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Fitting scattering solutions to time series of digital holograms is a precise way to measure three-
dimensional dynamics of microscale objects such as colloidal particles. However, this inverse-problem
approach is computationally expensive. We show that the computational time can be reduced by an order
of magnitude or more by fitting to a random subset of the pixels in a hologram. We demonstrate our
algorithm on experimentally measured holograms of micrometer-scale colloidal particles, and we show
that 20-fold increases in speed, relative to fitting full frames, can be attained while introducing errors in
the particle positions of 10 nm or less. The method is straightforward to implement and works for any
scattering model. It also enables a parallelization strategy wherein random-subset fitting is used to
quickly determine initial guesses that are subsequently used to fit full frames in parallel. This approach
may prove particularly useful for studying rare events, such as nucleation, that can only be captured with
high frame rates over long times. © 2014 Optical Society of America

OCIS codes:  (090.1995) Digital holography; (100.0100) Image processing; (100.2000) Digital image
processing; (100.3190) Inverse problems; (100.3200) Inverse scattering; (100.3175) Interferometric

imaging.
http://dx.doi.org/10.1364/A0.53.00G177

1. Introduction

Digital holographic microscopy (DHM) is a powerful
tool for measuring three-dimensional (3D) dynamics
of microscale objects suspended in a fluid. A holo-
graphic microscope records a two-dimensional (2D)
image, or hologram, resulting from interference be-
tween a reference light field and the light scattered
from a sample. The 2D hologram encodes phase infor-
mation that can be used to infer the 3D structure of
the sample. Because holograms can be captured with
a fast camera, DHM enables measurements of 3D

1559-128X/14/27G177-07$15.00/0
© 2014 Optical Society of America

fluctuations and motion on short timescales, making
it particularly useful for measuring dynamics of
swimming organisms [1-4], living cells [5], and colloi-
dal particles [6,7].

The principal challenge in DHM is recovering the
3D information from the 2D hologram. The most
common method is numerical reconstruction, the
digital descendant of Gabor’s optical reconstruction
[8]. Numerical reconstruction techniques use scalar
diffraction theory to backpropagate light from a mea-
sured hologram, yielding a 3D image of the sample
[9,10]. However, the 3D image can contain artifacts
if the sizes of the objects are on the order of the
wavelength of light [11,12], as is the case in colloidal
suspensions.
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An inverse-problem approach can yield more pre-
cise and accurate measurements. Ovryn and Izen
[13] and Lee et al. [14] measured positions and
optical properties of spherical colloidal particles
by fitting a Lorenz-Mie scattering solution to
holograms, taking the particle position, radius, and
refractive index as fitting parameters. Fitting holo-
grams using scattering solutions takes advantage
of known information about the particle, such as
its shape, and avoids artifacts that lead to systematic
errors [15]. This inverse approach has been used for
high-precision measurements in fluid dynamics [16]
and colloid and interface science [17]. Recent work
has extended the fitting technique to clusters of
spheres [18,19] and nonspherical particles [20].

However, the fitting technique is computationally
intensive. For example, Kaz et al. [17] needed about
100 CPU hours to fit a single particle trajectory con-
sisting of 14,000 frames. For a cluster of particles, the
computational burden is even larger: sequentially
fitting 14,000 frames of a six-particle cluster [19]
would take several CPU months.

How can we reduce the time to fit? One strategy is
to parallelize. Although holograms can be processed
more quickly using the parallel processing inherent
to a graphics processing unit (GPU) [16], it is still dif-
ficult to process a set of such holograms in parallel.
This is because the nonlinear optimization methods
used to fit holograms require initial guesses for the
particle position, radius, and index of refraction for
each frame. The initial guesses can be obtained from
the results of the previous frame but only if the
frames are fit sequentially. For clusters containing
many particles, automated guesses are difficult be-
cause multiple scattering and near-field effects make
the hologram sensitive to small changes in particle
positions.

A second strategy is to reduce the size of the holo-
gram. Fitting a scattering solution to a hologram is a
highly overdetermined problem: typically of order 10
parameters are extracted from a hologram containing
of order 10,000 intensity measurements (pixel val-
ues). The premise of our approach is that a far smaller
number of measurements can sufficiently constrain
a fit. This premise was explored by Seifi et al., who
used staged resampling [21] and pixel masks [22]
to reduce the number of pixels in a hologram and
thereby reduce the number of computations required
to evaluate the scattering solution. Here we pursue
an alternative approach that requires no prior
knowledge about the spatial-frequency spectrum of
a hologram.

We show that randomly sampling a subset of pixels
in the hologram reduces the fitting time by an order of
magnitude or more, with little effect on accuracy or
convergence. The random-subset approach requires
only a single sampling step, is simple to implement,
works with any scattering model, and can be com-
bined with GPU computing or resampling methods
to reduce computing time even further. The method
also allows us to analyze a time series of holograms
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in parallel. To do this, we first fit a small random
subset of each hologram in a time series, then use
the results as initial guesses to fit the full holograms
in parallel.

2. Background

We first outline the method of fitting scattering sol-
utions to in-line digital holograms, following Lee et al.
[14]. A digital hologram H captures phase informa-
tion through interference of a reference field (E,.r)
with the field scattered from an object (E..):

H= IEref "‘lascat|2
= |Eref|2 +E; Escat +ErefE:cat + |Escat|2~ (D

ref’
Before fitting, we record the background intensity,
which we assume to be equal to the reference wave
intensity |E,¢|> We then calculate a normalized
hologram h:

(2)

= —H = Escat E:cat + ’Escat 2
|Eref|2 Eref E;, Eref

ref

We extract information about a physical system
from h through an inverse-problem approach. We
fit a scattering model to h using a nonlinear optimi-
zation algorithm; that is, we minimize the objective
function

g([xl.yl. lel. [n]. [r]. a € R)
= |hm0del([x]’ [)’], [Z], [n]7 [7‘], O{) - hrec|2» 3

where the bracketed variables indicate vectors of
parameters (one per particle), h,. is the recorded
hologram, and « is an additional fitting parameter
needed for convergence [14]. Depending on the shape
and structure of the particles, other parameters may
be needed. For example, homogeneous nonspherical
particles are characterized by their orientations as
well as positions. In what follows, we ignore these ad-
ditional parameters with no loss of generality.

We compute h,,,q4. from a light scattering solution.
For a single particle we use the Lorenz-Mie solution
[14]. For clusters of multiple particles, we use an
adaptation [18] of Mackowski’s multisphere superpo-
sition solution [23], which takes into account all near-
and far-field coupling between the scattered fields. If
the numerical minimization of the objective function
converges, the result of this fitting procedure is a
measurement of the parameters [x], [y], [z], [n], and [r].

For larger clusters, we generally use fixed values
for the index and radius of the particles, as deter-
mined from manufacturer specifications or other
experiments. The objective function g therefore sim-
plifies to

g(x1. [yl el a € R) = [hpoger (] ). [2], @) = hyec[?. (4)

We use local optimization based on the Levenberg—
Marquardt algorithm [24] to minimize g. Owing to



the large parameter space and narrow minimum, lo-
cal optimization algorithms fare better than global
ones. However, local approaches require an initial
guess for the set of parameters and converge only
if this guess is close to the minimum of the objective
function. Obtaining a sufficiently good guess is diffi-
cult. For clusters of spheres, we must manually gen-
erate an initial guess for the particle positions, using
numerical reconstruction as a guide. However, when
studying a time series, we can use the results from
fitting one frame as the initial guess for the next, pro-
vided that the capture rate is fast relative to particle
motion. This approach minimizes manual interven-
tion but precludes processing the frames in parallel.

Fitting is computationally expensive because it re-
quires repeated evaluation of h,,q., which, like h,.,
is an array of intensity values. The objective function
g in Eq. (4) is therefore a sum over a large number of
pixels:

g([.’)C], [y]! [Z]? a) = E (hmodel(ivj; [.’)C], [y]! [Z]?a) - hrec(i’j))2'
iJ
(5)

To evaluate g, we must calculate A4, at each pixel
(i,j) on the detector. This corresponds to calculating
the scattered field at a set of locations in space.
Calculating the scattered field at each pixel is com-
putationally intensive; in both the Lorenz-Mie and
multisphere superposition solutions, the field at each
point is given by a series expansion in special func-
tions that themselves require many operations to
calculate. On a single core of a 2.67 GHz Intel Xeon
X5650 CPU, it takes approximately one second
to compute a 200 x 200 pixel hologram of a single
1-pm-diameter particle lying 15 pm from the focal
plane. Fitting a single hologram of such a particle
takes 15-30 s. It takes much longer to fit the multi-
sphere superposition solution to a hologram of a clus-
ter: about 3 s to compute a hologram of a six-particle
cluster of 1.3-um spheres and over 500 s to fit a single
hologram.

3. Approach

Our approach reduces the fitting time by ignoring
most of the pixels of a hologram, thereby reducing
the number of evaluations required to calculate the
objective function g. Consider the hologram shown in
Fig. 1(a). It contains a large number of pixels, but

(©
Fig. 1.

(d)

Several representations of the information in a hologram of six 1.3-pm-diameter polystyrene spheres in an aqueous suspension.

(a) Hologram of a cluster of six 1.3-uym-diameter spheres (k). (b) Fourier transform of (a), log amplitude. (c) Fourier transform of (a) after
downsampling, log amplitude. (d) A random selection of ten percent of the pixels of (a). All of these representations are 200 x 200 pixels,

except (c), which is 67 x 67 pixels.
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only a fraction of these are needed to determine the
particle position and properties. For example, much
of the information is at low spatial frequencies, as
shown in Fig. 1(b). Downsampling techniques like
those of Seifi et al. [21] take advantage of the fact
that, in many holograms, the largest spatial frequen-
cies are the ones most affected by noise and can be
discarded with little effect on the fitted parameters.
But even after downsampling [Fig. 1(c)], a hologram
retains symmetries and large patches of nearly uni-
form value, suggesting that it can be compressed
further.

Instead of downsampling, we simply choose a ran-
dom subset of the pixels in the hologram [Fig. 1(d)]
and fit a scattering solution to these. This method
requires little information about the sample or the
optical train, yet is surprisingly effective. The inspi-
ration for this technique comes from compressed
sensing, where it has been shown that random
sampling is often nearly as efficient as optimal
sampling [25-27].

We examined the effectiveness of this technique on
two experimentally recorded holograms of polysty-
rene spheres suspended in water [Figs. 2(a) and 2(d)].
Both holograms we examined are 200 x 200 pixel
regions cropped from larger holograms. The first
hologram [Fig. 2(a)] was of a 1-pm-diameter sphere
and was originally recorded for an in situ viscometry
experiment. We modeled this hologram using the
Lorenz-Mie scattering solution [14], and we fit the
solution to the data using five parameters: three spa-
tial coordinates, the radius, and the index of refrac-
tion. The second hologram [Fig. 2(d)] is of a cluster
of six 1.3-um-diameter particles that are nearly

(a) hologram of a (b) reconstruction
single particle

(c) rendering

l\\\ \ y »A“‘,“.(,‘
NSE= ™ . v

(d) hologram of a (e) reconstruction (f) rendering

six-particle cluster

Fig. 2. (a), (d) Holograms we use in our study (200 x 200 pixels,
0.12 pm/pixel). (b), (e) Numerical reconstructions showing a plane
cutting through the center of the scatterers. (c), (f) Renderings of
the structures, based on fitting a scattering model to the holo-
grams. Incident light propagation is into the page in all cases.
The inset ball and stick model is rotated to show structure.
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touching one another. It was originally recorded
for the experiments described by Perry et al. [19]. We
modeled this hologram using the multisphere super-
position solution [23], and we fit the solution to the
data using 18 parameters: three center coordinates
for each particle. We fixed the index of each particle
to 1.58 and the radius to 0.645 pm. To give the fitting
algorithm more freedom to rearrange particles, we
allowed the model to adopt configurations where
the particles overlapped by up to 10 percent of
the radius.

We measured the convergence properties and accu-
racy of our method as a function of the pixel fraction f
and initial guess quality. The accuracy we report for
the fitted parameters is relative to a set of standard
values, which we calculated by fitting full frames
and averaging the fit results over different initial
guesses. The pixel fractions varied from f = 1, corre-
sponding to the full hologram, tof = 1 x 1073, For the
single-particle hologram, we chose 10 random sub-
sets at each fraction, and we used an initial guess
for z that differed by 0.2 pm from the standard z, cor-
responding to a displacement along the optical axis.
For the six-particle hologram, we chose 600 random
subsets at each fraction, and we used a range of ini-
tial guesses created by adding a Gaussian random
variable to each standard center coordinate. To vary
the guess quality, we increased the width of the
Gaussian. We generated 50 initial guesses for each
of 12 distributions whose standard deviations ranged
from o = 1x 10 pm to ¢ = 1 pym. In all cases, we re-
jected guesses in which particles overlapped by more
than 10 percent of their radius.

We used an implementation of the Levenberg—
Marquardt algorithm from nmpfit, a Python adapta-
tion of LMFIT from MINPACK-1 [28]. We considered
a fit to have converged if the sum of squares de-
creased by less than 10710 between iterations, the
normalized solution vector changed by less than
1071° between iterations, or the cosine of the angle
between the solution and all columns of the Jacobian
was smaller than 1071°. If none of these conditions
were met within 100 Levenberg-Marquardt itera-
tions, we halted the minimization and considered
the fit to have failed to converge.

All computations were performed on Harvard’s
Odyssey computing cluster. Each fit ran on a single
core of a 2.67 GHz Intel Xeon X5650 processor. We
used parallel processing only to run independent tri-
als concurrently. Our implementation of random-
subset fitting is available in our hologram processing
code HoloPy, available as free and open-source soft-
ware: http:/manoharan.seas.harvard.edu/holopy.

4. Results

We find that random-subset fitting extracts particle
parameters from holograms more than an order of
magnitude faster than fitting the full frame. At pixel
fractions near f = 1, the speedups we obtain increase
linearly with decreasing pixel fraction. For both holo-
grams, the speedups plateau at fractions smaller


http://manoharan.seas.harvard.edu/holopy
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Fig. 3. Fitting speedup as a function of subset fraction. The
speedup is the time required to fit the full hologram divided by
the time required to fit a random subset, using the same initial
guess and convergence criteria. The single-particle fits used a
guess offset by 0.2 pm along the axis perpendicular to the optical
axis, and the six-particle cluster fits used guesses offset by a
Gaussian random variable with ¢ = 0.01 pm added to each center
coordinate of each particle. Error bars represent 99% confidence
intervals.

than f = 0.01 (Fig. 3): the plateau is at 100x speedup
for the single-particle hologram and 25x for the holo-
gram of the six-particle cluster. The plateau occurs
because the time required to compute scattering
coefficients is independent of the pixel fraction. This
overhead is larger for the multisphere superposition
solution, explaining the lower plateau for the six-
particle cluster.

We also find that fitting such small fractions does
not require better initial guesses. For the full holo-
gram of the six-particle cluster, the fitting algorithm
converges for initial guesses within about 100 nm
(per coordinate) from the standard values, as shown
in Fig. 4. Fits converge with similar reliability for
pixel fractions as low as f = 0.01. Reducing the frac-
tion further reduces the probability of convergence,
but there is little reason to use such small subsets
given the diminishing returns on speedup.

Finally, we examine accuracy. In a simulated case
with a known correct answer (Fig. 5 dotted line), we

0.2

fraction of runs converged

0.0 el el el el L
10 107* 107 107!
o of Gaussian added to coordinates (pum)

Fig. 4. Fraction of six-particle cluster fits that converge, shown as
a function of initial guess quality for subsets with f = 1 (black),
f =0.1 (red), f = 0.01 (blue), and f = 0.001 (green). The f =1
and f = 0.1 lines overlap.
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Fig. 5. Per-particle fit error as a function of subset fraction. The
horizontal lines show the expected intrinsic rms position error of
fits to the single-particle hologram (dashed) and to the hologram of
the six-particle cluster (solid). Error bars represent 99% confidence
intervals. The rms position error in the f = 1 fit arises because we
fit the same hologram multiple times using different initial
guesses. Slightly different particle configurations yield model holo-
grams that match the recorded one equally well, owing to noise in
the recorded holograms.

find that we can recover the correct particle positions
to within numerical roundoff error, even at subset
fractions as low as f = 1 x 10™* (which correspond
to only 20 pixels). Thus, in the absence of noise,
the fit accuracy is limited only by numerical precision
and minimizer cutoff. With our experimentally mea-
sured holograms, we find a larger deviation between
the fitted parameters and the standard values at
fractions smaller than the full frame f = 1 (Fig. 5).
However, the errors are comparable to the intrinsic
measurement error, which is approximately 10~3 um
for single particles [17] and 1072 pm for clusters [29].
Thus, we expect that fitting to subsets as small as
f = 0.1 will not impact accuracy.

5. Discussion

Our results show that fitting scattering models to
random subsets of holograms offers large speedups
with few tradeoffs, either in convergence or accuracy.
Two questions arise: How should it be used as part of
a workflow for analyzing holograms? And why is ran-
dom sampling so effective?

Given how simple it is to apply random sampling,
there seems little reason not to use it when fitting
holograms. Some experimentation may be required
to find the appropriate subset fraction, which varies
with the scatterer and experimental conditions.
However, we find that using 10 percent of the pixels
generally gives good results.

We have found the method to be particularly useful
for analyzing time series of holograms quickly and
accurately. We use a two-stage procedure, the first
stage of which is a serial “rough fit” of each hologram
in the time series, using a fraction of 0.01 or 0.1. We
also limit the minimization algorithm to two itera-
tions. The rough fit completes in approximately 1/
200th the time required to serially fit the full frames:
We gain a factor of 20 by fitting to small subsets and
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another factor of 10 by limiting the number of itera-
tions. In the second stage, we use the results from the
first stage as initial guesses to fit the full holograms.
Because these fits can be done in parallel, the
speedup scales linearly with the number of nodes.
As to the second question, on the effectiveness of
the technique, we can offer only an intuitive justifi-
cation. Consider a linear transformation, operating
on a hologram, that compresses all the information
about particle parameters into a small number of
basis elements. We expect this transformation to de-
pend on the shape, size, and optical properties of the
scatterer. Hence we do not—and quite possibly
cannot—know either the transformation or the opti-
mal basis. However, for certain classes of signals, it
has been shown that random sampling allows effi-
cient compression without knowledge of the optimal
basis [25-27]. We cannot prove that a hologram is in
this class of signal, but the success of our method sug-
gests that it is close enough for practical purposes,
at least for holograms of spherical particles or clus-
ters of spheres. Future work might yield a more
rigorous mathematical justification of this idea.

6. Conclusions

We have shown that the random-subset technique
speeds up fitting by a factor of 20 or more, with little
effect on accuracy or convergence compared to fitting
to the full hologram. The technique is simple to im-
plement and works for different scattering models.
It can be used in concert with GPU or CPU-based
parallel processing, with other algorithmic improve-
ments, or with faster implementations of scattering
models. In our calculations, we sampled from a uni-
form distribution of pixel locations, but nonuniform
sampling may allow even greater speedups by
weighting areas of a hologram most useful for con-
straining a fit. In future work, it will be particularly
interesting to determine if there are nonuniform
distributions that are effective for a wide variety of
scatterers.

Because recovering precise 3D information from
measured data is the most time-consuming step in
holographic microscopy, the method we have demon-
strated should allow faster turnaround in experi-
ments and may enable new experiments that were
previously infeasible. The ability to process large
quantities of data more quickly will be particularly
useful for studying rare events, such as nucleation,
that can only be captured with high frame rates over
long times.

This work was funded by the National Science
Foundation (NSF) through Grant No. DMR-
1306410 and by the Harvard MRSEC through NSF
Grant No. DMR-0820484. Scattering calculations
and hologram fitting were performed on the Odyssey
cluster, managed by the FAS Science Division Re-
search Computing Group at Harvard University.
We thank Ameya Agaskar for helpful discussion on
the mathematical background of this technique.
Our nmpfit routine comes from STSCI_PYTHON,
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