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The effects of stress and trauma on brain and
memory: A view from developmental
cognitive neuroscience

CHARLES A. NELSON AND LESLIE J. CARVER
University of Minnesota

Abstract
Many aspects of brain development depend on experience. Because the major macro-morphological events of brain
development occur over the first 2–3 years of postnatal life, this time period can be considered both a period of
opportunity as well as a period of vulnerability. In this paper we describe how experience with stress early in life
can have a negative impact on certain aspects of brain development, and specifically, those neural circuits that
underlie memory. We also describe the effects of traumatic events on the development of the neural basis of
memory. In support of our argument, we review the literature on brain, stress, and memory in the context of
development. Based on this review, we suggest that the developing brain is particularly vulnerable to the harmful
physiological effects of stress, which in turn has the potential to lead to impairments in memory. Unfortunately,
there are few empirical data that directly address this hypothesis. In this context we offer a number of suggestions
for future research.

In this paper we examine the possible delete- Here we intend to demonstrate that the neural
mechanisms at the cellular level that underlierious effects of stress on the developing brain,

and at the behavioral level, on the develop- functional plasticity, including long-term po-
tentiation (LTP) and axonal regeneration, andment and formation of memory. The thesis

that we will put forward is that stress acts on that are adaptive in the normally developing
child, will prove maladaptive to the child ex-known neural circuits, a subset of which over-

lap with those that subserve memory. As a posed to early, repetitive, and/or chronic
stress. In other words, although plasticity inresult, we will establish a potential neurologi-

cal basis for stress-induced alterations in the developing brain represents a window of
opportunity in normal circumstances, it alsomemory. In addition, because our research

agenda is with the study of development we represents a period of vulnerability in adverse
ones.will cast this thesis in a developmental light.

To provide a compelling argument in sup-
port of our thesis, we begin with a brief over-

The writing of this paper was made possible by grants view of memory and the neural bases of mem-
from the National Institutes of Health (NS23389) and the ory, and then proceed to discuss these topics
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tion, and Cognition, and a University of Minnesota dis- first year of life, although much development
sertation fellowship to the second author. awaits further elaboration of both limbic and
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Here we focus on both moderate levels of cally include the ability to recall events,
objects, or places, or to recognize things asso-stress and acute and/or chronic levels, includ-

ing trauma. Again, we begin with a review of ciated with such events. Explicit memory can
occur on a rapid time frame, in as little as onethe adult findings, and then turn to the child

literature. Here we will make clear several trial and under certain circumstances, may in-
volve some aspect of “self.” For example, theknown effects of stress on the brain. For ex-

ample, stress can alter glucocorticoid recep- subject may see him/herself in some scene,
such as what he/she was doing when John F.tors in regions of the hippocampus. In addi-

tion, some stressors can exert long-lasting, Kennedy was assassinated or when the space
shuttle Challenger exploded.seemingly permanent effects on the brain. The

dentate region of the hippocampal formation Implicit memory, on the other hand, is typ-
ically thought to reflect a cluster of differentcan experience permanent cell loss as a result

of prolonged stress. Finally, the developing subtypes of memory, although collectively, all
are distinct from explicit memory. Indeed,brain may be particularly vulnerable to stress.

Exposing fetal monkeys to unpredictable loud perhaps a better way to frame this is that im-
plicit memory as a whole represents a typesounds, for example, seemingly has perma-

nent effects on postnatal neurobehavioral de- of nondeclarative memory. Thus, all forms of
implicit memory are assumed to be uncon-velopment.

Having established the link between brain scious, to require multiple trials to acquire,
and may not involve the self at all. One exam-and memory and between brain and stress, in

the next section of our paper we attempt to ple of implicit memory is priming, which
might involve presenting subjects with stimuliintegrate across these domains. Here we ex-

amine the neural bases of changes in memory in a study phase that reappear briefly or in
degraded form during a test phase. A subject’sthat are stress-induced or perhaps more parsi-

moniously, stress-related. Because this is not faster or more accurate identification of the
test items relative to similar but unstudiedthe main area of activity of our laboratory, we

will depend heavily on the work of other in- items is taken as evidence of priming. A sec-
ond form of implicit memory might be proce-vestigators. The developmental literature on

this topic is not extensive, and a portion of dural learning. An example of a procedural
learning task is the Serial Reaction Timeour time will be spent on describing fruitful

areas of future research. It will be these rec- (SRT) task, in which subjects are required to
respond to a pattern of lights flashing acrossommendations that will conclude our paper.
a screen. In such a case, the subject may show
no overt, conscious awareness of learning the

What Is Memory?
pattern; for example, when asked, “did you
see a pattern,” the subject might respondAlthough the jury is still deliberating, most

cognitive psychologists agree that there are “what pattern?” Yet, despite the lack of
awareness, the subject will nonetheless re-likely two major types of memory: explicit (or

declarative) memory and implicit (or nonde- spond faster and faster, indicating that the pat-
tern has been detected, albeit unconsciously.clarative) memory. The former typically re-

fers to memory that can be stated declara- A partial list of other examples of implicit
memory includes conditioning, skilled motortively, that can be brought to mind as an

image or proposition, that exists in some tem- learning, and artificial grammar learning.
poral time frame, and that, at least in the
human adult, is memory of which we are con-

What is the Neurobiological Bases of
sciously aware. In discussions of develop-

Memory?
ment, however, it may not be reasonable to
impose the requirement of conscious aware- Although cognitive psychologists have con-

ducted hundreds of clever and ingenious stud-ness on the nonverbal organism, particularly
the human infant (see Nelson, 1997, for dis- ies designed to distinguish these types of

memory at the behavioral level (e.g., see Tul-cussion). Examples of explicit memory typi-
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ving, 1985 for discussion), much of the evi- the effect of leaving him with severe antero-
grade amnesia. R.B. was of normal intelli-dence in support of this distinction has come

from cognitive neuroscience. Here the ques- gence and performed normally in cognitive
tasks except those involving explicit memory,tion has been whether there are different neu-

ral systems that subserve these different types on which he was severely impaired. After 5
years of study, R.B. died, leaving his brain toof memory. Based on several decades of re-

search, it now appears that explicit memory be examined by the investigators (see
Schacter, 1996 for a summary of this case).depends disproportionately on structures that

lie in the medial temporal lobe (e.g., hippo- Based on previous work by this group (for
contemporaneous and subsequent reviews, seecampus, rhinal cortex, parahippocampal gy-

rus), whereas the structures that subserve im- Squire, 1986, 1987, 1992, 1994), as well as
work with monkeys in which selective lesionsplicit memory vary depending on the subtype

of memory being discussed. For example, vi- were performed (e.g., Bachevalier & Mishkin,
1984; Malamut, Saunders, & Mishkin, 1984;sual perceptual priming likely depends on ar-

eas of the visual cortex, whereas auditory Mishkin, 1982; Zola–Morgan, Squire, Rem-
pel, Clower, & Amaral, 1992), the authorsword priming might depend on the auditory

cortex. Similarly, conditioning may depend predicted that R.B. would show evidence of
damage to the hippocampus and surroundingon the cerebellum and certain brain stem nu-

clei. Procedural learning, such as portrayed in cortex. Autopsy results were not only consis-
tent with this, but even more impressive wasthe SRT task, may depend on the basal gan-

glia (for an excellent overview of these sys- the specific finding that hippocampal region
CA1, one of several hippocampal regionstems, see Schacter & Tulving, 1994).

The human evidence in support of the neu- containing pyramidal cells, was bilaterally de-
stroyed by the ischemic infarct. It was thoughtral dissociation of memory types typically

comes from two sources. The first and most that this selective damage was due to the vul-
nerability of this region of the hippocampuscommon is to study individuals who have suf-

fered discrete lesions of the brain and exam- to metabolic disturbances, such as interrup-
tions in blood supply (for discussion, seeine the effects of performance on different

memory tasks. A second is to perform neuro- Squire & Zola–Morgan, 1991).
In neuroimaging studies, a standard ap-imaging studies of both brain damaged and

neurologically intact individuals engaged in proach to the study of function–structure rela-
tions in the context of memory is to have sub-memory testing. A good historic example of

the former, of course, can be found in patient jects perform some memory task while being
examined using positron emission tomogra-H.M., who underwent surgical resection of

both temporal lobes. Following the surgery, phy (PET) or functional magnetic resonance
imaging (fMRI). PET studies typically in-performed in 1953, H.M. was found to suffer

acute anterograde amnesia; that is, he could volve the injection of a radioactive substance,
most often oxygen. The part of the brain mostform no new memories, although many types

of implicit memory were intact (for an excel- involved in performing the task will require
more oxygen. As the radioactive oxygen di-lent lay history of this case, see Hilts, 1995).

A more recent and even more startling exam- minishes, positrons are emitted, and a positron
detector will essentially compute the point ofple of the effects of brain damage on memory

can be found in a study reported by Zola– origin of these particles; that is, will localize
in the brain where they came from. In so do-Morgan, Squire, and Amaral (1986). These

authors conducted lengthy and extensive test- ing, one is able to localize whatever function
was being tapped by the task. In contrast,ing on a patient referred to as R.B. At age 52

years, R.B. underwent coronary artery bypass fMRI capitalizes on the fact that under strong
magnetic fields, normally nonmagnetic mate-surgery, with the unfortunate side effect being

that he experienced an arterial tear that re- rials will become magnetic (the principle of
paramagnetism). Oxygen is one such material.sulted in an acute ischemic episode. This in-

terruption in the blood supply to his brain had Thus, as with PET the part of the brain most
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involved in performing some task will place ceived very little study, with the exception of
a handful of investigators interested in devel-the greatest demands on oxygen. Over the

course of seconds, this oxygen will gradually opmental cognitive neuroscience (see, in par-
ticular, empirical articles and reviews by Dia-become deoxygenated, and it is these deoxy-

genated byproducts that can be observed un- mond, 1990, 1992, 1995; Diamond & Doar,
1989; Janowsky, 1993; Johnson, 1997; Nel-der strong magnetic fields. This becomes

manifest by superimposing this functional ac- son, 1994, 1995, 1996, 1997; and work by
Bachevalier and colleagues on the developingtivity (i.e., deoxygenated blood) on to each

subject’s structural magnetic resonance image. monkey; for example, Bachevalier, 1992;
Bachevalier, Brickson, & Hagger, 1993; Web-Using PET, Squire et al. (1992) have re-

ported that regions of the right posterior cor- ster, Bachevalier, & Ungerleider, 1995). For
the following reasons, this is not surprising.tex are activated during visual word priming

and the right hippocampus to a greater degree First, historically there has been a schism be-
tween the study of behavior and the study ofthan the left is activated during recall memory

for words. Similarly, Ungerleider and col- the brain, with relatively little cross-fertiliza-
tion between disciplines. Although this hasleagues have reported activation of the hippo-

campus and surrounding region during a vari- changed dramatically over the past decade,
especially in the field of adult cognitive neu-ety of tests of explicit memory, using both

PET and fMRI (for review, see Ungerleider, roscience, change has been slower in the de-
velopmental sciences. Second, we know less1995). Collectively, then, the neuroimaging

work correlates with the lesion work in con- about human brain development than we do
about such development in nonhuman pri-firming the view that there exists some degree

of isomorphism between different types of mates and nonprimates (particularly inverte-
brates), and as a result, our models of brain–memory and their underlying neural substrate.

Overall, a survey of the adult human and behavior relations are underdetermined. Finally,
and perhaps most importantly, the methodsmonkey literatures converge to suggest that

explicit and implicit memory are dissociable for studying the relation between brain devel-
opment and memory development are farat the behavioral level and, as well, are sub-

served by different neural systems. In the case more limited when it comes to studying in-
fants and young children than studying olderof explicit memory, the hippocampus and sur-

rounding structures (e.g., rhinal cortex) and children and adults. For example, although
PET studies have been done routinely in chil-the cortical structures communicating with

these limbic structures play a primary role. In dren who present medical cause (e.g., ascer-
tainment of a seizure focus, identification ofthe case of implicit memory, the specific cir-

cuitry involved varies depending on the type dominant hemisphere for language, or effects
of tumor on cognitive functions; see Chugani,of implicit memory (see previous discussion).

Importantly, unless the subject begins to make 1994; Chugani & Phelps, 1986; Chugani,
Phelps, and Mazziotta, 1987; Muller et al.,explicit the task requirements, all forms of

implicit memory are thought not to depend on 1997; Muller, Chugani, Muzik, & Mangner,
in press), PET cannot readily be performedthe structures that subserve explicit memory.

It is these observations that support the thesis with normally developing children due to ex-
posure to ionizing radiation. Similarly, fMRIthat implicit and explicit memory represent

different memory systems. In this next section has proved to be a powerful procedure for
studying functional neuroanatomy in childrenwe discuss these observations in the context

of development. older than the age of 5–6 years (see Casey et
al., 1995; Nelson et al., 1998). However, such
studies are difficult to perform with children

The development of memory systems and
below this age, primarily because of motion

their neurobiological bases
artifacts. Finally, in addition to the method-
ological limitations just described, it is alsoUnfortunately the study of the neurobiological

bases of human memory development has re- the case that the kinds of discrete brain injur-
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Table 1. Neural structures thought to underlie different memory tasks used
in infancy and early childhood and maturational time table (in postnatal
months/years) for emergence

Maturational
Tasks Structures Time Frame

Implicit memory
Visual expectancies Striatum 3–? months
Conditioning for

Acquisition Cerebellum/brain stem 3–? months
Retention Hippocampus 1–12? months

Visual perceptual priming Visual cortex + ? 6–? months
Serial reaction time Caudate + ? ?–3/4 years

Preexplicit memory
Visual paired comparison (no delay) Hippocampus 0–3 months
Habituation (no delay) Hippocampus? 0–2 months

Rhinal cortex?
Explicit memory

Visual paired comparison/habituation Hippocampus 7+ months
requiring categorization and/or Rhinal cortex?
delay

Delayed nonmatch to sample (delay) Hippocampus/rhinal 12–?
cortex cortical area TE

Elicited imitation (delay) Hippocampus + ? 9–12 months
Cross-modal recognition memory Hippocampus/amygdala 6–12 months

ies that often afflict adults and that lend them- which is responsible for the acquisition of
learned, voluntary motor movements (seeselves to neuropsychological analyses of

memory occur infrequently in children. For Haith, Wentworth, & Canfield, 1993 for re-
view). Similarly, studies of conditioning, suchexample, ischemic injuries that can selectively

damage the medial temporal lobe, such as as leg-kick conditioning likely depend on the
cerebellum for motor coordination as well asstrokes and cardiac arrest, rarely occur in chil-

dren. For all these reasons, then, it is not en- learning and associated brain stem circuitry,
and possibly the hippocampus for recognitiontirely surprising that there are relatively few

cognitive neuroscience studies of memory de- of novelty (see Rovee–Collier, 1997 for re-
view). Priming has also been observed asvelopment.

Recently one of us (Nelson, 1995, 1997) early as 6 months of age (Webb & Nelson,
1998), suggesting yet another form of implicithas proposed a model of memory develop-

ment that has its basis in the neurosciences, memory that makes its appearance early in
life. In contrast, studies employing the de-and that has implications for understanding

how early experiences (including stress) af- layed non-match to sample (DNMS) proce-
dure, in which the subject is presented with afect different memory systems. Drawing on

research with nonhuman primates, neuropsy- sample stimulus and then, following some de-
lay, is asked to distinguish the novel from fa-chological and neuroimaging studies of adult

humans, and the electrophysiological and be- miliar stimuli by retrieving the novel one,
likely reflects a form of explicit memory. Inhavioral development literatures on memory,

Nelson has proposed that implicit and explicit addition, studies of cross-modal recognition
memory and elicited imitation (see Bauer,memory can, in fact, be dissociated early in

life (see Table 1). For example, studies of vi- Kroupina, Schwade, Dropik, & Wewerka,
1998) also likely measure forms of explicitsual expectancy learning, in which infants’

eye movements are observed to “ask” whether memory. Importantly, Nelson proposed that
the more mature forms of explicit memory,they observe a pattern in a series of moving

lights, likely depends on the basal ganglia, which depend on both the hippocampus and
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surrounding structures, most importantly, the tion of the prefrontal cortex. Overall, then, al-
though the neural machinery required of ex-rhinal cortex and association cortices (e.g.,

area TE), likely do not develop until close to plicit memory matures rapidly between the
child’s first and fourth birthdays, it is likely1 year of age, and undergo considerable re-

finement over the next several years. One ex- the development of the prefrontal cortex,
which also occurs around this time, that facili-ample would be the ability to verbally recall

information; another would be the ability to tates more sophisticated uses and forms of
memory, including less forgetting and greaterremember information for long periods of

time (e.g., months). Until cortical structures long-term storage.
Based on this model, it seems reasonableand the connections between the hippocampal

circuitry and the cortical structures mature to offer the following proposals. First and
most important, because an adult-like explicit(which may not be until after 2–4 years of

age), infants may not be capable of recalling memory system does not begin to emerge un-
til close to 1 year of age and because the corti-events, simply because such events may not

have been recorded into any permanent store. cal systems that are involved in long-term
memory storage and retrieval do not matureFinally, there are forms of memory that

Nelson referred to as pre-explicit memory, until after 2 years of age, the ability to con-
sciously recall the events of our lives that oc-that depend principally on the hippocampus

but not related structures. An example of pre- curred before the age of 2 or so years may
prove difficult. This is particularly true asexplicit memory might be simple novelty

preferences observed in even very young time passes, such as a 10-year-old recalling
what happened 8 years previously. In con-(e.g., 2 month old) infants. Nelson proposed

that pre-explicit memory undergoes a trans- trast, as Bauer and colleagues (1998) demon-
strate 2-year-olds may be able to “recall”formation as the child approaches 1 year to

become the adult explicit memory system. It highly specified events that occurred 6
months earlier, although the extent to whichmust be noted, however, that the system does

not begin to reach adult-levels of maturity un- this is autobiographical memory in the con-
ventional sense remains to be determined. Ittil the end of the preschool period (see Lu-

ciana & Nelson, 1998). Although Nelson did may be more parsimonious to suggest that re-
call observed before 2 years of age is explicit,not do so at the time, it seems reasonable to

speculate that what makes possible the but not necessarily episodic (autobiographi-
cal). For example, infants may recall the in-changes in explicit memory through the pre-

school period is the development of various formation that occurred in a previously en-
countered event, but may not recall the eventprefrontal functions that can come to the as-

sistance of the medial temporal lobe (explicit) in which they acquired this knowledge. This
hypothesis is consistent with available neuro-memory system. For example, it is generally

not until the preschool period that children be- biological data on semantic and episodic
memory. Episodic memory is more dependentgin to routinely employ strategies to help

them remember things; the use of strategies, on prefrontal structures that develop relatively
late, while semantic memory is less dependentof course, is a quintessential prefrontal func-

tion. In addition, being able to multitask (e.g., on these structures (Markowitsch et al., 1993).
This is not the forum for debating whetherdevelop set and shift set while simultaneously

encoding new material) is also a prefrontal the sort of recall seen before 2 years of age
differs from that seen later in development.function, one that again should facilitate an

improvement in memory. Finally, an impor- Rather, it is simply our contention that we
have seen no empirical evidence to supporttant component of memory development is

the awareness that things can be forgotten, a the claim that we are able to recall the epi-
sodes of our lives below the age of 2–3 years.form of metamemory that leads to understand-

ing of the need to employ strategies. It seems Moreover, the bulk of the neuroscience evi-
dence argues for our assertion that the devel-reasonable to speculate that this oversight

function of the brain also represents a func- opment of the neural circuitry involved in
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long-term memory develop slowly over the suggestions for the kinds of studies that need
to be done to test our hypotheses.infancy and preschool period. The relevant

structures that are thought to develop during
this interval include the circuits that pass

Neural Plasticity and Memory
along information from the medial temporal
lobe, where initial encoding and consolidation Later in this paper, we argue that the effects

of stress on the developing brain represent anis performed, and the cortex, where memory
is stored. It is neural maturation, then, that adverse form of neural plasticity. Before do-

ing so, however, it would be useful to firstlikely accounts for the gradual “recovery”
from infantile amnesia. demonstrate how neural plasticity might work

to the advantage of the organism. To do soSecond, because the structures that under-
lie some forms of implicit memory may we first provide a model of neural plasticity,

and then turn to some specific examples ofemerge before those that subserve explicit
memory, there is the possibility that some plasticity from the monkey literature, and then

move to the human.early memories are in fact laid down in some
permanent storage, although the child will not
have conscious access to these memories.

Experience-expectant and experience-
Here, then, we might expect such memories

dependent plasticity
to express themselves in overt behavior (e.g.,
motor activity), or perhaps through covert Learning and memory require nervous system

modification, most likely by way of synapsesphysiological activity (e.g., skin conductance,
event-related potentials), but not through any formation. Greenough and colleagues (for re-

view, see Black, Jones, Nelson, & Greenough,verbal means. It may well be this system that
is responsible for how experiences in the first 1998; Greenough & Black, 1992) have pro-

posed two mechanisms whereby synapses arefew years of life exert the powerful effects
they do on later development, despite the fact formed, and thus the nervous system can be

modified by experience. The first is referredthat we cannot overtly recall these experi-
ences. One such example may be priming, to as experience-expectant synaptogenesis and

is a processes by which synapses form afterwhereby an exposure to a stimulus at one
point in time increases the probability of “rec- some minimal experience has been obtained.

An oft-cited example is the development ofognizing” (albeit covertly) that stimulus at a
later point in time. A hypothetical example of binocular depth perception, in which normal

visual input is necessary for ocular dominancepriming in a real-life context might be the
strong emotional reaction a 2-year-old might to develop (Crair, Gillespie, & Stryker, 1998).

If the two eyes are not properly aligned,have to a caretaker who physically abused the
child 1 year earlier and whom the child has thereby preventing them from converging ef-

fectively on a distant target, then such col-not seen since the abuse occurred.
Third, because the neural structures that umns will fail to develop normally, and stereo

vision will be compromised. If this conditionsubserve explicit memory undergo tremen-
dous development over the first few years of is not corrected by the time the number of

synapses begins to reach adult values (gener-life (particularly cortical structures), there
should be a great deal of plasticity to this sys- ally by the end of the preschool period), the

child will not develop normal stereoscopic vi-tem. This plasticity, in turn, can be viewed as
both a period of opportunity—that is, it may sion.

In contrast, experience-dependent synapto-prove adaptive for the organism, such as
learning—or a period of vulnerability—that genesis is a process that optimizes the indi-

vidual’s adaptation to unique features of theis, it may prove maladaptive for the organism,
as in disturbances in memory. environment. A good example might be the

information acquired by specific learning.In the remainder of this paper we bring to
bear the evidence that we believe supports our The fundamental difference between experi-

ence-expectant and experience-dependent de-assertions, or lacking such evidence, offer
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velopment is that the former applies (presum- ory and emotional impairments due to damage
to the hippocampus and HPA axis.ably) to all members of a species, whereas the

latter applies differentially to individual mem- In the section that follows we provide ex-
amples of plasticity in the context of memory.bers.

In general, Greenough (e.g., Greenough & Our first example concerns the developing
monkey, after which we turn to the human.Black, 1992) has proposed that the structural

substrate of “expectation” is the unpatterned,
temporary overproduction of synapses that

Neural plasticity of memory circuits
exist within a relatively wide area during a
sensitive period. This sensitive period varies Webster, Ungerleider, and Bachevalier (1991b)

have reported that in the intact (unlesioned)depending upon the system. For example, ex-
perience must be acquired during the first monkey, a transient projection is observed

from inferior cortical area TE to the lateralyears of life for normal development of the
visual system. Subsequent to the sensitive pe- basal nucleus of the amygdala. Interestingly,

this projection is retracted later in develop-riod, synapses that have not formed connec-
tions at all, or that have formed connections ment and is not present in the adult. However,

when area TE, which is adjacent to TEO, isthat are abnormal are retracted. The expected
experience produces patterns of neural activ- removed during the neonatal period (see Web-

ster et al., 1991a), this normally transient pro-ity, targeting those synapses that will be se-
lected for preservation. The model assumes jection is seen in the adult. In addition, tran-

sient projections from area TEO to the dorsalthat synaptic contacts are initially transient
and require some type of confirmation (by part of the lateral nucleus of the amygdala,

which disappear in the adult, tend to expandway of experience) for their continued sur-
vival. If such confirmation is not obtained, into the zone normally occupied by terminals

from area TE when TE is lesioned in infancy.synapses will be retracted according to a de-
velopmental schedule or as a result of compe- Webster et al. (1991a, 1991b) have speculated

that the sparing in performance on the DNMStition from synapses that are clearly estab-
lished. Support for this model comes from the task that has been noted with early TE lesions

may be due to the retention of these earlyobservation that in both humans (e.g., Hutten-
locher, 1994) and monkeys (e.g., Rakic et al., transient projections. Similarly, the presence

of these transient projections early in life in1986), synapses are massively overproduced
early in life, followed later by a pruning back the intact animal, followed by their retraction,

may underlie the account of memory develop-of unused connections. Presumably the pur-
pose of overproducing synapses is to prepare ment outlined earlier. That is, pre-explicit

memory that is solely dependent on the me-the nervous system for a broad range of possi-
ble experiences by overproducing connections dial temporal lobe precedes the development

of explicit memory, as the latter also dependson a widespread basis so that experience-re-
lated neural activity can select a functionally on cortical area TE.

This example from the developing monkeyappropriate subset for further refinement.
As should be obvious, both experience-ex- nicely complements a recent report on the

human. Vargha–Khadem, Gadian, Watkins,pectant and experience-dependent learning
represent windows of opportunity and of vul- Connelly, Van Paesschen, and Mishkin (1997)

reported on three case studies in which dam-nerability. Thus, if an experience occurs at the
right time in development, the organism can age to MTL structures occurred either at birth

(in two cases) or at the age of 9 years. Alltake advantage of that experience and profit
accordingly (e.g., learning). Similarly, if the three patients, tested as adults, were reported

to suffer from significant anterograde amnesiawrong experience occurs (e.g., abuse or
trauma) at the wrong time (i.e., when syn- since the time of their injury. Neuropsycho-

logical evaluations confirmed significantapses are waiting for confirmation), then the
result can be catastrophic; for example, mem- impairments in memory at the time of study
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participation. All three subjects showed im- as stress occurs early in life, the outcome may
not be so favorable. After discussing the liter-pairments in spatial ability, in that they fre-

quently got lost; in temporal ability, in that ature on stress, we will return to a discussion
of differences between anatomic/physiologicnone was well oriented in place and time; and

in episodic ability, in that none could reliably lesions and psychological ones.
remember phone conversations, television

What is stressprograms, and so forth. In all three cases,
MRI revealed bilateral hippocampal pathol- Stress has been defined both behaviorally and

physiologically. Behaviorally, stress has beenogy, which would, of course, be consistent
with their memory impairments. What was thought of as any stimulus that threatens ho-

meostasis (Diorio, Viau, & Meaney, 1993).most remarkable about these individuals,
however, is that all were attending or had at- That is, stress is something in the environ-

ment that might disrupt or change the normaltended regular schools; in addition, all per-
formed in the average to low average range functioning of an individual, including his or

her very assumptions about the nature of theon a variety of tests that collectively reflected
semantic memory. They had all learned to world and the self. Trauma involves stress

that is more severe than and exceeds normalread, write, and spell (although one patient,
born nearly 3 months prematurely and who at human resources for coping (Hubbard,

Realmuto, Northwood, & Masten, 1995). Ad-the age of 4 years suffered sustained seizures,
had spelling that was not in the normal range) ditionally, an important feature of traumatic

events is the interpretation of them by the sub-and their speech and language functions were
normal, including normal acquisition of word ject (Cicchetti & Toth, 1997). Unlike chronic

stress, traumatic events can be single occur-meaning. The fact that all had reasonably in-
tact semantic memory in the face of deep dis- rences that have a profound impact on the in-

dividual and his or her development.turbances in episodic memory, and in the face
of bilateral hippocampal damage, was a sur- Physiologically, stress is defined by the ac-

tivation of autonomic processes with which itprising outcome. That is, how could someone
who cannot acquire new information (the hall- is associated. The primary physiological stress

response that has been characterized is the hy-mark of global anterograde amnesia) show
sparing in semantic (i.e., fact-based) memory? pothalamic-pituitary-adrenal (HPA) axis. In

this system, the hypothalamus releases cor-The authors proposed that because the rhinal
cortex was intact in these individuals, all re- ticosterone releasing factor (CRF) to the

anterior pituitary. In response, the anterior pi-tained the ability to form context-free seman-
tic memories; however, because of hippocam- tuitary synthesizes and releases adrenocortico-

trophic hormone (ACTH). ACTH in the circu-pal damage, none developed the ability to
form context-rich episodic memories. latory system reaches the adrenal cortex,

where corticosterone or cortisol, depending onBecause microscopic analyses cannot be
performed on the brains of these individuals, the system, is released (Stansbury & Gunnar,

1994). The HPA axis is regulated by a com-it is difficult to determine whether a phenom-
enon like that reported by Webster et al. plex neural system. Under stress, cortisol pro-

duction increases as a result of hypothalamic(1991b) might have also played a role in such
sparing. Nevertheless, these data provide a stimulation. After an initial increase in corti-

sol, inhibitory feedback systems in the brain,compelling example of neural plasticity. Spe-
cifically, in the face of early, discrete brain including the hippocampus and pituitary, re-

duce further release of CRF and ACTH (Sa-damage, leading to permanent disability in a
specific domain (episodic memory), compen- polsky, Krey, & McEwen, 1986).
sation occurred permitting normal develop-

Stress, brain, and plasticityment in many domains. Unfortunately, as we
shall see below, when discrete brain damage A number of neural mechanisms are likely in-

volved in the experience-dependent brain de-is not an issue but a psychological lesion such
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velopment model. Of particular importance to Trauma
the current discussion are two different ways
in which stress may affect these mechanisms PTSD is characterized by persistent reexperi-

encing of a traumatic event, numbing andof development. Because the hippocampus
contains one of the highest concentrations of avoidant symptoms, and hyperarousal, and,

specific to children and adolescents, repetitiveglucocorticoid receptors in the brain, it is
likely that high levels of glucocorticoids pro- play and a sense of foreshortened future

(O’Dougherty Wright, Masten, Northwood, &duced during stress may impact on the struc-
ture and function of the hippocampus. High Hubbard, 1997). Although there is relatively

little available information on the effects oflevels of cortisol associated with prolonged
severe stress have a number of impacts on the trauma on brain development and memory,

there is reason to believe that trauma wouldhippocampus. Direct application of high lev-
els of corticosteroids in vitro can lead to atro- adversely affect both. Unfortunately, it is vir-

tually impossible to examine the effects ofphy in pyramidal neurons in the CA3 region
of the hippocampus (Gould & McEwen, trauma in a prospective manner. Retrospective

studies of the developmental neurobiology of1993; Sapolsky et al., 1986). The likely mech-
anism for this atrophy is the reduction in the trauma are limited in methodology because

some standard methods in cognitive neurosci-apical dendtritic tree of the CA3 pyramidal
neurons as a result of interactions between ence are difficult if not impossible to use with

children (as discussed earlier in this article).glucocorticoids, excitatory amino acids, and
glutamanergic receptors (McEwen, 1994). Further, even studies using methods that are

applicable with children cannot be done untilLikewise, in adult rats that are prevented from
moving freely, a highly stressful event for a some time after the trauma occurs. Retrospec-

tive studies of brain and trauma have shownrat, atrophy in the apical dendrites of CA3 py-
ramidal neurons is also observed. Pyramidal abnormalities in hormone regulation (Pynoos,

Steinberg, Ornitz, & Goenjian, 1997), modu-neurons in the hippocampus play an important
role in relaying information to other portions lation of the startle response (Pynoos et al.,

1997), increased hemispheric asymmetry inof the cortex. The importance of the hippo-
campus in consolidating and transporting EEG (Teicher, et al., 1997) and increases in

the slope of the P2-N2 deflection of the event-memories into long term storage likely makes
these cells critically important for normal related potential (McPherson, Newton, Acker-

man, Oglesby, & Dykman, 1997). Particularlymemory function. Thus, factors that affect py-
ramidal cell survival, such as stress, may also important to our discussion of stress, trauma,

and memory are the findings on hormone reg-affect memory. Loss of pyramidal cells in the
hippocampus may contribute to stress-induced ulation. Stress hormones, as we will show, af-

fect a number of systems and structurespsychological lesions of the type we have hy-
pothesized. thought to be involved in explicit memory,

such as the hippocampus. Further, hormonesIn addition, adrenal steroids also appear to
contribute to increased levels of cell death and may also contribute to changes in the implicit

memory system through interactions withreplacement in the dentate gyrus. Through its
influences on cell birth and death in the hip- the amygdala (Roozendaal, Quirarte, & Mc-

Gaugh, 1997). In addition to these physiologi-pocampus, stress may contribute to the equiv-
alent of a psychological lesion similar to ac- cal changes, neuroanatomical differences

have also been observed, especially in the me-quired structural lesions that have been
observed in patients (Vargha–Khadem et al., dial temporal lobe (Stien, Hanna, Koverola,

Torchia, & McClarty, 1997). Magnetic Reso-1997) or surgical lesions such as have been
used in animal memory research (Bachevalier, nance images of the hippocampus of war vet-

erans (Bremner, et al., 1995a) and childhood1990, 1992). In fact, such “lesions” have been
seen in survivors of prolonged trauma who abuse survivors (Bremner, et al., 1997, Stein,

Koverola, Hanna, Torchia, & McClarty, 1997)suffer posttraumatic stress disorder (PTSD), a
topic that we discuss below. show reduced left hippocampal volume rela-
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tive to nontraumatized controls. The lateral- depending upon the memory system in ques-
tion.ized nature of this reduction in hippocampal

volume may be important in relation to mem-
ory deficits in patients with PTSD. As de-

Effects of stress on memory
scribed below, there are specific memory im-
pairments in adults with PTSD that may The effects of stress and trauma on the hippo-

campus and on brain development describedpreferentially affect one hemisphere over the
other. Unfortunately, in the absence of pro- above suggest at least two hypotheses about

the effect of stress on memory. Performancespective studies, it is impossible to determine
whether these effects are caused by trauma, or on tests of hippocampal-dependent memory

should be impacted by exposure to high levelswhether differences in neuroanatomy and/or
physiology evidence an increased vulnerabil- of stress because of the effect of stress hor-

mones on cell birth and death in the hippo-ity to traumatic events.
Although the effect of the cognitive devel- campus. Work with animal models supports

this hypothesis. Handling rats and placingopmental status of the child has been pro-
posed to contribute to the effect of trauma on them in novel environments reduces their

level of performance in hippocampal-depen-the child (O’Dougherty et al., 1997), little is
known about the effect of trauma on the cog- dent maze learning tasks, but not in non-hip-

pocampal dependent habit learning tasks (Di-nitive development of the child. There is a
great deal of debate about whether children amond, Fleshner, Ingersoll, & Rose, 1996).

However, this effect is transient, and dissi-can and do forget traumatic abuse and recover
memories after a long period of time (Loftus, pated when the rats became acclimated to the

new environment so that it was no longerGarry, & Feldman, 1994; Williams, 1994a,
1994b). For example, there have been reports stressful. Stress has also been shown to facili-

tate some forms of learning that depend inof dissociation, forgetting, and later memory
retrieval in individuals who suffered docu- part on the hippocampus, such as some forms

of classical conditioning (Shors, Weiss, &mented abuse in childhood (see Duggal &
Sroufe, 1998, for discussion). However, be- Thompson, 1992). However, there are impor-

tant differences between the types of hippo-cause of the necessarily retrospective nature
of reports of forgetting and remembering in campal memory that are facilitated and im-

paired by stress. Although both forms ofcases of abuse, and the reliance on self-report,
it is nearly impossible to substantiate these learning involve the hippocampus, the struc-

tures involved in each beyond the hippocam-claims. Interestingly, in addition to memory
impairment in the face of trauma, there are pus differ dramatically. Classical conditioning

involves the cerebellum and assorted brain-also examples of heightened memory func-
tion. Patients with PTSD may suffer intrusive stem nuclei, whereas declarative memory in-

volves a complex circuit including the medialand persistent memories of their trauma, and
may show other symptoms that may be asso- temporal lobe and cortical structures. More

importantly, the stressor used by Shors et al.ciated with heightened implicit memory for
the event (Bremner, Krystal, Southwick, & (inescapable shock) was very similar to the

unconditioned stimulus used in the classicalCharney, 1995). The neural mechanisms for
this increase in implicit memory are poorly conditioning paradigm (preorbital shock

paired with noise). It is not clear what the ex-understood, and we will speculate on them
later in the paper, but they may be associated act relation between the nature of the stressor

and the nature of the memory trace is, or whatwith hormonal effects on the amygdala, which
is important in, among other things, condi- is the effect of similarity between the two.

However, given that intrusive, persistent, andtioned responses to highly affective stimuli
(Roozendaal, Quirarte, & McGaugh, 1997). heightened memory is one of the hallmark

symptoms of PTSD, it is not altogether sur-The dichotomous nature of memory symp-
toms in PTSD suggests that the deleterious ef- prising that shock stress produces increased

responsiveness to conditioned shock. Thus, isfects of PTSD on memory vary dramatically
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it most likely the degree of stress and its dura- sual memory was unimpaired in this group of
abuse survivors, but the findings are consis-tion that determines whether and for how long

it will impair memory. tent with previous work by the same group in
patients who suffered PTSD as a result ofThe effect of stress on the developing

memory system is far less well described. trauma in adulthood (Bremner, et al., 1993).
One possible explanation is that because leftEarly stress could lead to long term memory

deficits if the stress occurred during a time hippocampal volume is reduced in PTSD pa-
tients (Bremner, et al., 1995a, 1997), and thewhen the hippocampus is not yet fully mature

and is vulnerable. For example, the develop- left hemisphere is thought to be more in-
volved than the right hemisphere in languagement of object permanence is delayed in mon-

keys who were prenatally exposed to stress processing, abilities that rely on linguistic
competencies, such as verbally memory, arehormones, such as when their mothers were

placed in stressful situations (Schneider, especially vulnerable to the effects of stress.
If the reports of alterations in brain devel-1992). Specifically, pregnant monkeys were

placed in cages in a darkened room and ex- opment hold, it is important to identify the
mechanisms involved in the process. We pro-posed to unpredictable loud bursts of noise.

The infants of the stressed monkeys were pose that developmental plasticity, although
advantageous in the normally developingolder than control monkeys when they be-

came able to find a hidden object on 80% of child, can adversely impact the child develop-
ing under adverse conditions. Because the de-trials presented over two consecutive days,

pointing to delayed development in the veloping brain is plastic and easily molded by
the environment, it is especially vulnerable tostressed animals. However, prenatal stress has

a number of effects on monkeys’ behavior the effects of stress and trauma. Thus, the
mechanisms that are involved in aberrantand physiology (Clarke, Wittwer, Abbott, &

Schneider, 1994; Vallee, et al., 1997). For ex- brain development may be the same mecha-
nisms that are involved in normative plasticityample, in prenatally stressed monkeys, hor-

monal responsiveness to future shock is in- in the developing nervous system. One mech-
anism that may play a particularly importantcreased over nonstressed monkeys. As a

result, it is difficult to conclude that the mem- role in the development of memory system is
plasticity at the synaptic level.ory deficits observed by Schneider were a re-

sult of damage to the neurobiological memory Stress appears to impact synaptic plastic-
ity. In perhaps the most well-described formsystem, or were a result of other behavioral

consequences of prenatal stress exposure of synaptic plasticity in the hippocampus,
LTP, a prolonged burst of high frequency ac-(such as increased release of acetylcholine in

the hippocampus; see Day, Koehl, Deroche, tivity leads to increased responsiveness of the
synapse to later activation. The mechanismsLe Moal, & Maccari, 1998). In addition, Val-

lee and colleagues (1997) failed to find mem- involved in LTP include the activation of glu-
tamate receptors and subsequent changes inory impairment in prenatally stressed adult

rats. Nevertheless, it is clear from the results both the pre- and postsynaptic neuron. LTP
has been proposed as a model for memoryof work with prenatally stressed monkeys that

there is an effect of early stress, either direct formation because it requires repeated and
synchronous activation of two neurons, meet-or indirect, on memory performance.

There is very little research that addresses ing the requirements laid forth by Hebb
(1949) for a cellular mechanism for memorythe issues of memory, brain, and stress in hu-

mans directly (perhaps with the exception of (i.e., it involves high frequency stimulation of
a presynaptic cell that ultimately leads to in-Cushings Disease, which is not relevant to the

present discussion). It is known that adults creased responsiveness of the postsynaptic
cell). Further, because glutamate receptorswho suffer PTSD as a result of childhood

abuse have been shown to have deficits in and glucocorticoids likely are coinvolved in
hippocampal cell death resulting from highverbal, but not in visual short-term memory

(Bremner, et al., 1995c). It is unclear why vi- levels of glucocorticoid exposure, there is pre-
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sumably an interaction between glucocorti- mans yield a complicated picture of the ef-
fects of stress on memory. It appears thatcoid exposure and LTP. Indeed, very high and

very low levels of corticosteroids leads to a parts of the brain that are critically involved
in memory are uniquely impacted by stress.reduction in LTP in the hippocampus (Fili-

pini, et al., 1991, Dubrovsky et al., 1993, However, the effect of stress on memory per-
formance appears to differ depending on theMcEwen, 1994). Because LTP in the hippo-

campus has been hypothesized as a mecha- species studied, the timing, duration and se-
verity of the stressors, and the age of the sub-nism for memory formation, decreased LTP

as a result of high levels of stress may lead to jects when tested. Several questions must be
addressed before the effect of stress on mem-reduced ability to form memory traces.

In addition to its role in memory forma- ory development can be clarified. First, we
must describe the effects of stress and stresstion, LTP may have other roles in the norma-

tive development of the nervous system. In hormones during the period before which the
hippocampal-dependent long-term memorythe developing visual system, for example,

LTP appears necessary for normal develop- system is in place. Lesion studies have shown
that the anatomy of the medial temporal lobement of the visual circuit (Katz & Shatz,

1996). Although there are no data on the role memory system can be altered by early le-
sions to its components (Webster, Bacheva-of neural activity in the development of the

circuits involved in memory, given that other lier, & Ungerleider, 1995). The effect of early
experiences on those connections must also beneural systems require this mechanism, and

given that LTP is known to occur in the earli- described. We have recently shown that im-
aging techniques typically used with adultsest developing structures in the circuit that

controls explicit memory, it seems plausible (e.g., fMRI) can be used to describe the func-
tional neuroanatomy of working memory inthat LTP could be involved in normative de-

velopment of this system during the first year children (Nelson et al., 1998). This methodol-
ogy is particularly important given the earlierof life. Thus, disruptions to LTP as a result

of high levels of stress-induced cortisol in the discussion of “psychological” lesions. Func-
tional imaging studies can provide both func-hippocampus could disrupt the basic forma-

tion of the explicit memory system. tional and neuroanatomical information about
the effect of stress and stress hormones on theRelatively little is known about the effects

of stress on the development of the neural development of the brain. These methods can
be applied to children in a variety of clinicalsystems involved in memory. There is some

evidence that glucocorticoid levels can affect conditions. One such population might in-
clude children who are given repeated dosescell proliferation in some parts of the central

nervous system. Reduced levels of glucocorti- of exogenous glucocorticoids as treatment for
asthma. Not surprisingly, it has been observedcoids following adrenalectomy leads to an in-

crease in the number of proliferating cells that such children suffer deficits in memory
(Annett & Bender, 1994). A second example(Yehuda et al., 1989). Together with the

likely role of stress hormones in cell birth and would include children suffering from chronic
or acute psychological stressors, such as thosedeath (Gould & McEwen, 1993), it would

seem plausible that exposure to high levels of repeatedly separated from their primary care-
taker because of illness or abuse. A final ex-stress hormones in the period during which

memory is developing (i.e., the first few years ample is very premature infants who are
treated with steroids. Such infants typicallyof life) would have a negative impact on the

neural basis of memory. receive steroids to facilitate lung develop-
ment, and in so doing reduce the amount of
time such infants receive ventilatory assis-

Conclusions and Suggestions for Future
tance and reduce the chances of the child from

Research
developing bronchopulmonary dysplasia (BPD).
BPD is characterized by scarred lungs, whichExperimental evidence from a number of ani-

mal models and clinical evidence from hu- in turn predisposes the child to chronic airway
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difficulties (e.g., a vulnerability to upper res- appropriate for the study of the neural basis
of memory development must be applied topiratory infections, etc.). Although infants

have benefited enormously by being treated the question of the effect of early stress on
memory during the time that the neural sub-with steroids (for review, see Neal, 1997), the

down side is that the child is at risk for two strate of memory is developing.
Overall, it is our contention that there ispotential problems. The first, of course, is

damage to the HPA system, and with it the compelling evidence to support the thesis that
the developing nervous system is potentiallyattendant risk of suppressing the child’s stress

response. The second is the potential damage vulnerable to the deleterious, long-term ef-
fects of stress on memory. Given the avail-that could occur to the hippocampus and in

turn, to the development of memory. ability of study populations (e.g., children
who undergo chronic psychological stressorsBecause of the potential adverse effect of

steroid hormones on the hippocampus, the de- or children who are exposed to high levels of
exogenous steroids), and methods for examin-velopment of children in the above examples

must be examined, both for our understanding ing the relation between brain and memory
(e.g., event-related potentials and fMRI, cou-of memory development and for the potential

impact of the therapy on the child. However, pled with well defined psychological tasks), it
was our hope in this paper to provide a concep-the neural correlates of these deficits must

also be described. Finally, methods that are tual framework that will facilitate such work.

References

Annett, R. D., & Bender, B. G. (1994). Neuropsychologi- MRI-based measurement of hippocampal volume in
patients with combat-related post-traumatic stress dis-cal dysfunction in asthmatic children. Neuropsychol-

ogy Review, 4, 91–115. order. American Journal of Psychiatry, 152, 973–981.
Bremner, J. D., Randall, P., Scott, T. M., Capelli, S., De-Bachevalier, J. (1990). Ontogenetic development of habit

and memory formation in primates. In A. Diamond laney, R., McCarthey, G., & Charney, D. S. (1995c).
Deficits in short-term memory in adult survivors of(Ed.), Development and neural bases of higher cogni-

tive functions (pp. 457–484). New York: New York childhood abuse. Psychiatry Research, 59, 97–107.
Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bro-Academy of Sciences Press.

Bachevalier, J. (1992). Cortical versus limbic immaturity: nen, R. A., Mazure, C., Capelli, S., McCarthy, G.,
Innis, R. B., & Charney, D. S. (1997). Magnetic reso-Relationship to infantile amnesia. In M. R. Gunnar &

C. A. Nelson (Eds.), Minnesota Symposia on Child nance imaging-based measurement of hippocampal
volume in posttraumatic stress disorder related toPsychology: Vol. 24. Developmental neuroscience

(pp. 129–153). New York: Erlbaum. childhood physical and sexual abuse—A preliminary
report. Biological Psychiatry, 41, 23–32.Bachevalier, J., Brickson, M., & Hagger, C. (1993). Lim-

bic-dependent recognition memory in monkeys devel- Bremner, J. D., Scott, T. M., Delaney, R. C., Southwick,
S. M., Mason, J. W., Johnson, D. R., Innis, R. B.,ops early in infancy. NeuroReport, 4, 77–80.

Bachevalier, J., & Mishkin, M. (1984). An early and a McCarthy, G., & Charney, D. S. (1993). Deficits in
short term memory in post-traumatic stress disorder.late developing system for learning and retention in

infant monkeys. Behavioral Neuroscience, 98, 770– American Journal of Psychiatry, 150, 1015–1019.
Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll,778.

Bauer, P. J., Kroupina, M. G., Schwade, J. A., Dropik, D. C., Trainor, R. J., Giedd, J., Kaysen, D., Hertz–
Pannier, L., & Rappaport, J. L. (1995). Activation ofP., & Wewerka, S. S. (1998). If memory serves, will

language? Later verbal accessibility of early memo- prefrontal cortex in children during a non-spatial
working memory task with functional MRI. Neuro-ries. Development and Psychopathology, 10, 655–

679. image, 2, 221–229.
Chugani, H. T. (1994). Development of regional brainBlack, J. E., Jones, T. A., Nelson, C. A., & Greenough,

W. T. (1998). Neuronal plasticity and the developing glucose metabolism in relation to behavior and plas-
ticity. In G. Dawson & K. Fischer (Eds.), Human be-brain. In N. E. Alessi, J. T. Coyle, S. I. Harrison, &

S. Eth. (Eds.), Handbook of child and adolescent psy- havior and the developing brain. (pp. 153–175). New
York: Guilford Press.chiatry: Vol. 6. Basic psychiatric science and treat-

ment (pp. 31–53). New York: Wiley. Chugani, H. T., & Phelps, M. E. (1986). Maturational
changes in cerebral function in infants determined byBremner, J. D., Krystal, J. H., Southwick, S. M., & Char-

ney, D. S. (1995a). Functional neuroanatomical corre- [18]FDG positron emission tomography. Science,
231, 840–843.lates of the effects of stress on memory. Journal of

Traumatic Stress, 8, 527–553. Chugani, H. T., Phelps, M. E., & Mazziotta, (1987). Posi-
tron emission tomography study of human brain func-Bremner, J. D., Randall, P. R., Scott, T. M., Bronen, R.

A., Delaney, R. C., Seibyl, J. P., Southwick, S. M., tional development. Annals of Neurology, 22, 487–
497.McCarthy, G., Charney, D. S., & Innis, R. B. (1995b).



Effects of stress 807

Cicchetti, D., & Toth, S. L. (1997). Developmental per- Haith, M. M., Wentworth, N., & Canfield, R. (1993). The
formation of expectations in early infancy. In C.spectives on trauma: Theory, research, and interven-

tion [Preface]. In D. Cicchetti & S. L. Toth (Eds.), Rovee–Collier & L. P. Lipsitt (Eds.), Advances in in-
fancy research (pp. 251–297). Norwood, NJ: AblexRochester Symposium on Developmental Psychopath-

ology (Vol. 8, pp. XIII–XVII). Rochester, NY: Uni- Press.
Hebb, D. O. (1949). The organization of behavior. Newversity of Rochester Press.

Clarke, A. S., Wittwer, D. J., Abbott, D. H., & Schneider, York: Wiley.
Hilts, P. J. (1995). The strange tale of Mr. M. and theM. L. (1994). Long-term effects of prenatal stress on

HPA axis activity in juvenile rhesus monkeys. Devel- nature of memory. New York: Simon & Schuster.
Hubbard, J., Realmuto, G., Northwood, A., & Masten, A.opmental Psychobiology, 27, 257–269.

Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). (1995). Co-morbidity of psychiatric diagnoses with
post-traumatic stress disorder in survivors of child-The role of visual experience in the development of

columns in cat visual cortex. Science, 279, 566–570. hood trauma. Journal of the American Academy of
Child and Adolescent Psychiatry, 34, 1167–1173.Day, J. C., Koehl, M., Deroche, V., Le Moal, M., & Mac-

cari, S. (1998). Prenatal stress enhances stress- and Huttenlocher, P. R. (1994). Synaptogenesis, synapse
elimination, and neural plasticity in human cerebralcorticotropin-releasing factor-induced stimulation of

hippocampal acetylcholine release in adult rats. Jour- cortex. In C. A. Nelson (Ed.), Minnesota Symposia
on Child Psychology: Vol. 27. Threats to optimal de-nal of Neuroscience, 18, 1886–1892.

Diamond, A. (1990). The development and neural bases of velopment: Integrating biological, psychological, and
social risk factors (pp. 35–54). Hillsdale, NJ: Erl-memory functions as indexed by the AB and delayed

response tasks in human infants and infant monkeys. baum.
Janowsky, J. (1993). The development of memory sys-In A. Diamond (Ed.), Development and neural bases

of higher cognitive functions (pp. 267–317). New tems. In M. H. Johnson (Ed.), Brain development and
cognition: A reader (pp. 665–678). Cambridge, MA:York: New York Academy of Sciences Press.

Diamond, A. (1992). Recognition memory assessed by Blackwell Publishers.
Johnson, M. H. (1997). Developmental cognitive neuro-looking vs. reaching: Infants’ performance on the vi-

sual paired comparison and delayed non-matching to science. London: Blackwell Publishers.
Katz, L. C., & Shatz, C. J. (1996). Syraptic activity andsample tasks. IRCS Report 92–11. Philadelphia, PA:

University of Pennsylvania. the construction of cortical circuits. Science, 274,
1133–1138.Diamond, A. (1995). Evidence of robust recognition

memory early in life even when assessed by reaching Loftus, E. F., Garry, M., & Feldman, J. (1994). Forgetting
sexual trauma: What does it mean when 38% forget?behavior. Journal of Experimental Child Psychology,

59, 419–474. Journal of Consulting and Clinical Psychology, 62,
1177–1181.Diamond, A., & Doar, B. (1989). The performance of

human infants on a measure of frontal cortex func- Luciana, M., & Nelson, C. A. (1998). The functional
emergence of prefrontally-guided working memorytion, the delayed response task. Developmental Psy-

chobiology, 22, 271–294. systems in four- to eight-year-old children. Neuropsy-
chologia, 136, 272–293.Diamond, D. M., Fleshner, M., Ingersoll, N., & Rose, G.

M (1996). Psychological stress impairs spatial work- Markowitsch, H. J., Calabrese, P., Liess, J., Haupts, M.,
Durwen, H. F., & Gehlen, W. (1993). Retrograde am-ing memory: Relevance to electrophysiological stud-

ies of hippocampal function. Behavioral Neurosci- nesia after traumatic injury of the fronto-temporal
cortex. Journal of Neurology Neurosurgery and Psy-ence, 110, 661–772.

Diorio, D., Viau, V., & Meaney, M. J. (1993). The role chiatry, 56, 988–992.
Malamut, B. L., Saunders, R. C., & Mishkin, M. (1984).of the medial prefrontal cortex (cingulate gyrus) in

the regulation of hypothalamic-pituitary-adrenal re- Monkeys with combined amygdalo-hippocampal le-
sions succeed in object discrimination learning de-sponsiveness to stress. The Journal of Neuroscience,

13, 3839–3847. spite 24-hour intertrial intervals. Behavioral Neuro-
science, 98, 759–769.Dubrovsky, B., Gijsbers, K., Filipini, D., & Birmingham,

M. K. (1993). Effects of adrenocortical steroids on McEwen, B. S. (1994). Corticosteroids and hippocampal
plasticity. Annals of the New York Academy of Sci-long-term potentiation in the limbic system: Basic

mechanisms and behavioral consequences. Cellular ence, 746, 134–142.
McPherson, W. B., Newton, J. E. O., Ackerman, P.,and Molecular Neurobiology, 13, 399–414.

Duggal, S. & Sroufe, L. A. (1998). Recovered memory Oglesby, D. M., & Dykman, R. A. (1997). An event-
related brain potential investigation of PTSD andof childhood sexual trauma: A documented case from

a longitudinal study. Journal of Traumatic Stress, 11, PTSD symptoms in abused children. Integrative
Physiological and Behavioral Science, 32, 31–42.301–321.

Filipini, D., Gijsbers, K., Birmingham, M. K., & Dubrov- Mishkin, M. (1982) A memory system in the monkey.
Philosophical Transactions of the Royal Society ofsky, B. (1991). Effects of adrenal steroids and re-

duced metabolites on hippocampal long-term potenti- London, Series B, 298, 85–92.
Muller, R.-A., Muzik, O., Rothermel, D., Behen, M. E.,ation. Journal of Steroid Biochemistry, 40, 87–92.

Gould, E., & McEwen, B. S. (1993). Neuronal birth and Downey, R., Chakraborty, P. K., & Chugani, H. T.
(1997). Finger movement in children: Less distinctdeath. Current Opinion in Neurobiology, 3, 676–682.

Greenough, W. T., & Black, J. E. (1992). Induction of neocortical activation profiles and reduced cerebellar
involvement compared to adults. Neuroimage, 5, S11.brain structure by experience: Substrates for cognitive

development. In Gunnar, M. R., & Nelson, C. A. Muller, R.-A., Chugani, H. T., Muzik, O., & Mangner, T.
J. (in press). Brain organization of motor and lan-(Eds.), The Minnesota Symposia on Child Psychol-

ogy: Vol. 24. Developmental behavioral neuroscience guage functions following hemispherectomy: A [15O]-
water PET study. Journal of Child Neurology.(pp. 155–200). Hillsdale, NJ: Erlbaum.



C. A. Nelson and L. J. Carver808

Neal, C. (1997, June). Glucocorticoids and the premature Squire, L. R. (1987). Memory and brain. New York: Ox-
ford Press.neonate. Colloquium at the University of Michigan.

Nelson, C. A. (1994). Neural correlates of recognition Squire, L. R. (1992). Declarative and non-declarative
memory: Multiple brain systems supporting learningmemory in the first postnatal year of life. In G. Daw-

son & K. Fischer (Eds.), Human behavior and the and memory. Journal of Cognitive Neuroscience, 4,
232–243.developing brain (pp. 269–313). New York: Guilford.

Nelson, C. A. (1995). The ontogeny of human memory: Squire, L. R. (1994). Declarative and nondeclarative
memory: Multiple brain systems supporting learningA cognitive neuroscience perspective. Developmental

Psychology, 31, 723–735. and memory. In D. L. Schacter & E. Tulving (Eds.),
Memory systems 1994 (pp. 203–231). Cambridge,Nelson, C. A. (1996). Electrophysiological correlates of

Early Memory Development. In H. W. Reese & M. MA: MIT Press.
Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S.D. Franzen (Eds.), Thirteenth West Virginia Univer-

sity Conference on Life Span Developmental Psychol- E., Videen, T. O., & Raichle, M. E. (1992). Activa-
tion of the hippocampus in normal humans: A func-ogy: Biological and Neuropsychological Mechanisms.

(pp. 95–131). Hillsdale, NJ: Erlbaum. tional anatomical study of memory. Proceedings of
the National Academy of Sciences, U.S.A., 89, 1837–Nelson, C. A. (1997). The neurobiological basis of early

memory development. In N. Cowan Ed.), The devel- 1841.
Squire, L. R., & Zola–Morgan, S. (1991). The medialopment of memory in childhood. (pp. 41–82). Hove,

East Sussex, UK: Psychology Press. temporal lobe memory system. Science, 253, 1380–
1386.Nelson. C. A., Lin, J., Carver, L. J., Monk, C. S.,

Thomas, K. M., & Truwit, C. (1998). Functional neu- Stansbury, K., & Gunnar, M. R. (1994). Adrenocortical
activity and emotion regulation. In N. A. Fox (Ed.),roanatomy of spatial working memory in children as

revealed by fMRI. Manuscript submitted for publica- The development of emotion regulation. Monographs
of the Society for Research in Child Development, 59,tion.

O’Dougherty Wright, M., Masten, A. S., Northwood, 108–134.
Stein, M. B., Hanna, C., Koverola, C., Torchia, M. G., &A., & Hubbard, J. (1997). Long-term effects of mas-

sive trauma: Developmental and psychobiological McClarty, B. (1997). Structural brain changes in
PTSD. Does trauma alter neuroanatomy? Annals ofperspectives. In D. Cicchetti & S. L. Toth (Eds.),

Rochester Symposium on Developmental Psychopath- the New York Academy of Sciences, 821, 76–79.
Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., &ology: Vol. 8. The Effects of Trauma on the Develop-

mental Process (pp. 181–225). Rochester, NY: Uni- McClarty, B. (1997). Hippocampal volume in women
victimized by childhood sexual abuse. Psychologicalversity of Rochester Press.

Pynoos R. S., Steinberg, A. M., Ornitz, E. M., & Goen- Medicine, 27, 951–959.
Teicher, M. H., Ito, Y., Glod, C. A., Andersen, S. L.,jian, A. K. (1997). Issues in the developmetnal neuro-

biology of traumatic stress. Annals of the New York Dumont, N., & Ackerman, E. (1997). Preliminary evi-
dence for abnormal cortical development in physi-Acadmeny of Science, 821, 176–192.

Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, cally and sexually abused children using EEG coher-
ence and MRI. Annals of the New York Academy ofN., & Goldman–Rakic, P. S. (1986). Concurrent over-

production of synapses in diverse regions of the pri- Sciences, 821, 160–175.
Tulving, E. (1985). How many memory systems aremate cerebral cortex. Science, 232, 232–235.

Roozendaal, B., Quirarte, G. L., & McGaugh, J. L. there? American Psychologist, 40, 385–398.
Ungerleider, L. G. (1995). Functional brain imaging stud-(1997). Stress-activated hormonal systems and the

regulation of memory storage. Annals of the New ies of cortical mechanisms for memory. Science, 270,
769–775.York Academy of Sciences, 821, 247–258.

Rovee–Collier, C. (1997). Development of memory in in- Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon,
H., & Maccari, S. (1997) Prenatal stress induces highfancy. In N. Cowan (Ed.), The development of mem-

ory in childhood (pp. 5–39). London: University Col- anxiety and postnatal handling induces low anxiety in
adult offspring: Correlation with stress-induced corti-lege of London Press.

Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). costerone secretion. The Journal of Neuroscience, 17,
2626–2636.The neuroendocrinology of stress and aging: The glu-

cocorticoid cascade hypothesis. Endocrine Reviews, Vargha–Khadem, F., Gadian, D. G., Watkins, K. E., Con-
nelly, A., Van Paesschen, W. V., & Mishkin, M.7, 284–301.

Schacter, D. L. (1996). Search for memory: The brain, (1997). Differential effects of early hippocampal pa-
thology on episodic and semantic memory. Science,the mind, and the past. New York: Basic Books.

Schacter, D. L., & Tulving, E. (1994). What are the mem- 277, 376–380.
Webb, S., & Nelson, C. A. (1998). Neural correlates ofory systems of 1994? In D. L. Schacter & E. Tulving

(Eds.), Memory systems of 1994 (pp. 1–38). Cam- perceptual priming in human adults and infants.
Manuscript submitted for publication.bridge, MA: MIT Press.

Schneider, M. L. (1992). Delayed object permanence de- Webster, M. J., Bachevalier, J., & Ungerleider, L. G.
(1995). Development and plasticity of visual memoryvelopment in prenatally stressed rhesus monkey in-

fants (macaca mulatta). The Occupational Therapy circuits. In B. Julesz & I. Kovacs (Eds.), Maturational
windows and adult cortical plasticity (pp. 73–86).Journal of Research, 12, 96–110.

Shors, T. J., Weiss, C., & Thompson, R. F. (1992). New York: Addison–Wesley.
Webster, M. J., Ungerleider, L. G., & Bachevalier, J.Stress-induced facilitation of classical conditioning.

Science, 257, 537–539. (1991a). Lesions of inferior temporal area TE in in-
fant monkeys alter cortico-amygdalar projections. De-Squire, L. R. (1986). Mechanisms of memory. Science,

232, 1612–1619. velopmental Neuroscience, 2, 769–772.



Effects of stress 809

Webster, M. J., Ungerleider, L. G., & Bachevalier, J. Zola–Morgan, S., & Squire, L. R. (1992). The compo-
nents of the medial temporal lobe memory system. In(1991b). Connections of inferior temporal areas TE

and TEO with medial temporal-lobe structures in in- L. R. Squire & N. Butters (Eds.), Neuropsychology of
memory (2nd ed., pp. 325–335). New York: Guilford.fant and adult monkeys. Journal of Neuroscience, 11,

1095–1116. Zola–Morgan, S., Squire, L. R., & Amaral, D. G. (1986).
Human amnesia and the medial temporal region: En-Williams, L. M. (1994a). Recall of childhood trauma: A

prospective study of women’s memories of child sex- during memory impairment following a bilateral le-
sion limited to field CA1 of the hippocampus. Journalual abuse. Journal of Consulting and Clinical Psy-

chology, 62, 1167–1176. of Neuroscience, 6, 2950–2967.
Zola–Morgan, S., Squire, L. R., Rempel, N., Clower,Williams, L. M. (1994b). What does it mean to forget

child sexual abuse? A reply to Loftus, Garry, and R., & Amaral, D. G. (1992). Enduring memory im-
pairment in monkeys after ischemic damage to theFeldman (1994). Journal of Consulting and Clinical

Psychology, 62, 1182–1186. hippocampus. Journal of Neuroscience, 12, 2582–
2596.Yehuda, R., Fairman, K., & Meyer, J. S. (1989). En-

hanced brain cell proliferation following early adrena-
lectomy in rats. Journal of Neurchemistry, 53, 241–
248.


