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How Much Would You Pay to Resolve
Long-Run Risk?∗

Larry G. Epstein Emmanuel Farhi Tomasz Strzalecki

Abstract

Though risk aversion and the elasticity of intertemporal substitution have been

the subjects of careful scrutiny when calibrating preferences, the long-run risks

literature as well as the broader literature using recursive utility to address asset

pricing puzzles have ignored the full implications of their parameter specifica-

tions. Recursive utility implies that the temporal resolution of risk matters and a

quantitative assessment of how much it matters should be part of the calibration

process. This paper gives a sense of the magnitudes of implied timing premia.

Its objective is to inject temporal resolution of risk into the discussion of the

quantitative properties of long-run risks and related models.
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1 Introduction

The long-run risks model of Bansal and Yaron (2004) has delivered a unified explanation

of several otherwise puzzling aspects of asset markets.1 Since Mehra and Prescott

(1985) posed the equity premium puzzle, it has been understood that the asset market

puzzles are quantitative and that an explanation must be consistent with observations

in other markets and also with introspection. Imposing such discipline led Mehra and

Prescott to exclude rationalization of the observed equity premium by levels of risk

aversion exceeding their well known upper bound of 10. This bound on risk aversion

has been largely respected since, including in long-run risk models (henceforth LRR).

However, we suggest in this paper that quantitative discipline has been lax in another

equally important aspect of the long-run risks model.

As a representative agent model, LRR has two key components—the endowment

process and preferences. The former is modeled as having a persistent predictable

component for consumption growth and its volatility; it will be described more precisely

below. The representative agent has Epstein-Zin preferences (Epstein and Zin, 1989;

Weil, 1990), which permit a partial disentangling of the elasticity of intertemporal

substitution (EIS) and the coefficient of relative risk aversion (RRA). Denoting time t

consumption by ct, continuation utilities Ut satisfy the recursion

Uρ
t = (1− β) cρt + β

[
Et(U

α
t+1)
]ρ/α

, (1)

when ρ 6= 0, and otherwise

logUt = (1− β) log ct + β log
[
Et(U

α
t+1)
]1/α

. (2)

We assume that ρ < 1, 0 6= α < 1 and 0 < β < 1. The utility of a deterministic

1In his opening remarks, Bansal (2007) lists the following puzzles: the level of equity premium,
asset price volatility, the large cross-sectional differences in average returns across equity portfolios
such as value and growth portfolios, and in bond and foreign exchange markets, the violations of
the expectations hypothesis and the ensuing return predictability that is quantitatively difficult to
explain. He then writes: “What risks and investor concerns can provide a unified explanation for these
asset market facts? One potential explanation of all these anomalies is the long-run risks model.” For
elaboration and many additional references see Bansal (2007), Piazzesi and Schneider (2007), Hansen,
Heaton, and Li (2008), Colacito and Croce (2011) and Chen (2010).
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consumption path is in the CES class with the elasticity of intertemporal substitution

EIS =
1

1− ρ
.

Epstein and Zin (1989) show that 1 − α is the measure of relative risk aversion for

timeless wealth gambles and also for suitable gambles in consumption where all risk is

resolved at a single instant, justifying thereby the identification

RRA = 1− α.

The noted disentangling is possible because a decrease in α increases risk aversion with-

out affecting the attitude towards consumption smoothing over time given certainty,

unlike in the standard additive power utility model where ρ = α. With these inter-

pretations of ρ and α, parameter values in the LRR literature are specified with due

care paid to evidence about the elasticity of substitution and the degree of risk aver-

sion. However, as is clear from the theoretical literature, ρ and α affect also another

aspect of preference in addition to the EIS and RRA. Clearly, judging the plausibility

of parameter values requires that one consider their full quantitative implications for

all dimensions of preference.

The above model of utility belongs to the recursive class developed by Kreps and

Porteus (1978) in order to model nonindfference to the way in which a given risk

resolves over time. For a simple example, suppose that consumption is fixed and

certain in periods 0 and 1, and that it will be constant thereafter either at a high level

or at a low level, depending on the outcome of the toss of an unbiased coin. Do you

care whether the coin is tossed at t = 1 or at t = 2? We emphasize that it is risk about

consumption, and not income, that is at issue, so that there is no apparent planning

advantage to having the coin tossed early. According to the standard additive power

utility model (ρ = α), the time of resolution of the given risk is a matter of indifference.

But not so more generally for recursive utility. For the specification (1)–(2), it is well

known that early resolution of a given risk (here tossing the coin at t = 1) is always
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preferable if and only if

1− α = RRA >
1

EIS
= 1− ρ. (3)

This condition is satisfied by the parameter values typically used in LRR models where

both EIS and RRA are typically taken to exceed 1. Moreover, there is clear intuition

that nonindifference to temporal resolution of risk might matter in matching asset

market data: because long-run risks are not resolved until much later, they are treated

differently, and penalized more heavily, than are current risks thus permitting a large

risk premium to emerge even when shocks to current consumption are small. This begs

the question whether the differential treatment required to match asset returns data is

plausible, which is obviously a quantitative question and calls for evidence about the

attitude towards temporal resolution.

We are not aware of any market-based or experimental evidence that might help

with a quantitative assessment.2 In principle, the attitude towards the temporal reso-

lution of risk may underlie behavior in many multi-period settings. However, it is not

clear how to disentangle the attitude towards the psychic benefit of early resolution of

consumption risk, which is the issue at hand, from either the instrumental benefit of

early resolution of income risk, which is plausibly more directly observable at the micro

level, or the pricing of consumption risk which is observable from asset market data.3

Of course, the approach of the long-run risk literature yields information about the

2The small experimental literature that we are aware of, see, e.g., Ahlbreht and Weber (1996),
Brown and Kim (forthcoming), and references therein, focuses on whether individuals prefer early
or late resolution, not on the strength of this preference. Our paper may provide stimulus for more
work along these lines; an important question is how to extrapolate from the experimentally feasible
risks and time intervals. There is also some evidence from field experiments that many individuals
choose not to learn their test results for various diseases, see, e.g., Thornton (2008) and Oster et. al.
(2013); given the clear instrumental value of information this implies that the psychic benefit of early
resolution is negative; however, it seems even harder to extrapolate from health outcomes that those
studies focus on to consumption outcomes that are relevant here.

3There is a literature that seeks to understand risk pricing across maturities (see e.g. Hansen,
Heaton and Li, 2008, and Hansen and Scheinkman 2009). In particular, Binsbergen, Brandt and
Koijen (2012) use data on dividend strips prices to show that the the long run risks model (as well
as other classic models) have counterfactual predictions for the pricing of securities with varying
maturities. Since there seem to be no parameterizations of these models that can resolve these puzzles
and simultaneously match the moments addressed by Bansal Yaron (2004), the work of Binsbergen
et. al. (2012) is complementary to ours in that it provides motivation for search for alternative
(endowment and/or preference) models.
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former under the assumption of Epstein-Zin utility and a suitable endowment process.

However, our objective is to judge whether this approach is a good one. To do so,

we suggest a simple thought experiment that through introspection may help to judge

plausibility of the parameter values used in the LRR literature. Thought experiments

and introspection play a role also in assessing risk aversion parameters (see, for exam-

ple, Kandel and Stambaugh, 1990, 1991, Mankiw and Zeldes, 1991, and Rabin, 2000).

In the latter context one considers questions of the form “how much would you pay

for the following hypothetical gamble?”. Here we ask instead “what fraction of your

consumption stream would you give up in order for all risk to be resolved next month?”

We call this fraction the timing premium and study its dependence on the parameters

of the model.

A picture that seems to emerge is that models that assume high persistence of the

consumption process (as in Bansal–Yaron, 2004) tend to imply a timing premium of

the order of 25–30%, much higher than in an i.i.d. model where it is of the order

of 7–10%. The intuition that persistence inflates the timing premium is corroborated

with the rare disaster model: assuming high persistence of the jump process (as in

Wachter, 2013) implies a timing premium of the order of 40%, much higher than in

the i.i.d. model of Barro (2009), where it is around 20%.

Section 2 presents our theoretical and numerical results for the LRR model. Sec-

tion 3 offers an extended discussion of the results framed as answers to the following

series of questions: Why pay a premium for early resolution? Is introspection pos-

sible/useful? How is the premium for early resolution related to the welfare cost of

risk (Lucas, 1987)? What is the effect of modifying the endowment process to be

i.i.d., or to correspond to rare disasters (Barro, 2006,9) or persistent rare disasters

(Wachter, 2013)? What if a nonexpected utility model of risk preferences is adopted?

Section 4 concludes and includes a brief comparison with related papers by Ai (2007)

and D’Addona and Brevik (2011).
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2 How much would you pay?

The LRR consumption process

Consider a consumption process of the following form:

log
ct+1

ct
= m+ xt + σtWc,t+1

xt+1 = axt + ϕσtWx,t+1 (4)

σ2
t+1 = σ2 + ν(σ2

t − σ2) + σwWw,t+1,

where 0 < a < 1 and Wc,t,Wx,t, and Ww,t are standard Gaussian innovations, mutually

independent and i.i.d. over time.

Here xt is a persistently varying predictable component of the drift in consumption

growth. Though ϕ should be thought of as much smaller than unity, small innovations

to xt are important because they affect not only consumption prospects in the short run

but also consumption for the indefinite future. The parameter a determines persistence

of the expected growth rate process.

The volatility of consumption growth, represented by σt, is time-varying with un-

conditional variance given by σ2. The empirical importance of stochastic volatility is

emphasized by Bansal et al (2012) and Beeler and Campbell (2012). Setting ν = 0 = σw

turns off stochastic volatility and leads to a process with a constant variance of con-

sumption growth; Bansal and Yaron refer to this model as Case I and to the model

with stochastic volatility as Case II.

The LRR literature also distinguishes between consumption and dividends and

specifies a suitable process for the latter. But it is the consumption process as a whole,

and not its components, that is important here in trying to understand the nature of

preferences.

In LRR models, a consumption process similar to the above is the endowment of

a representative agent in a Lucas-style exchange economy. It is well known that there

is limited theoretical justification for the assumption of a representative agent; here

it requires that everyone have identical Epstein-Zin (hence homothetic) preferences.

Regardless, we treat the representative agent as a real individual when introspecting

about her preferences. The infinite horizon can be understood as arising from a bequest
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motive, or as a rough approximation to a long but finitely-lived individual.

Definition of the timing premium

Here is the thought experiment. You are facing consumption described by (4) for

t = 0, 1, . . . In particular, the riskiness of consumption resolves only gradually over

time (ct and xt are realized only at time t). How much would you pay at time 0 to

have all risk resolved next period? More precisely, you are offered the option of having

all risk resolved at time 1. The cost is that you would have to relinquish the fraction

π of both current consumption and of the consumption that is subsequently realized

for every later period. What is the maximum value π∗ for which you would be willing

to accept this offer? Call π∗ the timing premium for the consumption process in (4).

Formally, let U0 be the utility of the consumption process in (4) with risk resolved

gradually, and let U∗0 be the utility of the alternative process where all risk is resolved

at time 1. Then4

π∗ = 1− U0

U∗0
.

Theoretical derivation for EIS= 1

The magnitude of EIS, particularly whether it is less than or greater than 1, is a source

of debate. Bansal and Yaron argue for an elasticity larger than 1 (in fact, EIS > 1 is

important for the empirical performance of their model). Because closed-form solutions

are not available for EIS 6= 1, we compute values of the timing premium numerically

below. However, first we derive a closed-form expression for the timing premium under

the assumption of a unitary elasticity of substitution and restricting attention to the

case of constant volatility for consumption growth.

Continuation utilities of the consumption process in (4), with risk resolved gradu-

ally, solve a recursive relation. Guess and verify that utility is given by

logU0 = log c0 +
β

1− βa
x0 +

β

1− β
m+

α

2

βσ2

1− β

(
1 +

ϕ2β2

(1− βa)2

)
4Utility admits an interpretation in terms of consumption perpetuities. For any consumption

process c, its utility as defined in (1)-(2) equals that level of consumption which if received in every
period and state would be indifferent to c. Thus π∗ can be described as the fraction of the consumption
perpetuity that if relinquished would just offset the benefit of early resolution of risk.
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Denote by U∗0 the utility of the alternative process where all risk is resolved at time 1.

Then the continuation utility U∗1 at time 1 is given by

logU∗1 = (1− β)
[
log c1 + β log c2 + β2 log c3 + . . .

]
= log c0 + Σ∞t=1β

t−1 log (ct/ct−1) .

Therefore, from the time 0 perspective logU∗1 is normally distributed with mean log c0+
m

1−β + a
1−βax0 and variance σ2

1−β2

(
1 + ϕ2

(1−βa)2

)
. Conclude that

logU∗0 = (1− β) log c0 + β log (E0 (U∗1 )α)
1/α

= log c0 +
β

1− βa
x0 +

β

1− β
m+

α

2

βσ2

1− β2

(
1 +

ϕ2β2

(1− βa)2

)
.

Accordingly, one arrives at the following expression for the timing premium:

π∗ = 1− exp

[
α

2

β2σ2

1− β2

(
1 +

ϕ2β2

(1− βa)2

)]
.

The premium is positive, that is, early resolution is preferred, if and only if α < 0,

consistent with (3). In that case, the premium is increasing in RRA, σ2, ϕ, β and a,

as one would expect. The first column of Table 1 gives a sense of the quantitative

meaning of this formula for the parameter values (other than EIS) specified in Bansal

and Yaron (2004) for a monthly frequency. (The risk premium described in the last

row is defined in Section 3.)

Numerical results

For values of EIS different than 1, we rely on numerical methods. To obtain the value

of U0 we note that the value function U in (1) can be written as U(c, x, σ) = cH(x, σ),

where H : R× R+ → R+ is a solution to the functional equation

H(x, σ) =

{
1− β + βe

ρ
(
m+x+ασ2

2

)
Ex,σ (H(x′, σ′α)

ρ
α

} 1
ρ

; (5)

Ex,σ is the expectation conditional on x and σ. We discretize x and σ, approximate H

by a Chebyshev polynomial, and approximate the expectation by a quadrature; thus

our approximation to (5) can be written as a system of nonlinear equations. We solve
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this system using AMPL. To compute the value of early resolution U∗0 we run Matlab

Monte Carlo simulations with a fixed time horizon T = 2500 months (pasting U0 as

the continuation value at T ).

Table 1 reports our numerical results for EIS = 1.5. Figure 1 plots the isoquants

of the timing and risk premia for the two specifications and a range of preference

parameters.5

BY (but EIS=1) BY (Case I) BY (Case II)
σ .0078 .0078 .0078
ϕ .044 .044 .044
a .9790 .9790 .9790
σ2
w 0 0 .23× 10−5

ν 0 0 .987
β .998 .998 .998
RRA 7.5 or 10 7.5 or 10 7.5 or 10
EIS 1 1.5 1.5
Timing Premium π∗ 20% or 27% 23% or 29% 24% or 31%
Risk Premium π 38% or 48% 48% or 56% 48% or 57%

Table 1: Premia in the LRR model

5We limit RRA to be no greater than 10, the upper bound considered reasonable by Mehra and
Prescott (1985) despite the fact that in the literature many calibrated, as well as estimated (see Chen,
Favilukis, and Ludvigson, 2012), parameter values exceed 10. Those parameter values would inflate
the timing premium further.

9



(a) Timing Premium constant volatility (b) Risk Premium constant volatility

(c) Timing Premium stochastic volatility (d) Risk Premium stochastic volatility

Figure 1: Premium isoquant maps for the LRR model. The red dots denote the
calibrated values of EIS and RRA. Other parameters are as in Table 1.
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3 Discussion and perspective

Why pay a premium?

Would you give up 25 or 30% of your lifetime consumption in order to have all risk

resolved next month? Keep in mind that it is risk about consumption that is at issue

rather than risk about income or security returns. Thus early resolution does not have

any apparent instrumental value. Kreps and Porteus (1978, 1979) suggest that an

instrumental value might arise because of an unmodeled underlying planning problem.

Essentially, there are more primitive preferences defined over deeper variables that

are the ultimate source of satisfaction; utility defined on consumption is an indirect

utility function, and early resolution has value for reasons familiar from Spence and

Zeckhauser (1972), for example. This sounds plausible in theory, but one needs a more

concrete story in order to believe that it could generate a sizable timing premium.6

At a psychic level, early resolution of risk may reduce anxiety. However, anxiety is

plausibly more important when risk must be endured for a long time. Therefore, the

risk premium required for bearing a lottery is greater the longer is the time that the

individual has to live with the anxiety of not knowing how the lottery will be resolved.

In other words, the willingness to bear a given risk declines as the date of resolution

approaches, a form of dynamic inconsistency. However, such dynamic inconsistency is

precluded when utility is recursive and thus anxiety cannot be a rationale for a timing

premium given the utility functions considered here. (This argument is due to Grant et

al, 2000; Caplin and Leahy, 2001; and Epstein, 2008.) To the extent that introspection

is based in part on considerations of anxiety, stated timing premia overstate premia

that are consistent with LRR.

For perspective, note that modeling nonindifference to the temporal resolution of

risk is the objective in the Kreps and Porteus papers. Such nonindifference is plausible

in theory as a property of ‘rational’ preferences. Further, Epstein and Zin (1989)

show that permitting a nonzero timing premium has the modeling benefit of allowing

a partial separation between EIS and RRA. Thus even if one is skeptical about the

6Ergin and Sarver (2012) characterize behavior, in terms of choice between ‘lotteries over sets of
lotteries’, that indicates (or can be represented via) a hidden planning problem. It remains to see if
this work will help in assessing the magnitudes of timing premia.
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descriptive importance of a nonzero timing premium, one might view its use as a cost

of separating EIS and RRA.7 How costly is a quantitative question. Similarly, it is

a quantitative issue whether nonindifference to timing makes sense as an important

component of an empirical model. But applied papers using Epstein-Zin utility have

accepted such nonindifference uncritically.

Is introspection possible? useful?

One might question whether introspection is possible or reliable given the artificial

nature of the question posed in the thought experiment: how much would you pay to

have your lifetime risk resolved next month, keeping in mind that you cannot use that

information. But starkness of the question arguably helps introspection. For example,

one might feel strongly, as we do, “why should I give up 25% ... just to know earlier,

when I can’t even use that information?” In fact, it is arguably easier to introspect

than if one is allowed to use the information to reoptimize, in which case self assessment

of the timing premium would involve introspection about all of substitutability, risk

aversion and early resolution, as well as about the available financial instruments and

more generally the collection of all consumption processes in an expected budget set.

Introspection is at best a matter of opinion and is inherently subjective. While we

are not arguing that a consensus is possible, we are hoping that our exercise may help

some people understand the LRR model more fully. The alternative is to leave the

modeling exercise completely undisciplined, which we find unsatisfactory.

How is the timing premium related to the welfare cost of risk?

Perspective on the timing premium is provided by examining also what the representa-

tive agent would be willing to pay to eliminate risk entirely. Lucas (1987) introduced

such a calculation into macroeconomics as a way to measure the welfare costs of busi-

ness cycle fluctuations. His conclusion that consumption risk has very small welfare

costs stimulated many others to see how different model specifications might lead to

larger costs. Our interest here is less in the total cost of risk per se than in using the

latter to provide further perspective on the size of the timing premium. Specifically,

7This has always been Epstein’s view.
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are the timing premia reported in Table 1 large relative to the total welfare cost of

risk?

Consider the deterministic consumption process c = (ct) where, for every t, ct+1/ct

equals E0 (ct+1/ct), the unconditional mean of consumption growth that is implied by

the LRR process (4). The indicated mean is given by

logE0 (ct+1/ct) = m+ atx0 +
σ2

2

[
1 + ϕΣt−1

i=0a
2i
]

.

Therefore let c be defined by c0 = c0 and

log(ct+1/ct) = m+ atx0 +
σ2

2

[
1 + ϕΣt−1

i=0a
2i
]

.

Its utility at time 0 is U0. Whenever α < 1, risk is costly (U0 > U0) and the cost may

be measured by the risk premium π, where8

π = 1− U0/U0.

The last row of Table 1 shows the welfare costs implied by the LRR model. For the

parameter values used by Bansal and Yaron, an individual giving up roughly 50% of

her deterministic consumption ct in every period would still be no worse off than with

the long-run risk process in (4).

It can be verified further that, as one would expect,

U0 > U∗0 > U0 if α < 0.

This suggests the following decomposition:

U0

U0

=
U0

U∗0
· U
∗
0

U0

,

whereby the total cost of risk is decomposed into the cost of bearing risk that is

resolved ‘late’ (after time 1), and the cost of bearing risk all of which is resolved ‘early’

8Lucas uses π
1−π to measure the benefit of eliminating risk rather than π to measure its cost. The

difference between the two measures parallels the difference between the compensating variation (used
here) and the equivalent variation (used by Lucas) of a policy change.
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(at time 1). The relative importance of the first factor is given by

U∗0/U0

U0/U0

=
U∗0
U0

=
1− π
1− π∗

.

For the parameter values in Table 1, the indicated ratio is between .62 and .77. Thus,

between 2/3 and 3/4 of the cost (in constant consumption perpetuity) of risk is at-

tributable to the cost of late resolution.

What is the role of the endowment process?

The numbers presented in Table 1 and Figure 1 depend on the parameters of the

endowment process and in particular on the degree of persistence.9 To examine the

importance of persistence and to offer perspective on the improved fit of asset market

data provided by the LRR model, we compare its timing premia to those implied by

the benchmark i.i.d. model.10 An i.i.d. growth process for consumption is a workhorse

model, fits U.S. data well and is hard to distinguish statistically from the LRR process.

It is assumed, for example, in Campbell and Cochrane (1999), Calvet and Fisher (2007),

where dividends are separated from consumption, and in Barberis et al (2001).

RRA \ EIS 1.5 1 .2 .1
10 9.5% 7.8% 1.0% 0.0%
7.5 6.8% 5.6% 0.4% −0.5%
5 4.3% 3.5% 0.0% −0.8%
2 1.2% 0.9% −0.9% −1.1%
1 0.4% 0.0% −1.0% −1.2%

Table 2: Timing Premia for IID Growth Rate

Table 2 assumes β = .998, and that log (ct+1/ct) is i.i.d. N (m,σ2), with m = .0015

and σ2 = .00007. These latter values are roughly consistent with the annual mean

(1.8%) and standard deviation (2.9%) for real per-capita consumption growth used by

9Bansal, Kiku, and Yaron (2012) use higher volatility persistence, ν = .999. Our algorithm failed
to find a solution to the value function. Hansen, Heaton, Lee, and Roussanov, (2007, Section 5.3)
study a continuous time model where volatility follows a Feller square root process; they find an upper
bound on volatility persistence beyond which the value function does not exist.

10The next subsection examines yet another endowment process.
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Bansal and Yaron (2004) to calibrate their model. Comparison with Table 1 shows

that timing premia here are considerably smaller than for the LRR model.

Rare disasters

Another specification of the endowment process that is prominent in the asset pricing

literature is based on rare disasters. Barro (2009) also uses Epstein–Zin utility but he

assumes an i.i.d. consumption process where in every period there is a small probability

p of a negative shock that shrinks consumption by the factor bt.
11 Specifically, the

consumption process has the following representation:

log
ct+1

ct
= m+ σWc,t+1 + log(1− bt)Wd,t+1,

where m is mean consumption growth, Wc,t+1 ∼ N(0, 1), Wd,t+1 ∼ Bernoulli(p), and

bt follows a categorical distribution of disaster sizes obtained from data.12 All those

random variables are mutually independent and i.i.d. over time.

Wachter introduces persistence into this model by assuming that the disaster prob-

ability varies over time. Specifically, she assumes that Wd,t+1 ∼ Bernoulli(pt), where

pt = 1− e−λt and λ follows the square root process

λt+1 = (1− κ)λt + κλ̄+ σλ
√
λtεt+1,

where λ̄ is the mean value of λ, κ measures persistence, and σλ measures the standard

deviation.13

The parameter values used by Barro (2009) are for an annual frequency: RRA = 4,

EIS = 2, p = .017, m = .025, σ = 0.02, and β = 0.951. The distribution of bt has

mean .29, minimum .15, maximum .73 and was obtained from the author. With these

parameter values (and T = 200 for the Monte Carlo simulation) the computed value

of the timing premium is 18% and the risk premium is 29%.14

11He follows Barro (2006) and Rietz (1988).
12See also Barro and Jin (2011) who fit power laws to the distribution of disaster sizes and Tsai

and Wachter (2013) who allow for rare booms as well as rare disasters.
13Wachter’s model is in continuous time. We use a discretized version of her process.
14For comparison, we also computed the values for the monthly parametrization and they are close:

19% and 29% respectively.

15



We discretize the parameter values used by Wachter (2013): RRA = 3, EIS = 1,

λ̄ = 0.0355, κ = 0.08, σλ = 0.067, m = 0.0252, σ = 0.02, and β = 0.988. The

categorical distribution of bt has mean .22, minimum .1, maximum .68 and was obtained

from the author. With these parameter values (and T = 200 for the Monte Carlo

simulation) the computed value of the timing premium is 42% and the risk premium

is 65%.15 It is instructive to compare these premium values to those obtained in the

model without persistence: setting σλ = 0 and κ = 1 yields the timing premium of 22%

and the risk premium of 46%.16 Thus, allowing for long run shocks to the probability

of disasters heavily inflates both premia.

What about other preference parameter values?

Are there parameter values that allow for sensible values of the timing premium and

at the same time provide a good fit of the asset pricing data? Surely, setting EIS in

the vicinity of the reciprocal of RRA leads to a small timing premium. With a high

RRA needed to accommodate a high equity premium, this would require that EIS

be significantly below one. However, Bansal and Yaron (2004) point out that in their

model, EIS below 1 would lead to excessive levels and/or volatility for the risk-free rate.

This is also true in the variable rare disaster model of Wachter (2013). In addition,

Barro (2009) points out that EIS below 1 leads to the counterfactual prediction that

an increase in economic uncertainty would lead to an increase in price dividend ratios.

It is possible that there exists a model of the endowment process that fits asset pricing

data well with EIS smaller than one; however, we are not aware of such a process.

More general risk preferences

In (1)-(2) and in the Kreps-Porteus model more generally, risk preferences are in the

vNM class. Epstein and Zin (1989) describe a more general class of recursive utility

functions in which risk preferences that are consistent with the Allais paradox are also

permitted. Some of these specifications have been used to address the equity premium

15As in the case of the Bansal–Yaron model, we compute the value of early resolution by Monte
Carlo simulations. To compute the value of gradual resolution we use value iteration.

16The difference between these numbers and those that we obtain for Barro’s specification can be
accounted for by the different preference parameters and slightly different empirical distributions of
disaster sizes.
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and related puzzles (references are given below). Therefore, we explore briefly the

quantitative implications of such generalizations for timing premia.

To preserve simplicity while generalizing preferences, as well as for the convenience

of closed forms and for the clarity of intuition delivered thereby, we simplify the en-

dowment process and assume that the (log) growth rate is i.i.d. with log (ct+1/ct)

distributed as N (m,σ2). Generalize (2) and consider utility defined by:

logUt = (1− β) log ct + β log µ(Ut+1). (6)

Here µ (·) is the certainty equivalent of random future utility using its conditional

distribution at time t.17 Assume that µ (x) = x for any deterministic random variable x,

that µ respects first-order and second-order stochastic dominance, and that µ is linearly

homogeneous (constant relative risk aversion).

It is convenient to use the renormalized certainty equivalent µ∗, where for any

positive random variable X and associated distribution, µ∗ (logX) ≡ log µ (X). Then

(see the appendix) the timing premium is given in closed-form by π∗ = 1− exp (−β∆),

where

∆ ≡ µ∗(Σ∞0 β
t log (ct+1/ct))− (1− β)−1 µ∗ (log(c1/c0)) . (7)

For the expected utility-based certainty equivalent, µ∗ (logX) = 1
α

logE(Xα
t+1), and

one obtains the Epstein-Zin implied timing premium; denote the corresponding ∆ by

∆EZ .

As an alternative, consider the following disappointment aversion certainty equiv-

alent:18 Fix 0 < γ ≤ 1, and for any positive random variable X (with distribution P ),

define µda (X) implicitly by

log µda (X) = E log (X)−
(
γ−1 − 1

) ∫
x≤µda(X)

(log µda(X)− log x)dP (x),

17In general it depends on the information at t, but with the i.i.d. assumption such time dependence
can be safely suppressed.

18The model is due to Gul (1991). For applications to finance, see Epstein and Zin (2001), Ang et
al (2005). Routledge and Zin (2010) present and apply a generalization, which is investigated further
empirically by Bonomo et al (2011). See also Epstein and Zin (1990) and Bekaert et al (1997).
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or equivalently, (let Y = logX and Q its induced distribution),

µ∗da (Y ) = EY −
(
γ−1 − 1

) ∫
y≤µ∗da(Y )

(µ∗da (Y )− y)dQ(y). (8)

The interpretation is that outcomes of X that are disappointing because they fall

below the certainty equivalent are penalized relative to E log (X). If γ = 1, then

µ (X) = E log (X) and, when substituted into (6), one obtains the expected utility

model where RRA = EIS = 1. Accordingly, nonindifference to timing arises herein

only from the disappointment factor when γ < 1. Because the latter adds to risk

aversion, the effective degree of risk aversion is greater than 1. We compare this way

of increasing risk aversion to using Epstein-Zin utility with α < 0.

We show in the appendix that the difference ∆ in (7), written now ∆da, can be

expressed in the form

∆da =
m− µ∗da (log (c1/c0))

1− β

(
1−

[
1− β
1 + β

]1/2)
, (9)

which expression involves the certainty equivalent of the single period gamble only.

Compare ∆EZ and ∆da to see the differing implications for timing premia of the ex-

pected utility versus disappointment aversion risk preferences. A meaningful compari-

son requires that the respective parameters α and γ be suitably related. For example,

suppose that the two certainty equivalents assign the same value to the distribution of

log (c1/c0). Then substitute µ∗da (log(c1/c0)) = m+ 1
2
α · σ2 into (9) to deduce that

∆da =

(
1−

[
1− β
1 + β

]1/2)
1 + β

β
∆EZ ' 2∆EZ . (10)

Roughly, disappointment aversion implies timing premia twice as large as those re-

ported in Table 2 when γ is calibrated as described to α = −9,−4,−1.

An alternative calibration is to assume that the two certainty equivalents assign

the same value to the distribution of Σ∞0 β
t log (ct+1/ct). Then similar reasoning leads

to the relation

∆da =
1

β

([
1 + β

1− β

]1/2
− 1

)
∆EZ ' 30∆EZ , (11)
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and hence to much larger timing premia under disappointment aversion. (For example,

the timing premium for γ that corresponds to α = −1 is about 23%.) Thus with either

calibration, timing premia are larger than with Epstein-Zin utility.

The appendix shows that (10) and (11) are valid for a broader class of risk prefer-

ences.

4 Concluding Remarks

Though risk aversion and the elasticity of intertemporal substitution have been the

subjects of careful scrutiny when calibrating preferences, the long-run risks literature

and the broader literature using recursive utility to address asset pricing puzzles have

ignored the full implications of their parameter specifications. Recursive utility implies

that the temporal resolution of risk matters and a quantitative assessment of how

much it matters should be part of the calibration process. This paper is not intended

to provide an exhaustive or definitive assessment of parameters used in the literature.

Its objective is to give a sense of the magnitudes of implied timing premia and to inject

temporal resolution of risk into the discussion of the quantitative properties of LRR

and related models.

Timing premia depend on both the parameters of preference and on the nature of

the endowment process. In the latter connection, we have demonstrated that, given

Epstein-Zin utility, high persistence of the consumption process, as assumed in the

LRR literature or in a version of the rare disaster model (Wachter, 2013), inflates

timing premia to levels that seem implausible to us based on introspection (20-30%

in the former case and 40% in the latter case). Though some may disagree with

this admittedly subjective judgement, we believe that we have at least alerted readers

to the need to be more cautious when calibrating asset pricing models that rely on

nonindifference to temporal resolution as a key component. There are endowment

and parameter specifications that imply much smaller timing premia, but while they

can account for some asset pricing moments, they yield counterfactual predictions for

others. Another alternative is to seek a different model of preference. In Epstein-Zin

utility (1) and (2), the two parameters α and ρ govern three seemingly distinct aspects

of preference, with the result that setting them to match values for EIS and RRA yields
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timing premia that are beyond direct control of the analyst. This limitation has been

recognized from the start in (1989), but this paper may provide renewed impetus to

the search for a more flexible model of preference.

For other thought experiments that reflect on parameter values in the LRR model,

see D’Addona and Brevik (2011) and Ai (2007). D’Addona and Brevik assert that an

agent with Epstein-Zin utility achieves higher utility levels if he can commit to ignoring

information about the state variable xt appearing in (4). Though they describe their

results as concerning information, their analysis does not admit that interpretation:

instead of changing the information structure of the agent, they endow the agent with

a different consumption process that does not involve long-run risk (and has the appro-

priately adjusted unconditional variance). Thus, they de facto study aversion to auto-

correlation of consumption instead of the (conceptually distinct) preference for ignoring

information or nonindifference to the temporal resolution of risk. In a continuous-time

economy with production, Ai (2007) considers the preference for early resolution from a

quantitative perspective by asking how much consumption the agent is willing to forgo

to learn perfectly the autocorrelated component of the production process instead of

having just a noisy signal of it. Our starker thought experiment where early resolution

means that all risk is fully resolved, and the discrete-time exchange economy setting,

arguably permit a sharper focus and make it easier for introspection to operate. (See

Section 3 for our related comments on whether introspection is useful.)

An important alternative to models based on recursive utility is the external habits

model of Campbell and Cochrane (1999). Corresponding scrutiny of that model seems

in order. Thus far plausibility of the habits formation process assumed for the repre-

sentative agent has been judged solely by how it helps to match asset market data.

The discipline urged by Mehra and Prescott (1985) suggests that at least one should

examine also whether it seems plausible based on introspection about the quantitative

effects of past consumption on current preferences. The difficulty of finding market-

based evidence concerning external habits, or about timing premia, does not justify

leaving them as ”free parameters.”
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A Appendix

A.1 Details for more general risk preferences

To derive (7), use the fact that utilities are given by

logU0 = log c0 + β

[
1

1− β
µ∗ (log(c1/c0))

]
logU∗0 = log c0 + β

[
µ∗(Σ∞0 β

t log (ct+1/ct))
]

,

Let Y = log (c1/c0) and Y ′ = Σ∞0 β
t log (ct+1/ct). They are distributed as N (m,σ2)

and N
(

m
1−β ,

σ2

1−β2

)
respectively. Therefore,

Y ′′ ≡
(
1− β2

)1/2
Y ′ −m

([
1 + β

1− β

]1/2
− 1

)
is N

(
m,σ2

)
.

Because µda (Y ′′) and µda (Y ) depend only on the distributions of Y ′′ and Y , they must

be equal. Note that µ∗da satisfies: for all λ ≥ 0,

µ∗da (Y + λ) = µ∗da (Y ) + λ and µ∗da (λY ) = λµ∗da (Y ) , (12)

that is, it exhibits both CARA (constant absolute risk aversion) and CRRA (constant

relative risk aversion). Conclude that the two certainty equivalent values appearing in

(7) are related by the equation

(
1− β2

)1/2
µ∗da
(
Σ∞0 β

t log (ct+1/ct)
)
− µ∗da (log (c1/c0)) (13)

= m

([
1 + β

1− β

]1/2
− 1

)
.

The preceding, and hence also equations (10) and (11), rely only on lognormality

and on the fact that µ∗da satisfies (12). Thus the comparative analysis of timing pre-

mia applies to any certainty equivalent function satisfying the latter properties. For

example, it applies also to the following generalization of (8):

µ∗gda (Y ) = EY −
(
γ−1 − 1

) ∫
y≤δµ∗gda(Y )

(δµ∗gda (Y )− y)dQ(y),
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where 0 < δ ≤ 1. Here outcomes are disappointing if they are smaller than the fraction

δ of the certainty equivalent. This generalization of disappointment aversion (which

corresponds to the special case δ = 1) is in the spirit of that provided by Routledge

and Zin (2010).19
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