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Abstract

Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost
absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping
function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase
X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of
ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed
that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in
response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA.
A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene
expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses.
Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events
followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have
acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several
groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D.
melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to
study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On
the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to
study additional biological functions of this ancient family of proteins.

Citation: Ambrosio L, Morriss S, Riaz A, Bailey R, Ding J, et al. (2014) Phylogenetic Analyses and Characterization of RNase X25 from Drosophila melanogaster
Suggest a Conserved Housekeeping Role and Additional Functions for RNase T2 Enzymes in Protostomes. PLoS ONE 9(8): e105444. doi:10.1371/journal.pone.
0105444

Editor: Dmitri Boudko, Rosalind Franklin University, United States of America

Received February 14, 2014; Accepted July 18, 2014; Published August 18, 2014

Copyright: � 2014 Ambrosio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: A.R. is the recipient of a Fulbright Fellowship. This work was supported by grant No. MBC-1051818 from the United States National Science Foundation
to G.C.M. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: lima@iastate.edu (LA); gustavo@iastate.edu (GCM)

. These authors contributed equally to this work.

Introduction

Members of the RNase T2 family of enzymes catalyze

endonucleolytic RNA cleavage via a 29-39-cyclic phosphate

intermediate [1]. These ribonucleases (RNases) are found ubiqui-

tously, with RNase T2 genes in genomes of most eukaryotes, many

bacteria, as well as some viruses [1,2]. Although primary sequence

identity between eukaryotic and prokaryotic enzymes is low, there

are conserved secondary structures that contain key core

hydrophobic residues associated with the RNase T2 active site

[2,3]. All characterized RNase T2 family members consist of a

central four-stranded antiparallel b-sheet (strands b1, b2, b4 and

b5), a small two-stranded antiparallel b-sheet (b3 and b7), and

three a-helices (aB, aC, aD), with the catalytic site of the enzyme

residing mainly within strands b2 and b5 and helix aC (Kurihara

et al. 1996; Tanaka et al. 2000; Rodriguez et al. 2008). Two

histidine residues within b2 and aC, together with surrounding

residues form the conserved active site (CAS) motifs CAS I and

CAS II [2]. Importantly, each histidine is a direct participant in

the acid-base catalysis mechanism that enables the transphos-

phorylation and hydrolysis reactions of RNase T2 enzymes [1,4].

These ancient ribonucleases are secreted or targeted to

membrane-bound intracellular compartments (lysosomes and

vacuoles) where they degrade single stranded RNAs. Long known

for their function in gametophytic self-incompatibility, and as part

of the response to phosphate starvation in plants [2,5], the RNase

T2 family has been recently shown to play distinctly different

developmental and physiological roles in plants and animals.

Recent insights from Arabidopsis thaliana and zebrafish indicate

that conservation of the RNase T2 family in all eukaryotes may be

related to an important housekeeping function carried out by these

enzymes, which includes recycling of ribosomal RNAs [6,7]. A
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ribophagy-like pathway is thought to mediate this turnover of

rRNAs in normal, non-stressed cells [8], which is essential to

maintain cellular homeostasis. Additionally, in Saccharomyces
cerevisiae and Tetrahymena thermophila, the enzymatic activities of

RNase T2 proteins have been associated with cleavage of mature

tRNAs to produce tRNA halves in response to starvation and

oxidative stress [9,10]. The significance of the accumulation of

these degradation intermediates is unknown, although it has been

suggested that they may play a signaling role in the maintenance of

cellular homeostasis [5]. Alternatively, they may accumulate as a

consequence of targeted degradation of the translation machinery

during stress conditions that leads to suppression of cell division

[10]. Interestingly, a different ribonuclease carries out tRNA

cleavage function in response to stress in vertebrate cells. In this

case angiogenin, a member of the vertebrate-specific RNase A

family, is responsible for the accumulation of tRNA fragments

[11].

At least one member of the RNase T2 family has been found in

every eukaryotic genome that has been sequenced, with

Trypanosomatids as the only exception [2]. High frequency of

gene duplication and extensive divergence of the T2 RNases has

occurred in plants [12,13]. On the other hand, only one, well-

conserved gene, is found in most vertebrate genomes [14]; and it

has been proposed that RNase A members have replaced RNase

T2 in several biological roles in these organisms [2,14]. Thus,

characterization of the biological role played by RNase T2

enzymes in multicellular organisms is complicated in plants and

vertebrates due to the presence of potentially redundant enzymatic

activities. In contrast, the Drosophila melanogaster genome

contains only one RNase T2 gene, RNase X25 (also known as

DmRNase-66B), and no RNase A homolog; thus, this organism

could be used as a simpler system to demonstrate the conserved

function(s) of this enzyme family in animals. RNase X25
(CG8194), located at 66A21 on chromosome 3, is 1658

nucleotides in length and encodes a single form of mRNA

transcript with a 325 amino acid open reading frame [15]. A signal

peptide cleavage site is anticipated between residues 21 and 22

suggesting transport of the predicted polypeptide chain to the

secretory pathway. In addition, two asparagine residues (positions

214 and 231) and a threonine (residue 34) may serve as N- and O-

glycosylation sites, respectively. N-glycosylation is the most

common modification found for the RNase T2 family, while a

few cases of O-glycosylation have been observed for fungal

enzymes (reviewed in [2]).

As a first step towards understanding the role of RNases T2 in

animals, biochemical analyses and gene expression studies were

initiated in the fruit fly D. melanogaster. RNase T2 activity was

detected in all Drosophila life cycle stages examined, and this

correlated well with RNase X25 gene expression patterns.

Furthermore, RNase X25 gene expression levels were responsive

to nutritional and oxidative stress as determined by the accumu-

lation of RNase X25 mRNAs in larvae starved for nutrients or

exposed to wheat germ agglutinin (WGA), or hydrogen peroxide.

A correlation between induction of autophagy and increased

RNase X25 expression and activity was also observed in response

to starvation. Finally, we used phylogenetic analyses to shed light

on the evolution of the RNase T2 family of ribonucleases in

protostomes and found evidence for gene duplications followed by

divergence and the potential acquisition of new functions in

several phyla, in contrast to the pattern observed in most

deuterostomes. Together, these analyses suggest that RNase X25

carries out a conserved housekeeping function as proposed for

other RNases T2 in plants and animals, and that Drosophila, with

a single RNase T2 gene, is a good eukaryotic model system in

which to investigate the role of RNases T2 in the process of

ribophagy. The discovery of gene duplications in several

protostome genomes also presents interesting new avenues to

study additional roles of this ancient family of proteins.

Material and Methods

D. melanogaster strains, and tissue preparations
In this study the Drosophila melanogaster strain w1118/w1118

with two wild type RNase X25 genes and w1118/w1118;

Df(3L)Excel6279/+ (denoted Df(3L)Excel6279/+ in the text),

with one wild type RNase X25 gene were raised at 25uC on

standard cornmeal media.

For staged embryo collections, females were placed in collecting

bottles and eggs were gathered after aging from molasses-agar

plates dusted with yeast.

Stress treatments
To provide standardized non-crowded growing conditions prior

to stress treatments, 43 w1118/w1118 embryos (0–2 hrs) were gently

transferred onto Formula 4–24 instant blue D. melanogaster diet

(363.6 mg/1.625 ml H2O; Carolina Biological Supply, Burlington,

NC, USA), that had been placed into a small petri dish

(60615 mm). Baker’s yeast was not sprinkled on this medium.

Petri plates were placed in an incubator at 22uC and 80%

humidity for 128 hours. Then 25 young, newly molted third instar

larvae were gently transferred from each plate to either control D.
melanogaster diet, or experimental media consisting of D.
melanogaster diet containing 1% unconjugated wheat germ

agglutinin (Vector Laboratories, Burlingame, CA, USA), or

hydrogen peroxide at 0.1% [w/w] or 0.5% [w/w]. For starvation

conditions larvae were placed onto PBS-saturated Whatman 1

filter paper. After 14 hours, larvae were collected, frozen at 2

80uC and stored for further processing. For detection of autophagy

in fat body cells of starved and fed control larvae, embryos were

placed onto Bloomington’s Drosophila Stock Center cornmeal/

molasses/yeast soft media, sprinkled with Baker’s yeast, and

subsequently processed as described above. LysoTracker Red

DND-99 (Life Technologies, Carlsbad, CA, USA) staining of

lysosomes and autolysosomes, and Hoeschst 33342 (Thermo

Fisher Scientific Inc, Rockford, IL, USA) staining of DNA was

performed as described by Scott et al. [16] and Juhasz and Neufeld

[17]. Stained fat body lobes were imaged in PBS using a Zeiss

Axio Imager.Z2 microscope equipped with AxioCam HR digital

camera using a LD Plan-Neofluar 40x/0.6 objective lens and ZEN

imaging software.

Protein extracts and RNase activity assays
Protein was prepared from flies at different stages or collected

from stress experiments, using approximately 100 mg of each

sample. The material was homogenized in 1.5 ml eppendorf tubes

and protein extractions were performed as described by Hillwig et

al [14], using the protease inhibitor cocktail Complete Mini

EDTA Free (Roche Diagnostics, Indianapolis, IN, USA) or

Protease Inhibitor Cocktail P8340 (Sigma-Aldrich, St. Louis,

MO, USA). In gel RNase activity assays were performed following

the protocol used by Yen and Green [18] using high molecular

weight Torula Yeast RNA (Sigma-Aldrich) as substrate, loading

20–80 mg of protein per lane. After running and washes, gels were

incubated at pH 6.0 or 7.0, as indicated in the figures. SDS-PAGE

was run in parallel for each sample as loading and quality control,

also using 20 mg of protein per lane, and then stained with

Coomassie Brilliant Blue. Experiments were repeated at least 3

times. A representative gel is shown.
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qPCR analysis
RNA was extracted from 100 mg of sample using Trizol (Fisher)

according to manufacturers’ instructions. RNA was DNase-treated

using Turbo DNA-free (Ambion), and cDNA was synthesized

using the iScript Select cDNA Synthesis kit (Bio-Rad), also

following manufacturers’ instructions for each procedure. qPCR

was completed on a Stratagene MX4000 using the Absolute

qPCR with SYBR Green + Rox kit (Fisher Scientific) according to

manufacturers’ instructions. The transcript of ribosomal protein

L32 gene (RPL-32) was used as the control for data normaliza-

tion, using the Pfaffl method [19]. Primers used for RNase X25
were: Forward (59-39): TCCACGCCCCTCAGCGACATA, and

Reverse (59-39): ACGCCAAGTGAGCCCCTGCT; for RPL-32:

Forward (59-39): TGGGACACCTTCTTCAAGAT, and Reverse

(59-39): CAGGCGACCGTTGGGGTTG; for Atg5: Forward (59-

39): ATCTGGGAGGGCCAGATAGG, and Reverse (59-39):

TAGCTCCTTGGAGTTGAGCTTG; for Amyrel: Forward (59-

39): GATCTAGAGTACATCTACAGCAGCC, and Reverse (59-

39): ACTTGTAGTTCAGCACGGCA; and for Lip3: Forward

(59-39): GCCTATTTCTGATTGCGGTGAG, and Reverse (59-

39): AGTACTTGTGCGCCTTGGAG.

Experiments were performed using triplicates, and repeated 3

times using independent samples. Statistical significance of the

differences between treatments was determined using t-test.

Graphs show averages of each sample normalized using the

average value of the control sample. One star = P,0.05, two stars

= P,0.01.

Phylogenetic analysis
Identification of protostome RNase T2 genes or proteins was

done by BLAST searches [20] using Ensembl Genomes [21],

VectorBase [22], the Genome Portal of the Department of Energy

Joint Genome Institute [23], the Clonorchis sinensis Genome

Database [24], SmedGD [25], the Hymenoptera Genome Data-

base [26], SilkDB [27], Beetle Base [28], GeneDB [29], AphidBase

[30], and the National Center for Biotechnology Information Map

Viewer (http://www.ncbi.nlm.nih.gov/projects/mapview/).

Protein sequences were aligned using ClustalW2 [31] followed

by manual adjustments. PAUP 4.0 software [32] was used for

neighbor-joining (1,000 bootstrap replications) and parsimony

analyses, using default parameters.

Results

Characterization of RNase activity in Drosophila
development

The activity of the RNases with characteristics similar to the

RNase T2 family, i.e. endonucleases with no sequence/base

specificity, has not been characterized in Drosophila. To detect

RNase activities in extracts from different Drosophila develop-

mental stages we used a standard in gel activity assay that allows

size separation of different proteins with RNase activity. Embryos

at 0–2, 2–6, and 0–16 hr after egg deposition, as well as wandering

third instar larvae, white prepupae, pupae, adult males, females,

and isolated ovaries were collected. Protein extracts were prepared

and analyzed for RNase activities (Figure 1, top panel). At all

developmental stages, RNase activities in the apparent 25–30 kDa

range, which correspond to the predicted size range of RNase T2

enzymes, were observed. It is important to note that the PAGE

method used for this assay is semi-denaturing, since it includes

SDS but not reducing agents, and the apparent molecular weight

observed for each protein band does not necessarily correspond to

the predicted mass. Detection of RNase activities with distinct

molecular weights in this range may be indicative of posttransla-

tional processing, including N- and O-glycosylation, a common

posttranslational modification of RNase T2 proteins. While most

stages showed a similar level of RNase activity, samples collected

from early 0–2 hr embryos and third instar larvae showed lower

RNase activity. This result was not due to general protein

degradation since protein integrity seems evident in a Coomassie

stained SDS-PAGE (Figure 1, bottom panel). In addition, a band

of RNase activity at a very large apparent molecular weight

(,200 kDa) was observed primarily in third instar larvae, white

prepupae, and pupae (Figure 1, top panel, arrow).

We undertook a combined biochemical-genetics strategy to

more definitely assign the RNase activity observed on our activity

gels to the RNase X25 gene product. One important defining

characteristic of the T2 family of RNases in animals is their pH

sensitivity and acidic preference [1,2,3]. Thus, we compared

RNase activities in Drosophila ovarian and embryonic extracts

using in gel activity assays at different pH conditions (Figure 2). At

pH 7, little to no RNase activity was observed at the 25-30 kDa

range, while robust activity was evident in samples from ovary and

embryos at acidic pH. A large number of endo and exoribonu-

clease activities are predicted based on sequence analysis of the

Drosophila genome. Classical genetic mutations in RNase X25 are

currently unavailable and RNA interference stocks without off-

target effects have not been produced. Therefore, we employed a

chromosomal deletion approach to determine whether a decrease

in gene dose could affect the relative amount of RNase activity

detected in our assays.

The Df(3L)Excel6279 chromosome was chosen, with deficien-

cy break points mapped to 66A17 and 66B5. This is the smallest

known deletion that removes the RNase X25 gene located at

position 66A21. Importantly, RNase X25 is the only RNase

encoding gene that lies between the breakpoints of the

Df(3L)Excel6279 chromosome. RNA and protein extracts were

produced from ovarian tissue from either a wild type (+/+) genetic

background with two RNase X25 gene copies or the Df(3L)Ex-
cel6279/+ background with one RNase X25 gene copy. A

homozygous mutant line could not be obtained, since homozygous

deletions of this region are lethal. Quantitative RT-PCR analysis

indicated approximately one-half of wild-type RNase X25 mRNA

levels were detected for the Df(3L)Excel6279/+ ovaries (Fig-

ure 3C). Furthermore, a corresponding decrease in RNase activity

was observed for the 25–30 kDa bands in Df(3L)Excel6279/+
extracts (Figure 3A), when similar amounts of protein were

examined for wild-type and heterozygous deletion mutants

(Figure 3B). These results strongly suggested that the enzymatic

activity observed by our in gel analysis was, in fact, RNase T2

activity, encoded by the Drosophila RNase X25 gene.

Total RNA was also isolated from developmental samples, and

RNase X25 expression was analyzed using quantitative real time

PCR (qRT-PCR) studies (Figure 4). This analysis indicated that

RNase X25 transcripts are present in all the stages analyzed, showing

constitutive expression throughout Drosophila development. No

significant stage-specific differences in mRNA accumulation were

apparent in this experiment. Our gene expression analyses

correspond well with expression data obtained from genome-wide

transcriptome analyses deposited in FlyBase (http://flybase.org).

Moreover, data obtained from the modENCODE [33] and FlyAtlas

[34] databases indicated that RNase X25 expression is constitutive

for all tissues of the fly at the 3rd instar larva and adult developmental

stages with tissue specific expression ranging from very low to high

levels (Figures S1 and S2). It is intriguing that early embryos and

third instar larvae, the two samples with low RNase activity, had at

least as much expression of RNase X25 as samples with high activity.

The discrepancy between enzymatic activity and mRNA accumu-
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lation could suggest that RNase X25 is postrancriptionally or

posttranslationally regulated.

RNase X25 expression is altered by stress
In addition to a general housekeeping function in rRNA

recycling, the RNase T2 family of enzymes is thought to play

specialized roles in unicellular and multicellular eukaryotes. In

yeast and Tetrahymena, RNase T2 activity is responsible for the

cleavage of mature tRNAs to produce tRNA halves [9,10] during

the response to oxidative stress or amino acid starvation. Several

microarray and RNAseq reports on the fly’s transcriptional

response to a variety of stresses are available in the literature

and public databases. However, results related to the effect of

starvation on RNase X25 are not clear (Table S1). To begin

exploring the possibility that RNase T2 may play a role in the fruit

fly’s response to nutritional and oxidative stress, we determined

whether RNase X25 gene expression levels were altered after

exposure to these pressures. It was also reported by Li et al. [35]

that accumulation of RNase X25 mRNAs was altered in

Drosophila larval midgut tissue after animals were fed a diet

supplemented with wheat germ agglutinin (WGA). Thus, we also

Figure 1. Developmental profile of Drosophila RNase activities. Protein extracts were produced from embryos at 0–2 hours (h), 2–6 h, and 0–
16 h after egg deposition and from animals at 3rd instar larval (L3), white prepupal (WPP), pupal (P), and adult male (M) or female (F) stages of
development. Ovarian tissue (ovary) was prepared from 3–5 day old females. (Upper panel) Protein was fractionated by electrophoresis through a
12% polyacrylamide gel containing 3 mg/ml Torula yeast RNA, washed to remove SDS, incubated in 100 mM Tris-HCl at pH 6.0 and stained with
toluidine blue to visualize regions of nuclease activity. Low molecular weight (,25–30 kD) activities in the size range of the RNase T2 family were
detected at all developmental stages assayed. High molecular weight (,200 kD) activities were also apparent (arrow), but absent from embryos.
(Lower panel) Protein extracts were analyzed by SDS/PAGE and stained with Coomassie Blue R-250 to control for equal loading and protein integrity.
Each lane in both gels contains 20 mg of protein.
doi:10.1371/journal.pone.0105444.g001

Figure 2. Effect of pH on Drosophila RNase activities. Protein
extracts from ovaries and embryos were analyzed using RNase in gel
activity assays as described in Figure 1, with incubations at neutral
(pH 7.0; upper panel) and acidic (pH 6.0; lower panel) conditions. RNase
activity in the size range corresponding to RNase T2 enzymes was
abundant after incubation at pH 6, while almost no activity was
observed at neutral pH. Each lane in both gels contains 20 mg of
protein. A plant protein that is active at the two pH conditions,
Arabidopsis thaliana RNS2 [7], was used as control.
doi:10.1371/journal.pone.0105444.g002

Figure 3. Reduced RNase activity and expression correlates
with reduced RNase X25 gene dose. Ovarian extracts were prepared
from wild type control (+/+), or deletion mutant Df(3L)Excel6279/+
females (+/2), carrying two or one copy of the RNase X25 gene,
respectively. Protein samples were analyzed using (A) in gel RNase
activity assay, or (B) standard SDS/PAGE analysis. Compared to the
control (+/+), RNase activity was reduced in ovaries dissected from
females with one copy of the RNase X25 gene (+/2). Each lane in both
gels contains 20 mg of protein. (C) RNA was isolated from ovaries and
qPCR quantification of the relative level of RNase X25 mRNAs in these
samples was carried out using the ribosomal protein L3 (RpL3) transcript
as internal standard control for normalization. RNase X25 expression
levels were reduced in tissue samples from mutant Df(3L)Excel6279/+
females (+/2), compared to control females (+/+). Data are represen-
tative of 3 independent experiments and are means and S.E. of
triplicates. **, P,0.01 (t-test).
doi:10.1371/journal.pone.0105444.g003
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determined if a change in RNase X25 expression levels could be

detected in whole animal extracts after larval ingestion of WGA

(1% w/w).

Whole animal extracts were prepared for molecular analysis

from third instar larvae fed a control diet or subjected to starvation

for 14 h (see Materials and Methods). As shown in Figure 5A, the

accumulation of RNase X25 mRNA transcripts increased

approximately 80% for animals starved for nutrients (P,0.05)

when compared to fed control larvae. It has been proposed that

diets containing WGA produce a starvation-like effect on flies [35];

thus, a WGA-containing diet was also used to feed D. melanogaster
larvae. Consistent with a starvation-like effect, a WGA diet

resulted in a significant increase in RNase X25 expression (P,

0.01), similar to that observed in starved flies (Figure 5A).

We also observed an increase in RNase X25 mRNA when

larvae were fed a diet containing the oxidative stressor hydrogen

peroxide (Figure 5B). In this set of experiments, the normalized

RNase X25 expression levels for whole animals exposed to 0.5%

hydrogen peroxide were 50% higher (P,0.05) than observed for

control animals. At a lower dosage, 0.1 %, a 20% increase in

RNase X25 mRNA was observed, although this change was not

statistically significant. Thus, analysis of whole larval extracts

indicated that the RNase X25 gene was responsive to various

stressors including starvation, and treatments with 1% WGA or

0.5% hydrogen peroxide. Data from microarray experiments

performed by other laboratories suggest that a few other stress

conditions and chemical treatments can also alter the expression of

RNase X25 (Table S1).

Starvation, RNase X25 Expression and Autophagy
Since starvation induces autophagy and autophagy mediated

RNA degradation, we also tested whether expression of Atg5,

which encodes a protein that participates in an ubiquitin-like

protein conjugation system essential for autophagy[36], was

altered in our starved larvae. We found a small but significant

(P,0.05) increase in the expression of this autophagy marker in

starved, as compared with fed control larval samples (Figure 6A

left F 4–24 panel). Since only a low level of induced Atg5
expression was detected in our starved samples, we used two gene

markers, Amyrel (a-amylase related) [35] and Lip3 (lipase) [37] to

monitor the starvation response for these animals grown on

Formula 4-24 instant blue D. melanogaster diet. As shown in

Figure 6B (F 4–24 panels) significant (P,0.01) increases in the

level of Amyrel (2.5 fold) and Lip3 (14 fold) were apparent,

indicating that the starved animals were indeed nutritionally

stressed.

Next, we followed autophagy by examining the formation of

Lysotracker-positive vesicles in larval fat body, as previously

Figure 4. Developmental profile of RNase X25 transcript
accumulation. RNA was isolated from embryos at 0–2 h, 2–6 h, and
0–16 h after egg deposition and from animals at 3rd instar larval (L3),
white prepupal (WPP), pupal (P), and adult male (M) or female (F) stages
of development. Ovarian tissue (O) was prepared from 3–5 day old
females. qPCR quantification of the relative level of RNase X25 mRNAs in
these samples was carried out using the ribosomal protein L3 (RpL3)
transcript as internal standard control for normalization. RNase X25
expression was detected at all stages analyzed. Data are representative
of 3 independent experiments and are means and S.E. of triplicates.
doi:10.1371/journal.pone.0105444.g004

Figure 5. RNase X25 gene expression is regulated by nutritional
and oxidative stress. RNA was isolated from whole 3rd instar larvae,
14 h after transfer to control or experimental media (see Materials and
methods). qPCR quantification of the relative level of RNase X25 mRNAs
in these samples was carried out using the ribosomal protein L3 (RpL3)
transcript as internal standard control for normalization. Increased
levels of RNase X25 transcripts were apparent in samples after (A)
starvation and treatments with 1% [w/w] wheat germ agglutinin (WGA),
and (B) 0.1% [w/w] or 0.5% [w/w] hydrogen peroxide. Data are
representative of 3 independent experiments and are means and S.E. of
triplicates. *, P,0.05; **, P,0.01 (t-test).
doi:10.1371/journal.pone.0105444.g005
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Figure 6. Starvation induces expression of the autophagy marker, Atg 5 and Amyrel, Lip3 and RNase X25 in larvae. RNA was isolated
from whole 3rd instar larvae, 14 h after transfer to control (C) or starvation (S) conditions (see Materials and methods). qPCR quantification of the
relative level of (A) autophagy marker Atg5, (B) starvation markers Amyrel, and Lip3, and (C) RNase X25 mRNAs in these samples was carried out using
the ribosomal protein L3 (RpL3) transcript as internal standard control for normalization. Increased levels of Atg5, Amyrel, Lip3, and RNase X25
transcripts were apparent in samples after starvation as compared with fed-control animals. Data are representative of 3 independent experiments
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described by Jimenez-Sanchez et al. [38]. For animals nourished

with Formula 4–24 instant D. melanogaster diet, very high, but

diffuse accumulation of Lysotracker was found for both fed control

and starved larval fat body, complicating the interpretation of

results (data not shown). The diet of these animals was not

supplemented with Baker’s yeast, an important and major source

of nutrients for Drosophila larvae [39]. However, for 3rd instar

larvae growing on rich media containing yeast (see Materials and

Methods), after a 14-hour starvation period, characteristic

Lysotracker-positive vesicles were observed in fat body cells

(Figure 7B, D and F), with little to no puncta visible for fed

control animals (Figure 7A, C and E). Importantly, quantitative

RT-PCR analysis demonstrated that a significantly (P,0.01)

higher level of Atg5 mRNA transcripts was present after 14 hours

of starvation, as compared with those from non-starved control

animals in rich media-fed larval samples (Figure 6A), confirming

the induction of autophagy in these nutritionally stressed animals.

The starved state of these animals was verified by the presence of

significantly (P,0.01) higher levels of both Amyrel and Lip3
mRNA transcripts, as compared with fed-control larvae (Fig-

ure 6B). Finally, the level of RNase X25 gene expression and

enzymatic activity were probed and found to be at higher levels for

starved compared with fed-control animals (Figure 6C and D).

Together, these results suggest that the autophagy process is

concomitantly induced with an increase in RNase X25 mRNA

expression and enzymatic activity after starvation.

Phylogenetic analysis of T2 RNase genes in protostomes
Phylogenetic analyses of deuterostomes and plants suggested

that RNase T2 enzymes carry out an essential housekeeping role

that justifies their presence in all eukaryotic genomes [2]. In

addition, the RNase T2 family in plants has undergone many gene

duplication events followed by gene sorting and diversification,

which led to the acquisition of new biological roles [13], but this

diversification was not been observed in the animal genomes so far

analyzed [14], which did not include almost any protostome. The

presence of only one RNase T2 gene in the Drosophila genome

also seemed to confirm that only one gene is present in animal

genomes; nevertheless, the recent availability of a large number of

fully sequenced protostome genomes led us to perform a search for

members of the RNase T2 family in those genomes, followed by

phylogenetic analyses.

Extensive searches in all the available Drosophilidae genomes

(Table S2) confirmed that this family possesses only one RNase T2
gene. A similar result was obtained in extensive searches of other

fully sequenced insect genomes, including seven species of ants,

two bees, two bumblebees, red flour beetle, silkworm, and pea

aphid (Table S2). Surprisingly, the analysis of parasitoid wasp

genomes provided a different result. We identified eight RNase T2
genes in the Nasonia vitripennis genome (Table S2 and Figure 8),

seven that encoded for potential full-length proteins (RNase Nvi1 -

RNase Nvi7) and one pseudogene (RNase Nvi8, sequence not

shown). Analysis of expressed sequence tag (EST) databases

indicated that at least two of these genes are expressed in N.
vitripennis (not shown). Protein database searches also revealed

that another parasitoid wasp species, Glyptapanteles flavicoxis,
contained more than one RNase T2 gene in its genome (Table S2).

Extending the search to other fully sequenced protostome

genomes and EST databases produced similar results (Table S2).

RNase T2 was absolutely conserved in all the genomes analyzed,

supporting the hypothesis that these enzymes carry out an

important housekeeping function. Additionally, different phyla

or subgroups varied on whether a single or multiple genes were

present in their genomes. Among Arthropoda, only one gene was

found on most Hexapoda genomes except parasitic wasp, and only

one full RNase T2 gene seems to be present in the only

Crustacean genome (Daphnia pulex) available; however, Arach-

nids genomes have multiple expressed genes corresponding to this

family. Nematoda and Annelida have only one T2 gene, based on

the analysis of three and two full genome sequences, respectively.

On the other hand, Mollusca and Platyhelminthes have multiple

copies of RNase T2 genes in their genomes.

Neighbor-joining analysis was used to create a phylogenetic tree

(Figure 9) of the protostome RNase T2 proteins extracted from full

genomes and protein and EST databases. The tree showed a well-

defined clade for most individual phyla, but overall it did not have

good definition. This could be due to significant divergence for

proteins in each phylum clade, or it could also indicate that more

sequences are needed for a better resolution. A parsimony analysis

showed similar results (not shown). In any case, several inferences

can be made with respect to the evolution of RNase T2 proteins in

protostomes. Gene duplication events seem to have happened

independently in each phylum. Moreover, in some cases we found

species-specific clades, in particular the one corresponding to

Nasonia vitripennis (parasitic wasp, see below) or Lottia gigantea
(Mollusca) that suggest that gene duplication occurred after

speciation. In contrast, gene duplications in Platyhelminthes may

have occurred before speciation in some cases, since it is possible

to find conserved ortholog pairs for Schistosoma japonicum and

Schistosoma mansoni; however proteins from Schmidtea mediter-
ranea do not cluster with those from Schistosoma spp, suggesting

either duplication after speciation or rapid divergence.

The parasitic wasp RNases are an interesting case. In our

analysis, parasitic wasps were the only insects with multiple T2

genes in their genome. Remarkably, wasps from the Braconidae

family form a symbiosis with polydnaviruses that help the insect

parasitize its host [40]. Bracovirus in the Braconidae contain an

RNase T2 gene in their genome, which has a role in

immunosuppression of the wasp’s host [41]. The RNase T2

protein predictions derived from ESTs from Glyptapanteles
flavicoxis, a wasp from the Braconidae family, cluster with

bracovirus RNases included in our phylogenetic analysis (Fig-

ure 7), indicating that these RNases are expressed from the

symbiotic viral genome. However, the RNases in N. vitripennis,
which belongs to the Pteromalidae family and does not form a

symbiotic relation with polydnaviruses, form an independent

clade. One N. vitripennis gene, RNase Nvi1, is included in the

clade that includes the RNases from all other Hymenoptera. This

gene is located in chromosome 4 in this wasp (Figure 8). The other

six full-length genes (RNase Nvi2 - RNase Nvi7) and a

pseudogene (RNase Nvi8) are located in tandem in chromosome

3, and are likely the result of later gene duplications. We searched

for any potential viral gene that could be linked to the RNases in

chromosome 3 without success, suggesting that these RNases do

and are means and S.E. of triplicates. *, P,0.05; **, P,0.01 (t-test). (D) Protein extracts from 14 h starved (S) and fed-control (C) whole 3rd instar larvae
were analyzed using RNase in gel activity assays as described in Figure 1. RNase activity in the size range corresponding to RNase T2 enzymes was
evident in starved as compared with fed-control animals. Each lane in both gels contains 80 mg of protein. ‘‘F 4–24’’ denotes extracts from animals
nourished with Formula 4–24 instant D. melanogaster diet without yeast; ‘‘Rich’’ denotes extracts from animals fed a yeast rich diet (see Materials and
methods).
doi:10.1371/journal.pone.0105444.g006
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not have a viral origin. The fact that these RNases form an

independent cluster with strong bootstrap support suggests that

these proteins diverged quickly after the initial gene duplication

event. Identification of an EST from Nasonia giraulti (GeneBank

Accession number ES622650) with 97% identity at the nucleotide

level with RNase Nvi2 indicated that this duplication event(s)

should have occurred before speciation in the genus Nasonia.

Analysis of protein sequences indicated that all the RNases from

chromosome 3 have an H to Y amino acid substitution in the

conserved active site II (CAS II, Figure 10) that may lead to an

attenuation of enzymatic activity, as has been previously observed

in other animal and plant RNase T2 proteins [2]. Substitutions in

this position were also observed in some Platyhelminthes and

mollusk RNases (Figure 10). Moreover, some flatworm RNases

(RNase Sja2, RNase Sja3, and RNase Sja6) may have lost

enzymatic activity completely, since they also have a substitution

in a CAS I histidine that is essential for RNase activity [1].

Discussion

In this work we performed an initial characterization of

Drosophila RNase X25, the only member of the RNase T2 family

present in this insect. We found constitutive expression of RNase
X25 mRNA during Drosophila development, and we were able to

show a correlation between the main RNase activity detected in

zymograms and expression of this gene in wild-type and deletion

mutants, indicating that RNase X25 is a major contributor of

endonuclease activity in Drosophila extracts. This activity has a pH

optimum in the acidic range, a common characteristic of animal

RNase T2 enzymes, which indicates that the active enzyme may

normally be sequestered in an acidic compartment within cells to

carry out its function. Animal RNase T2 proteins have been

localized to lysosomes in zebrafish and humans [6,42], and

prediction of subcellular localization for RNase X25 indicated that

this protein is also targeted to the secretory pathway [15].

Based on our results and data extracted from databases, RNase

X25 seems to be active at all stages of development and in all

larval and adult tissues investigated. This result is in agreement

with those studies that have characterized the RNase T2 family in

other eukaryotes [2], and suggest that, as it has been proposed for

other eukaryotic RNase T2 enzymes constitutively expressed,

RNase X25 may perform a housekeeping function. Absence of this

constitutive RNase activity in Arabidopsis thaliana and zebrafish

leads to accumulation of rRNA in vacuoles or lysosomes [6,7].

Additionally, Arabidopsis plants lacking expression of RNS2, the

housekeeping RNase T2 in this organism, show constitutive

autophagy [7]. Thus, it has been proposed that the role of these

Figure 7. Effect of starvation on the accumulation of Lysotracker-positive vesicles in larval fat body. (A and B) A high level of bright red
Lysotracker-positive vesicles accumulate in fat body cells isolated from (B) 14 h starved 3rd instar larvae, with few observed for (A) fed-control larvae.
(C and D) Hoescht 33342 staining of DNA, and (E and F) merged images. Scale bar = 20 mm.
doi:10.1371/journal.pone.0105444.g007
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RNases is to maintain normal cellular homeostasis by recycling

rRNA.

A role in rRNA recycling and cellular homeostasis may also be

carried out by RNase T2 enzymes in cells under nutritional stress

conditions, likely through a specialized autophagy process known

as ribophagy. Ribophagy, the targeted degradation of ribosomes

through a mechanism that uses the autophagy machinery, has

been described for yeast cells undergoing starvation [43]; and

Rny1, the only RNase T2 enzyme in yeast [44], may mediate

rRNA degradation under stress conditions [9]. While a direct role

for RNase T2 enzymes in ribophagy has not been established,

their participation in this process has been suggested for plants,

animals, and unicellular eukaryotes [6,8,10]. Moreover, several

plant RNase T2 genes are induced under conditions of phosphate

starvation, probably as a mechanism to scavenge nutrients [2], and

at least two Tetrahymena RNase T2 genes are also induced by

starvation conditions [45]. We observed that expression of RNase
X25 is significantly induced in fly larvae subjected to starvation or

fed WGA. Concomitant with this response we could also observe

an increase in the expression of Atg5, which encodes one of the

core components of the autophagy machinery that has been

previously shown to be induced by starvation in Drosophila ovaries

[46], and the robust appearance of Lysotracker-positive vesicles in

larval fat body cells, marking lysosomes and autolysosomes

participating in the autophagy process [16,38]. Induction of

RNase X25 by nutritional stresses and evidence of autophagy may

indicate that this enzyme also has a role in cellular homeostasis

through recycling of cellular RNAs.

Data from a genome-wide microarray analysis of mRNA

expression had previously identified RNase X25 as one of 61

transcripts differentially expressed when animals were fed a 1%

WGA diet [35]. In that study, a 9-fold increase in RNase X25
transcript levels was observed for midgut tissue dissected from

third instar larvae. Since whole animals were harvested for our

analysis, it is conceivable that the modest ,2 fold increase in

RNase X25 mRNA levels we observed reflects a tissue specific

differential response to WGA. Higher levels of RNase X25

mRNAs may accumulate in tissues of the gut, with stable

expression levels in remaining tissues. This effect could also

explain the discrepancies in results observed in several high

throughput analyses of starved Drosophila larvae or adults (see

Table S1). This ‘‘dilution effect’’ may also explain the difference

between the Atg5 levels of expression observed in our experiment

and the experiments of Barth et al. [46], who isolated ovaries for

their analyses.

In addition to the housekeeping role, RNase T2 enzymes have

acquired novel functions during eukaryote evolution. In some

cases, novel functions appeared after gene duplications. This seems

to be the case for plant RNase T2 enzymes that participate in

defense mechanisms, and also for S-RNases, specialized T2

enzymes that determine gametophytic self-incompatibility in

several plant species [12,13]. In other cases, a single protein can

have multiple roles. For example, both RNase activity-dependent

and -independent functions have been proposed for human

RNASET2. Lack of RNASET2 causes cystic leukoencephalopathy

in humans and a similar phenotype in zebrafish [6,47]. This

neurological disorder is likely caused by lysosomal malfunction due

to the high levels of rRNA that accumulate in these organelles

when the enzyme is absent [6]. In addition, human RNASET2 has

been shown to have anti-metastatic properties independent of its

catalytic activity [48]. Another enzyme with more than one

function is yeast Rny1. This protein may work in rRNA recycling

during ribophagy-like processes, given its localization in vacuoles

in normal growth conditions [9]. Additionally, Rny1 is responsible

for tRNA cleavage during the cell’s response to oxidative stress,

after the enzyme is likely released from the vacuole into the

cytoplasm. The accumulation of stable tRNA halves is thought to

act as a signal during the stress response [9,10]. Moreover, during

the oxidative stress response, Rny1 is able to promote cell death

through an unknown mechanism that is independent of its RNase

activity [9]. Cleavage of tRNAs in stress conditions that inhibit cell

growth is a response conserved in plants and animals [10,49], and

there is some evidence that tRNA fragments also accumulate in

Drosophila [50,51]. We showed here that RNase X25 expression is

Figure 8. Genomic organization of the RNase T2 genes found in the Nasonia vitripennis genome. Genes belonging to the RNase T2 family
were identified by homology searches of the wasp genome. Boxes represent exons. The gene more closely related to other insect RNase T2 genes is
shown in green. Genes with more divergence are shown in orange. Yellow boxes indicate exons with uncertain boundaries. Numbers below each
gene are the coordinates of each gene based on the Nasonia vitripennis genome assembly Nvit_2.0. The location of the pseudogene is indicated but
the gene is not depicted.
doi:10.1371/journal.pone.0105444.g008
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increased in flies subjected to oxidative stress, making this enzyme

the logical candidate for a role in tRNA cleavage in these insects,

and suggesting that RNase X25 may have dual function, as shown

for other members of the RNase T2 family.

Our phylogenetic analyses showed that most insects have only

one gene belonging to the RNase T2 family in their genomes.

However, parasitoid wasps of the genus Nasonia seem to be the

exception. In these insects, several gene duplications have

Figure 9. Phylogenetic tree of protostome RNase T2 proteins. Tree was obtained by the Neighbor-Joining method using only conserved
regions. Bootstrap percentages (for 1,000 replications) greater than 50 are shown on interior branches. The tree was rooted using bacteria sequences.
Groups discussed in the text are labeled on the right.
doi:10.1371/journal.pone.0105444.g009
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occurred, and there is EST evidence indicating that the duplicated

genes are expressed. In addition, mutations in the conserved active

site of these proteins suggest that the duplicated enzymes have

attenuated activity. Interestingly, parasitoid wasps from other

families have a symbiotic relationship with polydnaviruses that

provide protein factors essential for parasitism [40], including

proteins belonging to the RNase T2 family [52]. These virus-

encoded RNase T2 proteins are expressed in the parasitoid larva

and likely delivered into the host during the parasitization process

[52]. Expression of the viral RNase alone in the host larva resulted

in reduction in hemocyte populations and increase in susceptibility

of the larva to bacterial and baculovirus infections, indicating that

these RNases have an important immunosuppressive function

during parasitism [41,53]. Nasonia wasps do not have a

polydnavirus symbiont. It is possible, then, that upon duplication

of the conserved housekeeping RNase T2 gene, the new proteins

diverged and were recruited for a novel function in immunosup-

pression during parasitism, in a case of convergent evolution.

It is intriguing that the duplicated Nasonia RNases have

mutations in the enzymes’ active site. These changes have been

previously reported in other proteins of the RNase T2 family, and

it has been speculated that they may result in attenuated yet active

enzymes [13,14]. However, the biological significance of this

mutation is not yet understood. Other RNase T2 proteins are also

able to modulate immune responses. Erns, a Bovine Viral Diarrhea

Virus RNase T2 protein, can inhibit the host beta interferon

response potentially by interfering with the dsRNA signal [54], or

through an intracellular mechanism involving cell-to-cell signaling

even in the absence of virion particles [55]. This inhibitory effect

on the beta interferon response depends on the RNase activity of

Erns [54,55]. However, a catalysis-independent cytotoxic effect for

this protein has also been proposed based on the ability of mutant

Figure 10. Identification of mutations in conserved active site residues in protostome RNase T2 proteins. The alignment shows the
conserved CAS I and CAS II regions characteristic of RNase T2 enzymes. The catalytic histidines are marked with asterisks. Mutations in the catalytic
histidine in CAS I should result in complete loss of activity (shown in red). Mutations in the additional histidine in CAS II, implicated in binding to the
substrate or stabilization of the pentacovalent intermediate [2], should result in enzymes with reduced activity (shown in green or yellow). The active
sites of human RNASET2 and RNase X25, two active RNases, are shown for comparison.
doi:10.1371/journal.pone.0105444.g010
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proteins without RNase activity to induce cell death in swine

kidney cells [56]. Omega-1, a secreted RNase T2 protein from

Schistosoma mansoni, also has a cytotoxic effect on its host hepatic

cells [57]. This protein is also able to induce a strong Th2-

polarized immune response in the host, which is necessary for the

efficient passage of parasite eggs from the intravascular sites of

deposition to the intestinal or bladder lumen [58]. In this case,

modulation of the immune response seems to be caused by

suppression of protein synthesis after internalization by dendritic

cells following recognition of the glycosylation signature of omega-

1 [59]. The RNase activity of omega-1 is necessary for this

immunomodulating role. However, other Schistosoma species

appear to have inactive RNase T2 proteins in addition to enzymes

with conserved active sites. It is possible that these proteins could

also play a role in immunoregulation, although these inactive

proteins are present also in free living planarians.

Recent insights from Arabidopsis thaliana, zebrafish, and

human indicate that the RNase T2 enzymes carry out an

important housekeeping function in normal cells [6,7]. Arabidop-

sis mutants lacking this conserved RNase T2 activity accumulate

RNA, mainly in the vacuole, have an increased rRNA half-life,

and exhibit constitutive autophagy [7]; while rnaset2 mutant

zebrafish show aberrant accumulation of undigested rRNA in

neuronal lysosomes and present brain lesions similar to those

observed in leukocephalopathies associated with deficiencies in

RNASET2 in humans [6,47]. Thus, RNase T2 enzymes

participate in the normal recycling of rRNA, and this housekeep-

ing function seems to be essential for cellular homeostasis.

Duplication and divergence of the RNase T2 gene family has

occurred in the evolution of plants and fishes. Secreted RNases of

the RNase A family seem to have acquired in vertebrates,

including humans, some of the biological roles carried out by

RNase T2 enzymes in other systems (reviewed by MacIntosh [2]).

Use of the Drosophila model, whose genome encodes only one

RNase T2 gene and lacks RNase A homologs or other evident

secretory RNases with similar activity, is likely to provide insight

into the ancestral physiological function of this gene family in

multicellular animals during normal growth and development, and

also under stress conditions. Analyses of Drosophila mutants with

reduced RNase X25 activity may lead to identification of

phenotypic characteristics that could be the basis of genetic

modifier screens to identify other key genes that participate in

RNase T2 function. These may also prove important to

understand how RNA degradation systems interface with other

cellular processes.
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