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Abstract

The multidrug-resistant Streptococcus pneumoniae Taiwan'®"-14, or PMEN 14, clone was first observed with a 19F serotype, which is
targeted by the heptavalent polysaccharide conjugate vaccine (PCV7). However, “vaccine escape” PMEN14 isolates with a 19A
serotype became an increasingly important cause of disease post-PCV7. Whole genome sequencing was used to characterize the
recent evolution of 173 pneumococci of, or related to, PMEN14. This suggested that PMEN14 is a single lineage that originated in the
late 1980s in parallel with the acquisition of multiple resistances by close relatives. One of the four detected serotype switches to 19A
generated representatives of the sequence type (ST) 320 isolates that have been highly successful post-PCV7. A second produced an
ST236 19A genotype with reduced resistance to B-lactams owing to alteration of pbp7a and pbp2x sequences through the same
recombination that caused the change in serotype. A third, which generated a mosaic capsule biosynthesis locus, resulted in serotype
19A ST271 isolates. The rapid diversification through homologous recombination seen in the global collection was similarly observed
in the absence of vaccination in a set of isolates from the Maela refugee camp in Thailand, a collection that also allowed variation to be
observed within carriage through longitudinal sampling. This suggests that some pneumococcal genotypes generate a pool of
standing variation that is sufficiently extensive to result in “soft” selective sweeps: The emergence of multiple mutants in parallel
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upon a change in selection pressure, such as vaccine introduction. The subsequent competition between these mutants makes this
phenomenon difficult to detect without deep sampling of individual lineages.

Key words: bacterial evolution, recombination, vaccine escape, antibiotic resistance, selective sweeps, phylogenomics.

Introduction

Streptococcus pneumoniae (the “pneumococcus”) is an oro-
nasopharyngeal commensal bacterium and respiratory patho-
gen representing a common cause of pneumonia,
bacteremia, and meningitis. Global estimates suggest that
the pneumococcus was responsible for 826,000 deaths in
children under 5 years in 2000 (O'Brien et al. 2009). A
major clinical concern over recent decades has been pneumo-
coccal multidrug resistance (MDR), defined as resistance to -
lactams and at least two other classes of antibiotic, the first
example of which was detected in 1977 (Jacobs et al. 1978).
Genotyping of MDR pneumococci has suggested that many
such isolates belong to a small number of internationally dis-
seminated “clones” of closely related bacteria (Klugman
2002). It was hoped that their success would be reversed by
the heptavalent antipneumococcal polysaccharide conjugate
vaccine (PCV7), which targeted the seven “vaccine-type”
pneumococcal capsule types (directly corresponding to sero-
types) accounting for the majority of pre-PCV7 B-lactam-
resistant isolates from invasive pneumococcal disease in the
United States (Whitney et al. 2000).

Although the incidence of antibiotic-resistant disease has
typically decreased following PCV7’s introduction, owing to
the elimination of vaccine serotypes, the relative prevalence of
antibiotic resistance in the pneumococcal population has gen-
erally not fallen dramatically (Kyaw et al. 2006; Huang et al.
2009). This is partly a consequence of particular MDR clones
being associated with multiple capsule types likely as a conse-
quence of “serotype switching”: The acquisition of a novel
capsule type through exchange of sequence at the capsule
polysaccharide synthesis (cps) locus, which determines the se-
rotype. Such a process allows clones generally associated with
vaccine serotypes to persist in the post-PCV7 environment in
the form of mutants expressing nonvaccine type capsules
(Beall et al. 2011; Hanage, Bishop, Huang, et al. 2017,
Simodes et al. 2011).

In the years following PCV7's introduction in the United
States, the clone in which serotype switching had the biggest
impact was Taiwan'?"-14, also known as PMEN14. This clone
was originally detected as having the vaccine-type 19F capsule
when first characterized by applying multilocus sequence
typing (MLST) (Aanensen and Spratt 2005) to isolates from a
Taiwanese hospital in 1997 (Shi et al. 1998). These multilocus
sequence type (ST) 236 isolates were found to be resistant to
B-lactams, tetracyclines, and macrolides. Epidemiological sur-
veillance subsequently identified closely related serotype 19F
isolates in other parts of Southeast Asia (Bogaert et al. 2002; Ip
et al. 2002), South Africa (McGee et al. 2001), and the United

States (Corso et al. 1998). Isolates that appear to be members
of this clone, based on genotyping information, but express-
ing the nonvaccine serotype 19A have become similarly wide-
spread. In Southeast Asia, in the late 1990s, 19A isolates were
detected of ST320; these represented a double locus variant
(DLV) of ST236, as the two STs shared identical alleles at five of
the seven MLST loci (Farrell et al. 2004; Ko and Song 2004;
Choi et al. 2008). Subsequently, ST320 has become a highly
prevalent multidrug-resistant genotype post-PCV7 in surveys
of carriage (Hanage, Bishop, Lee, et al. 2011) and in cases of
invasive pneumococcal disease (Moore et al. 2008; Beall et al.
2011) in the United States. The 19A capsule type was also
found in isolates with STs 271 (a single locus variant, or SLV, of
ST236; these STs are identical at six of the seven MLST loci)
and 236 itself. In this latter case, isolates were found to be less
resistant to B-lactams than most PMEN14 isolates. Along with
the observation of sequence similarity to a putative donor, this
led to the hypothesis that a capsule-switching recombination
had also altered the linked penicillin-binding protein (PBP)
genes that determine susceptibility to such antibiotics
(Moore et al. 2008).

STs 236, 271, and 320 are all grouped within clonal com-
plex (CC) 320, which also includes non-MDR pneumococci.
However, this genotyping information is not sufficient to pre-
cisely reconstruct the pattern by which the MDR phenotype,
and vaccine escape 19A isolates, emerged. MDR may have
emerged once, in which case PMEN14 would represent a
single lineage within which subsequent diversification and
intermittant reversion to antibiotic susceptibility may have con-
tributed to the observed diversity. Alternatively, resistance
may have been acquired on multiple occassions by closely
related bacteria, in which case the diversity would represent
the convergent evolution of susceptible progenitors. Such an
observation would suggest that some aspect of the genotype
may predispose it toward becoming a successful MDR
PNeUMOCOCCUS.

Phylogenomic analysis can provide the necessary resolution
to distinguish these alternative hypotheses when isolates of
different phenotypes are placed in the context of a broader
sample. Alongside the isolates representing the variation in
antibiotic resistance and serotype, primarily recovered from
cases of disease, the collection assembled for this study in-
cludes CC320 isolates from a survey of carriage in the
Maela refugee camp in Northwestern Thailand (Turner et al.
2012). CC320 isolates were found to be the most common
genotype in Maela by an independent population-wide survey
(Chewapreecha et al. 2014); hence, this location is able to
provide a “snapshot” of the clone’s overall diversity. These
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isolates also provide a useful comparison as a bacterial popu-
lation not directly subject to selection by vaccine-induced im-
munity. This overall collection of bacteria should therefore be
able to distinguish between alternative explanations as to the
emergence of MDR and subsequent instances of vaccine
escape in this set of a clinically important pneumococci.

Materials and Methods

Phylogenomic Analysis

DNA samples were collected for all isolates of CC320 available
from the sources listed in supplementary table S1,
Supplementary Material online. Samples were sequenced on
the lllumina GAIll and HiSeq platforms (supplementary table
S1, Supplementary Material online) as multiplexed libraries.
Short read data were then aligned against the S. pneumoniae
Taiwan'*-14 genome (Donati et al. 2010) (EMBL accession
code: CP0O00921) using SMALT v0.6.4 to generate a multiple
genome alignment, from which polymorphic sites were iden-
tified, as described previously (Croucher et al. 2012). Only
samples with a mean coverage above 25-fold and unambig-
uously calling bases at >90% of the positions in the reference
sequence were used in the analysis. Samples were also ex-
cluded if they showed signs of contamination, based on fre-
guency of sites with evidence of multiple alleles, or if their
serotype and ST (determined as described previously;
Croucher et al. 2011) both significantly deviated from previ-
ously determined epidemiological information (i.e., if isolates
were of a different serogroup and their MLST profile differed
at two loci or more).

Isolate 41_PMEN14 represents an independent culture of
isolate TW31, from which the reference sequence was gen-
erated. Furthermore, sequences 8561-06 and LMG87 were
both generated from independent cultures of the same iso-
late, as were 7848-05 and LMG95. Prediction of recombinant
sequence and generation of a maximum-likelihood phylogeny
were then conducted as described in Croucher et al. (2011). In
this analysis, all three pairs of sequences from the same isolate
were found to be closely related sister leaf nodes in the phy-
logeny. The same alignment was also analyzed with
BRATNextGen (Marttinen et al. 2012), assuming four clusters,
using a learned value of alpha, a window size of 1kb, and a
significance threshold P value of 0.05 (as calculated from 100
permutations).

A Bayesian coalescent analysis was performed on a subset
of the alignment corresponding to the PMEN14 clade using
BEAST (Drummond et al. 2012). Base substitutions predicted
to have been introduced through recombination were ex-
cluded from the alignment used in this analysis. The topology
of the phylogeny was fixed as that of the rooted subtree from
the overall analysis, with the years of isolation listed in supple-
mentary table S1, Supplementary Material online, used to es-
tablish a molecular clock based on a general time

reversible substitution model. A relaxed lognormal clock
prior (Drummond et al. 2006) was used for the substitution
rate and a skyline plot prior (Drummond et al. 2005) was used
for the population demography. All values were estimated
with an effective sample size of over 200.

Accessory Genome Distribution

For the analysis of ¢ps loci and integrative and conjugative
elements (ICEs), lllumina sequence reads were assembled de
novo using Velvet (Zerbino and Birney 2008), with scaffolds
generated using SSPACE (Boetzer et al. 2011) and sequence
improvement conducted using the PAGIT pipeline (Swain
et al. 2012). The serotype 19A cps loci displayed in supple-
mentary figure S5, Supplementary Material online, have been
submitted to the ENA with acccession codes HG799504 (iso-
late 7848-05), HG799505 (isolate 8312-05), and HG799488
(isolate SN28652). The ICEs displayed in supplementary figure
S6, Supplementary Material online, have been submitted to
the ENA with accession codes HG799503 (ICESpSPN28652),
HG799502 (ICESpPT814), and HG799501 (ICESp6027).
Nucleotide sequence comparisons were performed using
BLAT (Kent 2002) with default settings and analyzed using
ACT (Carver et al. 2008).

The distribution of antibiotic resistance genes shown in
figure 4 reflects the mapping of sequence reads to the dis-
played reference sequences identifed in the analysis of the
PMEN1 lineage (Croucher et al. 2011) using BWA v0.7.3 (Li
and Durbin 2009). The coverage plots were then generated
using Samtools (Li et al. 2009) and standardized by dividing
the coverage at each base by the number of million reads
generated in the sequencing of the sample. Biopython
(Cock et al. 2009) was then used to display these data as
heatmaps.

Assessment of Potential Sequence Donors

The regions corresponding to the serotype switching recom-
binations importing the 19A capsule into SN28652 (ST320)
and 8312-05 (ST236) were extracted from de novo assem-
blies. These sequences were then used to search the de novo
assemblies of the serotype 19A ST199 isolates from a study of
isolates from Massachusetts (Croucher, Finkelstein, et al.
2013) using Basic Local Alignment Search Tool (BLAST)
(Altschul et al. 1990). The best matching isolates were taken
as potential sequence donors, and combined with the recip-
ients and all complete publicly available genome sequences
(although using only S. pneumoniae OXC141 as a represen-
tative of the CC180 clade; Croucher, Mitchell, et al. 2013) to
represent the species-wide variation in the region flanking the
cps locus. The regions orthologous to that between SPT_0362
and SPT_0391 (dexB) in S. pneumoniae Taiwan'*"-14 (the
31,305bp 19A Recombinant Region) were extracted from
each genome, aligned using MUGSY (Angiuoli and Salzberg
2011) and a phylogeny generated using RAXML (Stamatakis

Genome Biol. Evol. 6(7):1589-1602.  doi:10.1093/gbe/evu120  Advance Access publication June 10, 2014 1591


http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
sequence type
)
,
,
-
s
ilobase
p 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
GTR
g
d
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu120/-/DC1
:
s
4
p
s
d
`
'

GBE

Croucher et al.

"3peP 71 NJAd Y} Uyt BULLINIDO SUOIBUIGUIOIR) 3} AJUO SISLIBLULUINS (Il SBRIYM ‘UOIID3]|0d DU
9} SSO.IDE B1ep 2y} S1I9|4a4 (1 dewiesH “(SUORPUIGUIOD3) S40W JO U} AQ paidayje Saus buiedipul) pal 0} (JNdJ0 SUOITBUIGUUIODI OU 2J3UM) an|q Jep woiy abues ydiym ‘pued ayi anoge sdewieay omy Aq
PIZLIPWWINS S| SJUSAS JUspuadapul 953y JO AUSusp 8y () JU90Ssp UOWWOD ybnouyy seiejos! a|dijnwi Aq paieys S UONeUIGUIOIR] 3y} 2104919y} PUB ‘UDUBIQ [PUISIUI UB UO Pa.ndd0 Buirey Se palon.isuodal
SI JUAS BU1 UBYM ‘pal IO ‘81ejos| dUO 0} dnbiun 240319y} dJe pue ‘YdUrI] [EUILLISY B UO Pa1ind20 BulAey Se PajdnJisuodas aJe SUOIeUIqUIODR) dU} UBUM ‘an|q aJe 3Say :SJUSAS UOIeUIGUIODa) aAieInd
91edIpul $320jq PaIojoD) “AusbojAyd ay3 Ul UOXe) Yoea Joj MOJ e pue ‘@0uanbas 9DUaJa4aJ dU} Ul 9Seq UYDea 04 UWN|od e suleiuod [pued siy] (D) “AjpAndadsal 'sndoj sabd sy JO weaisumop pue weassdn Ajoys
punoy ale ssusb e dqd pue xzdqd sy] (1xa1 995) JuswWise 9dA1-9 [ GU] By} pue ‘g0 “Mp ‘qzdqd :3ouP)SIsa. d10IGIUE Ul PIAJOAUI SUSD a1e Se ‘padJew aie (sndo| ‘sad J0 ‘sisayiuAs spLieyddesAjod sjnsded ayy
pue ‘Ddsd ‘ydsd) o] bulpodua-usbiuy “pajage] a4e puesi J1woush | -puels| Aidiusboyied [E32030WNaUd 3U} PUB SIDIA "BWOUSD 3UBIB3I 7| - UBMIE] Sejuownaud sno3030idauis dyj O UONRIoUUY (4)
. OCZELS V6L, PUB ,'9EZIS V6L, . 'LLTIS V6L, .'4EC. Se posuew aie apepP 7L NI Yl YHm saypums adAjolas suobiapun aaey 1eyl se1ejos| ‘(G- IN Pajege]) dwed 2abnyai ejge|y ay3 WOy s21e|os!
JO S9pe)d 9Al} JUSs2IdaI SEXOT PIPeYS aN|g YL "dAeIUSSaIdal |, 7GE]S,, dY1 pue ‘Spep ,,S19-v6 1L, Opep ,S19-461 ., Poege| 9y oul Hds S91ejos! s} JaYlo syl YIM ‘7| NJINd Pajede| apep ay3 03 buojsq
sa1e|0s! 9y} Jo Aluolew 8y “ L 69RNS ‘91ejosi dnoibIno sy 03 1y} St yduelq usyoiq oy “ydeoidde Auowisied wnulixew e buisn 9.3 3y} Yybnoayl pa1oniisuodal ‘paids||0d Seam 31e|0S! 9Y3 YDIYM Ul UOIIed0| Sy}
0} BuIpI0d2e Pa10j0d Sl 3.1 Y] "exel pajduies ayi ul BuLnNd30 suonenw julod pauayul Ajlediaa ayi buisn paoniisuod Ausbolhyd pooyi-uwnwixelp (V) ‘0ZEDD 40 sishjleue diwousbojAyd—:1 o4

suonnyisqns g'se

o= e TTTET Y ...  LTTEETTEET i s1d-vel (6526LS B 2021S) 1
£: ERE = E= SN T
= Z2 . )
5ER : = = TiIE v ININ
S Z = = = - £ M
oS iz M
ElE “ : m . P i E = = W ]
: ElE i P . . = = 9EZLS V6l -n-mnmn~- m
E E = = = LLZ1S V61
E = : = = ==i:i:z= 0ZELS
=-: =, e : : = E ==:i:I= V6l
= s O = £ = og e @
1RO A = = il
H E . it o= =i b = = i= ZGELS cememmamemen =1 @ |
= R S - = S S P = D s19-461 (9g2LS) H.“. v
N SO 00 e [ [ e S D S e (N  mal [ w
[ [[[ws 0w we o] o o ves || o sse S s | SSSS | em——s
I dwe) BBy 1se3 s|ppIN
$ 8 $° i P32 BOLBWY YUON == 9dOINT UIOISET s
0 4 oe@ &0( & s Na = I Y YLON
xaﬁp( 01= 0 BISY ISET-UINOG memmm  900INT UISISON s
s o — foy

:SUOIeUIqWI0D3 JO Aysuaqg

1592  Genome Biol. Evol. 6(7):1589-1602. doi:10.1093/gbe/evu120 Advance Access publication June 10, 2014



Evolution of the PMEN14 Pneumococcal Clone

GBE

Table 1

MICs of Isolates Acquiring 19A Capsules

Strain Serotype ST Penicillin MIC
(ng/ml)

7535-06 19F 236 1

8312-05 19A 236 0.25

SN28306 19F 320 4

SN39039 19A 320 4

Note—These isolates are two pairs, each containing a serotype 19A isolate
generated through capsule switching and the serotype 19F isolate most closely
related to the ancestral sequence prior to the capsule switching recombination. In
the ST236 isolates, the recombination at the capsule locus leads to a fall in pen-
icillin resistance, because the flanking penicillin-binding protein genes are replaced
by alleles similar to those in penicillin-susceptible isolates. This is not the case in
ST320, where the level of resistance is maintained after the acquisition of the 19A
capsule.

et al. 2005). The same procedure was used to generate the
phylogeny for the 31,850 bp control region, defined by the
boundaries of coding sequences (CDSs) SPT_0438 and
SPT_0473 in S. pneumoniae Taiwan'**-14.

Antibiotic minimum inhibitory concentrations (MICs) listed
in supplementary table S1, Supplementary Material online,
were provided by the organizations that originally collected
the isolates. For a direct comparison, the penicillin MICs of the
isolates listed in table 1 were retested using an E test in the
same laboratory.

Individual Gene Analyses

Sequences corresponding to the resistance genes pbpTa,
pbp2x, pbp2b, dyr, and folP were extracted from de novo
Velvet (Zerbino and Birney 2008) assemblies of the CC320
isolates. The protein sequences were aligned using MUSCLE
(Edgar 2004) and then backtranslated to give a codon align-
ment. This was then analyzed using BAPS (Tang et al. 2009) to
provide an estimate of the number of different alleles in the
collection, which was then used to inform an analysis of the
alignment using BRATNextGen (Marttinen et al. 2012) with
alpha fixed at 20 and a window length of 100bp.
Recombinant segments were identified using a threshold P
value of 0.05, as calculated from 100 permutations.

Results

PMEN14 Is a Rapidly Recombining Lineage

The sample collection consisted of 175 sequence data sets
from 173 representatives of CC320 isolated between 1997
and 2009, containing examples of serotypes 19F, 19A, and
23F. They originated in 12 countries, the majority coming
from Southeast Asia but also including representatives from
the Middle East, Europe, and the United States. All isolates
were sequenced as multiplexed libraries using the Illumina
platform, generating paired-end reads as detailed in supple-
mentary table S1, Supplementary Material online. Read pairs
were aligned against the complete reference genome of

S. pneumoniae Taiwan'®"-14, representing isolate TW31
from the original identification of the clone in Taiwan in
1997 (Donati et al. 2010), and bases called using previously
defined criteria (Harris et al. 2010). Resequencing of TW31
identified ten base substitutions relative to the reference
genome. Similarly, for two isolates sequenced in duplicate in
this study, one of serotype 19A and the other 19F, the pairs of
consensus sequences were only distinguished by two and
three polymorphic sites, respectively. The most divergent iso-
late was found to be SN4691 of ST1584 (a DLV of ST236),
which was used to root the phylogeny. Excepting this se-
guence, 46,377 polymorphic sites were identified. This align-
ment relative to the reference was analyzed using an iterative
algorithm to simultaneously identify recombinant sequence
and construct a phylogeny based only on vertically in-
herited point mutations in the “clonal frame” of the
genome, as described previously (Croucher et al. 2011)
(fig. 1). BRATNextGen (Marttinen et al. 2012) produced similar
results when applied to the same alignment (supplementary
fig. S1, Supplementary Material online).

The rooted phylogeny suggested that some of the
B-lactam-sensitive isolates represented the ancestral pheno-
type from which the MDR isolates emerged. These susceptible
isolates were split into two clades: ST236 isolates of serotype
19F (predicted to be the the ancestral serotype) formed clade
“19F-BLS,” and serotype 19A ST202 and ST3559 isolates
formed clade “19A-BLS.” The p-lactam-resistant genotypes
were monophyletic; however, a single ST352 isolate (an SLV
of ST236) was an outlier to the robustly supported PMEN14
clade itself (supplementary fig. S2, Supplementary Material
online). Within the PMEN14 clade, 61,096 base substitutions
were reconstructed as having occurred across 38,744 poly-
morphic sites. Of the base substitutions, 58,420 (96%) were
imported by 451 recombinations, estimating the per site /m
statistic (the ratio of base substitutions accumulated by recom-
bination relative to the number of point mutations) as 21.8.
This value is far higher than that calculated for PMEN1 using
the same approach (7.2), partly due to the larger number of
recombinations per point mutation: 0.17 for PMEN14 as com-
pared with 0.10 for PMEN1 (Croucher et al. 2011). Many
recombinations were clustered at high densities around the
cps locus, which included those causing changes of serotype,
and the pspA gene, which encodes the pneumococcal surface
protein A antigen and was affected by 16 putative recombi-
nations. However, the locus encoding the pspC antigen,
which like pspA is observed to frequently undergo recombi-
nation in other lineages (Croucher et al. 2011; Croucher,
Finkelstein, et al. 2013; Chewapreecha et al. 2014), was
only affected by four recombinations. This may be related to
the locus being atypical in having two pspC paralogues in
tandem (lannelli et al. 2002), an arrangement conserved in
all isolates in the collection. Additionally, the loci annotated
as mobile genetic elements (MGEs) in the reference sequence
contributed little to the apparent diversification. Hence, the
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per site r/m statistic only fell to 21.7 when recombinations
occurring in such regions were excluded, although this is still
lower than the same metric calculated from a smaller inde-
pendent sample of the same genotype (34.1) (Croucher,
Finkelstein, et al. 2013). These remaining sequence exchanges
outside of MGEs are likely homologous recombinations, and
followed a similar exponential length distribution to that ob-
served in PMEN1 (rate parameter of 1.16 x 10~ per bp; 95%
confidence interval: 1.07 x 107% to 1.27 x 10~ per bp; sup-
plementary fig. S3, Supplementary Material online) (Croucher
et al. 2012).

The r/m ratio also reflected the low number of point mu-
tations (2,676 mutations affecting 2,373 sites) within the
PMEN14 clade. A root-to-tip distance plot of genetic diver-
gence over time (n=164, R*=0.40, P value <2.2 x 10'¢;
supplementary fig. S4, Supplementary Material online) pro-
vided significant evidence of a molecular clock. A Bayesian
coalescent analysis (Drummond et al. 2006) indicated that
the lineage arose around 1987 (95% credibility interval:
1981-1991), with a base substitution rate just under four
base substitutions per year (1.80 x 107° substitutions/site/
year; 95% credibility interval: 1.27 x 107 to 2.20 x 107°),
only slightly greater than previously calculated values
(Croucher et al. 2011; Croucher, Finkelstein, et al. 2013).
That the r/m is high despite this elevated mutation rate em-
phasizes how quickly PMEN14 acquires material through
transformation, resulting in a diverse set of genotypes circu-
lating globally.

Development of Resistance through Transformation

These extensive levels of homologous recombination led to
the import of sequences causing resistance to antibiotics
(fig. 2). Resistance to trimethoprim most often arises from
[100L substitutions in the Dyr (or FolA) protein (Adrian and
Klugman 1997). PMEN14 appears to have originally been tri-
methoprim sensitive and subsequently imported this resis-
tance mutation on at least ten occasions, each time
associated with one of the 15 recombinations that affects
the dyr gene. The mutation has also been gained through
recombination by the 19A-BLS isolate PT814, which has ad-
ditionally acquired a folP allele with a small insertion at the S61
position, a modification associated with sulphamethoxazole
resistance (Maskell et al. 1997). The other two acquisitions
of sulphamethoxazole-resistant folP alleles seen in the collec-
tion correspond to the divergence of the ST352 isolate and the
emergence of PMEN14. The continuing diversification of FolP
within PMEN14 is clearly supported by the diversity of resis-
tance-associated insertions in the protein, resulting in folP (like
dyr) being a “hotspot” of recombination (fig. 1).

Resistance to B-lactams in clinical pneumococcal isolates
results from modification of PBPs through incorporation of
heterospecific sequence in the pbpla, pbp2x, and pbp2b
genes (Dowson et al. 1993; Sibold et al. 1994). The

evolutionary reconstruction (fig. 1) and analysis of gene se-
guences (fig. 2) suggested that penicillin resistance was inde-
pendently acquired by PMEN14 and ST352. Since the last
common ancestor of both these genotypes, ST352 appears
to have accumulated 31 recombinations encompassing
218kb, including events affecting pbp7a, pbp2b, and pbp2x
(but not murM or murN). Similarly, on the other branch lead-
ing from the common ancestor of all the MDR isolates to the
last common ancestor of the PMEN14 clade, 35 recombina-
tions affecting 279kb were predicted to have occurred. The
murMN genes were once more unaffected, whereas the
pbpla, pbp2x, and pbp2b genes were each again altered
through the import of sequence and subsequently continued
to diversify throughout the PMEN14 clade.

Multiple Instances of Vaccine Escape

Changes in pbp2x and pbpla are often associated with
changes in serotype (fig. 2) as they flank the cps locus. Five
serotype switches were identified, one of which involved the
acquisition of the type 23F capsule, another antigen included
in the PCV7 vaccine. This recombination extended over
29.6kb of the reference sequence and almost entirely pre-
served the sequences of pbpTa and pbp2x (fig. 3). The
other four switches resulted in the acquistion of the 19A se-
rotype, not targeted by the PCV7 vaccine. One of these, a
78.8-kb long exchange that replaces pbp2x as well as an ex-
tensive upstream tract, caused the serotype switch character-
istic of clade 19A-BLS. However, only five amino acid
substitutions were introduced into the 750 aa Pbp2X protein,
none of which altered the B-lactam sensitivity of the isolates.

Within the PMEN14 clade, the shortest capsule switching
recombination (16.1kb relative to the reference sequence)
imported the 19A capsule into ST271. Although this import
failed to span the entire cps locus, it did affect the wzy poly-
merase gene, thought to be the crucial determinant distin-
guishing the 19F and 19A serotypes (Mavroidi et al. 2007).
The resulting mosaic cps locus within this post-PCV7 vaccine-
escape lineage, represented by a pair of sequences corre-
sponding to an isolate from Minnesota in 2005, therefore
appeared to be a mosaic of the ancestral sequences charac-
teristic of serotype 19F in the 5’ region with an imported wzy
gene characteristic of serotype 19A (supplementary fig. S5,
Supplementary Material online). A separate, but nearby, re-
combination occurring on the same branch of the phylogeny
changed the pbp2x sequence without affecting B-lactam re-
sistance. The pbp2x gene was also affected directly by the
other two, longer, recombinations that imported the 19A cap-
sule type into PMEN14. One, associated with the emergence
of the highly resistant ST320 clade, replaced one resistant
pbp2x allele with another. However, the recombination that
occurred in the ST236 19A isolate S. pneumoniae 8312-05
was the longest at 85.8kb relative to the reference and
replaced both pbp2x and pbpTa with alleles similar to those
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of the sensitive outgroup isolates (fig. 2). In concordance with
previous observations (Moore et al. 2008), testing revealed
that S. pneumoniae 8312-05 had increased susceptibility to
B-lactams (table 1).

The ST199 lineage has been suggested to be the source of
the 19A cps locus in both ST236 (Moore et al. 2008) and
ST320 (Pillai et al. 2009). To test these hypotheses, a phylog-
eny was generated for the 19A Recombinant Region, repre-
senting an approximately 40-kb stretch of the genome
immediately upstream of the cps locus that is predicted to
have been imported along with the cps locus in both the
ST320 and ST236 switches (fig. 3). In the case of ST236, this
was found to be very similar to a potential ST199 donor
(Croucher, Finkelstein, et al. 2013), although such a match
could not be found for the ST320 isolate. An equivalently
long stretch of sequence immediately downstream of the
cps locus, unaffected by either serotype switching recombina-
tion, was used as a control. In this locus, both 19A isolates
were most similar to the reference genomes of the PMEN14
genotype, as expected if they were unaffected by recent hor-
izontal import of sequence. These data are consistent with the
hypothesis that the ST236 switch involved a donor of ST199.

Import of Resistance Cassettes

Heterogeneity in antibiotic resistance profiles was also gener-
ated by the movement of MGEs. Tetracycline and macrolide
resistance genes were acquired on both branches on which
B-lactam resistance emerged (fig. 4). In both cases, this was
the result of the acquisition of a Tn976-type ICE, carrying a
tetM tetracycline resistance gene, into which a macrolide re-
sistance cassette had inserted. In PMEN14, the ICE was in-
serted shortly downstream of the rpoBC operon and carried
a mega element that encoded a mef/mel macrolide efflux
pump (Del Grosso et al. 2006). In ST352, the Tn976-type el-
ement was inserted downstream of lytA, which encodes the
principal pneumococcal autolysin, and carried a Tn977 macro-
lide resistance cassette (Shaw and Clewell 1985). This suggests
that ST352 and PMEN14 independently acquired these related
MGEs. A further acquisition of a Tn976-type ICE was observed
in the 19A-BLS isolate S. pneumoniae PT814, where the trans-
poson was carried within a larger Tn5252-type ICE (Ayoubi et
al 1991) inserted downstream of the zmpA gene (supplemen-
tary fig. S6, Supplementary Material online).

The presence of mega within PMEN14 since its inception
contrasts with PMEN1 (originating around 1970) (Croucher
et al. 2011), likely reflecting macrolide resistance becoming
common in pneumococci after the emergence of PMENT but
before the emergence of PMEN14 (Appelbaum 1992;
Baquero et al. 2002). Nevertheless, PMEN14 appears to
have also acquired the ermB macrolide resistance gene
within the Omega cassette (Croucher et al. 2011) on four
occasions, resulting in a “Tn2070" structure (Del Grosso
et al. 2007). One of these instances has persisted through

the clade in which the three serotype switches to 19A
occurred within PMEN14 in this collection. As well as these
instances of resistance emerging, the mel/mef pump appears
to have been deleted twice. One of these deletions was rep-
resented by an isolate carrying an ermB resistance gene,
whereas in the other the loss led to a clade of three isolates
becoming sensitive to macrolides (supplementary table ST,
Supplementary Material online). These isolates were from
the Maela refugee camp (Chewapreecha et al. 2014) and
formed part of a large clade of ST4414 isolates (labeled
ML2 in fig. 1) that appeared to represent the dissemination
of a single clone within the camp.

Diversity in a Single Unvaccinated Community

The ML2 clade of 80 isolates was calculated as having an /m
of 12.8, demonstrating that PMEN14's high level of sequence
import is also observed among cocirculating isolates in the
absence of vaccination. Furthermore, the overall population
of bacteria from Maela was polyphyletic with respect to the
rest of the collection (five clades labeled ML1-5 in fig. 1), in-
dicating that the clone has entered the camp at least five
times. Based on this minimum, and the dates of isolation,
each of the five clades seems to have been present within
the camp in October 2008, with ML2, 4, and 5 all apparently
cocirculating over the span of more than a year.

Coexistence of diversity could also be detected on a smaller
scale. The genomes of eight longitudinally sampled represen-
tative colonies from a single individual, isolated between July
2008 and March 2009, revealed 20 polymorphic sites in this
population from a single nasopharynx (fig. 5C). However, on
detailed investigation, seven of these appeared to represent
low-quality mapping or phase variation, leaving 13 high-con-
fidence polymorphic sites (nonshaded columns in fig. 50).
Little evidence of polymorphism was identified in isolates ob-
tained before October; however, four single-nucleotide poly-
morphisms were observed to be shared between the isolates
from November to December. Subsequently, these polymor-
phisms were lost from the February and March samples,
which shared a third pattern of polymorphisms. The two
final members of the clade are from different individuals
around the end of the infant’s carriage period: One is from
the infant’s mother and the second is from a nearby house-
hold, indicating within- and between-household transmission,
respectively. A second set of longitudinal samples collected
from a single infant between January and April 2009
(fig. 5B) again showed that polymorphisms arise and disap-
pear even in the absence of transmission bottlenecks, con-
trasting with the more clocklike accumulation of diversity
over the longer history of the clade.

Discussion

Whole genome sequencing allows a more precise reconstruc-
tion of the emergence and diversification of the PMEN14
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clade than afforded by MLST and serotyping. Analysis of this
collection reveals that, within ST236, the B-lactam-sensitive
19F isolates represent the persistence of the ancestral pheno-
type, from which the MDR isolates were derived; subse-
guently, the B-lactam-sensitive ST236 19A isolates were
themselves derived from this MDR genotype. Similarly,
both ST271 and ST352 are SLVs of ST236; despite the
former differing in serotype, it lies within the PMEN14 clade,
whereas ST352 represents an independent emergence of the
MDR phenotype. One step further removed, both ST320
and ST202 are serotype 19A DLVs of ST236; yet the former
represents a third switch to 19A within the PMEN14
clade, whereas ST202 has independently acquired the 19A
capsule, as well as resistance to tetracycline, sulphamethoxa-
zole, and trimethoprim, and is quite distantly related to
PMEN14.

The requirement for detailed genetic information to resolve
these ambiguities stems from the emergence of the same
traits in parallel across the collection. This is typical of “soft”
selective sweeps affecting the population (Hermisson and
Pennings 2005). These are characterized by multiple indepen-
dent origins of beneficial alleles emerging in parallel, resulting
in more of the ancestral diversity being preserved than in
“hard” sweeps where the beneficial mutation has a single
origin. Soft sweeps are more likely when the rate of diversifi-
cation and effective size of the population is high, as in the
case of this successful, rapidly recombining lineage. Such
behavior can also be facilitated by substructuring, as may be
the case for such a geographically disparate population
(Pennings and Hermisson 2006). Yet in this collection, evi-
dence was found of differing genotypes coexisting at the
scale of a single episode of carriage, based on the disappear-
ance and reappearance of particular alleles from longitudi-
nal sampling. Much greater genetic diversity was found to
cocirculate within a single camp with an area of just 4 km?
(Turner et al. 2012), some of which impacted on antibiotic
resistance phenotypes as a consequence of the observed di-
versity of macrolide resistance cassettes, dyr sequences, and
folP alleles.

Across the wider collection, each of the resistances ob-
served—to B-lactams, sulpha drugs, tetracycline, and macro-
lides—were acquired more than once in this sample of a single
lineage. This suggests that the emergence of the MDR phe-
notype may be the product of an ongoing soft selective
sweep. Similarly, following the introduction of PCV7, the
19A capsule is observed to be acquired on three independent
occasions within the PMEN14 clade alone. However, more
epidemiologically rigorous samples of post-PCV7 population
structures (Moore et al. 2008; Mahjoub-Messai et al. 2009;
Song et al. 2009; Beall et al. 2011; Hanage, Bishop, Lee, et al.
2011) and the MLST database itself (Aanensen and Spratt
2005) suggest that although the initial selective sweeps them-
selves may be soft, subsequent competition leads to one
mutant genotype prevailing. Generally, it seems that the

more sparse the sampling or the longer the time between
the selective pressure being exerted and samples being col-
lected, the greater the tendency to infer that a genotype has
been successful as the lone example of a rare mutation. More
focussed data sets may reveal that the genotype has actually
had to out-compete others sharing similar mutations selected
by the initial sweep, suggesting more stringent selection on
the ultimately successful genotype than would otherwise be
expected following a strict “bottleneck.”

Of the diversity represented in this collection, the serotype
19A ST320 genotype has been the most successful in the US
post-PCV7. This seems partially contingent on PMEN14's pre-
PCV7 success relative to the MDR ST352 genotype, the reason
for which is difficult to establish given this current data set; the
extensive recombination distinguishing these genotypes may
have resulted in selectively important differences, or it could
be the consequence of chance founder effects. In the case of
the subsequent post-PCV7 competition between different
backgrounds having acquired the 19A capsule, it is tempting
to focus on the cps locus itself. The success of ST320 may stem
from it being the only instance within PMEN14 where the
entire ¢ps locus is replaced, whereas high-level B-lactam resis-
tance is retained. The reduction in resistance of the ST236 19A
isolate is likely to be selected against. The mosaic cps locus
found in the ST271 19A clade may also be less “fit” than the
intact 19F or 19A lodi, if the cohesion of cps loci is driven by
epistasis between different genes within the cluster; this
would account for its rarity in the United States in 2005,
and absence from later samples (Beall et al. 2011).
Nevertheless, the observation of these unsuccessful switches
to 19A occurring in parallel is interesting in the absence of
recombinants having acquired one of the many other
common non-PCV7 serotypes, suggesting that serotype
switching is nonrandom.

In conclusion, the dense sampling in this analysis indicates
that a diverse population of PMEN14, formed through exten-
sive homologous recombination, can coexist even within a
small community. This standing variation results in a soft se-
lective sweep in response to a change in selection pressure,
which can be observed by deep sampling of a lineage.
Subsequent competition between the genotypes that persist
after the initial sweep may then result in a single, successful
predominant genotype that makes the sweep appear hard.
This competition after the intial sweep is likely to represent an
important step in selecting the fittest mutants that rise to
prominence  following the introduction of clinical
interventions.

Supplementary Material

Supplementary figures S1-S6 and table S1 are available at
Genome Biology and Evolution online (http:/Avww.gbe.
oxfordjournals.org/).
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