows us to determine the chemotactic response associated with the swimming 

behavior decoupled from the growth of bacteria, it is also known to exhibit variable results from 
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assay to assay. To circumvent this drawback, we quantitatively characterized the chemotactic 

behavior at the population level using a high-throughput capillary assay. This assay has been 

extended from [7] and is based on the parallel measurements of a large number of identical 

classic capillary assays [2]. This large number of measurements allows us to produce a robust 

average and to determine the chemotactic response in a reliable manner. 

In E. coli, the bacterial chemotaxis pathway is one of the most well-characterized signal 

transduction systems [8,23,45,24]. When nutrients (or toxic molecules) bind to a specific 

receptor in the receptor-kinase complexes, the chemicals initiate a fast decrease (or increase) of 

activity of the kinase CheA [10]. After this fast initial response, the kinase activity adapts back to 

its pre-stimulus steady-state. The methylation/demythylation of the receptor-complexes by the 

methyltransferase CheR and the demethylatransferase CheBp (the phosphorylated form of CheB) 

govern this adaptive behavior [25]. Downstream in the pathway, the phosphorylation of the 

diffusible response regulator, CheY, relays the variations in activity of the kinase CheA [25]. 

The phosphorylated form CheYp binds preferentially to the basal part of the rotary motor (FliM) 

[28,29,26], and induces tumbles. 

The steady-state of the bacterial motor is defined by its CW bias, which is the proportion of 

time spent in CW rotation. The CW bias of the bacterial motor has a one-to-one functional 

relationship to the steady concentration of the signaling protein CheYp [11]. The CW bias and its 

corresponding CheYp concentration change quickly, reflecting the changes in kinase activity in 

response to an external stimulus, but slowly adapt back to the pre-stimulus state through the 

methylation-driven adaptive mechanism. This perfect adaptation is robust to the variations of the 

chemotactic proteins CheR and CheB [5], whose ratio determines the steady-state of the kinase 

activity in the adaptive network [15]. 

With the high-throughput capillary assay, we determined if the chemotactic response was 

also robust to the relative concentration of CheR and CheB. To measure [CheR] and [CheB], we 

created two fluorescent reporter fusion constructs, yfp-cheR and cheB-cfp, under the control of 

distinct inducible promoters. As a proxy for protein concentration, we measured the fluorescent 

intensities of the fusion proteins YFP-CheR and CheB-CFP in vivo and correlated them with the 

chemotactic responses from the same cells. These experiments allowed us to establish the 

functional relationship between population chemotactic response and [CheR] and [CheB] relative 

to wild-type levels. To characterize how effectively bacteria can respond to a gradient of 
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attractant, we used metrics that are specific either to the swarming assay, ‘chemotactic 

efficiency’, or to the capillary assay, ‘chemotactic response’. 

 

Materials and Methods  

 

Bacterial strains and plasmids 

RP437 is a wild-type E. coli strain for chemotaxis [20]. RP4968 is derived from the RP437 

strain and is cheR [20]. RP4968 cells were complemented with a LacR-inducible plasmid, 

pZA1tac-YFP-CheR, encoding the yfp-cheR fusion gene. To construct pZA1tac-YFP-CheR, the 

tac promoter and yfp-cheR fusion gene were PCR amplified from the plasmid pVS127 (gift from 

V. Sourjik [6]) with the primers VS127-5’ 5’-ggc tcg agg cgc cga cat cat aac gg-3’ and VS127-

3’ 5’-cgc caa aac agc caa gct tgc-3’. The PCR fragment was cloned into the XhoI and HindIII 

sites of a pZA1 series plasmid that contains an ampicillin resistance cassette [18]. The tac 

promoter allows the plasmid to be LacR inducible. RP4992 is derived from the RP437 strain and 

is cheB (gift from J.S. Parkinson). RP4992 cells were complemented with a TetR-inducible 

plasmid, pZE21-CheB-CFP, expressing CheB-CFP fusion proteins. To construct the plasmid 

pZE21-CheB-CFP, we PCR amplified the cheB-cfp fusion gene from the plasmid pVS103 (gift 

from V. Sourjik, CheB-eCFP in pBAD33 [13]) with primers SCheB-5’: 5’-gcg gta ccg cat gag 

caa aat cag ggt gtt atc-3’ and SCfp-3’: 5’-gct cta gat tac ttg tac agc tcg tcc atg cc-3’. The gene 

fragment was inserted into the KpnI and XbaI sites in a pZE21 series plasmid that contains a 

kanamycin resistance cassette and a TetR inducible promoter [18]. The RP2867 strain was 

derived from RP437 with a deletion of cheR and cheB genes [22]. Cells were complemented with 

pZA1tac-YFP-CheR and pZE21-CheB-CFP. The plasmid pUHS-IntI [17] encoding 

constitutively expressed lacR and tetR, controlled the expression of cheR and cheB gene fusions 

from plasmids. This plasmid carries a spectinomycin resistance gene. 

 

Swarming assay 

We grew wild-type (RP437) and mutant cells overnight in 3 mL Tryptone broth at 35°C 

shaking at 200 rpm. We inoculated swarming plates (1% Bacto-tryptone, 1% NaCl and 0.3% 

agar in distilled water) with 1 µL of the overnight culture. To induce different concentrations of 

YFP-CheR and CheB-CFP, the swarming plates contained various concentrations of isopropyl-β-
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D-thiogalactoside (IPTG) ([IPTG]=1000/20, 1000/21, 1000/22, 1000/23, 1000/24, 1000/25, 

1000/26, 1000/27, 1000/28, 1000/29 and 0 µM for single mutant experiments and [IPTG]=1000/20, 

1000/21, 1000/22, 1000/23, 1000/24, 1000/25, 1000/26, 1000/27 and 0 µM for double mutant 

experiments) and anhydrotetracycline ([aTc]= 200/20, 200/21, 200/22, 200/23, 200/24, 200/25, 

200/26, 200/27, 200/28, 200/29 and 0 ng/mL for single gene mutant experiments and [aTc]= 

200/22, 200/23, 200/24, 200/25, 200/26, 200/27 and 0 ng/mL for double gene mutant experiments), 

respectively. We also added antibiotics (ampicillin: 100µg/mL, kanamycin: 40µg/mL, or 

spectinomycin: 50µg/mL) to the swarming plates depending on the plasmids used. We incubated 

the swarming plates at 30ºC for 12 hours and measured the diameters of the swarming rings.  

We estimated the expression levels of [YFP-CheR] and/or [CheB-CFP] from the relationship 

between the fluorescence intensity and the inducer concentrations ([IPTG]=0, 5, 10, 15, 30, 40, 

80, 200 and 1000 µM; [aTc] =0, 2, 3, 5, 6, 7, 8, 9, 10, 12 and 15 ng/mL) (Fig. S1) in the capillary 

assay (see below). We measured the chemotactic efficiency, defined as the ratio of the diameters 

of the swarming rings of the mutant cells and wild-type (RP437) cells after 12 hours swarming at 

30ºC.  

 

Capillary assay 

The capillary assay is based on ref [2,7]. We grew cells overnight in 3 mL Tryptone broth at 

35°C shaking at 200 rpm. We diluted the overnight culture 1:50 in 12 mL fresh Tryptone broth in 

a 250mL flask and grew the cells at 35°C shaking at 200 rpm until the optical density (O.D.) 

reached ~0.3 at 600 nm. To induce different concentrations of YFP-CheR and CheB-CFP, we 

varied the concentrations of IPTG and aTc ([IPTG] = 0, 5, 15, 30 and 1000 µM; [aTc] = 0, 3, 5, 7, 

8 and 9 ng/mL) for single mutant experiments. For double mutant experiments, we used various 

combinations of the concentrations of IPTG and aTc ([IPTG] = 0, 10, 20, 30, 40, 50, 60, 100, 

200, 500 and 1000 µM and [aTc] = 0, 5, 10, 20, 25, 30, 35, 38, 40, 50, 50, 100 and 200 ng/mL). 

We added antibiotics (ampicillin: 100µg/mL, kanamycin: 40µg/mL, or spectinomycin: 

50µg/mL) specific to each plasmid. We washed the harvested cells (centrifuged twice at 3000 

rpm for 5 min) and resuspended them in motility medium (0.1 mM EDTA, 0.1 mM L-

methionine, 10mM potassium phosphate, pH 7.0). After the cells were washed, we measured 

[YFP-CheR] (excitation filter: 504/12 mm, emission filter: 540/10 nm) and/or [CheB-CFP] 
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(excitation filter: 425/8 nm, emission filter: 486/10 nm) with a plate reader (Wallac 1420 Victor2, 

Perkin-Elmer).  

We diluted the cells in motility medium to O.D.600 nm ~ 0.012 (corresponding to 

approximately ~7×106 cells/mL). We distributed 300 µL of this diluted cell solution into each 

well of a 96-well round bottom plate (Pro-bindTM U-Bottom, polystyrene, Falcon). In each plate, 

we divided the 12 columns into 6 adjacent column pairs. Each column pair contained cells grown 

at the same [IPTG] and/or [aTc].  

To build the capillary system, we attached 96 narrow needles (inner diameter = 0.19mm, 27 

G ½ needles, B-D) to the ends of the pipetting entrances of a 96-well pipetting device (Vaccu-

Pette/96TM, Scienceware). We positioned the capillaries approximately 3.5 mm above the center 

bottom of each well of the 96-well plate containing the 300 µL of motility medium with and 

without 10-2 M L-aspartate. By slowly withdrawing the syringe pump, we filled the capillaries 

with either motility medium (lower 48 wells) or motility medium containing 10-2 M of the 

attractant L-aspartate (upper 48 wells) (Fig. 1). We kept the media in the capillaries by locking 

the valve connected to the syringe pump. We placed the capillary device containing motility 

medium with or without L-aspartate approximately 3.5 mm above the bottom of each well in the 

96-well round bottom plate containing the cell solutions.  

In the upper 48 capillaries, the L-aspartate solution in the capillaries created an L-aspartate 

concentration gradient in the wells. We incubated the capillary system at 30°C for 40 min and 

then emptied the capillaries into a new 96-well flat bottom plate (Clear Polystyrene flat bottom 

96 wells, 300 µL, Whatman) by strongly pumping the capillary system with a 50 mL syringe. 

We added 200 µL LB to each well and covered it with 160 µL light mineral oil to prevent 

evaporation. We grew the cells overnight at 37°C with fast shaking inside the Wallac, measuring 

O.D.600nm of each well every 15 min. The chemotactic response (R) is then defined as the ratio of 

the number of cells in the capillary with the attractant and the number of cells in the capillary 

without the attractant. To count the number of cells in the capillaries, we used the method 

described in [7] with parameter b = 5277.2. We normalized the relative protein concentrations 

such that chemotactic responses in both single and double mutant experiments peaked at [YFP-

CheR] = 1 and [CheB-CFP] = 1. All other protein concentrations are given relative to this wild-

type level. 
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Results and Discussion  

 

Theoretical estimate 

A recent kinetic model [12] of the bacterial chemotactic network showed that the relaxation 

time associated with the response to a small external stimulus (attractant increase) peaks at the 

wild-type [CheR]/[CheB] (Fig. 2). We observed that cells operating at the average wild-type 

level of [CheR] and [CheB] exhibit the longest relaxation time. This kinetic model also suggests 

that the relaxation time governs the chemotactic response and, therefore, cells with the largest 

relaxation time should also exhibit the largest response, that is, a longer drift toward the gradient 

of attractant. Another key result of this kinetic model is that the chemotactic response peaks for 

wild-type levels of CheR and CheB. We experimentally tested this prediction with swarming and 

capillary assays. 

 

Swarming experiments 

 To characterize how the chemotactic efficiency is controlled by various levels of CheR 

and CheB, we first performed swarming assays by varying the expression of either a single gene 

(cheR or cheB) (Figs. 3A and 3B) or simultaneously two genes (Fig. 3C). We used cheR and 

cheB cells complemented with different YFP-CheR (for ΔcheR and ΔcheRΔcheB cells) and 

CheB-CFP (for ΔcheB and ΔcheRΔcheB cells) concentrations. We calibrated [YFP-CheR] and 

[CheB-CFP] relative to wild-type levels that re-establish the wild-type chemotaxis response from 

capillary experiments (methods) in the complemented mutants. We then used the relationship 

between inducer concentration and the [YFP-CheR] and [CheB-CFP] to estimate their 

concentration in swarming experiments (Fig. S1). To characterize how effectively bacteria can 

respond to a gradient of attractant, we defined (Methods) metrics that are specific either to 

swarming, called ‘chemotaxis efficiency’, or to capillary assays, called ‘chemotaxis response’. 

For relative [YFP-CheR] less than wild-type levels in the ∆cheR mutant cells, the chemotactic 

efficiency decreases sharply with [YFP-CheR]. By contrast, when [YFP-CheR] is greater than 

the wild-type level, we observed no significant change in the chemotactic efficiency compared to 

that of wild-type level. The highest [YFP-CheR], fivefold higher than wild-type levels, resulted 

in a slight decrease in chemotactic efficiency from that of wild-type. In the ∆cheB mutant cells, 

the maximum chemotactic efficiency at wild type CheB-CFP levels was roughly half of the wild-

Page 7 of 21

Springer 233 Spring Street New York, NY 10013

Current Microbiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 8

type value. In the double mutant cells, the chemotactic efficiency peaked near the ratio of 

relative concentrations [YFP-CheR]/[CheB-CFP] ~1, where the chemotactic efficiency was 

roughly half of that observed in wild-type cells. At lower [YFP-CheR]/[CheB-CFP] ratios, the 

chemotactic efficiency decreases steeply, but at higher ratios, it decreases weakly as a function of 

the ratio.  

 

Capillary experiments 

We performed capillary experiments in media that does not support cell growth, making the 

results easier to interpret than those of the swarming assay. We used the same strains and 

plasmid constructs as in the swarming assays. When we varied CheR and CheB independently, 

we found that the maximal chemotactic responses were approximately comparable to that of 

wild-type (Fig. 3A and 3B). In addition to the single gene mutants, we also performed the 

capillary experiments for the CheR and CheB double deletion strain (ΔcheR-ΔcheB, RP2867) 

transformed with the same plasmids and induced at various YFP-CheR and CheB-CFP levels 

(Figs. S2 and S3). In the double mutant cells, the chemotactic response peaked near the relative 

ratio [YFP-CheR]/[CheB-CFP] ~1 (Fig. 3C) to a value that approximately corresponded to the 

wild-type chemotactic response. We hypothesize that the lower peak in Fig. 3C (half of the peak 

height in Fig. 3B) is due to gene expression noise, which is larger when cheR and cheB are 

expressed from plasmids than when they are expressed directly from the chromosome [21]. 

When both genes are expressed from plasmids, it is expected that the noise smoothes out the 

chemotactic response by averaging the responses of single cells that have very different CheR 

and CheB expression levels in the same population. According to this hypothesis, wild-type cells 

should have an even higher peak in chemotactic response than that observed in Fig 3B. 

Moreover, when cheR and cheB are both expressed from distinct plasmids, the resulting noise is 

even larger than when only a single gene is expressed from a plasmid and smoothes out the 

average response in such a way that it is smaller than that of wild-type cells. 

Because the chemotactic response in capillary assays is governed solely by the swimming 

behavior of bacteria and not by their growth, we can directly interpret the chemotactic response 

as a function of protein concentration of chemotaxis proteins. We found that the chemotactic 

response from the capillary assays peaked more sharply and, therefore, was more fine-tuned to 

the wild-type [CheR]/[CheB] compared to the swarming assay results. The chemotactic response 
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collapsed to near zero at high and low [YFP-CheR], whereas the chemotactic efficiency from 

swarming assays remained nonzero for large concentrations of CheR and CheB.  

Using high-throughput capillary assays allowed us to establish that the chemotactic response 

of a population of bacteria is fine-tuned and depends sharply on a specific ratio of CheR and 

CheB. This experimental result is in agreement with the kinetic model [12] that predicted how 

the relaxation time in response to a small stimulus varies as a function of [CheR]/[CheB]. In this 

model, the relaxation time was used as a proxy to estimate how the chemotactic response would 

vary with [CheR]/[CheB] and was also found to peak sharply in wild-type cells. Altogether, 

these results suggest that the ratio [CheR]/[CheB] is fined-tuned to a specific value that 

optimizes chemotaxis. For example, cheR and cheB are contiguous genes in meche operon, an 

arrangement that was found to reduce expression noise between the two genes [14,12]. 

Additionally, the negative-feedback loop on CheB is known to maintain a specific 

[CheR]/[CheB-P] value [14]. Our results suggest that the selection of such mechanisms may be 

the result of a strong evolutionary pressure to maintain bacteria with efficient chemotactic 

behavior. 
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Captions 

 

Fig. 1. Schematic of the high-throughput capillary apparatus  

In the high-throughput capillary apparatus, the upper 48 capillaries (left) contained 10-2 M L-

aspartate in motility medium and the lower 48 capillaries (right) contained only motility medium. 

We filled the capillaries with the medium by slowly pumping the syringe (Methods) and 

maintained the medium within the capillaries by locking a valve. When the capillary system was 

placed in a 96-well plate containing cells in motility medium, the L-aspartate solution in the 

upper capillaries produced a gradient in the wells, attracting the cells towards the capillary 

entrance (lower left). In the lower control wells, cells entered the capillaries exclusively by 

diffusion (lower right).  

 

Fig. 2. Relative relaxation time as a function of [CheR]. 

Relative relaxation time is defined as the relaxation time associated with the total CheA kinase 

activity to a small external stimulus, normalized by the relaxation time of wild-type cells based 

on the model in ref. 12. [CheR] is calibrated relative to the wild-type level. The data is plotted 

from Figure 2D in ref. 12. 

  

Fig. 3. Effect of relative chemotactic protein concentration on chemotactic behavior.  

We measured the effects on chemotaxis of varying the relative concentrations of (A) YFP-CheR 

in ∆cheR cells (RP4968), (B) CheB-CFP in ∆cheB mutant cells (RP4992), and (C) both YFP-

CheR and CheB-CFP in cheR-cheB cells (RP2867). In the capillary assay (black), we 

measured chemotactic behavior as the chemotactic response for various inducer concentrations 

(Methods). We normalized the chemotactic response such that it peaked at chemotactic response 

= 1. Protein concentrations were normalized such that chemotactic responses peaked at (A) 

[YFP-CheR] = 1, (B) [CheB-CFP] = 1. For (C) we kept the same normalizations for [YFP-CheR] 

and [CheB-CFP] as in (A) and (B). In the swarming assay (grey), we measured chemotactic 

behavior as chemotactic efficiency (Methods). For chemotactic efficiency, we estimated the 

relative [YFP-CheR] and 1/[CheB-CFP] values from the inductions curves for the single gene 

(Fig. S1) and double gene (Figs. S2 and S3) mutants. (B) Low [CheB-CFP] (high 1/[CheB-CFP]) 

have large error bars because these expression levels are close to the background level, and we 
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do not show data for 1/[CheB-CFP] more than threefold higher than the wild-type level. (C, 

inset) We binned the data by the relative [YFP-CheR]/[CheB-CFP] (chemotactic response: 15 

data points per bin. Chemotactic efficiency: 9 data points per bin) and averaged the functional 

relationship between the chemotactic response or the chemotactic efficiency and the relative 

[YFP-CheR]/[CheB-CFP] for each bin. Error bars are the standard error. 
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Fig. S1. Induction curves for YFP-CheR and CheB-CFP for single gene mutants in the 

capillary assay. (A) Fluorescence intensity of the YFP-CheR proteins as a function of the 

concentration of the inducer IPTG used in capillary experiments. The grey line is the best fitted 

Hill function to the data points: A·[IPTG]N/([IPTG]N + BN) + C, A=1239.0, B=41.1 µM, C=84.4 

and N=1.5 with R2=0.99. (B) Fluorescence intensity of the CheB-CFP proteins as a function of 

the concentration of the inducer aTc used in capillary experiments. The grey line is the best fitted 

Hill function to the data points: A·[aTc]N/([aTc]N + BN) + C, A=6299.3, B=12.3, C=24.4 and 

N=5.3 with R2=0.92. 
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Fig. S2. The fluorescent intensity of YFP-CheR as a function of [IPTG] in capillary 

experiments with cheR-cheB cells.  

We measured the fluorescence intensity of YFP-CheR from cheR-cheB cells in the capillary 

experiments. The grey line is the best fitted Hill function to the data points: A·[IPTG]N/([IPTG]N 

+ BN) + C, A=1480.4, B=28.8 µM, C=143.3 and N=1.5 with R2=0.76. 
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Fig. S3. The fluorescent intensity of CheB-CFP as a function of [aTc] in capillary 

experiments with CheR-CheB cells.  

We measured the fluorescence intensity of CheB-CFP from cheR-cheB cells in the capillary 

experiments. The grey line is the best fitted Hill function to the data points: A·[aTc]N/([aTc]N + 

BN) + C, A=12129, B=37.0, C=123.7 and, N=6.0 with R2=0.83. 
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