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Particles, bubbles, and drops carried by a fluid in a confined environment such as a pipe can be
subjected to hydrodynamic lift forces, i.e. forces that are perpendicular to the direction of the flow.
We investigated the positioning effect of lift forces acting on buoyant drops and bubbles suspended
in a carrier fluid and flowing in a horizontal microchannel. We report experiments on drops of
water in fluorocarbon liquid, and on bubbles of nitrogen in hydrocarbon liquid and silicone oil,
inside microchannels with widths on the order of 0.1–1 mm. Despite their buoyancy, drops and
bubbles could travel without contacting with the walls of channels; the most important parameters
for reaching this flow regime in our experiments were the viscosity and the velocity of the carrier
fluid, and the size of drops and bubbles. The dependencies of the transverse position of drops and
bubbles on these parameters were investigated. At steady state the trajectories of drops and bubbles
approached the center of the channel for drops and bubbles almost as large as the channel, carried by
rapidly-flowing viscous liquids; among our experiments, these flow conditions were characterized by
larger capillary numbers and smaller Reynolds numbers. Analytical models of lift forces developed
for the flow of drops much smaller than the width of the channel failed to predict their transverse
position, while computational fluid dynamic simulations of the experiments agreed better with the
experimental measurements. The degrees of success of these predictions indicate the importance of
confinement on generating strong hydrodynamic lift forces. We conclude that inside microfluidic
channels, it is possible to support and position buoyant drops and bubbles simply by flowing a
single-stream (i.e. “sheathless”) carrier liquid that has appropriate velocity and hydrodynamic
properties.

PACS numbers: 47.61.-k, 47.11.-j, 47.55.-t, 82.70.-y

I. INTRODUCTION

Suspensions of solid particles, drops, or bubbles in a
liquid are complex systems that exhibit nonlinear flow
properties [1]. One such nonlinear effect is the spatial re-
distribution of dispersed particles due to hydrodynamic
interactions within the flow [2]. The spatial distribu-
tion of particles during the flow of suspensions is rele-
vant to many natural phenomena and technological pro-
cesses; these range from the positioning of erythrocytes
during flow of blood in the circulatory system [3, 4] to
the pumping of slurries in industry [5, 6]. Understand-
ing and controlling the position of dispersed particles in
laminar flow, for example, enables analytical techniques
such as field-flow fractionation [7, 8] and flow cytometry
[9].

We have investigated the dynamics of buoyant drops or
bubbles suspended in a liquid carrier phase that flowed
inside horizontal microfluidic channels, and were sepa-
rated from one another by distances larger than their
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sizes. Following an initial transient, these drops and bub-
bles moved in straight trajectories, parallel to the center-
line of the channel. The position of these trajectories
relative to the centerline depended on the geometry of
the channel, on the size of drops, and on the proper-
ties of the carrier and dispersed phases. We propose a
technique, based on this phenomenon, for controlling the
steady-state transverse position of drops and bubbles by
tuning the rate of flow and the viscosity of the carrier
liquid.

Existing microfluidic techniques for positioning of par-
ticles [10] can be categorized into (i) methods that use ad-
ditional laminar flows—sheath flows—to focus and locate
the laminar fluid stream that contains the particles and
(ii) “sheathless” techniques that use either externally-
applied forces or hydrodynamic lift forces (i.e. perpen-
dicular to the local flow velocity) to move particles be-
tween different streams of fluid. Our technique is based
on the competition between buoyancy and lift forces and
does not require sheath flows.

Hydrodynamic lift forces cause the migration of par-
ticles across streamlines and are interesting phenomena
in fluid dynamics; several mechanisms have been shown
to produce lift forces [11–19]. Simple interpretations of
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these mechanisms might lead to the conclusion that lift
forces are negligible in microfluidics. For example, iner-
tial lift forces are proportional to the Reynolds number,
which quantifies the ratio of inertial to viscous effects, but
the Reynolds numbers characteristic to microfluidic flows
[20] are typically much smaller than 1. Nevertheless, as
Di Carlo et al. [21] have shown, inertial lift forces can
focus and order particles in microchannels; microfluidic
positioning of particles using inertial effects is a quickly
growing field of research [22]. This recent work on inertial
focusing shows how studying known hydrodynamic phe-
nomena in a microfluidic setup can lead to the discovery
of new phenomenology and new applications.

Here we investigated the position of drops and bub-
bles (deformable objects with fluid interfaces) within the
cross-section of microfluidic channels. In our experiments
the inertial forces were much weaker than those investi-
gated by Di Carlo et al., and competed with lift forces
caused by the deformation of drops [11, 12], by the flow
of interfacial fluid due to gradients in surface tension
[13, 19, 23], and by the hydrodynamic interaction of drops
and bubbles with the walls of the channel [16, 18, 24, 25].
Figure 1a illustrates the geometry of the system: a carrier
liquid that contained buoyant drops or bubbles flowed
horizontally in a rectangular microchannel, with the sys-
tem imaged from the side to determine the vertical po-
sition of drops and bubbles. Figure 1b shows drops of
supercooled liquid water [26] (ρ ≈ 1.0 g/cm

3
) and a

particle of ice [27] (ρ ≈ 0.92 g/cm
3
) flowing in a mi-

crochannel in a continuous phase of perfluoromethylde-
calin (ρ ≈ 2.0 g/cm

3
).

The drops of water and ice particles shown in Figure
1b did not contact the walls; their transverse position
depended on the relative magnitude of buoyancy and hy-
drodynamic lift forces. In the direction along the hor-
izontal imaging axis, drops did not experience buoyant
forces and were centered between the vertical walls of
the channel. In this experiment, liquid drops traveled
close to the center of the channel while ice particles mi-
grated to an intermediate position between the center of
the channel and its top wall. The different equilibrium
position of water drops and ice particles in Figure 1b in-
dicates the presence of a non-inertial lift mechanism at
work in our system; in other microfluidic inertial focusing
experiments [21] liquid drops and solid particles migrated
to the same positions.

Drops and bubbles deform in viscous shear flow [28],
and this deformation leads to a lift force that, in most
of the cases, causes the migration of fluid particles to
the regions where the gradient of flow velocity (the shear
rate) is smallest [11, 12], such as the center of channels in
Poiseuille flow. The deformation-induced lift force could
balance the buoyancy of drops but might not explain fully
the positioning shown in Figure 1b. We deduce this be-
cause the drops are not visibly deformed and because ex-
isting analytical models of deformation-induced lift [11]
predict a lift force that would be too weak to balance the
buoyancy of drops. To understand how lift forces may
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FIG. 1. (Color online) a) The system investigated in this pa-
per. Buoyant drops or bubbles immersed in a hydrocarbon or
fluorocarbon carrier liquid flowed horizontally in a microflu-
idic channel 200-µm high and 125-µm wide. Hydrodynamic
lift forces balanced the buoyant force, and drops and bub-
bles traveled on a horizontal trajectory without touching the
top wall. b) The lift forces acting on liquid drops (water,
ρ ≈ 1.0 g/cm3) were stronger than those on frozen, solidified
drops (ice particles, ρ ≈ 0.9 g/cm3); the lift forces positioned
the drops much closer to the center of the channel. The fluo-
rocarbon carrier fluid had a density of ∼ 2 g/cm3, an average
velocity of 34 mm/s and a viscosity of 13.5 mPa s.

cause the centering of drops, we investigated the posi-
tioning of drops experimentally and numerically, and we
compared our results with analytical predictions.

A. Motivation and Significance

Our goals were to determine (i) the steady state trans-
verse positions of buoyant drops and bubbles immersed
in a carrier liquid during flow in microchannels, (ii) how
these positions change with the hydrodynamic properties
of the flow, and (iii) to what extent analytical models of
hydrodynamic lift forces [11, 14] can be used to predict
the positions of drops and bubbles in our experiments.
We have been initially motivated to conduct these stud-
ies by an experiment in which we studied the nucleation
of ice inside drops of supercooled water [26]; in that ex-
periment, the transverse position of the drops influenced
their temperatures, which we needed to measure accu-
rately to determine the rate of nucleation of ice in super-
cooled water. Accurate and reproducible positioning of
drops is also critical to microfluidic applications that in-
vestigate drops optically using focused laser beams, such
as fluorescence-activated droplet sorting (FADS)[29] and
lasing with high-speed switching in trains of drops [30].
A more general relevance of drop positioning in microflu-
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idics is that the transverse position of drops in channels
determines their velocity because the carrier velocity pro-
file in pressure-driven laminar flow is not uniform. The
control of transverse position is thus relevant when drops
are used as miniature chemical reactors in which time-
resolved processes occur [31].

One issue that might occur in technologies that use
multiphase flow is that buoyant particles could sediment
in channels or pipes and clog the flow. The simplest
solution to this problem is to use a carrier fluid that
is density-matched with the particles, but there are in-
stances in which this solution is not applicable (e.g. if
the dispersed phase is gaseous, or if it has multiple com-
ponents that have different densities). Also, density-
mismatched carrier fluids could have characteristics that
make them a better than density-matched fluids choice
in some applications. Fluorocarbon liquids, which have
approximately twice the density of water, are often used
in microfluidics because they are chemically inert, immis-
cible with both aqueous solutions and hydrocarbon oils,
and compatible with polydimethylsiloxane [32] (PDMS),
the most common material used for the fabrication of
microfluidic chips. Thus, our present study should prove
useful for understanding positioning in situations where
matching the density of the dispersed and continuous
phases is not preferred.

II. BACKGROUND

The relative magnitude of viscous and inertial forces
acting on a fluid determines the regime (laminar or tur-
bulent) in which it flows. The ratio of inertial to viscous
forces is quantified by the Reynolds number [33] Re,

Re =
ρV L

µ
=

ρcV
2

L(
µV
L2

) =
inertial force density

viscous force density
(1)

where µ is the viscosity of the fluid, ρ is the density of the
fluid, and V the typical variation in the velocity of the
fluid over a characteristic length scale L. All equations
in this paper are written for variables expressed in the
International System of Units (SI).

To characterize the relative strength of inertial effects
in our system, we defined two Reynolds numbers: a chan-
nel Reynolds number, ReC , which characterizes the flow
of a carrier fluid with viscosity µc and density ρc (Eq. 2),
and a particle Reynolds number, ReP , based on the local
shear rate, which characterizes the motion of drops and
bubbles of radius r immersed in that carrier fluid (Eq.
3).

ReC =
ρcVavgH

µc
(2)

ReP =
ρcVavg
µc

r2

H
(3)

We chose the characteristic length of ReC to be the
height of the channel, H, rather than its width, w, be-
cause H in our experiment is aligned with the gravita-
tional acceleration, and with the deviation of drops and
bubbles from the center of the channel. During viscous
flow inside channels, the velocity of the fluid at the walls
is zero, therefore the average velocity of the fluid Vavg
is a good measure of the variation of the velocity of the
fluid across the channel. The characteristic length scale
for ReP is the radius of the particle. The characteris-
tic velocity is Vavgr/H rather than Vavg because for the
evaluation of the viscous forces acting on the particle, the
relevant velocity is the variation of fluid velocity in the
vicinity of the particle (approximately equal to Vavgr/H)
rather than the variation of velocity in the whole channel
(approximately equal to Vavg).

Flow in microfluidic channels is characterized by small
to moderate ReC (between 10−6 and 100); the flow is
laminar in this range of channel Reynolds numbers. In
the limit of unbounded flow at ReC = 0, lift forces on a
rigid body of revolution (e.g. spheres, disks, and rods)
that does not experience external forces vanish, and such
particles move with the fluid rather than transversely
with respect to streamlines [34]. Hydrodynamic lift forces
appear because of small deviations from this limiting case
[2]: these forces appear at finite Reynolds numbers, near
walls, with particles that can deform, and with carrier
fluids that are not Newtonian. Lift forces could also be
caused by Marangoni effects [35] when thermal or chem-
ical gradients generate a gradient in the surface tension
along the interface between drops/bubbles and the car-
rier fluid.

A. Inertial Lift

Most of the inertial lift phenomena that have been in-
vestigated experimentally and theoretically belong to two
classes: (a) migration of particles in the absence of exter-
nal forces (e.g. buoyancy) and (b) migration of particles
that are subject to an external force aligned with the di-
rection of the flow. Most of the recent experimental work
on microfluidic inertial focusing of particles is based on
class (a) of lift phenomena [22].

Class (a). Inside circular pipes, neutrally buoyant
spherical particles migrate to a circular annulus situated
approximately halfway between the center and the walls
of the pipe [36] when the channel Reynolds numbers have
a moderate value (ReC ∼ 10 − 100). In channels with
rectangular cross-section the inertia of the carrier fluid
focuses particles to two or four positions situated near
the walls of the channel [37]. These non-trivial focusing
positions are caused by two opposing inertial lift mech-
anisms [14]: one mechanism pushes particles away from
walls, and the other moves particles towards regions with
larger shear rates (i.e. near the walls). The forces gener-
ated by both mechanisms are proportional to the particle
Reynolds number ReP .
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Class (b). Inertial lift forces push a particle towards
the center of the pipe if the particle lags the flow and to-
wards the wall if the particle leads the flow [17]. Leading
and lagging the flow requires an external force that is par-
allel to the direction of flow to counter the viscous drag.
This phenomenon was first investigated in vertical pipes
using particles more dense than the fluid [38].; the par-
ticles either led or lagged behind the flow depending on
the direction (up/down) of the flow. Kim et al. [39] have
recently focused particles along the axis of a horizontal
microchannel channel by slowing their motion relative to
the channel; they used electrically charged particles, and
they applied an electric field along the direction of the
flow to slow down the particles.

B. Analytical and Empirical Expressions of the
Inertial Lift Force

The calculation of inertial lift forces is a difficult prob-
lem, and several different formulas have been proposed.
Ho and Leal [14] calculated the inertial lift force on solid
spherical particles in planar Poiseuille flow in the limit
of small particle Reynolds numbers (ReP � 1). Matas
et al. [40] used a numerical procedure described by Aslo-
mov [41] to calculate inertial lift forces in circular pipes
with Reynolds numbers up to ReC ∼ 1000; for ReC < 30
the lift force, F inertial

L,analytic, is given by Eq. 4. For flow of

large (i.e. comparable to the size of the channel) spheri-
cal particles in rectangular channels, Di Carlo et al. [37]
calculated numerically the lift forces and presented an ap-
proximate formula (Eq. 5) for inertial lift near the center
of the channel, F center

L,analytic. These formulas for inertial lift
forces depend on the distance, d, between center of the
rigid particle and the center of the channel.

F inertial
L,analytic = µcVavgr ReP

( r
H

)1

g1(d/H) (4)

F center
L,analytic = µcVavgr ReP g2(d/H) (5)

The functions g1(d/H) and g2(d/H) have a non-
monotonic dependence [37, 40] on d/H. Near the center
of the channel (d/H < 0.1) they are linear in d/H and
negative: the inertial lift force pushes particles away from
the center of the channel. Eqs. 6-7 give the approximate
values of g1(d/H) and g2(d/H) near the center of the
channel.

g1(d/H) ≈ −120

(
d

H

)
, for 0 <

(
d

H

)
< 0.1 (6)

g2(d/H) ≈ −10

(
d

H

)
, for 0 <

(
d

H

)
< 0.1 (7)

C. Deformation-Induced Lift

Drops and bubbles deform when they are immersed in
the shear flow of another fluid [28]. The extent of de-
formation is characterized by the particle capillary num-
ber CaP which quantifies the ratio of viscous stresses to
the capillary forces acting on the drop or bubble. If the
capillary number is small (CaP < 0.5), the relative de-
formation of the drop (ratio of radius variation to radius
average) is approximately equal to CaP . For a drop or
bubble with radius r and an interfacial surface tension γ,
CaP is given by

CaP = 2
µcVavg
γ

r

H
(8)

The particle capillary number has the form shown in
Eq. 8 rather than the simpler form µcVavg/γ because, for
reasons similar to those used in the definition of ReP (Eq.
3), the relevant fluid velocity is Vavgr/H. The numerical
factor of 2 ensures that the deformation of a drop is equal
to CaP at small deformations.

Drops and bubbles that are deformed by shear flows
migrate towards the regions of flow that have the smallest
shear rate [12]. Analytical models [11, 42] that apply to
small drops and bubbles predict that such migration only
occurs if the ratio of viscosities of the suspended phase
(drop/bubble) and of the carrier fluid is smaller than 0.5
or larger than 10; in between these values, the direction
of migration is reversed. This analytical prediction was
confirmed by the numerical simulations of Mortazavi and
Tryggvason [43]. In pressure-driven flow, the shear rate is
smallest in the center of the channel; drops and bubbles
will therefore experience deformation-induced lift forces
which will push them, depending on the viscosity ratio,
towards or away from the center of the channel.

D. Analytical Expressions of the
Deformation-Induced Lift Force

Different formulas to predict the deformation lift force
in circular tubes [11, 12, 42] apply to small drops (r � H)
and are identical with each other except for a factor f(κ),
where κ is the ratio of viscosities of the particle, µparticle,
and the carrier fluid, µc. Equations 9 and 10 list the
deformation lift force FL,deformation and the factor f(κ)
proposed by Chan and Leal [11].

FL,deformation = µcVavgr CaP

( r
H

)2 d

H
f(κ) (9)

f(κ) =
128π

(κ+ 1)3
×

×
(

11κ+ 10

140
(3κ2 − κ+ 8) +

3

14

19κ+ 16

3κ+ 2
(2κ2 − κ− 1)

)
(10)
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E. Wall-Effect Lift

In our experiments, drops and bubbles were large—
that is, they were separated from the walls of the chan-
nel by distances comparable to their diameter. Drops and
bubbles interact with the walls and experience wall-effect
lift forces when their distance from the walls becomes
smaller than a few times their diameter. The wall-effect
forces in the case of small particles were considered both
in Ho and Leal’s treatment of the inertial lift force [14],
and in Chan and Leal’s treatment of the deformation-
induced lift force [11]. When the distances of drops and
bubbles from the walls become as small as those investi-
gated in our experiment, however, the wall effects become
more complex and difficult to predict [16, 18, 25]; for ex-
ample, bubbles rising in a liquid near a wall are either
attracted to or repelled from the wall, depending on the
Reynolds number and on the degree of surface contami-
nation of the bubble [24].

F. Viscoelastic Lift

In flow characterized by a non-uniform shear rate, the
nonlinear relation between viscous forces and the shear
rate in viscoelastic fluids can cause lift forces on particles.
The viscoelastic lift acts in the direction of the regions
which have the lowest shear rate. This lift force was
predicted to move both solid [15] and fluid [11] particles
to the center of channels in conditions of laminar flow.
Leshansky et al. [44] observed viscoelastic focusing of
particles along the center plane of a wide microfluidic
channel.

Experimental investigations revealed more complex
migration phenomena when viscoelastic and other types
of lift act simultaneously on drops or bubbles. Sullivan
et al. [45] observed that the transverse position of bub-
bles in a viscoelastic fluid became unstable when sur-
factant was added to the viscoelastic fluid. Yang et al.
[46] explored conditions in which inertial and viscoelastic
lift forces had comparable contributions in a microfluidic
channel with a square cross section, and observed that
particles migrated to the centerline. In cases where vis-
coelastic effects dominated inertial effects the particles
migrated to multiple focusing positions.

G. Marangoni Lift in Systems with Thermal or
Chemical Gradients

If the surface tension has a gradient along a fluid in-
terface, the fluid at the interface will be pulled from re-
gions with lower surface tension to regions with higher
surface tension [35]. This interfacial flow entrains the
bulk liquid and can lead to the migration of drops and
bubbles. Gradients in the surface tension could occur
due to thermal gradients or due to gradients in the con-
centration of surface-active solutes at the interface. Al-

though several techniques have been developed to move
fluids at the microscale by modulating the surface tension
[47], Marangoni effects have not been used experimen-
tally to manipulate the positioning of drops and bubbles
in Poiseuille flow. Hanna et al. [13] have recently in-
vestigated theoretically the motion of a spherical drop
in Poiseuille flow in the presence of surfactants, and re-
ported that the flow-induced redistribution of surfactants
causes the migration of drops to the centerline.

III. EXPERIMENTAL DESIGN

We focused our investigations on the measurement of
the distance, d, between the steady state transverse posi-
tion of drops and bubbles and the centerline of the chan-
nel (Figure 1a). The degree of centering of drops inside
the channel depended on the hydrodynamic parameters
of the system. These properties are the viscosities, den-
sities, and flow rates of both the carrier liquid and of
the dispersed phase, the surface tension, and the geom-
etry of the system (i.e. the size of the channel and of
drops). This large number of variables makes a thorough
experimental investigation difficult; we therefore chose
to investigate systematically only a subset of all param-
eters: the size of the drop, the viscosity of the carrier
fluid, and the velocity of the carrier fluid. Varying the
parameters in this subset had the most significant effect
on the position of drops and bubbles.

Changing the surface tension and the properties (vis-
cosity, density) of the drop or bubble can have an ef-
fect on their steady state transverse positions, but such
changes were difficult to control experimentally. Surface
tension can be varied by changing the fluid of the drop or
bubble but this change could also affect viscosity or den-
sity; moreover, using surfactants to tune the surface ten-
sion has the disadvantage of generating Marangoni forces
due to the redistribution of surfactant. Using multiple
channels with different cross-sections or drops of fluids
with different densities was cumbersome. We did not ex-
pect that varying the viscosity of drops a few-fold would
change the lift force significantly as long as the ratio of
the viscosities of the drops to the carrier fluid remained
small (< 0.1); the inertial [16] and deformation-induced
[11] lift forces were predicted to depend weakly on the
viscosity ratio if the ratio is smaller than 0.1.

The geometry of our system is typical for microfluidics
and differs from most analytical models used in the calcu-
lation of lift forces [11, 14, 42] in two aspects: the cross-
section of the channel was rectangular (the models were
derived for circular cross-sections), and the diameters of
drops and bubbles were not very small compared to the
height of the channel (0.35–0.6 H in our experiments).
Because of these differences, analytical models of inertial
[14] and deformation-induced [11, 42] lift cannot be ex-
pected to predict accurately the position of drops in our
system. We therefore ran numerical simulations of some
of our experiments to learn whether our confined geom-
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etry affects the hydrodynamic lift forces qualitatively or
quantitatively.

A. Setup for Experimental Measurements

The experimental setup, shown in Figure 2a, produced
drops and bubbles in immiscible carrier liquids and trans-
ported these drops along a horizontal rectangular chan-
nel; this setup allowed us to vary continuously and in-
dependently the size of drops or bubbles, the viscosity
of the carrier fluid, and the velocity of the carrier fluid.
To produce drops and bubbles, we used soft lithogra-
phy [48] to fabricate a microfluidic device composed of a
flow-focusing drop generator [49–52] connected to a main
straight channel with a rectangular cross-section (125-
µm wide, 200-µm high). The device also included a side
channel connected to the long channel downstream from,
and near to, the flow-focusing nozzle. The side channel
allowed us to pump additional carrier fluid to increase
the rate of flow in the main channel without interfering
with the production of drops.

We used a main channel which was higher than it was
wide because this geometry allowed us to produce spheri-
cal drops and bubbles with diameters as low as one quar-
ter of the height of the channel using a simple design
for the flow-focusing nozzle. The deviation d from the
centerline could then vary over a range of ∼ 50 µm de-
pending on experimental parameters, and we could mea-
sure d with satisfactory resolution and accuracy because
our imaging system had an optical resolution of ∼ 3 µm.
Along the width of the channel, the range of d was lim-
ited to at most 20 µm. In addition, we could not image
drops and bubbles along this direction with good quality
because the soft lithographic fabrication produced top
and bottom walls with rough surfaces.

During experiments we fed fluids into the device to
produce monodisperse drops or bubbles at a constant
frequency of generation using syringe pumps operated
in constant volumetric mode and a supply of gas at con-
stant pressure. These drops and bubbles were initially
located in the center of the channel, but then drifted to
a steady state position above the centerline (Figure 2b).
Drops and bubbles usually reached stable heights after
they traveled several millimeters down the channel. To
ensure that the vertical position of the drops and bub-
bles was stable, we investigated their position in a region
that was near the end of the channel (∼35 mm away from
the flow-focusing nozzle). We imaged the channel using
a microscope that was rotated such that its imaging axis
was horizontal, and we used high-speed cameras [53] to
record the positions of drops and bubbles.

a)

b)

g

Water drop Direction of !ow

1 mm

Imaging axis

 (horizontal)

g

Flow-focusing

nozzle

Side channel

200
µm

FIG. 2. (Color online) a) Experimental setup. A flow-focusing
microfluidic device fabricated in PDMS using soft lithogra-
phy was placed on a temperature-controlled plate and im-
aged along a horizontal axis to determine the steady state
vertical position of drops and bubbles. The device also had
a side channel that could be used to pump carrier liquid in
the main channel without affecting the generation of drops
and bubbles. b) The drops and bubbles were produced in
the center of the channel, but drifted to higher steady state
positions after traveling a few millimeters along the channel.
The picture was constructed from three partially overlapping
images taken at different times during the experiment. In this
experiment the lift forces were weaker than in the experiment
shown in Figure 1b and did not center the drops. The fluoro-
carbon carrier fluid had an average velocity of 9 mm/s and a
viscosity of 6 mPa s.

1. Independent and Continuous Variation of Experimental
Variables

We investigated the effect of a given experimental pa-
rameter (drop size, carrier viscosity, or carrier velocity)
on the position of drops and bubbles while we held the
other two constant. To change the size of the drops
and bubbles without affecting the velocity of the car-
rier, we changed the temperature of the flow-focusing
nozzle. This technique tunes the viscosity of the carrier
fluid at the nozzle and has the same effect on the gener-
ation of drops and bubbles as does changing the velocity
of the carrier at the nozzle [54]. We used a multi-zone
temperature-controlled plate [26] to set the temperatures
of the channel and of the nozzle separately. To change
the velocity of the carrier, we pumped additional carrier
fluid through the side channel; the additional fluid did
not influence the generation of drops, but we did have to
adjust the pressure of nitrogen gas to keep the diameter
of bubbles constant.

We varied the temperature of the channel to tune the
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viscosity of the carrier fluid. The viscosity the hydrocar-
bon and fluorocarbon liquids that we used varied between
10 mPa s and more than 200 mPa s over the temperature
range from 50 to -15 ◦C. Over this range of temperatures,
the other hydrodynamic properties (fluid densities, sur-
face tension, the size of the channel) changed by less than
10%. Using the variation of temperature to tune viscosity
simplified measurements and expedited the acquisition of
data since we did not have to change the carrier phase
for each measurement.

The temperature control system had a reproducibility
of 0.1 ◦C and an accuracy of 2 ◦C. The relative accuracy
of the values of the properties of the fluids was 0.1 for
viscosity, 0.01 for density, and 0.1 for surface tension.

2. Choice of Fluids

In the ice nucleation experiments that inspired this
work, and in the experiment shown in Figure 1b, we
used drops of liquid water in a carrier phase of perfluo-
romethyldecalin (PFMD, 98% purity, F2 Chemicals) that
contained 2% by volume 1H,1H,2H,2H-perfluorooctanol
(97% purity, Sigma-Aldrich) as a surfactant. For sys-
tematic investigations, however, we chose continuous and
dispersed phase fluids that did not contain surfactant to
avoid the possibility of surfactant-induced Marangoni ef-
fects [13]; in addition, we selected carrier phase fluids
that were compatible with PDMS [32], and whose vis-
cosity varied approximately ten-fold as the temperature
changed over a range of ∼50 ◦C near room tempera-
ture. Here we report data for (i) drops of liquid wa-

ter (ρ ≈ 1.0 g/cm
3
) in perfluoroperhydrophenanthrene,

(PFPHP, ρ ≈ 2.0 g/cm
3
, 87.5%, F2 Chemicals Ltd.) and

(ii) bubbles of nitrogen (ρ ≈ 0.001 g/cm
3
) in Dynalene

SF (DySF, ρ ≈ 0.9 g/cm
3
, Dynalene Inc.), a mixture

of alkylated aromatic hydrocarbons that was designed
for use in heat exchangers. We chose DySF over other
hydrocarbon liquids because its temperature-dependent
properties (density, viscosity, thermal conductivity) had
been published by the manufacturer. We also report a
few experiments performed at room temperature on bub-
bles of nitrogen in silicone oil (RT 500, ρ ≈ 1.0 g/cm

3
,

Cannon Instrument Company).

B. Numerical Modeling

1. Numerical Techniques and Software

For direct numerical simulations of the flow we used
TransAT (Transport Phenomena Analysis Tool, AS-
COMP GmbH [55]), a commercial multi-physics finite-
volume code based on the multi-fluid Navier-Stokes equa-
tions and capable of handling multiphase and microflu-
idic flows. This software allows to model the two-phase
flow with both the Level-Set Method (LSM) and the Vol-

ume of Fluid (VOF) interface tracking methods [56, 57];
phase field methods [58] have been recently implemented
in TransAT as well. The VOF method associates to every
element of the computational domain a function equal to
the volume fraction of one of the phases, while LSM as-
sociates to the two-phase system a continuous function
ψ which has positive values in one phase, negative in the
other, and is zero at the interface; ψ evolves temporally
during the simulation and the interface is located through
the condition ψ = 0. Phase field simulations use an aux-
iliary function that has fixed values for each phase and
varies sharply but continuously at interfaces; unlike LSM
and VOF, the phase field method treats surface tension
as being spread over a diffuse-interface instead of a sharp
interface.

We chose to use LSM over VOF because the accuracy
of simulations was better. Phase field simulations pa-
rameterize surface tension differently and could produce,
for our problem, more accurate results than LSM and
VOF because our interfaces are characterized by large
energies (i.e. near-spherical drops). However, phase field
simulations would require significantly denser grids and
thus more and longer computations than LSM. Compu-
tations were performed on an 8-core workstation with
Intel R© Xeon R© processors (E5630 CPUs, 2.53 GHz clock
rate) and 24 Gb of RAM.

2. The Geometry of the Model and its Discretization

To reduce the time needed for computation we per-
formed most of the simulations in a two-dimensional (2D)
geometry. We also performed two simulations using a
three-dimensional (3D) geometry for the conditions cor-
responding two experiments with drops of water in PF-
PHP. The steady state positions of drops were different
by only a few percent between the 2D and the 3D simu-
lations. See Appendix B, Figures 10-11, for plots of the
trajectories of drops in 2D and 3D cases. Our choice of
2D simulations is also supported by the results of Mor-
tazavi and Tryggvason [43], who simulated the flow of
neutrally buoyant drops using similar 2D and 3D geome-
tries and found that drops reached approximately the
same steady state positions in both cases.

We tested several geometrical domains that were dis-
cretized using grids with different densities to find the
conditions that would provide the convergence of nu-
merical calculation while allowing the fastest computa-
tions. See Appendix B, Figures 10-11, for numerically-
calculated drop trajectories for identical physical param-
eters but different grid densities. For drops that had a
radius equal to 0.2–0.3 H (a range that covers most of our
measurements), the optimal 2D domain was rectangular
and had a length that was twice the height of the chan-
nel along the direction of flow; we used periodic boundary
conditions along the boundaries that intersected the di-
rection of flow. The 2D domain was discretized using
a structured mesh with 54×96 points (height×length) or
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more, and was uniformly distributed or slightly stretched
in order to have a finer grid close to the walls.

3. Validity Tests for Numerical Simulations

In addition to verifying that our results did not depend
on the density of the grid and on the 2D/3D geometry, we
ran simulations for the same parameters of some of the re-
sults for neutrally buoyant drops and moderate Reynolds
number (ReP = 0.0625 to ReP = 12.5) presented in
Mortazavi and Tryygvason [43]. Comparison against
their results provided a good validation test because
(i) it involved the dynamics of drops that experienced
both inertial and deformation-induced lift forces and (ii)
Mortazavi and Tryggvason used a finite difference/front-
tracking method [59] that is distinct from LSM. Start-
ing with conditions used in Mortazavi and Tryggvason’s
Figure 6 (curves a, b, d) and Figure 8a, we calculated
trajectories that were very similar to their results. See
Appendix C, Figure 13, for a graph with our trajectories.

4. Selection of Conditions for Numerical Simulations

The numerical modeling for a given set of conditions
required significantly more time than performing exper-
imental measurements; therefore, we could not run as
many simulations as experiments. We selected for a given
channel and pair of fluids several experiments that could
illustrate the effect of varying only one of the experimen-
tal parameters (drop size, carrier viscosity, and carrier
velocity), and we simulated numerically the flow of drops
or bubbles under those conditions. The results of these
simulations are listed in Table I in Appendix A. In ad-
dition, we investigated the combined effects of inertial
and deformation-induced lift by varying ReP and CaP
independently of each other during the simulations.

IV. RESULTS

A. Experimental Results

1. Drops of Water in Liquid Fluorocarbon

Figure 3 shows the vertical steady state position of
drops of water as a function of their diameter, of the
viscosity of fluorocarbon, and of its average velocity. As
the fluorocarbon became more viscous, and as it flowed
at a higher rate, the drops of water traveled closer to the
center of the channel.

Larger drops traveled closer to the center of the chan-
nel when all other flow conditions were constant. We in-
vestigated quantitatively only drops or bubble that had
a smaller diameter than the smallest dimension of the
channel (its width w) to avoid deformation of drops by
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FIG. 3. Steady state vertical positions of drops of water in a
stream of PFPHP. a) The viscosity of PFPHP was tuned by
changing its temperature. At 51 ◦C the refractive indices of
water and PFPHP were almost matched and images of drops
had low optical contrast; we indicate the drop with a dashed-
line circle. b) Dependence of the steady state position on the
viscosity of the carrier fluid. c) Dependence of the steady
state position on the diameter of the drops. d) Dependence
of the steady state position on the velocity of the carrier fluid.

confinement against the side walls of the channel. Drops
that were squeezed by the walls along the width direction
traveled closer to the center than spherical drops.

Figure 3a illustrates our variable-temperature tech-
nique for the control of viscosity. We could increase the
viscosity of PFPHP by a factor of almost 20 by changing
its temperature from 50 to -20 ◦C; see EPAPS Document
No. [number will be inserted by publisher ], Figures S1–S3,
for the dependence of the relevant properties of PFPHP,
water, and DySF (viscosity, surface tension, and density)
on temperature. The variation of these properties with
temperature (with the exception of viscosity) was small;
however, the visibility of drops varied significantly be-
cause the refractive indexes of water and PHPHP are
nearly matched at room temperature. These changes in
the visibility of drops did not affect our measurements.

We could investigate channel temperatures below the
equilibrium freezing point of water because drops of pure
water can be supercooled significantly in microfluidic
channels [26]. Figure 3a shows drops of pure water that
that remained in liquid form at -3 ◦C and -17 ◦C.

2. Bubbles of Nitrogen in Liquid Hydrocarbon

Figure 4 shows how bubbles of nitrogen gas were po-
sitioned while flowing in a stream of DySF. The depen-
dency of position on experimental parameters was similar
to that of drops of water in PFPHP. The only exception
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FIG. 4. Steady state vertical positions of bubbles of nitrogen
in a stream of liquid hydrocarbon (DySF). Similar to the case
of liquid drops, larger bubbles were positioned closer to the
center of the channel (c), and bubbles of constant size could
be centered more tightly by increasing either the viscosity of
the continuous phase (b) or its rate of flow (d). We varied
the temperature of the channel from -1 ◦C to 25 ◦C to tune
the viscosity of Dynalene SF between 40 mPa s and 190 mPa
s. The images (a) show how bubbles can be focused near the
center by increasing the rate of flow.

was that the smallest bubble in Figure 4c did not follow
the general trend of the data. The range of accessible
bubble diameters was narrower than for liquid drops, be-
cause we could not produce, using our flow-focusing gen-
erator, bubbles as small as the smallest drops of water.

3. The Dependence of the Steady State Position on the
Product of Viscosity and Velocity

The dependences of the steady state position on the
viscosity and velocity of the carrier phase were similar
for both PFPHP (Figures 3b and 3d) and DySF (Figures
4b and 4d); this fact suggests that the relevant variable
in determining the steady state position was the prod-
uct of velocity and viscosity, µVavg. Figure 5 shows the
dependence of d on µVavg. For DySF we recorded the
dependence of d on viscosity and velocity using bubbles
of the same size, and the data sets for viscosity and ve-
locity variation overlap. The corresponding data sets for
PFPHP used drops of different diameters; these sets did
not overlap.

The dependence of d on the product of viscosity and
velocity suggests that d might be determined by the cap-
illary number CaP . The data in Figure 5, however, does
not collapse into a single curve when it is plotted against
CaP , indicating that the positioning mechanism is more
complex than that based on the deformation of the drops;
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FIG. 5. Dependence of the steady state vertical position of
drops and bubbles on the viscosity-velocity product. The po-
sition of drops and bubbles can be tuned to a given position
by changing either the viscosity or the velocity of the carrier
liquid to reach a certain value of the viscosity-velocity prod-
uct. DySF data from the viscosity scan (Figure 4b) and the
velocity scan (Figure 4d), which was recorded using bubbles
with the same diameter, overlaps when plotted against µVavg.
The viscosity scan (Figure 3b) and the velocity scan (Figure
3d) data for PFPHP was recorded using drops of different di-
ameters and also illustrate the variation of the steady state
position with the size of drops. For clarity, only a few error
bars are shown.

one possible complication is the contribution of inertial
lift forces, which are quantified by ReP .

4. Large Bubbles of Nitrogen in Silicone Oil

In channels with a height of 200 µm, and for the pairs
of fluids that we investigated, the deformation of drops
and bubbles due to shear was too small to observe. The
data shown in Figures 3 and 4 are characterized by much
lower capillary numbers than those tested in previous
experiments [12], for which the theory of deformation-
induced lift [11, 12] gives accurate predictions.

To bridge the gap between the conditions of our experi-
ments and those performed by Goldsmith and Mason [12]
we pumped an emulsion of nitrogen bubbles in silicone
oil (RT 500, Cannon Instrument Co.) in a large “milliflu-
idic” channel (2 mm high, 1.17 mm wide, and 110 mm
long) using the arrangement shown in Figure 2. The ge-
ometry of this large channel, built from laser-cut acrylic
sheets, was similar to that of the microfluidic channel
used in our other measurements. Due to the larger size
of the whole “millifluidic” device (75 × 150 × 7 mm), we
could not use the temperature-controlled plate; operation
at room temperature reduced the range of hydrodynamic
parameters that we could investigate in the large channel.

Figure 6 shows the steady state vertical position of ni-
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FIG. 6. Steady state vertical positions of nitrogen bubbles
flowing in a stream of silicone oil with a viscosity of 540 mPa·s.
The channel, 2000 µm high and 1170 µm wide, was at room
temperature. Bubbles with approximately the same radius R
traveled closer to the centerline of the channel if the capillary
number CaP was larger.

trogen bubbles (∼1 mm diameter) carried by a stream
of silicone oil for four different conditions. In the large
channel, bubbles deformed visibly, and the extent of de-
formation increased for larger capillary numbers. Bub-
bles of approximately the same size traveled closer to the
center of the channel if CaP was larger.

5. Other Combinations of Dispersed and Continuous
Phases

We surveyed other pairs of carrier and dispersed phases
was to identify flow conditions for which drops or bub-
bles would center tightly in the channel (as they are in the
pictures in the right side of figures 3a and 4a). We inves-
tigated the flow of drops and bubbles immersed in carrier
liquids other than PFPHP, DySF, and RT 500, and we
also tested channels with cross-sections half and twice as
large as the channel used to acquire the data shown Fig-
ures 1–4. We surveyed (i) bubbles of nitrogen in pure wa-
ter, (ii) bubbles of nitrogen in aqueous sucrose solutions
(40% and 50% sucrose by weight), (iii) bubbles of nitro-
gen in pure ethylene glycol, (iv) bubbles of nitrogen in liq-
uid fluorocarbons (PFPHP, perfluoromethyldecalin, per-

fluorodimethylcyclohexane, ρ ≈ 2 g/cm
3
, pure or mixed

with 1H,1H,2H,2H-perfluorooctanol), (v) drops of water
in the same fluorocarbon liquids, and (vi) drops concen-
trated aqueous cesium chloride solutions (9 mol/kg mo-

lality, ρ = 1.8 g/cm
3
) in DySF (we used cesium chloride

solutions instead of pure water to have a difference in
density between the hydrocarbon carrier and the aque-
ous drop on the order of 1 g/cm

3
). The difference in the

densities of drops/bubbles and the carrier phase varied

between 0.9 and 2 g/cm
3
.

The only cases in which we could not center buoyant

drops and bubbles were when we used water or perfluo-
rodimethylcyclohexane as the carrier phase. These two
liquids had the smallest viscosities among the liquids we
surveyed, approximately 1 mPa s and 2 mPa s, respec-
tively, near room temperature. As we increased the rate
of flow of water and perfluorodimethylcyclohexane, we
reached conditions for which ReC > 10 and drops and
bubbles moved away from the centerline, indicating that
inertial lift forces determined their positions. The results
of this survey indicate that for a given channel geometry,
the viscosity of the carrier must be larger than a certain
value to achieve the centering of buoyant drops and bub-
bles; if the viscosity is lower, inertial lift forces dominate
the dynamics of drops and bubbles and prevent their cen-
tering. For our 200-µm high channel, this critical value
was approximately 20 mPa s; at this viscosity, ReC ∼ 10
for an average carrier velocity of 100 mm/s.

B. Numerical Simulations

Existing analytical formulas of various lift mecha-
nisms do not apply directly to our system. The ma-
jor differences from analytical models of inertial [14] and
deformation-induced [11] lift are (i) the presence of an ex-
ternal force (the buoyancy) acting perpendicular to the
direction of flow, (ii) the relatively large size of our drops
(previously reported analytical formulas apply rigorously
in the limit r/H � 1), (iii) the rectangular geometry of
our channels, and (iv) the fact that several lift mecha-
nisms could contribute simultaneously to the total lift
force. Our numerical simulations used the same under-
lying assumptions about the fluid dynamics as did the
analytical models (i.e. an isothermal system with ho-
mogenous fluid properties), and allowed us to investigate
how rectangular geometry, confinement, and buoyancy
affect the positioning of drops and bubbles.

1. The Dependence of Positioning of Fluid Particles on
Their Deformation

The centering of drops and bubbles that we observed
in experiments indicates that deformation-induced lift is
a plausible mechanism for the force that balances buoy-
ancy because drops and bubbles became more centered
as the viscosity of the carrier fluid increased. Although,
in most of our experiments, we were not able to observe
any deformation of drops or bubbles, it is possible that
drops and bubbles were nonetheless deformed, and that
the deformation was too small to observe. The minimum
observable change of drops and bubbles from a circular
shape was limited by our imaging resolution to ∼2%. Ac-
cording to the theory of the deformation-induced lift, the
lift force is proportional to the deformation; it is there-
fore possible that in the absence of other lift mechanisms
(e.g. inertial), weakly deformed drops would still mi-
grate across streamlines because of their deformation.
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Such small deformations could be investigated in numer-
ical simulations, and one of our goals was to investigate
numerically the effect of small deformations on the posi-
tioning of drops.

Figure 7a shows the effects of deformation (quantified
by the particle capillary number CaP ) and of buoyancy
on the positioning of drops. We performed three sets
of simulations at different capillary numbers (CaP =
0.001, 0.03, 0.3), and within each set we simulated one
buoyant and one neutrally buoyant drop. We kept the
particle Reynolds number constant at ReP = 0.011 in all
simulations. For the simulation of a buoyant drop with
CaP = 0.001 and ReP = 0.011 we used the same geo-
metric and hydrodynamic parameters as in experiment 7
in Table I, Appendix A.

The drops reached different steady state heights af-
ter being released from a common position, which is the
same response that we observed in our experiments (Fig-
ure 2b). The steady state height was reached after the
drops traveled a distance along the channel equal to at
most 10–20 times the height of the channel. Buoyant
drops traveled closer to the top wall than neutrally buoy-
ant drops did. Drops characterized by a larger capillary
number (e.g. having a lower surface tension) were more
deformable and traveled closer to the center of the chan-
nel. None of the neutrally buoyant drops migrated ex-
actly to the center of the channel; this observation sug-
gests that deformation-induced lift (which centers drops
and bubbles) and inertial lift (which pushes them away
from the center) had the same order of magnitude.

2. The Dependence of Positioning on the Particle Reynolds
Number

Figure 7b shows the drift of drops towards their stead-
state position, for several values of ReP . These drops
were not buoyant, had the same diameter, and the same
capillary number. Since inertial lift becomes stronger
as ReP increases, we expected that the inertial lift would
dominate the deformation-induced lift and that for larger
values of ReP neutrally buoyant drops would settle be-
tween the centerline and the walls. The drops never-
theless migrated to the center of the channel for all but
one of values of ReP we tested; counter-intuitively, the
only one case in which drops did not center was the one
with the smallest ReP . For very small ReP (i.e. very
slow flows), the periodic boundary conditions imposed at
the inlet and outlet of our computational domain led to
small transverse oscillations of the drops, such as those
visible in the trajectory for ReP = 0.011. Though the
transverse oscillations did not change the overall shape
of the trajectory, they are illustrating nevertheless the
difficulty of simulating flows characterized by very small
ReP . For the simulation at ReP = 0.011 the lack of reso-
lution around the center line of the channel (the spacing
of the grid was equal to 0.025 H) produced small oscil-
lations of the shape of the drop; these oscillations might
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FIG. 7. Numerical simulations of the flow of liquid drops.
For all simulations the ratio between the droplet radius and
the channel height was 0.23, and the drop/carrier viscosity
ratio was 0.06. The drop/carrier density ratio was 0.5 for
buoyant drops and 1 for non-buoyant drops. a) Dependence of
positioning on the capillary number CaP and on the buoyancy
for ReP = 0.011. Within each pair of curves for a given
capillary number, the upper curve corresponds to a buoyant
drop, and the bottom curve to a neutrally buoyant drop. b)
Dependence of positioning on ReP , for CaP = 0.3.

have prevented the drop from reaching the center.

The slope of the curves in Figure 7b is proportional to
the transverse velocity of drops, and the transverse ve-
locity is proportional to the strength of the lift. These
slopes thus provide information about the strength of the
lift forces acting on drops. As ReP increased among the
simulations represented in Figure 7b, the transverse drift
velocity decreased, at least in the first part of the tra-
jectory. This dependence is consistent with an enhance-
ment in the inertial lift force relative to the deformation-
induced lift force. Mortazavi and Tryggvason observed
the same dependence on the Reynolds number in their
simulations [43].
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3. Comparison between Measurements and Simulations

We modeled the flow of drops and bubbles for several
conditions corresponding to the data in Figures 3–5. Fig-
ure 8 summarizes the comparisons between experimental
and numerical results. For a given set of fluids and chan-
nel geometry, numerical simulations overestimated the
distance between the steady-state positions of drops and
bubbles and the centerline. Except for the case of ex-
periments in which drops or bubbles were approximately
centered (d/H < 0.05), the simulations predicted the po-
sition of drops within a factor of two of the experimental
results. See Appendix A, Table I, for the parameters and
the results of these simulations, and for the correspond-
ing numerically-calculated trajectories (Figures 14–17).
Numerical simulations agreed with the experimental ob-
servation that drops and bubbles traveled closer to the
center as the diameter of the drops, the velocity of the
carrier, and the viscosity of the carrier increased.

The simulations predicted best the behavior of large
bubbles of nitrogen in silicone oil. These experiments
were characterized by the largest capillary numbers
among all systems that we investigated, and thus were
the least prone to numerical errors. The simulations for
bubbles in DySF (Table I, experiments 9–12) and a few
among the simulations for droplets of water in PFPHP
(Table I, experiment 4), which were characterized by very
small CaP and ReP , were affected by significant parasitic
currents (numerically generated vortices near interfaces
[56]) whose amplitude became in same cases comparable
to the magnitude of the flow internal to the drop.

4. Analytical Predictions of the Steady-State Position of
Drops

We calculated the steady-state position of drops by
requiring that the sum of buoyant, deformation-induced
lift (Eq. 9), and inertial lift (Eq. 4) forces equals zero.
We digitized and then fitted with a third-order polyno-
mial the inertial lift force for Re = 30 in Figure 14 from
Matas et al. [40] to determine the value of the function
g1(d/H) (Eq. 6).

The analytical approach gave good predictions in the
case of the 2-mm high channel. Formulas fared signifi-
cantly worse than simulations in predicting our measure-
ments in the 200-µm channel, and failed to predict the
placement of drops and bubbles away from walls due to
the flowing carrier fluid. Several of the steady-state posi-
tions calculated analytically, including all those for which
d/H > 0.5, lie outside the channel; physically they cor-
respond to drops and bubbles that flow in contact with
the walls of the channel. Although steady-state posi-
tions with d/H > 0.5 are unphysical, we plotted them
to underline that confinement and wall effects played an
important role in determining the equilibrium position of
droplets.

Figure 9 shows the velocity fields obtained from numer-
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FIG. 8. Comparison between experiments, numerical simula-
tions and theory predictions. Simulations predicted steady-
state positions, relative to the center of the channel, that
were further away from the center than observed in experi-
ments, but the agreement with experimental measurements
was significantly better than for predictions based on asymp-
totic theories. The dashed line indicates the locus of perfect
agreement with measurements.

ical simulations and microscope images for four different
experiments with drops and bubbles that were at, or close
to, their transverse equilibrium position. The streamlines
represent the flow field as seen in a reference frame mov-
ing with the center of mass of the drop/bubble. Figures
9a-b show the equilibrium configurations for buoyant and
non-buoyant drops of water in PFPHP (experiments 7–8
in Table I, Appendix A). To investigate experimentally
the case of a neutrally buoyant drop, we rotated the chan-
nel and the imaging system such that the imaging axis
was vertical; in this experimental geometry, there is no
component of the buoyant force in the plane of the image.
Figures 9c and 9d show the equilibrium configuration for
a bubble of nitrogen in Dynalene SF (experiment 11 in
Table I) and for a bubble of nitrogen in RT 500 (exper-
iment 14 in Table I). The simulations shown in Figure
9 modeled qualitatively well the shape of the drops, but
the agreement between the numeric and the experimental
transverse steady state positions was not perfect.

V. DISCUSSION

The hydrodynamic lift on transversally buoyant (i.e.
gravitational acceleration perpendicular to the direction
of flow) drops and bubbles has been relatively unexplored
compared to the neutrally buoyant and longitudinally
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FIG. 9. Comparison between experiments and numerical sim-
ulations. The streamlines shown for simulations correspond
to the flow of fluids in the reference frame of the moving drop
or bubble. a) Drops of water in a continuous phase of PFPHP.
b) Neutrally buoyant drops of water in PFPHP. In the sim-
ulation the gravitational acceleration was set to zero; in the
experiment the gravitational acceleration was perpendicular
to the plane of the image and therefore there was no buoyant
force in the plane of the image. c) Bubbles of nitrogen in Dy-
nalene SF. d) Bubbles of nitrogen in silicone oil, in a larger
channel.

buoyant cases, although it is broadly relevant to the posi-
tioning of bubbles and drops in microfluidic flows. Most
prior investigations of inertial lift on buoyant particles in-
volved buoyant forces aligned with the direction of flow
[38, 60], rather than perpendicular to this direction (as
in our experiments). Hogg investigated theoretically the
inertial forces acting on settling particles in horizontal
flow [61], and found that inertial forces are in general
weak compared to buoyant forces. With the exception of

studies on bubbles rising near walls in a stagnant fluid
[16, 18, 24] and in vertical shear flow [25], experimental,
analytical, and computational studies of deformation-
induced lift [11, 12, 43] have investigated only the case
of neutrally buoyant drops.

A. Positioning of Drops as an Outcome of the
Competition between Mechanisms of Hydrodynamic

Lift

Theoretical investigations of inertial and deformation-
induced lift have treated these phenomena separately,
addressing the regimes in which either ReP or CaP was
separately dominant, and the other negligible. Numerical
simulations by Mortazavi and Tryggvason [43] of the mo-
tion of neutrally buoyant deformable drops for ReC > 1
have shown that the steady state position of drops de-
pends on the relative strength of deformation and inertial
effects; very deformable drops migrate to the centerline,
while drops that had a near-spherical shape stabilize at
intermediate positions between the center and the pe-
riphery of the channel. They have also investigated the
movement of large drops with diameters larger than half
of the height of the channel, and found that large drops
became centered even when the Reynolds numbers were
large. Our numerical simulations agree with Mortazavi
and Tryggvasons results, and indicate that the position
of drops and bubbles is determined by the combined con-
tributions of buoyancy and lift forces.

1. Expected Steady State Positions of Drops and Bubbles

Assuming that the only lift mechanisms are inertial
and deformation-induced, and that these mechanisms
are not coupled, the total lift force can be calculated
as the sum of inertial (Eq. 4) and deformation-induced
(Eq. 9) lift forces. This total lift force depends non-
monotonically on the distance from the center of the
channel and vanishes at the steady state position, d, of
neutrally buoyant drops and bubbles. The possible val-
ues of d range from zero (if the deformation-induced lift is
stronger than the inertial lift near the center of the chan-
nel) to the inertial focusing position (if the deformation-
induced lift is negligible compared to the inertial lift).
For large drops and bubbles this description of the total
lift force is likely to be complicated by the deformation of
drops and bubbles near walls [16, 18, 25]. Deformation-
induced wall effects should generate a centering lift force
which, when added to the total lift force, will bring the
steady-state position closer to the center of the channel.

At the steady-state position of buoyant drops and bub-
bles, the sum of all lift forces and of the buoyant force
vanishes. Since the buoyant force is directed away from
the center of the channel, the steady-state position of
buoyant drops and bubbles should be further away from
the center than in the non-buoyant case. To avoid con-
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tact with the top wall, drops and bubbles must experi-
ence a total lift force that is not smaller than the buoy-
ant force. Our experiments and simulations show that
buoyant drops can be supported by lift forces, and that
buoyancy makes them travel at a further distance from
the center than non-buoyant drops.

2. Explanation of the Dependency of Positioning on
Experimental Parameters

Experimental dependencies on drop size, carrier vis-
cosity, and carrier velocity can all be explained qualita-
tively assuming that the forces acting on drops and bub-
bles are the inertial and deformation-induced lift, and
buoyancy. (i) Size of drops or bubbles. The inertial (Eq.
4) and deformation-induced (Eq. 9) lift forces are pro-
portional to r4, while buoyant forces are proportional to
r3; therefore as the size of drops and bubbles increase,
the hydrodynamic lift becomes stronger relative to buoy-
ancy, and drops and bubbles are centered more tightly
as long as the deformation-induced lift dominates iner-
tial lift (which was the case of our measurements). (ii)
Viscosity of the carrier fluid. The deformation-induced
lift force is proportional to with µ2

c , while the inertial lift
force and the buoyant force do not depend on the viscos-
ity of the carrier[62]. If the viscosity increases, fluid par-
ticles move closer to the center because the deformation-
induced force increases while the inertial lift and the
buoyancy remain constant. (iii) Velocity of the carrier
fluid. Both lift forces are proportional to V 2

avg, therefore

the total lift force is proportional to with V 2
avg as well;

because the total lift force becomes stronger relative to
the buoyant force, the steady state position of drops and
bubbles moves closer to the center.

B. The Possibility of Other Lift Mechanisms in
Our Experiments

The combined effects of buoyancy, deformation-
induced lift, and inertial lift explain qualitatively our ex-
perimental and numerical results. The large quantitative
differences between analytical predictions and measure-
ments (Figure 8) can be explained by the large size of
drops and bubbles [16, 43], and possibly by a coupling
between inertial and deformation-induced lift when they
have contributions of similar magnitudes [16].

Our numerical simulations predicted a smaller degree
of centering than that observed in experiments. We be-
lieve that our numerical simulations did account for the
finite size of drops and bubbles, for their proximity to
the walls of the channel, and for the coupling of inertial
effects and deformation. This consistent discrepancy be-
tween simulations and experiments might be explained
by the presence of other lift mechanisms; we there-
fore investigated whether other lift phenomena could be
present.

1. Variations in the Size of the Channel, Viscoelastic
Effects, and Hydrodynamic Interactions with other Drops or

Bubbles

We have chosen our fluids and experimental conditions
to minimize possible positioning effects due to geometric
variations in the cross-section of the channel, and due
to viscoelastic effects. These local geometric variations
could be an artifact of the soft lithographic fabrication,
or be caused by the deformation of the channel under
the pressure of the carrier liquid. For the channel that
we used to record the data presented in Figures 3–5, the
total height variation along the channel was ∼0.01 of
the height of the channel. Such a small variation could
not have caused the migration of drops and bubbles; we
made measurements in a channel with the same geome-
try but with smaller variations in height and we observed
the same positioning of drops and bubbles. The larger
channel used for experiments with bubbles in silicone oil
had uniform height, being fabricated from flat sheets of
acrylic glass.

Hydrostatic pressure could deform a channel made in a
soft material (such as PDMS) and thus create trenches;
such trenches can guide drops and bubbles [63]. The
microfluidic devices that we used, though molded from
soft PDMS, had glass side walls which were practically
rigid. One of these hard walls was the glass slide to which
we bonded the PDMS slab. The slab contained another
glass slide, embedded in PDMS during the molding of
the device.

We verified using a rheometer [64] that the carrier flu-
ids which we used were not viscoelastic at shear rates
from 0 to 3000 s−1 (a range of shear rates that covers all
our experiments).

The typical separation between consecutive drops and
bubbles in most experiments was on the order of ten
times the diameter of drops or bubbles. In experiments
with bubbles of nitrogen in DySF, we verified that the
transverse position of bubbles did not depend on their
density; the shortest distance between bubbles that we
investigated was approximately equal to one bubble di-
ameter. We have also simulated numerically the flow of
nitrogen bubbles in RT 500 for different densities of bub-
bles, and we did not observe any changes in the steady-
state transverse position of bubbles. Based on this insen-
sitivity of the transverse position to the distance between
bubbles, we concluded that drop-drop or bubble-bubble
interactions did not play a significant role in the trans-
verse positioning of drops and bubbles.

2. Marangoni Effects

Drops and bubbles are hydrodynamically different
from solid particles because (i) they are deformable, (ii)
they are made from a fluid material, and (iii) they have
fluid interfaces. Our simulations, which took into ac-
count deformability and the flow inside drops, showed
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that these characteristics of drops alone might not ac-
count for the full strength of the lift force that we ob-
served experimentally. It is possible that the dynamics
of the fluid-fluid interface played a significant role in the
generation of lift forces, through a Marangoni effect.

a. Thermal Marangoni Effects. Gradients of tem-
perature in the carrier fluid cause gradients in the sur-
face tension along the interface of drops and bubbles and
could lead to their migration. In many experiments, the
temperatures of the nozzle and of the channel were differ-
ent; the temperature of the fluids varied along the chan-
nel, and most of the variation in temperatures occurred
near the nozzle. This longitudinal temperature gradient
generated a transverse gradient of temperatures in the
cross-section of the channel because of the finite ther-
mal diffusivity of the carrier fluid [26]. To minimize the
transverse thermal gradients, we investigated the posi-
tion of drops as far as possible (∼35 mm) from the noz-
zle. Using a model for thermal transfer in the carrier
fluid that we described previously [26], we determined
that the maximum transverse temperature gradients at
the location where we investigated the transverse posi-
tions of drops and bubbles were ∼0.5 ◦C/mm in PF-
PHP and ∼0.05 ◦C/mm in DySF. These gradients were
much smaller than the temperature gradients that pro-
duce thermal Marangoni forces which are comparable to
the buoyant forces acting on drops and bubbles [19] (on
the order of 10–100 ◦C/mm for the fluids and sizes of
drops that we investigated). Since thermal Marangoni
forces are proportional to the gradient in temperature,
we inferred that thermal Marangoni forces had a negli-
gible contribution to the steady-state position of drops
and bubbles.

b. Chemical Marangoni Effects. We use here the
term chemical Marangoni effects to refer to the move-
ment of a fluid interface in an isothermal system due to
variations in the surface tension; these variations can oc-
cur due to inhomogeneities in the chemical properties of
the interface, such as the composition of a carrier liquid
that is not chemically pure. Lift forces caused by chem-
ical Marangoni effects can act on bubbles immersed in
a shear flow when the carrier fluid contains surfactants
[13, 65]; in this case, the shear causes an inhomogeneous
distribution of surfactant along the interface.

We did not use any surfactants for data shown in
Figures 3–6 to reduce the magnitude of possible chem-
ical Marangoni lifts. We cannot exclude the possibility
that chemical Marangoni lift forces acted on our drops
and bubbles, however, because the carrier liquids that
we used were not pure chemical compounds. PFPHP
was only 87.5% pure (the remainder being perfluorinated
molecules with structures similar to PFPHP), DySF is
a trademarked mixture of alkylated aromatic hydrocar-
bon molecules, and RT 500 silicone oil is composed of a
mixture of molecules (mostly polydimethylsiloxane) that
have a range of molecular weights. It is therefore possible
that under shear flow the interfaces of drops and bubbles
with PFPHP, DySF, and RT 500 are inhomogeneous.

Shear-induced inhomogeneities might be nevertheless
small because the pure components of a carrier fluid were
likely to have similar properties (chemical structure, boil-
ing points, and surface tensions). We did not expect PF-
PHP and DySF to contain significant amounts of surface-
active molecules because the values of surface tension (at
room temperature, ∼50 mN/m for the interface of water
with PFPHP, and ∼30 mN/m for the interface of be-
tween nitrogen and DySF) were similar to those of pure
hydrocarbon [66] and pure fluorocarbon [67] liquids.

C. Guidelines for the Control of Transverse
Position of Buoyant Drops and Bubbles in

Microfluidic Channels

The balancing of buoyant and lift forces provides a
method for controlling the steady state height at which
drops and bubbles flow in a horizontal microfluidic chan-
nel. The highest degree of control possible by this
method involves flowing drops and bubbles anywhere be-
tween either the top or the bottom walls (depending on
the sign of the buoyant force) and the center of a channel.
We found that the carrier fluid must have a viscosity of
at least 20 mPa·s to center drops or bubbles in a channel
with cross-sectional dimensions on the order of 100 µm.
Based on experiments with a channel with a cross-section
of approximately 1 mm, we inferred that the threshold
of viscosity is a function of the size of the channel: larger
channels will have a larger threshold.

If the viscosity of the carrier is large enough to allow
centering of drops and bubbles, it is possible to control
the height of their trajectories as well. Starting from
centering conditions, a reduction in the rate of flow or in
the viscosity of the continuous phase will change pre-
dictably and monotonously the position of drops and
bubbles; bubbles and drops lighter than the carrier will
travel higher than the centerline, and heavy drops will
travel below the centerline.

VI. CONCLUSION

We have investigated the movement of buoyant drops
and bubbles flowing in a liquid carrier phase in horizon-
tal microfluidic channels. Despite their buoyancy (the

densities of drops and bubbles were ∼ 1 g/cm
3

smaller
than that of the carrier phase), drops and bubbles flowed
without touching the top wall of the channels because hy-
drodynamic lift forces balanced their buoyant force. The
vertical position of drops and bubbles depended mainly
on the size and buoyancy of drops and bubbles, and on
the viscosity and velocity of the carrier liquid. In car-
rier fluids with viscosities larger than 20 mPa s, we could
always make drops and bubbles travel within several mi-
crometers of the centerline of a 200-µm channel by in-
creasing the rate of flow of the carrier fluid up to average
carrier velocities of 100 mm/s.
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The positioning of buoyant deformable particles in hor-
izontal Poiseuille flow is a relatively unexplored problem.
We hypothesized that the behavior of such a system is
determined by the sum of the buoyant force and all lift
forces acting in the system; this hypothesis thus ignores
the possibility of a strong nonlinear coupling between
lift mechanisms and buoyancy. Our experiments and nu-
merical simulations were designed to separate the effects
of inertial and deformation-induced lift, and our results
show that the positioning of buoyant drops and bubbles
can be understood qualitatively as an outcome of the
competition between buoyancy and lift mechanisms.

We found that analytical theories of deformation-
induced lift [11] and inertial lift [14, 40] do not provide a
satisfactory quantitative prediction of lift forces. These
formulas apply to drops and bubbles much smaller than
the cross-section of the channel. We infer from this dis-
agreement that in microfluidic channels the lift forces act-
ing on large bubbles and drops are significantly enhanced
by proximity to the walls of the channel. New analyti-
cal theories of hydrodynamic lift in microchannels must
therefore take into account confinement effects [37] such
as the proximity of walls.

The numerical simulations predicted that drops and
bubbles would be somewhat less centered than we ob-
served experimentally. The discrepancy between numer-
ical simulations and experimental results suggests that
an additional type of hydrodynamic lift force (not iner-
tial and not deformation-based) might contribute to the
centering of drops and bubbles.

Out of all lift mechanisms that we found in the liter-
ature, and of the ones that we could imagine, the only
one that could act during our experiments is a chemi-
cal Marangoni effect. It is possible that shear-induced
inhomogeneities in the carrier fluid near the surface of
drops and bubbles generate interfacial flows that produce
lift forces. We could not evaluate the magnitude of this
mechanism; such an effect is likely to be weaker than the
Marangoni lift in carrier fluids that contain surfactants.

In our experiments, the viscosity of drops and bubbles
was typically lower than one tenth of that of the carrier
fluid, but it is possible that our conclusions are applicable
to more viscous drops. Recently, Hur et al. [68] reported
that neutrally buoyant, near-spherical drops of oil ∼1000
times more viscous than the carrier traveled closer to the
center of the channel than solid particles. Their viscous
drops had spherical shapes, therefore the deformation
of their drops could not generate significant lift forces;
these spherical viscous drops experienced nevertheless a
stronger centering lift force than solid particles of same
size. Further experimental and theoretical investigations
are needed to understand the lift mechanisms acting on
spherical drop and bubbles in microfluidic channels, and
to predict accurately their magnitude.

Our measurements show that buoyant drops and bub-
bles can be reproducibly positioned and centered in mi-
crofluidic channels without using sheath fluids. The phe-
nomenon that enables such positioning is the presence of

centering hydrodynamic lift force mechanisms that act
on fluid particles (drops and bubbles). Sheathless posi-
tioning of drops and bubbles using buoyancy and hydro-
dynamic lift forces is a simple and reliable method that
could become a useful tool for microfluidic analytical ap-
plications.
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Appendix A: Experimental Results, Numerical
Simulations, and Analytical Calculations

Table I lists the conditions of the experiments that we
selected for comparison with simulations, and includes
experimental results along with numerical and analytical
predictions. We selected from the experiments on drops
of water in PFPHP pairs that illustrated the effect of
varying one hydrodynamic parameter while the others
were constant. Experiments 1 and 2 vary the size of the
drop; 3 and 4, the viscosity of PFPHP; 5 and 6, the
velocity of PFPHP; and 7 and 8 are distinguished by the
presence or absence, respectively, of a buoyant force.

Simulations of nitrogen bubbles in DySF (experiments
9–12) required the most intensive computations and we
could not simulate pairs of experiments the same way
as we did in PFPHP. The four experiments we selected
for simulations were characterized by some of the largest
ReP and CaP among experiments with bubbles in DySF;
we estimated that for experiments with smaller ReP and
CaP the calculation of bubble trajectories would require
more than a month of computation time on a single-core
workstation.

Simulations of nitrogen bubbles in RT 500 were the
fastest because the CaP values were largest among all
pairs of fluids that we investigated. We were limited in
our choice of experiments, however, because the param-
eters of these experiments could not be controlled inde-
pendently, and because the number of experiments we
could perform was small. These experiments were time-
consuming because they required large rates of flow of
RT 500; we could only make a few measurements before
needing to reload with RT 500 the syringes that fed the
“millifluidic” device.
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TABLE I. List of experiments for which we performed numerical simulations and analytical predictions.

Exp. Fluids Viscosity ratio Channel size Drop size ReC ReP CaP Measured Simulated Analytic
# (drop/carrier) (µin/µout) (H × w) (r/H) d/H d/H d/H
1 Water/PFPHP 4.8e-02 200×125 µm 0.29 1.6e-01 1.3e-02 2.1e-03 0.09 0.19 0.49
2 Water/PFPHP 4.8e-02 200×125 µm 0.18 1.6e-01 5.4e-03 1.4e-03 0.21 0.21 0.53
3 Water/PFPHP 7.3e-02 200×125 µm 0.19 6.0e-01 2.3e-02 6.1e-04 0.25 0.28 0.49
4 Water/PFPHP 2.9e-02 200×125 µm 0.19 3.7e-2 1.4e-03 9.8e-03 0.04 0.11 0.16
5 Water/PFPHP 4.8e-02 200×125 µm 0.23 1.1e-01 5.6e-03 1.1e-03 0.18 0.23 0.60
6 Water/PFPHP 4.8e-02 200×125 µm 0.23 5.1e-01 2.7e-02 5.4e-03 0.04 0.18 0.36
7 Water/PFPHP 5.5e-02 200×125 µm 0.23 2.1e-01 1.1e-02 1.1e-03 0.16 0.26 0.53
8a Water/PFPHP 5.5e-02 200×125 µm 0.23 2.1e-01 1.1e-02 1.1e-03 0 0.10 0
9 Nitrogen/DySF 3.3e-04 200×125 µm 0.23 7.4e-03 3.8e-04 1.8e-03 0.22 0.23 1.05
10 Nitrogen/DySF 3.3e-04 200×125 µm 0.30 7.4e-03 6.8e-04 2.4e-03 0.13 0.17 0.97
11 Nitrogen/DySF 3.3e-04 200×125 µm 0.25 2.2e-02 1.4e-03 6.1e-03 0.02 0.17 0.52
12 Nitrogen/DySF 3.3e-04 200×125 µm 0.25 1.3e-02 8.3e-04 3.5e-03 0.08 0.18 0.75
13 Nitrogen/RT500 3.3e-05 2.0×1.17 mm 0.18 7.0e-02 2.0e-03 1.5e-01 0.09 0.14 0.12
14 Nitrogen/RT500 3.3e-05 2.0×1.17 mm 0.24 3.7e-02 1.8e-03 1.1e-01 0.13 0.16 0.33
15 Nitrogen/RT500 3.3e-05 2.0×1.17 mm 0.20 9.5e-02 3.2e-03 2.2e-01 0.04 0.11 0.06
16 Nitrogen/RT500 3.3e-05 2.0×1.17 mm 0.22 1.2e-01 5.3e-03 3.3e-01 0.02 0.06 0.03

a This drop was not buoyant

Appendix B: Validity Tests for Numerical
Simulations

1. Dimensionality and Density of the Numerical
Grid

In principle, the most accurate numerical simulations
of our experiments should be three-dimensional and be
performed on a computational grid that is as dense as
possible so as to capture variations in velocity and shape.
We therefore attempted to identify a setup for numerical
simulations that would provide the results we presented
here within days or weeks.

The most radical simplification in our simulations was
the use of a 2D computational domain to simulate a 3D
problem. We justified this choice empirically by compar-
ing trajectories calculated on 2D and 3D domains (Fig-
ures 10–11). For 2D and 3D simulations of experiments
7 and 8, the difference in the steady state positions was
at most a few percent of the height of the channel. Mor-
tazavi and Tryggvason [43] reported a similar degree of
agreement between 2D and 3D simulations of two-phase
flow, for larger ReP and CaP than those characteristic
of our experiments.

Figures 10 and 11 also illustrate the effect of using grids
with different densities and aspect ratios (here we define
the aspect ratio as the ratio of the length of the simu-
lated section of the channel to its height). The differences
in the steady state positions between simulations calcu-
lated using different grids had the same magnitude as the
differences between 2D and 3D simulations. Another ex-
ample of simulations performed on different grid sizes is
shown in Figures 12 and 13 (these simulations used the
hydrodynamic conditions of experiments 13–16). Due to
the long duration of numerical simulations, we could not
perform a systematic search for the optimal grid size and
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FIG. 10. The influence of grid density, aspect ratio, and di-
mensionality of the computational domain on the results of
numerical simulations. The data represents the trajectory of
drops for conditions identical to those of experiment 7 from
Table I. y is the vertical position of drops, H the height of the
channel, Vavg the average velocity of the carrier fluid, and t
the time elapsed from the launch of drops. In the experiment,
the drops stabilized at y/H = 0.66.

geometry. Instead, we tested a few different types of grids
and we found that using these grids in our simulations
provided consistent steady state transverse positions.

The aspect ratio of our computational domain deter-
mines the distance between consecutive drops or bubbles.
This distance was equal to the length of the computa-
tional domain and in most cases it was smaller than the
experimental values. Figures 10, 12, and 13 show that
when the distance between drops or bubbles varied from
one and two times the height of the channel, the steady-
state transverse of drops or bubbles did not change sig-
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FIG. 11. The influence of grid density, aspect ratio, and di-
mensionality of the computational domain on the results of
numerical simulations. The data represents the trajectory of
drops for conditions identical to those of experiment 8 from
Table I, and the numerical parameters are the same as those
used in Figure 10. In the experiment, the drops stabilized at
y/H = 0.50.
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FIG. 12. Numerically calculated trajectories of bubbles for
the conditions of experiments 13 and 14 from Table I. The
numerical parameters are the same as those used in Figure
10. In experiments, bubbles stabilized at y/H = 0.59 for
experiment 13 and y/H = 0.63 for experiment 14.

nificantly.

Figure 14 shows the flow field calculated in a 3D do-
main for experiment 7; the 2D simulation is shown in
Figure 9a of the main text. In Figure 14, we show the
flow field in orthogonal planes that intersect in the center
of the drop. The color-scale images (vertical and trans-
verse to the flow) show the velocity of the carrier fluid
in the reference frame of the channel, normalized to the
average velocity of the carrier. The streamline plots (ver-
tical and horizontal) represent the flow of the carrier in
the reference frame of the moving drop.
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FIG. 13. Numerically calculated trajectories of bubbles for
the conditions of experiments 15 and 16 from Table I. The
numerical parameters are the same as those used in Figure
10. In experiments, bubbles stabilized at y/H = 0.54 for
experiment 15 and y/H = 0.52 for experiment 16.
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FIG. 14. Flow field of the carrier liquid in a 3D simulation of
experiment 7 from Table I. This simulation used a grid with
32×48×24 points and an aspect ratio of 2.

2. Comparison with a Finite
Difference/Front-Tracking Method

Figure 15a-b shows our LSM-based simulation of drop
flow for some of the conditions in which Mortazavi and
Tryggvason [43] performed their simulations using a fi-
nite difference/front-tracking method. Figure 15a corre-
sponds to their Figure 6a, and Figure 15b to their Figure
8a, which we reprinted here [69] as Figure 15c. Figure
15a-b uses the same conventions (e.g. the z-axis is ver-
tical) for notation and graphics layout as those used by
Mortazavi and Tryggvason. The channel Reynolds num-
ber Reb listed in Figure 15b-c is almost identical to our
ReC (Eq. 2); the only difference is that Reb uses the
centerline velocity in its formula, rather than the aver-
age velocity.

Our trajectories, though not identical, are similar to
those reported by Mortazavi and Tryggvason. Trajecto-
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ries (b) and (d) in Figure 15a exhibit more noise in the
position of drops than those calculated by them. We at-
tribute this noise to a lower density of our grid than that
of Mortazavi and Tryggvason; trajectory (a), which is
smoother, was calculated using a grid as dense as theirs.

Appendix C: Simulations of Experiments with
Drops and Bubbles

Figure 16 shows drop trajectories calculated for exper-
iments 1–8 on drops of water in PFPHP. We chose to re-
port as the steady state position of drops their position at
the end of their respective trajectories, even though some
of these trajectories were not perfectly stabilized. We ar-
gue that this was a satisfactory choice because we esti-
mated that the transverse distance that the drops would
drift until complete stabilization was of the same magni-
tude as the position differences between 2D/3D dimen-
sionality and different grid densities (i.e. a few percent of
the height of the channel). With the exception of exper-
iment 2, we launched all drops from the same position
(z/H = 0.6). We attempted to launch the drop from
experiment 2 at z/H = 0.6 as well, but the calculations
were too slow to be practical; we therefore launched this

drop from a position that we expected would be close to
the steady state position.

Instead of simulating trajectories such as those shown
in Figure 16 for bubbles of nitrogen in DySF, our simu-
lations launched bubbles from three different heights to
search for a launch position from which the trajectory
would be perfectly horizontal (Figure 17); such a launch
position would equivalent to the steady state position of
bubbles. Since we could not always guess such position in
three attempts, we evaluated the steady state position by
interpolating the initial slope of the trajectory as a func-
tion of the launch position. Out of the three trajectories
for each simulation, the lowest launch positions used a
grid with 54×96 points and an aspect ratio of 2, and the
upper launch positions used a with 72×108 points and
an aspect ratio of 1.5.

Simulations of nitrogen bubbles in RT 500 (Figures
12 and 13) were characterized a transient upward drift of
bubbles just after their launch. This behavior was caused
by the delayed deformation of bubbles. In these simula-
tions the bubbles had a spherical shape when launched,
the deformation-induced lift force was initially negligi-
ble, and the buoyant bubbles drifted up; after a short
distance of travel, they started to deform due to shear;
as the deformation-induced lift force became stronger,
and the bubbles reversed the direction of their drift.
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FIG. 15. Comparison of our LSM numerical approach with
the finite difference/front-tracking method used in Ref. [43].
Here α is the ratio of densities, and γ the ratio of viscosities
of drop fluid to carrier fluid. Graphs 15a-b show our results;
graph 15b corresponds to graph 15c (reproduced from Ref.
[43]) and graph 15a corresponds to Figure 6a in Ref. [43].
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FIG. 16. Numerically calculated trajectories of drops for the
conditions of experiments 1–8 from Table I. Simulation of
experiment 8 used a grid with 72×108 points and aspect ratio
of 1.5; all other simulations used a grid with 54×96 points and
an aspect ratio of 2. The experimental values of steady-state
z/H for experiments 1–8 are, respectively, 0.59, 0.71, 0.75,
0.54, 0.68, 0.54, 0.66, and 0.50.
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FIG. 17. Numerically calculated trajectories of bubbles for
the conditions of experiments 9–12 from Table I. For each
set of parameters, we launched bubbles from a few different
vertical positions in search for a starting position that resulted
in a horizontal trajectory. The experimental values of steady-
state z/H for experiments 9–12 are, respectively, 0.72, 0.63,
0.52, and 0.58.
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