-

View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by Harvard University - DASH

"W DIGITAL ACCESS TO
LN SCHOLARSHIP AT HARVARD

Super-resolution imaging and tracking of protein—protein
interactions in sub-diffraction cellular space

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Liu, Z., D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, et
al. 2014. “ Super-resolution imaging and tracking of
protein—protein interactions in sub-diffraction cellular space.”
Nature Communications 5 (1): 4443. doi:10.1038/ncomms5443.
http://dx.doi.org/10.1038/ncomms5443.

Published Version  doi:10.1038/ncomms5443

Accessed February 16, 2015 8:26:01 PM EST

CitableLink http://nrs.harvard.edu/urn-3:HUL .InstRepos: 12785855

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL .InstRepos:dash.current.terms-
Oor-use#LAA

(Article begins on next page)


https://core.ac.uk/display/28950992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/12785855&title=Super-resolution+imaging+and+tracking+of+protein%E2%80%93protein+interactions+in+sub-diffraction+cellular+space
http://dx.doi.org/10.1038/ncomms5443
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785855
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

ARTICLE

Received 15 Nov 2013 | Accepted 18 Jun 2014 | Published 17 Jul 2014

Super-resolution imaging and tracking of
protein-protein interactions in sub-diffraction
cellular space

Zhen Liu', Dong Xing'2, Qian Peter Su', Yun Zhu', Jiamei Zhang', Xinyu Kong"3, Boxin Xue',
Sheng Wang', Hao Sun'4, Yile Tao' & Yujie Sun'

Imaging the location and dynamics of individual interacting protein pairs is essential but often
difficult because of the fluorescent background from other paired and non-paired molecules,
particularly in the sub-diffraction cellular space. Here we develop a new method combining
bimolecular fluorescence complementation and photoactivated localization microscopy
for super-resolution imaging and single-molecule tracking of specific protein-protein inter-
actions. The method is used to study the interaction of two abundant proteins, MreB and
EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution
and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The
single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-
dependent heterogonous dynamics and provides valuable insights to understanding the roles
of MreB-EF-Tu interactions.
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rotein-protein interaction (PPI) is the foundation for most

cellular processes. Mass spectrum and biochemistr]y

approaches have identified numerous PPI networks".
Meanwhile, accumulating evidence has shown that the
functions of PPIs are tightly related to their spatial distribution
and temporal dynamics, and therefore direct visualization of PPIs
in living cells and organisms is crucial®. For a given target protein,
imaging its individual PPIs can be very challenging because of
several inter-dependent issues, including multiple kinds of
interacting partners, high molecule density and heterogonous
dynamics, all imaged in a sub-diffraction cellular space.

A typical example is the prokaryotic cell, which, although
lacking internal membrane systems, is recently discovered to have
subcellular domains and higher-order organization®. All of the
current imaging approaches have limitations for studying PPIs in
such small and crowded systems. For instance, electron
microscopy is unsuitable for dynamic imaging of a particular
PPI subpopulation because of its poor specificity and low
temporal resolution, albeit its exceeding spatial resolution.
Fluorescent imaging techniques have high specificity, but
optical diffraction disqualifies conventional fluorescence
microscopy for imaging the subcellular distribution and
dynamics of high-density molecules. Recently developed super-
resolution optical imaging techniques, such as stochastic optical
reconstruction  microscopy (STORM)? and (fluorescent)
photoactivated localization microscopy (FPALM/PALM)*>,
have redefined the resolution barrier and allowed -cellular
ultrastructures being resolved at ~7nm resolution®. Regarding
PPI imaging, two-colour co-localization can be in principle used
to identify particular PPIs, but often suffers high background
from non-interacting proteins (Fig. la) and uncertainty on
seemingly overlapped pairs even in super-resolution images due
to finite spatial resolution (Fig. 1b). Forster resonance energy
transfer (FRET) is a powerful fluorescent approach for studying
PPIs, particularly their dynamic processes’. However, because of
spectral bleed-through and limited energy transfer efficiency,
imaging individual FRET pairs in live cells is difficult. It is thus
challenging to implement FRET on single-molecule localization-
based super-resolution imaging methods such as STORM and
FPALM/PALM.

Figure 1 | Comparison between two-colour STORM/PALM and
BiFC-PALM. (a) Optical diffraction and fluorescent background from
non-interacting proteins make it difficult to image specific protein-protein
interactions. The red and green spots are the point spread functions of
individual protein A and protein B molecules, respectively. The spatial
resolution is about 200 nm. (b) Two-colour STORM/PALM co-localization
imaging shows uncertainty on overlapping non-interacting molecules. The
red and green spots are the single-molecule localizations of individual
protein A and protein B molecules, respectively. The spatial resolution is
about 20 nm. The high density of both proteins results in large uncertainty
for identification of interacting protein pairs by co-localization. (¢) BiFC-
PALM can locate specific interacting pairs with high spatial resolution, given
almost zero background from non-interacting molecules. The yellow spots
are the single-molecule localizations of interacting pairs of protein A and
protein B molecules. The spatial resolution is about 20 nm.
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Protein-fragment complementation assay is a special tool set
for analysing PPIs, based on enzymatic or fluorescent comple-
mentation reportersS. Among different protein-fragment comple-
mentation assays, bimolecular fluorescence complementation
(BiFC) is unique because it does not require any substrates or
cofactors, but rather relies solely on complementation of a
fluorescent protein. Generally, a fluorescent protein is split and
the two complementary yet non-fluorescent fragments are fused
to two interacting proteins, respectively. As the complementation
of fluorescent protein occurs only when a pair of target PPI brings
the two complementary fragments together, BiFC has high
specificity and sensitivity for PPI imaging. These advantages have
promoted a wide range of apFlications for BiFC since its
invention nearly a decade ago®~!!. Compared with FRET, BiFC
is capable of imaging and tracking single PPIs in live cells because
it has higher fluorescence signal (equivalent to the intact
fluorescent protein) and much lower background. Given the
aforementioned problems, there has not been any work realizing
super-resolution imaging of high-density PPIs in a cell at the sub-
diffraction level.

Here, we develop a BiFC-PALM method dedicated for imaging
the subcellular distribution and dynamics of individual interact-
ing-protein pairs at high spatial-temporal resolution (Fig. 1c).
The new method is applied to studying the interaction between
EF-Tu and MreB (EFTu-MreB-PPIs) in E. coli. Both proteins are
abundant so that if imaged by conventional fluorescence co-
localization, the distribution and dynamics of the interacting pairs
would be buried in the fluorescence background from non-
interacting proteins and also masked by optical diffraction in the
tiny bacterial cells. Using BiFC-PALM, we are able to localize
individual EFTu-MreB-PPIs and reveal their specific spatial
distribution and localization-dependent heterogonous dynamics
as a subpopulation of total EF-Tu, providing important insights
about their roles in bacterial cell wall synthesis. This is the first
time that heterogonous dynamics of high-density interacting
protein pairs is observed in the sub-diffraction cellular space.

Results

Development of BiFC-PALM fluorescent probe. BiFC-PALM
requires a photoactivatable fluorescent protein, which can retain
the ability of photoactivation and fluorescing when its two split
fragments complement and refold (Fig. 2a). A photoswitchable
fluorescent protein, Dronpa, has actually been tested for BiFC!?,
but its mediocre intensity contrast between the bright and dark
states disqualifies Dronpa from being a super-resolution and
single-molecule probe in vivo. Instead, we chose mEos3.2,
a recently developed photoconvertible fluorescent protein'?,
as the BiFC-PALM probe. mEos3.2 is truly monomeric, which
is crucial for BiFC. In addition, mEos3.2 demonstrates excellent
performance in PALM imaging in terms of its brightness,
maturation time and labelling density'?.

A fluorescent protein may have multiple cleavage sites suitable
for BiFC. We examined seven sites that are located on flexible
loops of mEos3.2 (Fig. 2b). Each pair of split fragments (mEosN
and mEosC) were fused to leucine zippers and expressed in E. coli
to examine the complementation of mEosN and mEosC via
specific leucine zipper formation. Among all seven cleavage sites,
only 148V and 164E successfully generated BiFC fluorescence
(Fig. 2b). Further, 164E showed much higher fraction of bacterial
cells with BiFC signal than 148V, suggesting 164E as the optimal
cleavage site for mEos3.2 (Supplementary Fig. 1a). The
complementation efficiency of site 164E, defined as the intensity
ratio between specific BiFC signal by leucine zippers and
nonspecific BiFC signal through spontaneous complementation
via mutated leucine zippers, was up to 12 (Supplementary Fig. 1),
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Figure 2 | Construction and screening of complemented mEos3.2.

(a) Schematic illustration of mEos3.2 complementation and its
photoconversion. (b) Seven cleavage sites at different flexible loops of
mEos3.2 (34F, 96E, 138K, 148V, 150D, 160A, 164E) yielded highly variable
BiFC signal. Site 164E generated the highest fraction of bacteria cells with
bright BiFC signal. (¢) 405 nm irradiation converted 164E complemented
mEos3.2 to the red form, which was excited by a 561-nm laser. Scale bar
Tum.

1 so far the most used fluorescent

similar to that of Venus!
protein for BiFC.

We then confirmed if the complemented mEos3.2 is still
photoconvertable. A 405-nm laser was used to convert com-
plemented mEos3.2(164E) from green to red form, which was
then excited by a 561-nm laser. Both in vivo and in vitro
measurements showed that complemented mEos3.2(164E) not
only retained its photoconvertability (Fig. 2c and Supplementary
Movie 1) but also held similar photophysical properties to that of
native mEos3.2 (Supplementary Fig. 1 and Supplementary
Table 1). For a fluorophore used for STORM/PALM imaging,
localization precision and photoactivation/photo-conversion rate
are key parameters defining the spatial and temporal resolu-
tions'*. We therefore used these criteria to compare split
mEo0s3.2(164E) with mFos3.2(148V), split Venus(155A) and
split Dronpa(164E). Among the three fluorescent proteins, split
mEos3.2(164E) and mEos3.2(148V) showed higher localization
precision than split Venus(155A), whereas split Dronpa(164E)
gave the least localization precision (Supplementary Fig. 2a).
Regarding the photo-activation/photo-conversion rate, both
mEo0s3.2(164E) and Dronpa(164E) were more sensitive to the
activation  illumination than mEo0s3.2(148V). However,
Dronpa(164E) showed a high spontaneous photo-activation
rate, placing restrictions to its Nyquist spatial resolution
(Supplementary Fig. 2b)!°. In summary, we conclude that split
mEo0s3.2(164E) is a better fluorescent protein for BiFC-PALM
compared with split Venus(155A) and split Dronpa(164E).

Super-resolution imaging of EFTu-MreB-PPIs using BiFC-
PALM. BiFC-PALM based on mEos3.2 makes it possible to
image the distribution of a certain PPI in a sub-diffraction regime,
as a subpopulation of total protein of interest. To test-drive this
new method, we chose abundant MreB and EF-Tu'®!” as a pair
of model PPI. MreB is an actin cytoskeleton homologue involved
in bacterial cell shape maintenance and chromosome segregation
in rod-like cells!”"?!. Previous results have suggested that MreB
may polymerize into helical structures along the internal
membrane, extending longitudinally through the cell?!~23. The
extended filamentous structures of MreB were later examined by
super-resolution imaging?»2°. In addition, recent single-molecule
tracking experiments suggest that MreB can form discrete patches
that move slowly perpendicular to the longitudinal axis and direct
insertion of newly synthesized peptidoglycan®*~28, EF-Tu is one
of the prokaryotic translation elongation factors. Although its
main function is to deliver tRNA onto ribosomes, EF-Tu has been
also found to have an important role in cell wall synthesis of
Bacillus  subtilis (Bsu), through interaction with MreB%.
Therefore, in order to fully understand how MreB and EF-Tu
are coordinated in cell morphology maintenance, it is important
to image MreB and EF-Tu as interacting pairs.

We first used pull-down assay to confirm that MreB and EF-Tu
also have specific interaction in E. coli (Supplementary Fig. 3),
consistent with an interactome study of E. coli using mass
spectrometry!. The detection and quantification of EFTu-MreB-
PPIs in E. coli were obtained using BiFC-PALM of mEosN-EF-Tu
and MreB-mEosC in fixed cells. The expression levels of both
fusion proteins were much lower than their endogenous
counterparts (Supplementary Fig. 4). The specificity of the BiFC
signal was confirmed by two non-interacting pairs, EFTu-MreC
and EFTu-MreD!, as well as a truncated EF-Tu with MreB
(Supplementary Fig. 5)°°. In the super-resolution images, the
EFTu-MreB-PPIs seemed to exist in two forms, clusters and small
dots, which did not seem to have distinct patterns (Fig. 3a and
Supplementary Figs 6-8). We analysed 143 bacterial cells, among
which 100 demonstrated rod shapes with normal aspect ratios
(length/width ratio between 2.5 and 6), similar with the bacteria
in Fig. 3a. We performed cluster analysis on 15 such type of
bacteria (Supplementary Fig. 6). The pairwise distance
distributions of all dots (Supplementary Fig. 6b) and clusters
(Supplementary Fig. 6¢) in 15 bacterial cells were similar, all
approximating a generalized beta distribution®!. This suggests
that only a small fraction of EFTu-MreB-PPIs formed clusters,
whereas the majority did not form higher-order structures and
distributed rather randomly. The number of clusters in each
bacterium was nearly proportional to the cell size with a density
of ~80 clusters per um? (Supplementary Fig. 6d,e). The 15
bacterial cells were not only similar in cluster density and
distance, but also similar in cluster area (Supplementary Fig. 6f,g).

Among the 143 bacterial cells, 40 were found to become oval
(Supplementary Fig. 7), and 3 became elongated (Supplementary
Fig. 8). Cluster analysis suggests that the EFTu-MreB-PPIs in
neither oval-shaped nor elongated cells showed significant
variation internally or externally compared with the normal cells
in Supplementary Fig. 6. Nonetheless, it is interesting to note that
the cluster density of oval-shaped bacterial cells was noticeably
higher than that of both normal and elongated cells
(Supplementary Figs 6-8e), implying a correlation between the
bacteria phenotype and the density of EFTu-MreB-PPIs.

As EF-Tu has much higher copy number than MreB, we
constructed mEosN-EF-Tu-Snap to see how EFTu-MreB-PPIs
distribute as a subpopulation of total EF-Tu in the same cell
(Fig. 3b,c and Supplementary Fig. 9). We analysed eight bacterial
cells that co-expressed MreB-mEosC and mEosN-EFTu-Snap, in
which all ectopically expressed EF-Tu could be independently
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Figure 3 | BiFC-PALM super-resolution imaging of EFTu-MreB-PPIs. (a) BiFC-PALM imaging of EFTu-MreB-PPIs in two fixed E. coli cells. (b) Schematic
illustration indicating that EF-Tu can interact with multiple proteins in the cell. EF-Tu molecules that interact with MreB can be visualized by both

Snap-Alexa647 (upper path) and complemented mEos3.2, whereas ET-Tu molecules that interact with other proteins or free EF-Tu can be visualized by
Snap-Alexa647 (lower path); (c) EFTu-MreB-PPIs distribution obtained by BiFC-PALM (green) as a subpopulation of total EF-Tu labelled with Alexa647

(red) in two fixed cells. Scale bar, Tum.

observed by BG-Alexa647-labelled Snap-tag. We observed
different patterns for EFTu-MreB-PPIs, including patch-like
and polar localization (green in Fig. 3c and Supplementary
Fig. 9a). Cluster analysis suggests that EFTu-MreB-PPIs in these
cells were different from that in Supplementary Figs 6-8. For
instance, the pairwise distance curves were highly variable and no
longer a beta distribution (Supplementary Fig. 9b). The mean size
of EFTu-MreB-PPI clusters (Supplementary Fig. 9f) was also
noticeably larger than that in Supplementary Figs 6-8. The
difference in EFTu-MreB-PPI parameters might be due to the
perturbance from Snap-tag in mEosN-EFTu-Snap or the stress
induced by electroporation. In spite of the difference, we note that
the BiFC signal of EFTu-MreB-PPIs co-localized well with the
EF-Tu-Snap signal, supporting that BIFC-PALM can detect the
interacting pairs specifically.

We then used two-colour super-resolution imaging to evaluate
the performance of co-localization approach for quantification
of interactions between endogenous EF-Tu (EF-Tu-mEos2)
and MreB (immuno-labelled MreB) in fixed cells
(Supplementary Fig. 10). Unlike in Bsu?’, the distribution of
EF-Tu-mEos2 in E. coli did not show obviously growth-phase
dependence (Supplementary Fig. 10a). Moreover, the difference
between the even distribution of EF-Tu-mEos2 and patched
distribution of BG-Alexa647-labelled EF-Tu (Supplementary
Fig. 9a) might be again due to the perturbance from Snap-tag
in mEosN-EFTu-Snap or the stress induced by electroporation.
Unlike the high level of overlapping observed by conventional
fluorescence imaging?’, co-localization between EF-Tu and MreB
seemed rather low in the super-resolution images (Supplementary

Fig. 10b).
To obtain a more quantitative comparison on the co-
localization levels between BiFC/EF-Tu (Fig. 3c and

Supplementary Fig. 9a) and MreB/EF-Tu (Supplementary
Fig. 10b), we performed a pixel-overlapping analysis and found
that about 80% of EFTu-MreB-PPIs were overlapped with EF-Tu
(BiFC on EF-Tu), significantly higher than that of MreB, which
showed 40% overlapping with EF-Tu (MreB on EF-Tu), including

4

both specific EFTu-MreB-PPIs and nonspecific overlap because of
finite spatial resolution (Supplementary Fig. 10c). In summary,
BiFC-PALM much outperformed the two-colour co-localization
method in imaging of PPIs in a sub-diffraction space.

BiFC-PALM single-molecule tracking of individual EFTu-
MreB-PPIs. BiFC has actually been used for single-molecule
tracking of G-protein-coupled receptor dimers in mammalian
cells, but that was not in a crowded, diffraction-limited cellular
space®?. We took the advantage of photo-controlled convertibility
of split mEo0s3.2 to repeatedly convert and track minimal number
of EFTu-MreB-PPIs in live E. coli cells using BiFC-PALM
(Fig. 4a, Supplementary Fig. 11 and Supplementary Movie 2).
Analysis of the single-molecule trajectories can provide
information not only about the mobility of each molecule but
also their spatial distribution (Supplementary Figs 12-14). For
instance, the mean frame-to-frame speed histogram of all
trajectories show that EFTu-MreB-PPIs had two populations
with different mobility (Fig. 4b). Interestingly, spatial view of the
two populations reveals clear dependence of molecule mobility on
their locations, with slow-moving ones localizing near the cell
periphery and faster ones within the cell (Fig. 4c). The two
motility populations are also found to be related to the
polymerization state of MreB because addition of MreB
perturbing compound A22 was found to change the fractions of
slow and fast mobility populations dramatically (Supplementary
Fig 15). In contrast, separate super-resolution single-molecule
tracking of MreB and EF-Tu dynamics reveals that both of them
had three different mobility populations, which were also
localization dependent (Fig. 5). It needs to note that the
distribution of EFTu-MreB-PPIs (Fig. 4b) could also be fitted
with a triple Gaussian function that is statistically equivalent to
the double Gaussian fit at 5% level of significance, see Supplemen-
tary Fig. 16 for more discussion and the corresponding fractions
of three mobility populations are given in Supplementary
Table 2.
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Figure 4 | BiFC-PALM single-molecule tracking of individual EFTu-MreB-PPls. (a) Two-dimensional trajectories of individual EFTu-MreB-PPIs in a live
E. coli cell. The colour for each trajectory was randomly picked to distinguish nearby traces. (b) Mean speed histogram reveals that EFTu-MreB-PPIs
had two populations with different mobility. Data were from three cells. (¢) Spatial view of EFTu-MreB-PPIs with different mobility in a live E. coli cell.
The red trajectories represent EFTu-MreB-PPls that were moving faster than 6 ums~ ' and the slower ones are presented in green colour.
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Figure 5 | PALM single-molecule tracking of individual MreB and EF-Tu molecules. (a,d) Two-dimensional trajectories of individual MreB and EF-Tu
in a live E. coli cell. (b,e) Mean speed histogram reveals that MreB and EF-Tu had three populations with different mobility. Triple-Gaussian fit

(black) provides a low (blue), intermediate (green) and high (red) mobility population. Data were from three cells. (¢, f) Spatial view of MreB and EF-Tu with
different mobility in a live E. coli cell. The red trajectories represent molecules that were moving faster than 6 ums—', green for molecules faster than

2.5ums " and blue for the rest with low mobility.

To further understand the role of EFTu-MreB interactions, we
imaged the distribution of MreB alone in bacteria that expressed
MreB-mEos3.2-Sandwich ~ (MreBmEosSW)  (Supplementary
Fig. 17)®. The pairwise distance distribution of all MreB
molecules indicates that majority of MreB formed aggregated
states with a characteristic distance about ~900nm between
nearby clusters (Supplementary Fig. 17b), in contrast to the
nearly even distribution of EFTu-MreB-PPIs (Supplementary
Fig. 6b). It is also interesting to note that MreB seemed to
organize differentially at different growth phases (Supplementary

Fig. 17b). In addition, the median cluster area of MreB
(Supplementary Fig. 17g) was noticeably larger than that of
EFTu-MreB-PPIs (Supplementary Fig. 6g). These results imply
that compared with the fraction of MreB in the EFTu-MreB
complexes, the rest of MreB tend to form certain higher-order
structures, and the interaction between MreB and EF-Tu may
regulate each other’s states or functions, such as polymerization
and cell wall synthesis. In fact, E. coli cells were found to gradually
grow from a rod shape into a football-like shape after one
round of division when they continuously expressed BiFC
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EFTu-MreB-PPIs (Supplementary Fig. 18b and Supplementary
Movie 3), similar with the strain that overexpressed tethered
MreB and EF-Tu via a linker peptide (Supplementary Fig. 18c).
This is in striking contrast with the situation that when only
MreB or MreB-mEosC was overexpressed, the bacterial cells
tended to grow longer, consistent with previously reported
observation?’.

Discussion

We have shown that the newly developed BiFC-PALM is able to
reveal the form, distribution and dynamics of EFTu-MreB-PPlIs.
With the high spatial resolution and capability of quantification,
BiFC-PALM study may provide new insights for the role of
EFTu-MreB interactions.

MreB has been suggested to polymerize into short filaments
underneath the bacterial inner membrane, where they dock cell-
wall synthesis machinery. This is consistent with our super-
resolution imaging of E. coli MreB, which formed patch-like
domains that are mainly located at the «cell periphery
(Supplementary Fig. 17). Note that the states of MreB may
highly depend on the states of targeted bacteria, including growth
phases and external stress. Actually, when we performed live cell
imaging of MreB, we often observed short and extended filaments
moving very slowly across the longitude of the bacterium,
consistent with the results reported by Reimold et al.?’.

In E. coli, EF-Tu and MreB seem to have fairly low co-
localization (Supplementary Fig. 10b) compared with that in
Bsu?®, which may be due to either largely increased spatial
resolution in this study or intrinsic difference between E. coli and
Bsu. BiFC-PALM imaging of EFTu-MreB-PPIs revealed
distribution of interacting EFTu-MreB pairs as a subpopulation
of total EF-Tu (Fig. 3c and Supplementary Fig. 9), and its
specificity was confirmed by the high co-localization level
between EFTu-MreB-PPIs and EF-Tu-Snap. Cluster analysis
(Supplementary Figs 6g and 17g) suggests that binding of
EF-Tu might prevent MreB from polymerizing into long
filaments. Although it is believed to be mainly responsible for
delivering tRNA to ribosomes, EF-Tu has a much higher copy
number than ribosome. In echo of this fact, a study in Bsu
suggested that EF-Tu has an additional role in cell shape
maintenance through interaction with MreB?°. Intensity analysis
of Fig. 3c estimated that MreB-bound EF-Tu, that is, EFTu-
MreB-PPIs, was about 16% of the total EF-Tu (Supplementary
Table 2). The estimation was for ectopically expressed proteins.
If we assume that the fraction holds true for endogenous EF-Tu
and MreB, there would be ~ 15,000 EFTu-MreB-PPIs given the
copy number of EF-Tu as 90,000 (ref. 16), meaning that 50% of
MreB!” interacted with EF-Tu (Supplementary Table 2).

In addition to its spatial distribution, the dynamics of MreB has
also been proven essential for cell wall synthesis. The slowly
circumferential motion of MreB filaments driven by insertion of
new peptidoglycan acts back to result in uniform cell wall
insertion, which enables the cell to maintain its rod shape?®~28,
The dynamics of MreB filaments is found to relate to its ATPase
activity, as a point mutation in phosphate 2 motif of MreB
reduces the mobility of the filaments and causes a severe defect in
cell morphology'”*%. Our super-resolution single-molecule
tracking in live E. coli cells reveals location-dependent
heterogonous dynamics for EF-Tu (Fig. 5f), MreB (Fig. 5¢) and
EFTu-MreB-PPIs (Fig. 4c), which are also dependent on the
polymerization states of MreB (Supplementary Fig 15).
Figure 5b,e show that about 50% of EF-Tu belonged to the
high-mobility population, whereas the fraction for MreB was only
29% (Supplementary Table 2). This is consistent with the
previously reported low copy number of MreB (~1,500) in
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E. coli cytosol'®, compared with the total of 17,000-40,000 (ref.
17). In contrast, the low-mobility populations (v=1.7 ums~!)
were mainly located at the cell periphery. Taking account of the
instant speed caused by localization error, the low-mobility
population moved actually very slowly. This was proven by a time
lapse tracking of MreB at a much longer interval (2.5s), which
showed these molecules actually moved at ~15nms~!
perpendicular to the long axis (Supplementary Movie 4),
similar with the measurements of MreB filaments in Bsu®*~%7
and in E. coli*>?8, Note that the low-mobility fraction of EFTu-
MreB-PPIs was only 4.3%, suggesting EFTu-bound MreB and free
MreB may be different in states and functions (Supplementary
Table 2). The intermediate mobility populations were also mainly
located at the cell periphery with some large patches crossing the
cell. The localization suggests that these intermediate mobility
populations were likely membrane-associated units, but their
functions and polymerization states are not known.

The effect of EF-Tu on MreB was also showed by the football-
shape phenotype of E. coli strains that overexpressed BiFC EFTu-
MreB or tethered EFTu-MreB (Supplementary Fig. 18). This
phenotype has also been observed for strains that have either
MreB knocked out?®?? or disrupted MreB polymerization using
small-molecule A22 (refs 17,20). The cell rounding is therefore
thought to be caused by the reduction of polymerized MreB,
which not only directs cell wall synthesis, but also contributes to
the mechanical rigidity of a cell®>. Therefore, overexpression of
BiFC EFTu-MreB would reduce the amount of free MreB
molecules that are available for polymerization and thus cause
the cell to grow round (Supplementary Fig. 19). Unfortunately, in
contrast to the good understanding of actin, essential structural
information about the polymerized MreB and the interaction
between MreB and EF-Tu is still missing?*%. To fully understand
the role of EFTu-MreB interactions, further experiments are
needed in structural biology, electron microscopy and single-
molecule fluorescence assays.

In summary, we developed a new technique named BiFC-
PALM for studying PPIs with high specificity and spatial-
temporal resolution in live cells. Its application in live bacterial
cells revealed interesting distribution and heterogonous dynamics
of EFTu-MreB-PPIs, which would otherwise be buried in the
fluorescent background from the non-interacting proteins using
conventional fluorescence imaging. For both MreB and EF-Tu, in
contrast to their whole population, the interacting-protein pairs
exhibited different distribution and dynamics, implying mutual
regulations via the interaction. Future development of BiFC-
PALM would lie in the direction to multi-colour for detection of
multiple PPIs as well as expanded application in eukaryotic cells
(Supplementary Fig. 20).

Methods

Plasmids and strain construction. The mEos3.2 sequence was kindly provided by
Pingyong Xu (Institute of Biophysics, Chinese Academy of Sciences), and the
leucine zipper sequence was purchased from Invitrogen. For all seven tested
cleavage sites, 14 fragments were cloned from the mEos3.2 template using corre-
sponding primers synthesized by Invitrogen, and fused to leucine zippers via
flexible linkers (GGSGSG for mEosN-zipper and GGSG for Zipper-mEosC) by
two-step PCR. mEo0s3.2N-Zipper was inserted into petduet-1 vector (Novagen) at
restriction endonuclease multi-clone site Ncol/EcoRI and zipper-mEos3.2C at a
multi-clone site Bglll/Xhol. BiFC-Dronpa and BiFC-Venus were constructed
similarly with split mEos3.2(164E). Zipper-mEos3.2C with triple point mutations
(K13E, E18K, E25K) and (K6E, K13E, E18K) were constructed similarly. The EF-
Tu-mEos2 and MreB-mEosC strains were all created by lambda red recombination
based on strain BW25993. The Snap sequence was cloned from Psnap tag vector
(New England Biolabs). For mEosN-EF-Tu plasmid, EF-Tu was cloned from
bacteria genome and fused to mEosN via a flexible linker (GGSGSG), mEosN-
EFTuANAC was constructed similarly. The fusion PCR fragments were then
inserted into pacycduet-1 vector (Novagen). Plasmids of MreB-mEosC, MreC-
mEosC and MreD were all similarly prepared. For mEosN-EF-Tu-Snap plasmid,
the Snap sequence was fused to mEosN-EF-Tu sequence and cloned into pbadmyc-
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hisA vector Pstl/EcoRI site. To track the single-molecule movement of MreB and
EF-Tu, two plasmids: pet28amreBmEos3.2sandwich and pet28amEos3.2tufB were
constructed. pet28amreBmEos3.2sandwich was constructed referring to a MreB-
RFP SW method by Bendezi et al.?3, but replaced red fluorescent protein (RFP)
with mEos3.2. The insertion site was between G228 and D229 of MreB. Flexible
linkers SGS and SGAPG were adopted. Pet28amEos3.2tufB was constructed similar
as pet28amEosNtufB. For BiFC in HeLa cells, mEos3.2N-Zipper was inserted into
PcDNA3.1( 4 )vector (Novagen) at multi-clone site Nhel/BamHI and zipper-
mEos3.2C at a multi-clone site Nhel/BamHI. Zipper-mEos3.2C with triple point
mutations (K13E, E18K, E25K) was constructed similarly.

Characterization of BiFC efficiency and specificity. Plasmids were transformed
into E. coli strain Bl21(de3) (Transgene) and a single positive colony was picked
and inoculated overnight. The culture was amplified 1:100 into Luria Broth
medium, induced with 200 uM isopropyl-p-p-thiogalactoside (IPTG) for 3h at
30 °C, then collected and washed in filtered phosphate-buffered salt solution (PBS,
pH7.4) for five times. The cells were then loaded into flow chamber pre-coated with
polylysine (Sigma) and checked for fluorescence under an inverted fluorescence
microscope with 488 nm irradiation.

To test the specificity of BiFC, two mutated zipper-mEos3.2C were separately
induced, and their BiFC signal was compared with the 164E strain at different
culture duration using a plate reader (Molecular Devices) with 480 nm excitation.
The optical density (OD(600)) readings of the culture were used to normalize the
BiFC fluorescence signal. To further confirm that mEosN-zipper and Zipper-
mEosC were expressed at a comparable level in different strains, 10 ul of each
culture was lysed and loaded onto a SDS-PAGE. The absorption and emission
spectra of complemented mEos3.2 were also measured using a plate reader.

Characterization of BiFC-mEos3.2. Split mEos3.2(164E) was compared with split
mEo0s3.2(148 V), split Venus(155A) and split Dronpa(164E). All split fragments
were complemented using leucine zippers via a flexible linker. The complemented
fluorescent proteins were bound to a coverslip for all measurements. Split mEos3.2
was excited by a 561-nm laser (1 kW cm~2) and split Venus and Dronpa were
excited by a 488-nm laser with the same laser power density (700 W cm ~2). We
collected the data at 60 Hz until all molecules were bleached. For each condition,
data of at least three regions of interest were collected. Localization precision was
determined as previously described>”>3. To measure the photo-activation/photo-
conversion rate k,,, both activation and excitation lasers were kept on and the
number of fluorescent spots were counted for each frame. Note that for any
molecules that stayed or showed up multiple times were only counted once for
their first appearance. A single exponential fit of the molecule counts as a function
of time provides k. ko, was also measured as a function of the power density of
the 405 nm activation laser.

Verification of MreB and EF-Tu interaction in E. coli. Snap-tagged MreB strain
was generated by lambda red recombination. 50 ml cultures (OD(600) = 0.5) were
harvested and lysed. Cleared cell lysates were incubated for different time with
100 pl Snap capture beads (NEB) to pull down MreB interacting proteins. The
specific interaction between MreB and EF-Tu was then verified by western blotting
using an EF-Tu antibody (Hucult Biotech).

MreB-EFTu BiFC specificity control. The 48-367 amino-acid region of E. coli EF-
Tu was cloned, fused with mEosN with a flexible linker, cloned into pacycduet-1
vector. This mEosN-EFTuANAC vector was transformed into Bl21(de3) compe-
tent cells with MreB-mEosC vector and induced by IPTG for 1h, whereas another
strain expressing mEosN-EFTu and MreB-mEosC was used as a control. SDS-
PAGE was used to detect the expression level of mEosN-EFTuANAC and mEosN-
EFTu. For MreB-mEosC, western blotting was performed and a rabbit anti-MreB
antibody was used to detect its expression level.

Sample preparation for super-resolution imaging of E. coli. Generally, E. coli
culture was harvested and washed in filtered PBS (pH?7.4) for three times. The cells
were then fixed with 4% paraformaldehyde for 15 min, washed three times by PBS
buffer, and injected into a flow chamber pre-coated with polylysine for 30 min.
Coverslips (Fisher 24 x 50) and slides were cleaned using Piranha solution (30%
H,0,:98% H,SO,=1:3 at 90 °C for 30 min).

Super-resolution co-localization imaging of MreB and EF-Tu. Endogenous
MreB was immuno-labelled in EF-Tu-mEos2 strain to image co-localization
between the two proteins in a single cell. The primary antibody for MreB was
rabbit polyclonal antibody (Invitrogen) and the secondary antibody was goat anti-
rabbit IgG (Jackson) tagged with Alexa647. The two-colour imaging was sequen-
tially performed, with Alexa647 first being imaged by STORM. GLOX was added to
protect Alexa647 from photobleaching, and B-mercaptoethanol to promote pho-
toswitching“. A continuous constant 640 nm irradiation ( ~4 kW cm ~ 2) was used
in STORM imaging without 405 nm irradiation. mEos2 channel was collected with
a continuous constant 561 nm irradiation (~2kW cm ~2) and a continuous

405 nm laser, which was slowly adjusted for optimal photoconversion rates. 100 nm
Tetraspeck beads (Invitrogen) were used as fiducial markers for drift correction
and alignment between the two channels.

Super-resolution imaging of EFTu-MreB-PPlIs in E. coli cells. Pacycduet-
mEosN-tufB or pbad-mEosN-tufB-Snap was transformed into MreB-mEosC
strain. When OD(600) of the culture reached 0.4-0.6, 200 uM (final concentration)
IPTG was added to induce the expression of BiFC fragments for 1.5h at 30 °C.
Snap was labelled by BG-Alexa647. Briefly, BG-alexa647 (NEB) was shocked in to
interact with the Snap tag for 1h, followed by three times of PBS wash. The single-
or two-colour super-resolution imaging was performed as aforementioned.

Sample preparation for single-molecule tracking in E. coli. The E. coli trans-
formation was done similarly with the fixed cell imaging except that the culture was
inoculated into 3 ml M9 medium (50 X amino acids, 100 X vitamins) in a shaker
at 37 °C overnight. The culture was amplified 1:100 into 8 ml M9 medium

(50 x amino acids, 100 x vitamins) + 0.4% glucose. When OD(600) reached
0.4-0.6, 200 pM (final concentration) IPTG was added to induce the expression
of BiFC fragments for 1.5h at 30 °C. The cells were then collected, washed and
re-suspended in M9 medium (50 x amino acids) + 0.4% glucose. The samples
were loaded between a coverslip and a 3% low melting temperature agarose gel pad,
so the bacteria were immobilized well for long-term live cell imaging. When A22
was used, a final concentration of 10 pgml ~ ! was added 1 h before the bacteria was
collected or directly into the imaging buffer for imaging experiments.

Phenotype. We constructed three strains that express (MreB + mEosN-EFTu),
(MreB-mEosC + mEosN-EFTu) and peptide linker-tethered MreB and EF-Tu,
respectively. Strain preparation was similar as above. The induction time for
(MreB + mEosN-EFTu) and (MreB-mEosC + mEosN-EFTu) was 6 h. The induc-
tion time for peptide linker-tethered MreB and EF-Tu was shortened to 1h.

Single-molecule tracking of EFTu-MreB-PPIs in E. coli. A 405-nm laser
(~0.6 W cm ~2) was pulsed for 20 ms every 3s to convert the mEos3.2 molecules,
and a continuous 561 nm laser irradiation (100 W cm ~ 2) was used to track single
molecules at 50 Hz.

Optical setup for BiFC-PALM. BiFC-PALM and STORM/PALM imaging were
done using a Nikon TiE inverted microscope equipped with a x 100 oil objective
(NIKON, PLAN APO, 1.49 numerical aperture) and Andor-897 EMCCD (Andor).
A 405-nm laser (Coherent, 100 mW), 488-nm laser (Coherent, 100 mW), 561-nm
laser (Coherent, 50 mW) and 640-nm laser (Coherent, 100 mW) were used to
either photoconvert or excite the fluorophores. For the two-colour imaging of
mEos3.2 and Alexa647, a polychroic mirror set (Di01-R405/488/561/635-Dichroic
and FF01-446/523/600/677-Emission) was used. The lasers were modulated by an
acousto-optic tunable filtre (AA Opto Electronic) and the beam width was
expanded fivefold and focused at the back focal plane of the objective. Laser pulses
were generated by a set of mechanical shutters controlled by home-written Labview
scripts.

STORM/PALM data analysis. Super-resolution image reconstruction was per-
formed using Insight3 software, generously provided by Dr Bo Huang (University
of California, San Francisco). Post data analysis such as drift correction, chromatic
correction and binning were done using home-written Matlab scripts.

Data analysis for BiFC-PALM single-molecule tracking. The BiFC-PALM sin-
gle-molecule data were analysed using a Matlab-based GUI programme Fiesta>”.
Molecules were identified and molecule trajectories were connected based on user-
defined tracking algorithms. All molecule trajectories were analysed using home-
written Matlab codes. Briefly, molecules that lasted less than six frames (0.12s)
were abandoned. The mean frame speed of survived molecules was calculated.
Mean-squared displacement (MSD) was calculated based on a two-dimensional
diffusion model (MSD = 4Dt + b), where D represents the diffusion coefficient and
b reflects the localization uncertainty™.

mEos3.2 BiFC in living Hela cells. Transfection of mEos3.2-N-Zipper and
mEos3.2-C-Zipper or mEos3.2-C mutated zipper fusion constructs was carried out
using Lipofectamine 2000 (Invitrogen) on HeLa cells cultured on 0.17-mm thick
bottom glass dishes. Images were first acquired through green fluorescent protein
(excitation filtre: 485/20, dichroic mirror: 410/504/582/669, emission filtre: 440/
521/607/700, Semrock) and RFP (excitation filtre: 560/25, dichroic mirror: 410/
504/582/669, emission filtre: 440/521/607/700, Semrock) channels. To test the
photo-conversion capability of mEos3.2-BiFC-Zipper complexes, the cells were
illuminated with ultraviolet light (excitation filtre: 387/11, Semrock) for 10s and
imaged with RFP channel again. All images were taken with 500 ms exposure time.
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