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Abstract

In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion
syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD)
individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition.
Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior
implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration,
intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in
social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions
including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the
role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study
builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in
gene expression on the human brain.
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Introduction

Imaging genetics research provides an unprecedented opportu-

nity for studying interactions among genes, brain and behavior in

humans. For example, studies have explored associations of

common genetic polymorphisms, including those related to

catechol-O-methyl transferase (COMT), monoamine oxidase A

(MAOA) and serotonin transporter length polymorphism (5-
HTTLPR/SLC6A4), with brain structure and function [1].

Similarly, examination of rare, atypical duplications and deletions

associated with disorders such as Williams-Beuren syndrome (WS)

can further illuminate our understanding of gene-brain-behavior

relationships [2].

WS is a neurodevelopmental disorder caused by a hemizygous

deletion of approximately 28 genes on 7q11.23 [3]. WS is

associated with poor visuo-spatial construction and increased

social drive [4]. The existence of this well delineated profile and

known genetic architecture of WS offers unique opportunities to

investigate the neurogenetic basis of cognition in humans [5].

Using this approach comparing WS to typically developing (TD)

controls, studies have found the genes deleted in WS to be

important for intraparietal sulcus (IPS) morphology, which in turn

mediates visuo-spatial construction [6], and amygdala-orbitofron-

tal (OFC)-fusiform circuitry as related to socio-emotional abilities

[7–9]. These studies suggest genetically controlled neural circuit-

ries for regulating human behavior, and show how brain imaging

data may serve as ideal intermediate endophenotypes mediating

gene and behavior.

To further gain a better understanding of the neurogenetic basis

of human behavior using this ‘model disease’ approach, the

current study undertook a targeted investigation of persons with

WS having rare atypical deletions (AWSdel) by comparing these
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individuals to WS and TD groups. While most individuals with

WS exhibit the full ‘classic deletion,’ there are rare cases (,2%)

where relatively smaller deletions occur [10]. It is currently

unknown how smaller WS deletions impact brain structure in WS.

By investigating AWSdel, new insights into the role of specific

genes on brain and behavior can be obtained. To accomplish this

goal, we collected brain imaging data and behavioral data from

samples of AWSdel, WS and TD. There were three types of

deletions among the AWSdel cases; i.e., one where the genes

GTF2I and GTF2IRD1 were spared, another where the region

from TRIM50/FKBP6 to (but not including) STX1A was spared,

and a third where small deletions occurred between ABHD11
through RFC2 including LIMK1 (Figure 1). We focused on

visuo-spatial and social cognition, two key phenotypes of WS and

examined whether each AWSdel case resembled WS or TD. The

overarching objective of this investigation was to deduce gene-

brain-behavior associations by examining genes that are com-

monly deleted in those with similar neuroanatomical and

behavioral profiles among individuals comprising our AWSdel

sample (Figure 1).

Material and Methods

Ethics Statement
All procedures were approved by the Institutional Review

Boards of Stanford University and Salk Institute. All participants

provided written informed consent or assent. Parents or guardians

provided written consent in addition to written assent if the

participants were minors.

Subjects
Participants included a total of 72 with WS, 54 with TD, and 8

individuals with AWSdel (Table 1, 2). The 8 individuals with

AWSdel had previously received a clinical diagnosis of WS. In

each case, one or more genes commonly deleted in WS were

spared (AWSdel-01 [ID#: 5623; spared for GTF2I and
GTF2IRD1], AWSdel-02 [ID#: 5657; spared from FKBP6/
FZD9 up to WBSCR22, deletion includes STX1A], AWSdel-03

family i-vi [ID#s: 5882, 5884-5888; small deletions from

ABHD11 through RFC2 including LIMK1) on chromosome

7q11.23 (Figure 1).

Exclusion criteria included a history of significant medical and

neurological conditions or symptoms not known to be associated

with WS such as cerebral palsy, stroke, multiple sclerosis,

Parkinson’s disease or head trauma resulting in loss of conscious-

ness. Epilepsy occurs in WS but does not have as high a rate as in

other neurodevelopment conditions such as autism, fragile X and

tuberous sclerosis. Thus, these were exclusions for WS (typical

AND atypical) as well as for controls. All WS and AWSdel

participants received cognitive-behavioral, genetic and imaging

assessments as part of a multi-site program project grant on

genetics, neuroanatomy, neurophysiology, and cognition.

Healthy control participants (with no history of major psychi-

atric, neurological, or cognitive impairment) were recruited at

both the Salk Institute and Stanford University. TD control

participants were further screened to rule out any history of

learning, language, or behavioral disorder over the phone using a

screening form as in our prior studies of WS and other

neurogenetic conditions (e.g. [25]).

Genetic Testing
In order to confirm the extent of each participant’s deletion

(typical WS and AWSdel), a series of genetic analyses were

performed. Specifically, deletions in all the typical WS were

confirmed by the use of Fluorescence in Situ Hybridization (FISH)

with bacterial artificial chromosomes (BACs) including in all cases,

probes for ELN and in addition, subsets of probes marking the

ends of the typically deleted region (1008H17 for FKBP6, FZD9;

592D8 for ELN, LIMK1; and 1184P14 for GTF2I), for the

typically non-deleted single copy gene, CALN1 (815K3) located

upstream of the centromeric duplicated region. Probes for the

duplicated regions flanking the common deletion were employed

along with ELN as a screen for the common deletion [16]. For

atypical participants AWSdel-01 and AWSdel-02, further FISH

analyses used a total of twenty-one sequenced linked DNAs

isolated from either BACs [16] or cosmids [17] to cover the region

defining the deletion breakpoints as described in [18]. Quantita-

tive PCR was performed using probes spanning from CALN1 to

Figure 1. Schematic diagram of deleted genes in WS and in partial deletion participants (AWSdel). Genes listed in the figure are either
ones known to be expressed in the brain and are important for neurodevelopment, synaptic plasticity and neuronal reorganization: LIMK1 [54], FZD9
[55], STX1A [56], CYLN2 [57], GTF2 I[58] and GTF2IRD1 [59], or are break-points.
doi:10.1371/journal.pone.0104088.g001
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WBSCR16 and template DNA isolated from blood and/or

lymphoblast cell lines, to determine the deleted region of atypical

participants AWSdel-01, AWSdel-02, AWSdel-03i-vi [18]. Finally,

a custom high resolution genomic NimbleGen array [15] spanning

a 13 Mb region that included the typical deletion, flanking repeats

and surrounding single copy DNA, was used to define the deletion

structures in atypical participants AWSdel-01, AWSdel-02,

AWSdel-03-i, iv, v [15,19]. A schematic diagram showing atypical

deletions of these 8 cases is presented in Figure 1.

Cognitive/Behavioral Testing
Participants were given a standard battery of measures that

included the Wechsler Adult Intelligence Scale (WAIS) [20] and

Wechsler Intelligence Scale for Children (WISC) [21] to measure

verbal, performance and full-scale IQ. IQ was available for all but

5 WS and 2 TD. There were no significant differences between the

participants with and without IQ in level of cognitive function on

any measure listed in Table 1 (all p’s .0.1).

Participants also completed a series of tasks designed to assess

visuo-spatial functioning. This included the Block Design subtest

of the IQ tests (a timed test where the participant arranges the

blocks with white and/or red sides according to a pattern), Beery

Visuo-Motor Integration [22] (the participant reproduces simple

line drawings) and non-normed Benton Judgment of Line

Orientation test [23] (the participant identifies the slope of the

presented lines on the display of 11 lines).

Lastly we used a non-normed test to measure social approach-

ability in each participant [24]. This task involves participants

reporting how likely they would approach a person depicted in a

photograph.

WS individuals showed significantly reduced IQ and visuo-

spatial abilities, and significantly higher social approachability

scores (all p’s,0.05). Please see Table 2 for mean scores,

statistics, and scores of partial deletion cases. Analyses of cognitive

profiles were performed in parallel to the anatomical brain

measures described below with a cut-off score of z = 1.65 (1-tailed)

instead of z = 1.96 that was used for brain measures.

Acquisition of Anatomical Brain Measures
MRI data were collected on two scanners (1.5 T and 3.0 T,

respectively). Data from 2 of the AWSdel (AWSdel-01, AWS-

del02), 42 WS and 40 TD individuals were obtained using a 1.5T

MRI scanner. Data from AWSdel-03i , AWSdel03vi (father and

5 adolescent children), 30 WS and 14 TD individuals were

obtained at a subsequent time using a 3.0T MRI scanner. The

Main Text reports findings comparing AWSdel (including

AWSdel-03 data obtained from a 3.0T) to WS and TD data

from 1.5T. The results were unchanged when 3.0T reference data

from individuals with WS and TD MRI served as the reference to

which MRI data from individuals with AWS (acquired from both

1.5T and 3.0T scanners) were compared (see Supporting
Results).

All 1.5T data (42 WS, 40 TD, AWSdel-01, AWSdel-02) were

acquired with a GE-Signa 1.5T scanner (General Electric,

Milwaukee, WI) located at one of three sites: University of

California, San Diego Medical Center Magnetic Resonance

Imaging Institute (N = 59), Scripps Clinic, San Diego (N = 53),

or Stanford University (N = 5). Across all locations and in all cases,

sagittal brain images were acquired with the same three-

dimensional (3D) volumetric radio frequency spoiled gradient

echo (spoiled gradient-recalled acquisition in a steady state) pulse

sequence using the following scan parameters: repetition time, 24

msec; echo time, 5 msec; flip angle, 45u; number of excitations, 2;

matrix size, 256 6 192; field of view, 24 cm; slice thickness,

1.2 mm; 124 contiguous slices.

The remaining participants (30 WS, 14 TD, AWSdel-03i,vi)

underwent MRI on a GE-Signa 3.0 T scanner (General Electric,

Milwaukee, WI) at Stanford University. In these cases, coronal

brain images were acquired with a three-dimensional enhanced

fast gradient echo (EFGRE3D) pulse sequence using the following

scan parameters: repetition time, 6 msec; echo time, 1.5 msec; flip

angle, 15u; number of excitations, 3; matrix size, 256 6256; field

of view, 24 cm; slice thickness, 1.5 mm; 124 contiguous slices.

Voxel Based Morphometry (VBM) Processing
VBM analyses of 42 WS and 40 TD MR images from the 1.5T

scanners were performed using SPM5 (http://www.fil.ion.ucl.ac.

uk/spm) and VBM5.1 (http://dbm.neuro.uni-jena.de/vbm). After

bias correction, T1 images were segmented into gray matter, white

matter and cerebral spinal fluid. Hidden Markov Random Field

(prior probability weight 0.3) was used to encode spatial

information through spatial constraints of neighboring voxels.

Normalization was performed using both adult and custom

templates created from the 42 individuals with WS and 40 with

TD. Both Jacobian modulated (non-linear warping only; reflecting

regional gray matter volume) and nonmodulated (reflecting gray

matter density) images were smoothed with an isotropic Gaussian

kernel with full-width at half-maximum (FWHM) of 8 mm.

Analyses of gray matter density were performed to compare with

our previous report on WS individuals [25]. Segmentation and

normalization for each participant was confirmed by manual

inspection of the images. These steps were repeated for the 30 WS

and 14 TD MR images collected using 3.0T.

Regions of Interest (ROIs)
ROIs were restricted to brain regions that showed significant

differences between WS and TD individuals in gray matter images

processed using VBM (Figure S1, Table S1). Results comparing

WS and TD are reported in Supporting Results and not in the

Main Text because the results (from 1.5T) have been reported

previously (e.g. [25]) and results from 3.0T are used to replicate

our findings. Our particular interest was in the intraparietal sulcus

(IPS; right more than left), thought to be critical for visuo-spatial

processing, and the amgydala, orbitofrontal cortex and fusiform

gyri (right more than left) thought to be critical for social cognition

and face processing. While the amygdala did not reach

significance comparing WS and TD with VBM, based on

evidence that the amygdala is structurally and functionally

abnormal in WS and its importance in socio-emotional function-

ing [25,26], this region was manually delineated as described

below.

Volumetric Measures of the Amygdala
Amygdala volumes were obtained from delineation based on

anatomical landmarks by trained research staff who followed a

detailed protocol [25]. Briefly, the amygdala delineation was

initiated on the coronal slice where the anterior commissure was

best distinguished and proceeded in the posterior direction until

both the amygdala and hippocampus were clearly visible on the

same slice. Superior, inferior and lateral boundaries were each

designated by prominent white matter tracks, while the medial

boundary was designated by either white matter or cerebral spinal

fluid. Inter-rater reliabilities for all volumes described in this study

were $ 0.90 as determined by the intraclass correlation coefficient.
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Univariate Analyses
Brain images of each AWSdel case processed using VBM were

compared to the WS and TD datasets (see Supporting
Methods). We generated two voxel-wise z-score maps per

AWSdel case that indicated how each AWSdel’s brain image

deviated from WS and TD groups (thresholded at z.1.96 and

z,21.96, p’s,0.05). For example, if a partial deletion case

showed |z|.1.96 from one group and |z|,1.96 from the other,

then it was determined that the partial deletion case resembled the

latter group. In the case of the AWSdel-03 family (father and 5

children with same atypical WS deletion), after creating these

thresholded z-score maps for each family member AWSdel-

03i,vi, we further created probabilistic maps using the thre-

sholded images to examine the proportion of family members that

showed z.1.96 or z,21.96. These z-score and probabilistic

images allowed us to visualize whether each AWSdel case showed

a relative propensity for WS-like versus TD-like neuroanatomical

patterns.

Results comparing WS and TD groups utilizing standard SPM5

and custom templates (Figure S1, Table S1), gray matter

volume and density (Figure S1), and 1.5T and 3.0T scanners

(Figure S2) are also reported in Supporting Results. AWSdel

results comparing standard gray matter volume and density

(Figure S3) and 1.5T and 3.0T scanners (Figure S4), are also

reported in Supporting Results. There were no observable

differences in results obtained from different templates, measures

(volume vs. density) and magnet strength that appeared to

influence the current findings. Further, though age and gender

were corrected for all imaging analyses, the results did not change;

hence we report findings without these covariates.

Multivariate Pattern Classification Analyses (MVPA)
Cross-validated linear support vector machine (SVM) was

utilized as the primary method of performing MVPA to

accomplish two objectives. First, these analyses were conducted

as a complementary approach to univariate analyses described

above for investigating whether voxels in brain regions related to

visuo-spatial functioning and social cognition would classify each

AWSdel individual as belonging to either the WS or TD group.

Second, MVPA was used to investigate whether each AWSdel

individual would be classified as WS or TD when the entire

population of either gray matter or white matter voxels were

considered.

Voxels included in the MVPA were segmented using one of two

approaches: 1) bilateral superior parietal lobules (SPL), orbito-

frontal cortices (OFC), amygdalae and fusiform gyri were defined

using the WFU PickAtlas (http://fmri.wfubmc.edu/cms/

software#PickAtlas) and Automated Talairach Atlas Label

(AAL) (http://www.cyceron.fr/freeware/), then coregistered to

the modulated VBM gray matter images, and 2) masks comprising

all brain gray or white matter voxels were obtained from the

SPM5 generated segmentation. Non-smoothed images were

down-sampled to 4mm voxels and voxel-by-subject matrices were

created for each (set) of these brain regions. Linear support vector

machine (SVM) analyses were performed (regularization param-

eter C = 1), with leave-one-out cross-validation using an in-house

toolbox used in previous studies [27–33]. Feature reduction was

performed using leave-one-out recursive feature elimination

(RFE), recursively eliminating 30% of the voxels to identify the

optimal performance [34,35]. A classifier from each of the leave-

one-out cross-validation steps was applied to each AWSdel

individual, allowing us to calculate the probability of each AWSdel

individual being classified as an individual with WS or TD. As

reference, visuo-spatial regions classified WS from TD at 100%

accuracy, social regions at 95.1% accuracy, gray matter at 97.6%

accuracy and white matter at 98.8% accuracy. These references

indicate that MVPA is capable of classifying WS and TD controls

and serves as a basis for performing further MVPA on AWSdel

cases.

Results

Neuroanatomical and Behavioral Abnormalities
Associated with Visuo-Spatial Function in Atypical WS
Deletion Cases (AWSdel)

Results from the IPS, a region that plays a central role in visuo-

spatial processing [36] and in which a specific cluster was defined

from the between-group WS vs. TD comparison (see Supporting
Results, Figure S1, and Figure S2), are shown in Figure 2A
and Table 3 (see also Figure S3, Figure S4). AWSdel-01

showed voxels with values exceeding z.1.96 compared to WS, but

no voxels with values that were |z|.1.96 when compared to TD,

indicating that AWSdel-01 shows IPS volumes within the

distribution of TD. In AWSdel-02, voxels with values z,21.96

compared to TD were found in the IPS, but no voxels with values

that were |z|.1.96 when compared to WS, indicating that

AWSdel-02 shows IPS volumes comparable to WS. Further, in

AWSdel-03, all family members showed voxels with values within

the range of TD (|z|,1.96) and greater than WS (all members

showed z.1.96), indicating that AWSdel-03 shows IPS volumes

similar to TD. Since MRI data of the AWSdel-03 family were

collected from 3.0T rather than the 1.5T reference data from 42

WS and 40 TD participants, AWSdel-03 cases were also

compared to the 3.0T reference dataset of 30 WS and 14 TD

participants. Results from this 3.0T scanner comparison (Figure
S4) were essentially identical to the 1.5T results in Figure 2A.

We created a classifier (model) designed to optimally discrim-

inate between WS and TD using permutation-based MVPA.

Table 3. Z-scores of each WS atypical deletion case (AWSdel) from the WS or TD group in each brain region of interest: Left/right
(Lt/Rt intraparietal sulcus (IPS), Rt orbitofrontal cortex (OFC), and Lt/Rt fusiform gyrus (FG).

Lt IPS Rt IPS Rt OFC Lt FG Rt FG

AWSdel-01 6.00 5.28 7.79 8.02 9.74

AWSdel-02 22.03 22.65 2.15 3.20 2.26

AWSdel-03 3.41(2.12) 2.86(2.09) 3.28(1.36) 4.18(2.43) 2.55(0.77)

Numbers indicate # of Z scores above the TD group with the exception of AWSdel-02 Lt/Rt IPS which indicate Z scores below the WS group. When compared to WS, Z,

1.96 except AWSdel-02 Rt Amyg was Z = 2.08 compared to the WS group. AWSdel-03 family (03i , 03vi) are listed as the mean average of the 6 members and standard
deviation in brackets.
doi:10.1371/journal.pone.0104088.t003
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MVPA was performed using voxel intensity measures from

objectively and anatomically defined left and right superior

parietal lobules (SPL) within VBM processed images. Consistent

with VBM results, using permutation-based analyses, AWSdel-01

and all AWSdel-03 family members were categorized as TD with

100% probability, and AWSdel-02 was categorized as WS with

100% probability.

Behavioral performance on visuo-spatial functions (Beery

Visuo-Motor Integration, Benton Judgment of Line Orientation

and Wechsler Block Design tasks) for each AWSdel case compared

to that of WS and TD individuals generally paralleled the

neuroanatomical results (Table 1, 2, Figure 2B). The results of

this analysis showed that AWSdel-01 was within or closer to (for

visuo-motor integration and block design) the range of TD,

AWSdel-02 was within the range of WS (clearly for visuo-motor

integration and judgment of line orientation, though not for block

design), and AWSdel-03 was within the range of TD (though in

this case only for visuo-motor integration and not for judgment of

line orientation or block design). Overall, these results implicate

GTF2I and/or GTF2IRD1 as candidate genes contributing to

altered IPS volumes and visuo-spatial function, in particular visuo-

motor integration as consistent with previous animal [37] and

human behavioral research [15,38] (Figure 3).

Neuroanatomical and Behavioral Abnormalities
Associated with Social Cognitive Function in Atypical WS
Deletion Cases (AWSdel)

Next, we examined morphometric patterns related to social

cognitive function in AWSdel. All AWSdel cases showed increased

volumes in bilateral fusiform gyri and the right orbitofrontal cortex

(OFC) compared to TD (z.1.96); this profile was similar to typical

WS participants (|z|,1.96) (Figure 2A, Table 3, Figure S3,
Figure S4). In the manually delineated amygdala, we found that

WS showed significantly greater gray matter volume in bilateral

amygdala compared to TD (Table 1). In the left amygdala, all

AWSdel cases showed increased volume compared to TD (z.

1.96), which was similar to WS (|z|,1.96) (Figure 2B). Using

permutation-based MVPA, we observed that a combination of

objectively defined amygdala, OFC and fusiform gyrus regions of

interest showed 100% probability (using permutation-based

analysis) that all AWSdel cases would be categorized as WS.

Subject performance on social behavior (Adolph’s social

approachability test) for each AWSdel case was compared to

average social behavior scores in WS and TD groups. The results

of this analysis showed that all AWSdel cases exhibited increased

sociability relative to TD controls, again paralleling the neuroan-

atomical findings (Table 2, Figure 2B). Each case was more

similar to the WS group relative to the TD group. There are

several genes commonly deleted in our typical WS and AWSdel

groups (genes located between ABHD11 and RFC2). However,

one gene in particular, LIMK1, is known to affect brain

development [39], thus suggesting that haploinsufficiency of

LIMK1 as one potential explanation for aberrant OFC, fusiform

and amygdala volumes, as well as abnormalities of social

approachability in WS (Figure 3).

Neuroanatomical Abnormalities of Overall Gray and
White Matter Patterns in Atypical WS Deletion Cases
(AWSdel)

In our final analyses, we applied cross-validated MVPA to

investigate gene(s) that potentially contribute to distinct patterns as

derived from voxel-by-voxel volumes comprising the entire gray

matter and white matter compartments. Using permutation-based

analyses, gray matter results showed that, similar to visuo-spatial

processing, AWSdel-01 was categorized as TD with 89.0%

probability (and hence as WS with 11% probability), AWSdel-02

as WS with 100% probability and all AWSdel-03 family members

as TD with 100% probability. White matter results indicated that

AWSdel-01 was categorized as WS with 98.9% probability,

AWSdel-02 as WS with 100% probability and AWSdel-03 family

members as TD with 100% probability. These results suggest that

gray matter structure varies with the presence or absence of

GTF2I/GTF2IRD1, while white matter structure is most related

to the status of genes in the region of STX1A and CYLN2 which

are common to AWSdel-01 and AWSdel-02 but outside the

deletion in AWSdel-03 (Figure 3). Deleted genes in WS that are

particularly important in the regulation of cytoskeletal dynamics

and possibly in white matter development are LIMK1, STX1A,

CYLN2 and possibly FZD9 [4,40]. Among these genes, STX1A
and CYLN2 are deleted in AWSdel-01 and AWSdel-02 and are

spared in AWSdel-03 raising the possibility that STX1A and

CYLN2 may be among the genes involved in white matter

development in WS.

Discussion

Our results provide evidence implicating particular genes in the

development of brain structures involved in visuo-spatial function

and social cognition in humans. If the contribution of single genes

is measureable and related to the characteristic pattern that we

observe in this study, the findings indicate a role for GTF2I and/

or GTF2IRD1 in IPS volumes known to be involved in visuo-

spatial function, and more generally, in patterns of gray matter

structure; the LIMK1 region (and possibly other genes located

between ABHD11 through RFC2) in the volumes of the

amygdala, OFC and fusiform gyrus, which are known to be

involved in social approachability; and CYLN2/STX1A in white

matter development.

The right IPS has been consistently shown to be involved in

visuo-spatial constructions, including visuo-motor integration [36].

Evidence suggests that visuo-motor deficits may be one of the most

characteristic features of WS [41], and the IPS results in our 8

atypical cases (with 3 different patterns of atypical deletions) point

to GTF2I and/or GTF2IRD1 as critical for the performance of

these tasks, as suggested previously [15,38]. The way by which

these genes affect the anatomy and behavior demonstrated in this

study is not known. GTF2I encodes a multifunctional phospho-

Figure 2. Gray matter volumes and cognitive profiles of typical WS, TD, and atypical deletion (AWSdel) individuals. A. Gray matter
deviation maps in AWSdel individuals. First column represents VBM between group differences between WS (N = 42) and TD (N = 40). Second and
third columns represent the degree to which atypical cases AWSdel-01 and AWSdel-02 deviated from the comparison group (thresholded at [z].
1.96). The fourth column represents probability maps of how many participants showed positive deviation of z . 1.96 in AWSdel-03i,vi. Numbers in
square-brackets in the fourth column indicate how many participants out of the total of 6 AWSdel-03 participants showed this deviation in its peak
voxel. B. Cognitive measures and amygdala volumes (from manual volumetric measurements) are plotted for WS, TD and AWSdel groups. See
Table 1 for detailed statistics. Benton judgment of line and Social approachability scores are not plotted for the AWSdel-03 children (WSdel-03ii,vi)
as age-adjusted normed scores are not available. IPS: intraparietal sulcus, OFC: orbitofrontal cortex, FG: fusiform gyrus, Lt: left, Rt: right. Error bars
represent standard deviation. Left hemisphere is shown on the left side in the brain maps.
doi:10.1371/journal.pone.0104088.g002
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protein with roles in transcription and signal transduction [42].

The protein encoded by GTF2IRD1 contains five GTF2I-like

repeats and functions as a transcription factor or as a positive

transcriptional regulator under the control of the Retinoblastoma

protein. Both Gtf2i and Gtf2ird1 are widely expressed in the brain

during the embryonic stages of mouse development [43]. In adult

mice, they are present exclusively in neurons, but the two proteins

play nonredundant, differentially regulated roles, despite their

similar structure. At present, the specific genes whose expression

are most affected by these regulatory genes are not known. Nor is

it known how, and to what extent, Gtf2i and Gtf2ird1 are

explicitly involved in IPS morphometric variability, although

Figure 3. Schematic table (A) and diagram (B) that represent summary of findings.
doi:10.1371/journal.pone.0104088.g003
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converging evidence from our previous behavioral study [15]

suggests GTF2IRD1 to be principally responsible.

The cognitive profiles examined here, though partially consis-

tent with the anatomical findings, showed some discrepancies.

Visuo-motor integration was consistent with IPS volume findings

throughout all cases, but judgment of line orientation and block

design results were inconsistent in the AWSdel-03 family (i.e.,

judgment of line orientation and block design showed more WS-

like patterns even though IPS and visuo-motor integration showed

TD-like patterns). However, this is not altogether surprising, since

behavior is downstream to genetics and neuroanatomy, and hence

may be influenced in many different ways that are difficult to

reliably assess (as opposed to the more upstream neuroanatomical

measure) [1]. Alternatively, it may be that in WS, GTF2I/
GTF2IRD1 have greater involvement in IPS and visual construc-

tion and motor components (represented by visuo-motor integra-

tion) than visual perceptual functions (represented by judgment of

line orientation and block design). In addition, multiple WS genes

could contribute to decreased visual perceptual functions.

There is limited behavioral research on WS with partial

deletions [11–15]. The current findings replicate our previous

report showing the important role of GTF2IRD1 in visuo-spatial

abilities [15]. However, our study results contradict other

behavioral studies of visuo-spatial abilities [11–15]. Karmiloff-

Smith et al. [11] reported an atypical deletion case with a deletion

from FKBP6 to GTF2IRDI and showed this case to be associated

with relatively spared visual-spatial functioning and abnormal

social behavior. Antonell et al. [13] reported that the deletion of

GTF2I and GTF2IRD1 may contribute to the global intellectual

deficit and some aspects of the cognitive profile but not visuo-

spatial ability. Tassabehji et al. [12] and Gray et al. [14] showed

an association between LIMK1 and visual-spatial construction.

One of the most striking features of WS is gregariousness,

reduced fear for strangers, and relative preservation of a subset of

face processing skills. The amygdala is known to be an important

component of the neural systems involved in retrieving socially

relevant knowledge on the basis of facial features, in particular

approachability and trustworthiness [24], probably through its role

in regulating fear. Further, the OFC is known to regulate

amygdala reactivity through a frontal-amygdala-insular circuit

that provides feedback about somatic state activation, which aids

in social decision-making [44,45] and empathy [46,47]. Finally,

the (right) fusiform gyrus is considered to be a face processing

region that is particularly important for normal social interactions,

and provides input to the anterior limbic regions [48]. Typical WS

and all AWSdel participants in this study who have deletions of

genes from ABHD11 through RFC2 including LIMK1, showed

developmental anomalies of the amygdala, OFC and/or fusiform

cortex. LIMK1 is a particularly a strong candidate among the

deleted genes for playing a role in the anomalous neuroanatomical

pattern described above because of its known role in brain

function and dendritic spine architecture [39],

LIMK1 is thought to be a component of an intracellular

signaling pathway involved in brain development. In particular,

LIMK1 controls actin dynamics via phosphorylation of cofilin,

and has been implicated in the control of growth cone motility in

cultured neurons [49] and in white matter development [50]. It is

difficult to disentangle from our study which neurobiological

pathways or neural structures are more directly influenced by

LIMK1 and which brain regions are affected by a combination of

interactions among genes in the deleted regions. Nevertheless, it is

attractive to propose LIMK1, as one gene contributing to

abnormal social cognitive profiles in WS, either via impaired

input from higher-level visual (fusiform face) areas or through

interactions between the OFC and amygdala. It is important to

note that these effects may derive from both pre- and post-natal

effects on brain development or adult function. Future studies

examining the causal relationship of brain activation patterns

within these structures in the context of social-affective processing

will be of interest.

There are several genes that have been implicated in WS social

cognition. Although LIMK1 was an attractive target, there is only

one animal study to date that has suggested a role for LIMK1 in

social cognition (fear responses) and this finding was interpreted

within the context of impaired learning and hippocampal function

[39]. In other studies, LIMK1 has only been implicated in visuo-

spatial function [51]. In contrast, recent literature on social

cognition in WS points to a potential role for GTF2I/GTF2IRD1
[15,43,52], regions between LIMK1 and GTF2I/GTF2IRD1
[53], or regions between FKBP6 and GTF2IRD1 [11]. These

genes are further implicated by mice with heterozygous or

homozygous disruption of Gtf2ird1 who exhibit decreased fear,

aggression and anxiety and increased social behaviors as well as

increased levels of serotonin metabolites in the amygdala and

frontal cortex [43]. Future studies using multiple standardized and

non-standardized behavioral measures, in larger samples in

conjunction with heterozygous animal models, which can examine

single genes at a time, and examining both brain structure and

cognitive and social profiles, are warranted.

Finally, LIMK1, CYLN2 and possibly FZD9 have been

implicated in WM development. For example, LIMK1 and

CYLN2 are known to regulate cytoskeletal dynamics, axon

guidance and neuronal migration, and FZD9 may be critical for

dendritic development and axon guidance [4,40]. Our results

suggested that genes, including STX1A and/or CYLN2, may

contribute to WM development in WS.

Mice with heterozygous and homozygous disruptions of

particular genes are potentially ideal models to study gene-brain-

behavior associations, but the behavioral tests available can be

limited depending on the behavior/cognitive function of interest.

Further, the same genes in humans may not have the same

regulatory pathways and expression patterns as that occurring in

the brains of non-humans [11]. Some animal studies showing

statistical differences between wild-type and homozygous knockout

mice fail to demonstrate comparable differences when using

heterozygous mice, the genetic state most applicable to WS.

Further, the scarcity of AWSdel cases have resulted in only one or

two cases described in each report [11–15]. These factors have

made it difficult to attribute specific cognitive functions to

particular sets of genes. Our study attempted to overcome some

of these limitations by examining eight individuals with three types

of varying atypical deletions, while also assessing brain structure

for the first time in AWSdel cases.

A major limitation is that our current level of analysis only

allows attribution of subsets of genes to neuroanatomical and

cognitive findings. It is likely that there is more than one

contributory gene, gene-gene interactions within and outside the

WS deletion, as well as environmental influences and stochastic

processes that could contribute to neuroanatomical variations.

Another limitation is that, similar to typical controls, individuals

with WS demonstrate inter-individual differences in neuropsycho-

logical and behavioral function and hence future studies employ-

ing more sensitive experimental behavioral measures are warrant-

ed. Further, while this is the first study to utilize AWSdel to

examine gene-brain-behavior relationships, the small sample-size

(8 cases with 3 patterns of deletions) will necessitate replication in

future studies. Finally, in contrast to neuroanatomical volumes that

are more readily quantified, pinpointing a relationship of these to
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behavior or cognition is limited by the extent to which a given

paradigm mirrors the function of the structure. Therefore, as a first

step, we have focused on demonstrating that individuals with

AWSdel exhibit structural brain patterns or cognitive profiles that

are either consistent or inconsistent with typical WS or TD. Future

studies will be useful in refining structure-function relationships in,

as well as interactions/connectivity amongst these regions; such

studies can help to narrow gene candidates that alter the

development or function of specific functional human brain

circuits.

In summary, we show that the current preliminary study in

individuals with rare, atypical deletions associated with WS

provide new insights into the neural mechanisms of cognitive

function and putative genetic underpinnings. These studies of

intermediate endophenotypes should prompt future research into

the relevance of variation in these genes, gene-gene interactions,

and developmental and individual differences in gene expression,

for regional brain development and normal visuo-spatial function

and social behavior.

Supporting Information

Figure S1 Gray matter volume and density differences
between WS (N = 42) and TD (N = 40) groups in 1.5T MRI
data. Either a custom template created including all WS and TD

participants or a standard template provided by SPM5 was used.

p = 0.05 family-wise error (FWE), extent threshold (ET) = 100.

(JPG)

Figure S2 Gray matter volume measures from the two
separate scan parameters (1.5T WS: N = 42, TD: N = 40;
3.0T WS: N = 30, TD = 14) in the regions of interest
(ROIs) are plotted and compared. See Main Text Methods

for definition of ROIs and how bilateral intraparietal sulcus (IPS),

right orbitofrontal cortex (OFC) and right fusiform gyrus (FG)

were defined. The results are very similar between the two datasets

(,*: 0.05 , p , 0.10, **: 0.01 , p , 0.05, ***: p , 0.001).

(JPG)

Figure S3 Gray matter density deviation maps of WS
atypical deletion (AWSdel) cases. Identical to Figure 2A, but

examining gray matter density rather than volume.

(JPG)

Figure S4 Probabilistic maps of participants AWSdel-
03i,vi (collected on a 3.0T scanner). Identical to Figure 2A

4th column (which is for gray mater volume) and Figure S3 4th

column, with the exception that Figure S4 uses WS and TD data

from 3.0T MRI as comparison groups to match scan parameters

with AWSdel-03i,vi.

(JPG)

Table S1 Gray matter volume differences between WS
(N = 42) and TD (N = 40) groups. A custom template was

used. p = 0.05 family-wise error (FWE), extent threshold

(ET) = 100.

(DOCX)

File S1 Textual supporting information.

(DOC)
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