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Abstract: 36 

Despite numerous examples of the effects of the human gastrointestinal microbiome on drug 37 

efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. 38 

Here, we dissect the inactivation of the cardiac drug digoxin by the gut Actinobacterium 39 

Eggerthella lenta. Transcriptional profiling, comparative genomics, and culture-based assays 40 

revealed a cytochrome-encoding operon up-regulated by digoxin, inhibited by arginine, absent in 41 

non-metabolizing E. lenta strains, and predictive of digoxin inactivation by the human gut 42 

microbiome. Pharmacokinetic studies using gnotobiotic mice revealed that dietary protein 43 

reduces the in vivo microbial metabolism of digoxin, with significant changes to drug 44 

concentration in the serum and urine. These results emphasize the importance of viewing 45 

pharmacology from the perspective of both our human and microbial genomes.  46 

 47 

One Sentence Summary:  48 

A microbial biomarker predicts digoxin inactivation by the human gut microbiome; studies in 49 

mice show that dietary protein prevents this biotransformation. 50 

 51 

Main Text: 52 

Humans are home to large and diverse microbial communities, the most abundant of which 53 

resides in the gastrointestinal tract. Recent studies have highlighted the clinical relevance of the 54 

biotransformations catalyzed by the human gut microbiome, including alterations to the 55 

bioavailability, activity, and toxicity of therapeutic drugs (1, 2). Although >40 drugs are 56 

metabolized by the gut microbiome, little is known about the underlying mechanisms. This 57 

knowledge is critical to enable the rational design of pharmaceutical or dietary interventions. 58 

The inactivation of the cardiac drug digoxin provides a promising starting point for 59 

understanding microbial drug metabolism. Digoxin and other cardiac glycosides have been 60 

widely used for hundreds of years to treat heart failure and arrhythmias. Therapeutic effects are 61 

accomplished indirectly when inhibition of the Na+/K+ ATPase in cardiac myocytes raises the 62 

intracellular Ca2+ concentration (3). Digoxin has a narrow therapeutic range (0.5-2.0 ng/mL) (3), 63 

and some patients excrete the inactive digoxin metabolite, dihydrodigoxin, in which the lactone 64 

ring is reduced (fig. S1A) (4). This modification disrupts ring planarity, which is thought to shift 65 
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positioning within the binding pocket of the Na+/K+ ATPase, resulting in decreased target 66 

affinity (5). Co-administration of broad spectrum antibiotics increases serum digoxin (4), and 67 

Eggerthella lenta reduces digoxin in vitro (6). Prior to this work, the molecular mechanism of 68 

digoxin reduction and the factors that alter microbial drug inactivation in vivo were unknown. 69 

We confirmed that E. lenta DSM2243, the type strain, reduces digoxin in vitro (7), and 70 

that arginine inhibits this reaction (Fig. 1A). The growth of E. lenta DSM2243 was stimulated by 71 

arginine supplementation (Fig. 1A,S2), indicative of using the arginine dihydrolase pathway for 72 

ATP (8). Citrulline (an intermediate upstream of ATP production) stimulated growth, whereas 73 

ornithine (an end product) did not (figs. S2,S3).  74 

E. lenta cultures were grown anaerobically in rich medium supplemented with low- and 75 

high-levels of arginine (0.25% and 1.25%, respectively) in the presence or absence of digoxin 76 

(10 µg/mL) and we performed RNA-Seq on the resultant cellular biomass (figs. S4-6, table S1). 77 

A two-gene operon was highly up-regulated after exposure to digoxin during exponential growth 78 

(>100-fold; Fig. 1B, tables S2,S3). These two genes, referred to here as the cardiac glycoside 79 

reductase (cgr) operon (gene labels: cgr1 and cgr2), encode proteins that are homologous to 80 

bacterial cytochromes and are therefore potentially capable of using digoxin as an alternative 81 

electron acceptor. Incubation of E. lenta with multiple cardiac glycosides and their reduced 82 

forms revealed that the cgr operon is broadly responsive to compounds with an α,β-unsaturated 83 

butyrolactone ring (figs. S7-9, table S5).  84 

Digoxin induction was increased in low arginine conditions during both exponential and 85 

stationary phase, relative to cultures exposed to high levels of arginine (fig. S10A,B). cgr 86 

induction by digoxin, and the growth phase-dependent effects exerted by arginine were 87 

confirmed on independent samples using qRT-PCR (Figs. 1C,S7C, table S4). Unlike arginine, 88 

ornithine did not repress cgr2 expression (fig. S11). These results are consistent with the 89 

hypothesis that arginine represses cgr operon expression, thereby inhibiting digoxin reduction.  90 

Next, we tested three strains of E. lenta (DSM2243, FAA 1-3-56, and FAA 1-1-60) (9, 91 

10), for digoxin reduction; the type strain was the sole strain capable of digoxin reduction in 92 

vitro (Fig. 1D). Comparative genomics revealed that the type strain was nearly indistinguishable 93 

from the other two strains using common marker genes (fig. S12). Reciprocal BLASTP 94 

comparisons of all protein-coding sequences of the three fully sequenced E. lenta strains 95 

revealed that the type strain shared 79.4% and 90.5% of its proteome with strains FAA 1-3-56 96 
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and FAA 1-1-60, respectively (fig. S12). The cgr operon was unique to the type strain (table 97 

S6); furthermore, the two non-reducing E. lenta strains were missing three genomic loci which 98 

were also up-regulated by digoxin, and are predicted to encode membrane transporters for the 99 

uptake of small molecules and glycosides (fig. S13). Arginine did not significantly decrease the 100 

expression level of these transporters (fig. S14). 101 

Strain-level variation provides an explanation for the difficulties in predicting 102 

dihydrodigoxin levels in cardiac patients by the presence or absence of E. lenta (6, 11). We used 103 

qPCR to measure the relative abundance of the cgr operon to the E. lenta 16S rRNA gene (the 104 

“cgr ratio”) in microbial community DNA from 20 unrelated healthy people, along with ex vivo 105 

digoxin reduction assays. The results stratified our cohort into low reducers (12.82±10.68% 106 

reduction; n=6) and high reducers (96.25±7.69% reduction; n=14) (Fig. 2A). The cgr ratio was 107 

significantly increased for the high reducers (1.058±0.562) when compared to low reducers 108 

(0.425±0.582; P<0.05, Student’s t test) (Fig. 2B,S15). Linear regression of reduction efficiency 109 

with the cgr ratio revealed a significant correlation (R2=0.22, P<0.05), whereas the abundance of 110 

E. lenta failed to predict the extent of reduction (R2=0.06, P=0.30). The optimal cgr ratio cutoff 111 

(0.6) predicted digoxin reduction efficiency with a sensitivity of 86%, specificity of 83%, and 112 

precision of 92%.  113 

Co-culture of E. lenta with the fecal microbiome enhanced the efficiency of digoxin 114 

reduction. Each low-reducing fecal samples was incubated with the type (reducing) and FAA 1-115 

3-56 (non-reducing) strains of E. lenta. The communities incubated with the type strain reduced 116 

more digoxin (95.39±2.41%) than the type strain alone (68.91±7.70%; P<0.05, Mann-Whitney 117 

test) (Fig. 2C). The cgr ratio was significantly elevated after co-culture (Fig. 2D), and was 118 

tightly linked to reduction efficiency (R2=0.74, P<0.0001). An explanation for the observed 119 

microbial synergy is that the fastidious growth of E. lenta is promoted by growth factors supplied 120 

by the gut microbiota, a phenomena that is known to impact the metabolism of environmental 121 

pollutants by soil microbial communities (12), along with competition for arginine that boosts 122 

digoxin reduction by E. lenta. Consistent with these hypotheses, the abundance of the E. lenta 123 

type strain was significantly increased in the presence of a complex microbial community 124 

(1.6e6±4.8e5 vs. 1.8e5±8.4e3 in isolation; P<0.05, Mann-Whitney test), and arginine 125 

supplementation suppressed the reduction of digoxin during co-culture (fig. S16).  126 
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 Diet could also explain inter-individual variations in digoxin reduction. In vitro growth of 127 

E. lenta showed that while arginine stimulated cell growth, it decreased cgr operon expression, 128 

and prevented the conversion of digoxin to dihydrodigoxin (Figs. 1A,C,S10). These observations 129 

led us to hypothesize that increased consumption of dietary protein, and the corresponding 130 

increase in arginine, would inhibit the in vivo reduction of digoxin by E. lenta. Germ-free adult 131 

male Swiss-Webster mice were colonized with the type strain prior to being fed diets differing 132 

only in the amount of total protein (n=5 mice/group; tables S7,S8; fig. S17A). E. lenta colonized 133 

mice on both diets (fig. S18A), and exhibited high levels of expression of the cgr operon (fig. 134 

S18B). Quantification of serum and urine digoxin (7) revealed significant increases on the high 135 

protein diet, indicative of suppressed digoxin reduction by E. lenta (Fig. 3A,B). These trends 136 

were also consistent with fecal analysis of samples from each group of mice 4-16 hours 137 

following digoxin administration (Fig. 3). We also confirmed that the high protein diet 138 

significantly elevated the level of amino acids in the distal small intestine (7), resulting in a fold 139 

increase of 1.71±0.06 (p<0.001, Wilcoxon test; tables S9,10). 140 

We controlled for the indirect effects of host diet and colonization that might alter 141 

digoxin pharmacokinetics irrespective of reduction by E. lenta. Germ-free mice were colonized 142 

with either the digoxin-reducing type strain or the non-reducing FAA 1-3-56 strain, and 143 

subsequently fed the same two diets (fig. S17B). As seen before, we detected colonization with 144 

both strains, high cgr operon expression, and elevated serum and urine digoxin on the high 145 

protein diet for mice colonized with the type strain (Figs. 3C,D,S18C,D). Diet did not 146 

significantly impact the serum or urine digoxin levels of mice colonized with the non-reducing 147 

strain (Fig. 3C,D). Serum digoxin was significantly lower in mice colonized with the type strain 148 

on the 0% protein diet, relative to those colonized with the non-reducing strain (4.91±1.56 149 

ng/mL vs. 13.8±1.25; P<0.01, Student’s t test, Fig. 3C). Together, these results suggest that the 150 

increased level of free amino acids available to E. lenta inhibited the activity of the cgr operon, 151 

increasing the bioavailability of digoxin.  152 

An expanded model of digoxin pharmacokinetics is now emerging: colonization by 153 

distinct strains of E. lenta, microbial interactions, and host diet act together to influence drug 154 

levels (fig. S19). Follow-up studies in cardiac patients are necessary to determine if rapid qPCR-155 

based biomarker assessments of the gut microbiome can guide dosage regimes. It may also be 156 

possible to provide dietary guidelines or supplements that prevent microbial drug metabolism. 157 
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More broadly, our results emphasize that a comprehensive view of pharmacology includes the 158 

structure and activity of our resident microbial communities, and a deeper understanding of their 159 

interactions with each other, with their host habitat, and with the nutritional milieu of the 160 

gastrointestinal tract. 161 

 162 
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Figure legends 230 

 231 

Fig. 1. Discovery of a bacterial operon induced by digoxin. (A) Arginine stimulates the 232 

growth of E. lenta DSM2243 in vitro while blocking the reduction of digoxin. Maximum OD600 233 

(solid line; values are the mean±sem; n=3) and digoxin % reduction efficiency (dashed line; 234 

values are the mean; n=2) after 48 hours of growth. (B) RNA-Seq profiles of the cardiac 235 

glycoside reductase (cgr) operon are shown with/without digoxin during exponential growth in 236 

medium containing low/high arginine. The height is proportional to the natural log of the number 237 

of unambiguous sequencing reads mapped to each base. (C) cgr2 transcription as determined by 238 

qRT-PCR. Asterisks indicate statistical significance by Student’s t test (P<0.05). Horizontal lines 239 

are the mean; n=2-3. (D) Identification of 2 strains of E. lenta incapable of reducing digoxin. 240 

Values are the mean±sem; n=3. ND=no reduction detected.  241 

 242 

Fig. 2. A microbial biomarker predicts the inactivation of digoxin. (A) Liquid 243 

chromatography/mass spectrometry (LC/MS) was used to quantify digoxin reduction in the fecal 244 

microbiomes of 20 unrelated individuals. (B) The cgr ratio was significantly different between 245 

low and high reducers. Data represent qPCR using the cgr2 gene, and E. lenta specific 16S 246 

rDNA primers (table S4). (C) Five low reducing fecal microbial communities were incubated for 247 

five days in the presence or absence of E. lenta DSM2243 or FAA 1-3-56. LC/MS was used to 248 

quantify the completion of digoxin reduction. Supplementation with the non-reducing strain of E. 249 

lenta did not significantly affect digoxin reduction efficiency. (D) The cgr ratio was obtained for 250 

each of the low reducing microbial communities post incubation. Outliers were identified using 251 

Grubbs’ test (P<0.01) and removed. Values are the mean±sem. Points in A,B represent 252 

biological replicates. Asterisks indicate statistical significance by Student’s t test (*=P<0.05; 253 

***=P<0.001; ****=P<0.0001).  254 

 255 

Fig. 3. Dietary protein blocks the inactivation of digoxin. Serum (A) and urinary (B) digoxin 256 

levels from the type strain experiment. Fecal digoxin levels showed a consistent trend: the mean 257 

area under the curve was 6.226 ng digoxin*h/mL in germ-free mice, 3.576 for mice on the 0% 258 

protein diet, and 6.364 for mice on the 20% protein diet. Serum (C) and urinary (D) digoxin 259 

levels from each group. Digoxin levels were quantified by ELISA (7). Values are the mean±sem. 260 
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Asterisks indicate statistical significance by Student’s t test (*=P<0.05; **=P<0.01). n=4-5 261 

mice/group. NS=not significant.  262 

 263 

 264 
 265 


