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ABSTRACT
We provide a characterization of pseudoentropy in terms of
hardness of sampling: Let (X,B) be jointly distributed ran-
dom variables such that B takes values in a polynomial-sized
set. We show that B is computationally indistinguishable
from a random variable of higher Shannon entropy given X
if and only if there is no probabilistic polynomial-time S
such that (X,S(X)) has small KL divergence from (X,B).
This can be viewed as an analogue of the Impagliazzo Hard-
core Theorem (FOCS ‘95) for Shannon entropy (rather than
min-entropy).
Using this characterization, we show that if f is a one-way

function, then (f(Un), Un) has “next-bit pseudoentropy” at
least n+log n, establishing a conjecture of Haitner, Reingold,
and Vadhan (STOC ‘10). Plugging this into the construc-
tion of Haitner et al., this yields a simpler construction of
pseudorandom generators from one-way functions. In par-
ticular, the construction only performs hashing once, and
only needs the hash functions that are randomness extrac-
tors (e.g. universal hash functions) rather than needing them
to support “local list-decoding” (as in the Goldreich–Levin
hardcore predicate, STOC ‘89).
With an additional idea, we also show how to improve

the seed length of the pseudorandom generator to Õ(n3),

compared to Õ(n4) in the construction of Haitner et al.
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1. INTRODUCTION
Computational analogues of information-theoretic notions

have given rise to some of the most interesting phenomena in
complexity and cryptography. For example, computational
indistinguishability [GM2], which is the computational ana-
logue of statistical distance, enabled bypassing Shannon’s
impossibility results on perfectly secure encryption [Sha],
and provided the basis for the computational theory of pseu-
dorandomness [BM, Yao1].

Computational analogues of entropy were introduced by
Yao [Yao1] and H̊astad, Impagliazzo, Levin, and Luby [HILL].
The H̊astad et al. notion, known as pseudoentropy, was key
to their fundamental result establishing the equivalence of
pseudorandom generators and one-way functions, and has
also now become a basic concept in complexity theory and
cryptography.

A more relaxed notion, called next-bit pseudoentropy, was
recently introduced by Haitner, Reingold, and Vadhan [HRV],
who used it to give a simpler and more efficient construction
of pseudorandom generators from one-way functions. From
a one-way function on n-bit strings, they construct a pseu-
dorandom generator with seed length Õ(n4), improving the

bound of Õ(n8) from [HILL, Hol2].
In this work, we provide new characterizations of pseu-

doentropy and next-bit pseudoentropy, and use these to fur-
ther simplify the construction of pseudorandom generators
from one-way functions. In addition, we show how to save
another factor of n in the seed length, yielding a pseudo-
random generator with seed length Õ(n3) from a one-way
function on n bits.

1.1 Characterizing Pseudoentropy
The H̊astad et al. notion of pseudoentropy is the following:

Definition 1.1 (pseudoentropy [HILL], informal). A ran-
dom variable X has pseudoentropy at least k if there exists
a random variable Y such that:

1. X is computationally indistinguishable from Y .
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2. H(Y ) ≥ k, where H(·) denotes Shannon entropy.1

Pseudoentropy is interesting because a random variable
can have much higher pseudoentropy than its Shannon en-
tropy. Indeed, if G : {0, 1}n → {0, 1}m is a pseudorandom
generator, then G(Un) has Shannon entropy at most n, but
is indistinguishable from Um (by definition) and hence has
pseudoentropy m > n. (Here and throughout, Un denotes a
random variable uniformly distributed over {0, 1}n.)
A useful generalization is the notion of conditional pseu-

doentropy, analogous to the notion of conditional pseudo-
min-entropy studied by Hsiao, Lu, and Reyzin [HLR]:

Definition 1.2 (conditional pseudoentropy, informal). Let
(X,B) be jointly distributed random variables. We say that
B has (conditional) pseudoentropy at least k given X if there
exists a random variable C, jointly distributed with X such
that

1. (X,B) is computationally indistinguishable from (X,C).

2. H(C|X) ≥ k, where H(·|·) denotes conditional Shan-
non entropy.2

Note that if B has pseudoentropy at least k given X, then
(X,B) has pseudoentropy at least H(X)+k, but the converse
is false (consider X that has pseudoentropy H(X)+ k on its
own, with a B that has no pseudoentropy).
Intuitively, a random variable B should have high pseu-

doentropy given X iff B is hard to predict from X, and
indeed there are results of this type known in special cases
involving pseudo-min-entropy (to be discussed later). Our
main result is such a characterization for pseudoentropy (i.e.
pseudo-Shannon-entropy).
Before getting to the formal statement, note that both

pseudoentropy and unpredictability may occur for information-
theoretic reasons, as H(B|X) may be larger than 0. For ex-
ample, suppose that B is a uniform random bit, independent
of X. Then B has 1 bit of pseudoentropy given X and can-
not be predicted better than random guessing from X, but
these are not for computational reasons (i.e. they also hold
for computationally unbounded algorithms). We would like
to focus on the computational randomness in B. For pseu-
doentropy we can do this by simply subtracting H(B|X).
For unpredictability, we do this by considering the feasibility
of sampling the distribution B|X=x given a sample x ∼ X.
Thus, in the example that B is a random bit independent
of X, this sampling is easy to do (in contrast to the task of
predicting B from X).
With these choices, we can indeed prove that pseudoen-

tropy and hardness of sampling are equivalent:

Theorem 1.3 (characterizing pseudoentropy, informal). Let
(X,B) be jointly distributed random variables where B takes
values in a polynomial-sized set. Then B has pseudoentropy
at least H(B|X)+ δ given X if and only if there is no proba-
bilistic polynomial-time algorithm S such that the KL diver-
gence from (X,B) to (X,S(X)) is at most δ.3

1The Shannon entropy of a discrete random variable X is
defined as H(X) = Ex∼X [log(1/Pr[X = x])].
2The conditional (Shannon) entropy of random variable
Y given random variable Z is defined as H(Y |Z) =
Ez∼Z [H(Y |Z=z)].
3The KL divergence (a.k.a. relative entropy) from ran-
dom variable Y to random variable Z is defined as
Ey∼Y [log(Pr[Y = y]/Pr[Z = z])].

KL divergence is a common information-theoretic measure
of “distance” between random variables (though it is not a
metric).

The constraint that B takes values in a polynomial-sized
set is essential for this theorem: If f is a one-way permu-
tation and X is a uniformly random output, then it is very
hard to sample f−1(X) given X, but the pseudoentropy of
f−1(X) given X is negligible (since we can efficiently recog-
nize f−1(X) given X). However, we do have an alternative
version of our result that holds for B taking values in an ex-
ponentially large range (when considering nonuniform com-
plexity). In that version, we replace the task of sampling a
distribution S(X) from X with that of computing a “mea-
sure” that, when normalized to be a distribution, has small
KL divergence from (X,B). In particular, this alternative
formulation is interesting even when X is empty and gives
a characterization of pseudoentropy of an arbitrary random
variable B (with respect to nonuniform complexity).

To provide some more intuition for our theorem and the
proof techniques, we compare it to previous results relating
forms of pseudoentropy and unpredictability.

1. Yao [Yao2] showed that if B is a single bit, then (X,B)
is indistinguishable from (X,U1) (i.e. B has pseudoen-
tropy at least 1 givenX) iff B cannot be predicted from
X with probability noticeably more than 1/2. This
can be generalized to B taking values in a polynomial-
sized alphabet Σ: B ∈ Σ has pseudoentropy log |Σ|
given X iff B cannot be predicted with probability no-
ticeably more than 1/|Σ|. Thus, in the extreme case
of maximal pseudoentropy (equal to log |Σ|), we have
an equivalence with unpredictability.

2. For B that takes values in larger (say exponentially
large) alphabets, Goldreich and Levin [GL] showed
that if B is very hard to predict from X (i.e. cannot
be predicted with nonnegligible probability), then we
can choose a random hash function H whose range is a
polynomial-sized set Σ and it will hold that H(B) ∈ Σ
has pseudoentropy log |Σ| given X and H. While this
is very useful and has many applications, it does not
characterize the pseudoentropy of B itself (but rather
a hash of it), requires a hash function that supports
“local list-decoding,” and again only talks about max-
imal pseudoentropy (log |Σ|).

3. As noted in [STV], the Hardcore Theorem of Impagli-
azzo [Imp] (and subsequent strengthenings [KS, Hol1,
BHK]) can be interpreted as relating unpredictability
and a kind of pseudoentropy. Specifically, when B is
a single bit, the Hardcore Theorem tells us that B
cannot be predicted from X with probability greater
than 1−δ iff “B is indistinguishable from a random bit
on a 2δ fraction of the probability space (X,B)” (this
fraction of the probability space is typically called the
“hardcore measure”). One formalization of the latter
condition is to say that (X,B) is indistinguishable from
(X,C) where C has average min-entropy [DORS] at
least log(1/δ) given X. This result is of the same spirit
as Theorem 1.3, but refers to average min-entropy rather
than Shannon entropy, and does not distinguish be-
tween information-theoretic hardness and computational
hardness.



In light of the above similarities, it is natural that the
proof of Theorem 1.3 follows the same overall structure as
existing proofs of the Hardcore Theorem when showing that
the hardness of sampling B given X implies the pseudoen-
tropy of B given X. Specifically, our proof for the case of
nonuniform complexity (i.e. circuit size) has the same struc-
ture as Nisan’s proof of the Hardcore Theorem [Imp]. We
assume for contradiction that B does not have pseudoen-
tropy H(B|X) + δ given X, i.e. B is distinguishable from
every C such that H(C|X) ≥ H(B|X) + δ. Using the Min-
Max Theorem, we deduce that there is a convex combina-
tion D of small circuits that is a universal distinguisher,
i.e. Pr[D(X,B) = 1] − Pr[D(X,C) = 1] > ε for every C
such that H(C|X) ≥ H(B|X) + δ. Next we show how to
use such a D to sample a distribution S(X) at small KL
divergence from B (given X). It turns out that we can
do this by exponentiating D — we take S(X) to be such

that Pr[S(X) = b] ∝ 2kD(x,b) where k ∈ R is the largest
number such that H(S(X)|X) ≥ H(B|X) + δ. In statis-
tical physics C = S(X) is known as a Boltzmann distri-
bution associated with D, and can be shown to minimize
Pr[D(X,C) = 1] among all high-entropy C [LL]. Thus it is
the “hardest” high-entropy distribution for D to distinguish
from B. The proof that S(X) has small KL divergence from
B uses a new information-theoretic lemma saying that if C
is a random variable obtained from exponentiating D in this
way, then the KL divergence from (X,B) to (X,C) can be
expressed exactly in terms of D’s advantage in distinguish-
ing (X,B) and (X,C).
For the case of uniform complexity (namely, probabilis-

tic polynomial-time algorithms), we replace the use of the
Min-Max Theorem with a new Uniform Min-Max Theorem,
which constructively builds a near-optimal strategy of the
second player in a 2-player game from several best-responses
of the second player to strategies of the first player. We de-
fer a detailed discussion of the Uniform Min-Max Theorem
and its other applications to a forthcoming paper [VZ1], but
we include the proof of the Uniform Min-Max Theorem in
our technical report [VZ2] for reference. We note that the
proof of the Uniform Min-Max Theorem also uses ideas from
the proof of the Uniform Hardcore Theorem due to Barak,
Hardt, and Kale [BHK].

1.2 Next-Bit Pseudoentropy from One-Way Func-
tions

The H̊astad, Impagliazzo, Levin, and Luby [HILL] con-
struction of pseudorandom generators from one-way func-
tions begins by showing how to use a one-way function to
construct an efficiently samplable distributionX whose pseu-
doentropy is noticeably larger than its Shannon entropy.
This approach was refined by Haitner et al. [HRV] using
the following variant of pseudoentropy:

Definition 1.4 (next-block pseudoentropy [HRV], informal).
A sequence of jointly distributed random variables (X1, . . .,
Xm) has next-block pseudoentropy at least k iff there exist
random variables (Y1, . . . , Ym), jointly distributed with (X1,
. . ., Xm) such that:

1. (X1, . . . , Xi−1, Xi) is computationally indistinguishable
from (X1, . . . , Xi−1, Yi), and

2.
∑

i H(Yi|X1, . . . , Xi−1) ≥ k.

Equivalently, XI has pseudoentropy at least k/m given X1,
. . ., XI−1, where I is uniformly distributed in [m].

We say that a random variable X taking values in {0, 1}m
has next-bit pseudoentropy at least k iff when we break X
into 1-bit blocks, then X = (X1, . . . , Xm) has next-block
pseudoentropy at least k.

Intuitively, next-bit pseudoentropy captures the pseudoen-
tropy from the perspective of an adversary who gets the bits
one at a time (from left to right), instead of all at once.
Thus, the next-bit pseudoentropy of a random variable can
be much larger than its pseudoentropy. For example, if
G : {0, 1}n → {0, 1}m is a pseudorandom generator, then
(G(Un), Un) has next-bit pseudoentropy at least m > n, but
does not have pseudoentropy larger than n.

Haitner, Reingold, and Vadhan [HRV] showed that if f :
{0, 1}n → {0, 1}m is a one-way function, X ∈R {0, 1}n, and
H : {0, 1}n → {0, 1}n is a random hash function from an
appropriate family, then (f(X), H,H(X)) has next-bit pseu-
doentropy n+r+logn, where r is the number of random bits
used to describe the hash function H. The intuition for this
is as follows: Condition on f(X) = y for some y ∈ {0, 1}n.
Given that f(X) = y, X is uniformly distributed in a set of
size |f−1(y)|. Thus, by the Leftover Hash Lemma [HILL],
the first ≈ log |f−1(y)| bits of H(X) are statistically close to
uniform given the prefix preceding them. In addition, it is
still difficult to invert f and predict X given these bits (since
a uniform random string can’t help in inverting). Thus, by
the Goldreich–Levin Theorem [GL], the next ≈ logn bits of
H(X) are computationally indistinguishable from uniform
given the preceding bits. Therefore the next-bit pseudoen-
tropy of (f(X), H,H(X)) is at least

H(f(X)) + r + E
y ←f(X)

[log |f−1(y)|] + log n

= H(f(X)) + r +H(X|f(X)) + log n = n+ r + logn.

Haitner, Reingold, and Vadhan [HRV] conjectured that
the hashing in the above construction is not necessary, and
the hardness of inverting a one-way function directly pro-
vides (next-bit) pseudoentropy. We prove their conjecture:

Theorem 1.5 (one-way functions ⇒ next-bit pseudoen-
tropy). If f : {0, 1}n → {0, 1}m is a one-way function and
X ∈R {0, 1}n, then (f(X),X) has next-bit pseudoentropy at
least n+ logn.

The proof of this theorem starts by showing that the one-
wayness of f implies that for every probabilistic polynomial-
time algorithm A, the KL divergence from (f(X), X) to
(f(X), A(f(X))) is at least logn; otherwise A would in-
vert f with nonnegligible probability. Then we show that
the same holds also in a “next-bit” sense: if we break X
into bits X = X1 · · ·Xn and choose I ∈R [n], then for ev-
ery probabilistic polynomial-time S, the KL divergence from
(f(X),X1, . . . , XI) to (f(X),X1,. . . , XI−1, S(f(X), X1, . . .,
XI−1)) is at least (log n)/n. (Otherwise by iteratively apply-
ing S n times, we can obtain a probabilistic polynomial-time
A such that (f(X), A(f(X))) has KL divergence at most
logn from (f(X), X).) By Theorem 1.3, we deduce that
XI has pseudoentropy at least H(XI |f(X), X1, . . . , XI−1)+
(logn)/n given f(X), X1, . . . , XI−1. That is, on average,
the individual bits of X have (logn)/n extra bits of pseu-
doentropy (beyond their Shannon entropy) given f(X) and
the previous bits of X. Summing over all n bits of X, the



next-bit pseudoentropy is at least log n bits larger than the
Shannon entropy of (f(X),X), which is n.

1.3 Pseudorandom Generators
Given the next-bit pseudoentropy generator (f(X),X) ∈
{0, 1}m+n of Theorem 1.5, we can apply the construction of
Haitner et al. [HRV] to obtain a pseudorandom generator
through the following three steps:

• Entropy Equalization: To spread the pseudoentropy
out evenly among the bits, we concatenate u = Θ̃(n)
independent random evaluations of (f(X), X), then
drop the first I bits and the last m + n − I bits of
the u · (n+m)-bit long result, for I ∈R [m+ n].

• Converting Shannon Entropy to Min-Entropy
and Amplifying the Gap: Next, we take t = Θ̃(n2)
copies of the above next-bit pseudoentropy genera-
tor (after entropy equalization), but concatenate them
“vertically” to obtain blocks, each of which consists of
t bits. It can be shown that each of the blocks is indis-
tinguishable from having highmin-entropy conditioned
on the previous ones.

• Randomness Extraction: Finally, we use a single
random universal hash function to extract the pseudo-
min-entropy from each of the blocks, and concatenate
the results to produce our output.

Thus, to obtain a pseudorandom generator from a one-way
function f , we simply need to evaluate f on u · t = Õ(n3)
random inputs, arrange the input and output bits into a
matrix consisting of (u − 1) · (m + n) columns and t rows,
and apply a universal hash function to each column. (The
seed of the pseudorandom generator consists of the u · t in-
puts to f , the t random shifts used for entropy equalization,
and the description of the universal hash function.) The
construction is illustrated in Figure 1. Note that we only
need to hash once in the construction and the only prop-
erty we need of our hash function is randomness extraction
(e.g. via the Leftover Hash Lemma). In contrast, all pre-
vious constructions of pseudorandom generators from one-
way functions (even from one-way permutations) required
hash functions with “local list-decoding” properties (e.g. the
Goldreich–Levin hardcore predicate) in addition to random-
ness extraction. As pointed out to us by Yuval Ishai, an ad-
vantage of using only universal hash functions is that they
can be implemented by linear-size boolean circuits [IKOS],
and thus we can obtain PRGs computable by circuits of
size linear in their stretch (from one-way functions that are
computable by linear-size circuits but exponentially hard to
invert). Such PRGs have applications to“cryptography with
constant computational overhead”.
While simpler, the aforementioned construction achieves

essentially the same parameters as [HRV]. Using an addi-

tional idea, we show how to save a factor of roughly u = Θ̃(n)
in the seed length. The idea is that to extract the random-
ness from a column of the aforementioned matrix, we do not
need to construct the entire matrix. We can use just enough
seed to fill a single column, and then we can use randomness
extracted from that column to help generate more columns,
and iterate. (This idea is independent of our simplifications
above, and can also be applied to the construction based on
the [HRV] pseudoentropy generator.) Thus we show:

f(Un), Un f(Un), Un

f(Un), Un f(Un), Un f(Un), Un

f(Un), Un

f(Un), Un f(Un), Un f(Un), Un

H
(·)

H
(·)

H
(·)

pseudorandom bits

t

(u− 1)(n+m)

01
..
.1

10
..
.1

10
..
.0

Figure 1: Simplified construction of PRG from one-
way function f : {0, 1}n → {0, 1}m
Each row contains iid copies of (f(Un), Un), shifted by a
random offset I ∈ [n+m]. To extract pseudorandom bits, an
arbitrary universal hash function H (with a proper output
length) is applied to all bits in the same column.

Theorem 1.6 (one-way functions ⇒ pseudorandom gener-
ators, informal). Given a one-way function f : {0, 1}n →
{0, 1}n, we can construct a pseudorandom generator with

seed length Õ(n3).

This theorem improves the seed length of O(u · t · n) =

Õ(n4) from Haitner et al. [HRV]. We note that Haitner et al.

gave a nonuniform construction of seed length Õ(n3), requir-
ing poly(n) bits of nonuniform advice to compute the pseu-
dorandom generator. (Entropy equalization can be avoided
by nonuniformly hardwiring the amount of entropy con-
tributed by each bit.) Also, our construction still requires

evaluating the one-way function at least u · t = Θ̃(n3) times;
we just no longer need these evaluations to be independent.
Finally, like [HRV], the construction obtains Θ(logn) bits
of additive stretch per invocation of the one-way function,
which is optimal by [GGKT].

With Theorem 1.6, now the only blow-up in seed length in
constructing pseudorandom generators from one-way func-
tions is due to converting Shannon entropy to min-entropy.
It is an intriguing open problem whether that blow-up can
be avoided or shown to be necessary.

1.4 Relation to Inaccessible Entropy
A variety of computational notions of entropy have been

studied in the cryptography and complexity literature, e.g.
[Yao2, HILL, BSW, HLR, HRVW, HRV, HHR+, FR, Rey].
In addition to the notions discussed in Sections 1.1 and 1.2,
our work was also inspired by the works on inaccessible en-
tropy [HRVW, HHR+].

Like our characterization of conditional pseudoentropy, in-
accessible entropy refers to a difficulty of sampling a random
variable B from a jointly distributed random variable X.
However, there are important differences. In our character-
ization (Theorem 1.3), the sample of X is generated exter-
nally and fed to the adversary, who tries then to sample the
conditional distribution B|X. In the [HHR+] notion of inac-



cessible entropy, the adversary is also given the random coins
used to generate X, and we compare its output distribution
conditioned on those coins to B|X. And in the original no-
tion of inaccessible entropy, from [HRVW], the adversary
is the one who generates X (or some approximation to it).
These three notions are analogous to the security conditions
for one-way functions, target collision-resistant hash func-
tions (i.e. UOWHFs), and collision-resistant hash functions,
respectively (thinking of X = f(B) for B ∈R {0, 1}n). We
note that the hardness of sampling we consider also differs
from inaccessible entropy in the way it measures how well an
adversary approximates the conditional distribution B|X.
Roughly speaking, in our notion (measuring the KL diver-
gence from B|X to the adversary’s output), the adversary’s
goal is to produce an output distribution that contains B|X
as tightly as possible. In the notions of inaccessible entropy,
the adversary’s goal is to produce an output distribution
that is contained within B|X as tightly as possible.
There is also significant similarity between our construc-

tion and those involving inaccessible entropy. In [HRVW], it
is shown that if f is a one-way function, then (f(Un), Un) is
a next-bit inaccessible entropy generator, just like we show
that it is a next-bit pseudoentropy generator (Theorem 1.5).
However, for inaccessible entropy, it is only necessary to
break f(Un) into bits (Un can be treated as a single block),
and for pseudoentropy it is only necessary to break Un into
bits (f(Un) can be treated as a single block). Nevertheless,
there are enough similarities to suggest that there may be
a deeper connection between inaccessible entropy and pseu-
doentropy; trying to formalize this connection is an interest-
ing question for future work.

1.5 Paper Organization
Basic notions of information theory and computational

randomness are defined in Section 2. In Section 3 we de-
scribe and prove our characterization of pseudoentropy. In
Section 4 we show how to generate next-bit pseudoentropy
from any one-way function. In Section 5 we describe the
PRG construction and how to save the seed length.

2. PRELIMINARIES

2.1 Entropy
Shannon entropy plays a central role in this paper. For

more background on entropy and proofs of the lemmas stated
here, see [CT].

Definition 2.1 (entropy). For a random variable X, the
(Shannon) entropy of X is defined to be

H(X) = E
x∼X

[
log

1

Pr[X = x]

]
.

For jointly distributed random variables X and B, the con-
ditional (Shannon) entropy of B given X (or, conditional
(Shannon) entropy of B when X is clear from the context)
is defined to be

H(B|X) = E
x∼X

[H(B|X=x)] .

Fact 2.2 (chain rule for Shannon entropy). H(X,B) =
H(X) + H(B|X).

The notion of KL divergence from random variable A to
random variable B is closely related to Shannon entropy;

intuitively it measures how dense A is within B, on average
(with 0 divergence representing maximum density, i.e. A =
B, and large divergence meaning that A is concentrated in
a small portion of B).

Definition 2.3 (KL divergence). For random variables A
and B, the KL divergence from A to B is defined to be

KL(A||B) = E
a∼A

[
log

Pr[A = a]

Pr[B = a]

]
or conventionally +∞ if Pr[A = a] > 0 and Pr[B = a] = 0
for some a.

For random variables (X,A) and (Y,B), the conditional
KL divergence from A|X to B|Y is defined to be

KL((A|X)||(B|Y )) = E
(x,a)∼(X,A)

[
log

Pr[A = a|X = x]

Pr[B = a|Y = x]

]
.

Thus, conditional KL divergence captures the expected
KL divergence from A|X=x to B|Y =x, over x ∼ X. Like
Shannon entropy, it has a chain rule:

Fact 2.4 (chain rule for KL divergence). KL(X,A||Y,B) =
KL(X||Y ) + KL((A|X)||(B|Y )).

Like other distance measures between distributions, ap-
plying any (deterministic) function never increases the KL
divergence:

Fact 2.5 (entropy-like property of KL divergence). 4

KL(g(A)||g(B)) ≤ KL(A||B) for any function g.

Note however, that the KL divergence is not a metric; it
is not symmetric and does not satisfy the triangle inequality.

2.2 Pseudorandom Generators
First, we define the computational analogue of two ran-

dom variables being statistically close:

Definition 2.6 (indistinguishability). Let n be a security
parameter. Two {0, 1}n-valued random variables X = X(n)
and Y = Y (n) are (T, ε) indistinguishable for T = T (n),
ε = ε(n) if for all time T randomized algorithm D and all
sufficiently large n, |Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ε.
|Pr[D(X) = 1]− Pr[D(Y ) = 1]| is called D’s distinguish-

ing advantage for X, Y .

A pseudorandom generator is an algorithm that stretches
a short uniformly random string to a longer pseudorandom
string, one which looks random even to algorithms more
powerful than the generator itself:

Definition 2.7 (pseudorandom). Let n be a security pa-
rameter, q = q(n). A [q]-valued random variable X is (T, ε)
pseudorandom for T = T (n), ε = ε(n) ifX and U[q] are (T, ε)
indistinguishable. A polynomial time computable function
G : {0, 1}d=d(n) → {0, 1}`=`(n) is a (T, ε) pseudorandom gen-
erator (PRG), if G(Ud) is (T, ε) pseudorandom.

We say G is a pseudorandom generator if G is a (nc, 1/nc)
pseudorandom generator for every constant c. The input to
a pseudorandom generator is called the seed. The number
of extra bits, `− d, is called the stretch.

While the notions of indistinguishability and pseudoran-
dom generators here are defined for uniform algorithms,
nonuniform indistinguishability and nonuniform pseudoran-
domness can be defined by replacing time T algorithms with
size T boolean circuits.
4This is in fact equivalent to the log-sum inequality [CT].
For a more direct proof, see [GV].



2.3 Pseudoentropy and Next-Bit Pseudoentropy
The computational analogue of entropy, pseudoentropy,

was first introduced by Hastad et al. [HILL]. We begin with
the nonuniform definition because it is simpler:

Definition 2.8 (pseudoentropy, nonuniform setting). Let
X be a random variable. We say X has (T, ε) nonuniform
pseudoentropy at least k if there exists a random variable Y
with H(Y ) ≥ k such that X and Y are (T, ε) nonuniformly
indistinguishable.
If X = X(n) for a security parameter n, we say X has

nonuniform pseudoentropy at least k = k(n) if for every con-
stant c, X(n) has (nc, 1/nc) nonuniform pseudoentropy at
least k(n)− 1/nc for all sufficiently large n.

A natural generalization of pseudoentropy is the notion of
conditional pseudoentropy.

Definition 2.9 (conditional pseudoentropy, nonuniform set-
ting). Let B be a random variable jointly distributed with
X. We say B has (T, ε) nonuniform (conditional) pseudoen-
tropy at least k (or pseudoentropy gap at least k−H(B|X))
given X if there exists a random variable C jointly dis-
tributed with X such that the following holds:

• H(C|X) ≥ k;

• (X,B) and (X,C) are (T, ε)-indistinguishable.

If B = B(n) for a security parameter n, we say B has
nonuniform (conditional) pseudoentropy at least k = k(n)
given X if for every constant c, B(n) has (nc, 1/nc) nonuni-
form (conditional) pseudoentropy at least k(n)− 1/nc given
X(n) for all sufficiently large n.

In the uniform setting (i.e. randomized algorithms instead
of circuits), the right definitions are more subtle to come by.
It turns out that we must require indistinguishability even
against algorithms equipped with an sampling oracle. (See
remark below for more discussion.)

Notation. For a distribution Z, let OZ denote the oracle
that gives a random sample from Z when queried.

Definition 2.10 (pseudoentropy, uniform setting). Let n
be a security parameter, T = t(n), ε = ε(n), k = k(n),
q = q(n). Let X be a [q]-valued random variable. We say X
has (T, ε) uniform pseudoentropy at least k if for all time T
randomized oracle algorithm A there exists a random vari-
able Y jointly distributed5 with X such that the following
holds for all sufficiently large n:

• H(Y ) ≥ k;

• X, Y are indistinguishable by AOX,Y :∣∣∣Pr[AOX,Y (X) = 1]− Pr[AOX,Y (Y ) = 1]
∣∣∣ ≤ ε.

We say X has uniform pseudoentropy at least k = k(n) if
for every constant c, X(n) has (nc, 1/nc) uniform pseudoen-
tropy at least k(n)− 1/nc.

5In Definition 2.10, Y can be taken to be independent of X
without loss of generality, but allowing dependence is im-
portant in the definition of conditional pseudoentropy.

The reason to give the distinguishers oracle access to OX,Y

is to ensure that the definition composes: if X1 and X2 are
iid copies of X, we’d like to say that (X1, X2) has pseudoen-
tropy at least 2k. Indeed we’d want to say that (X1, X2) is
indistinguishable from (Y1, Y2) where Y1, Y2 are iid copies of
Y . However, indistinguishability against uniform algorithms
is not preserved under taking multiple independent samples
in general [GM1]. Requiring indistinguishability against dis-
tinguishers with oracle access to OX,Y ensures that indistin-
guishability will be preserved under taking multiple inde-
pendent samples.

Definition 2.11 (conditional pseudoentropy, uniform set-
ting). Let n be a security parameter, T = t(n), ε = ε(n),
k = k(n), q = q(n). Let B be a [q]-valued random variable
jointly distributed with X. We say B has (T, ε) uniform
(conditional) pseudoentropy at least k given X if for every
randomized oracle algorithm A computable in time T , there
is a random variable C jointly distributed with X,B such
that the following holds for all sufficiently large n:

• H(C|X) ≥ k;

• (X,B) and (X,C) are indistinguishable by AOX,B,C :

|Pr[AOX,B,C (X,B) = 1]−Pr[AOX,B,C (X,C) = 1]| ≤ ε.

We say B has uniform (conditional) pseudoentropy at least
k = k(n) given X if for every constant c, B(n) has (nc, 1/nc)
uniform (conditional) pseudoentropy at least k(n) − 1/nc

given X(n).

We give the distinguishers oracle access to OX,B,C for the
same reason as we give oracle access to OX,Y in Definition
2.10. However, a consequence of our results is that the def-
inition with oracle OX,B,C is equivalent to the definition
with oracle OX,B provided B comes from a polynomial-sized
alphabet. In particular, if (X,B) is also polynomial-time
samplable (which will be the case in our applications), the
definition is equivalent to one without oracle OX,B,C . (See
Corollary 3.23.)

Finally, it is useful to talk about the total conditional
pseudoentropy of a sequence of random variables, called the
next-block pseudoentropy :

Definition 2.12 (next-block pseudoentropy). Let n be a

security parameter, k = k(n), and B(i) be a random vari-

able for each i = 1, . . . ,m = m(n). We say
(
B(1), B(2), . . .

)
has (non)uniform next-block (or next-bit, if each B(i) is a

bit) pseudoentropy at least k if B(I) has (non)uniform pseu-

doentropy at least k/m given B(1) . . . B(I−1), for I ∈R [m].

It is easy to see that next-bit pseudoentropy is a weaker
notion than pseudoentropy. Therefore we would like“blocks”
to be small, ideally bits, to increase the next-block pseudoen-
tropy. Note that the next-bit pseudoentropy is sensitive to
the order of the bits; for example, for any one-way func-
tion f , (Un, f(Un)) does not have next-bit pseudoentropy
n + 1, but (f(Un), Un) has next-bit pseudoentropy at least
n+Ω(logn) as we show in Section 3.

3. CHARACTERIZING PSEUDOENTROPY
In this section, we show that a random variable B having

pseudoentropy given X, is equivalent to B being KL-hard



given X, which roughly captures the hardness of generating
B from X in terms of KL divergence. We prove the equiva-
lence in both nonuniform and uniform models of computa-
tion.
To state the mains results precisely, we begin with ba-

sic conventions and definitions. We will work with ran-
dom variables taking values in [q], which are jointly dis-
tributed with a {0, 1}n-valued random variable X. For any
[q]-valued random variable C jointly distributed with X, we
write C(a|x) = Pr[C = a|X = x]. We will drop “jointly
distributed with X” when it is clear from the context.
Such a jointly distributed r.v. C can be algorithmically

represented in two ways: (i) By a randomized algorithm S
that samples C from X, i.e. C = S(X); (ii) By an algo-
rithm P that computes the (conditional) probability mass
function (pmf) of C, i.e. P (x, a) = Pr[C = a|X = x]. In
general, having an efficient algorithm for one representation
does not imply having an efficient algorithm for the other
(under some complexity assumptions) [KMR+, Nao]. But
when the alphabet size q is small, approximating the pmf of
C given X (say to within ±ε) is equivalent to approximately
sampling C given X (say to within statistical distance ε), up
to a factor of poly(q, 1/ε) in running time. (See Lemmas 3.6,
3.7 below.)
A drawback of the pmf representation is that it can be in-

feasible to maintain the normalization
∑

a P (x, a) = 1 when
manipulating the random variable if the alphabet size q is
large. Thus it is convenient to work with measures instead
of pmf. A function P : {0, 1}n × [q] → (0,+∞) is called a
(conditional) measure of the random variable CP defined as
follows:

CP (a|x) =
P (x, a)∑
b P (x, b)

.

Thus a measure is just some scalar multiple of the pmf. In
this section, we generalize the pmf representation so that P
only has to compute some (conditional) measure of C.

Definition 3.1 (KL predictors). Let (X,B) be a {0, 1}n ×
[q]-valued random variable, and P : {0, 1}n × [q]→ (0,+∞)
a deterministic function. We say that P is a δ-KL predictor
of B given X if

KL(X,B||X,CP ) ≤ δ.

If P is randomized, we say that P is a δ-KL predictor of B
given X if

E
p ∼P

[KL(X,B||X,Cp)] ≤ δ,

where we view P as a distribution over functions p : {0, 1}n×
[q]→ (0,+∞).

Definition 3.2 (KL-hard, nonuniform setting). Let (X,B)
be a {0, 1}n × [q]-valued random variable, for q = q(n). We
say B is nonuniformly (t, δ) KL-hard given X if there is no
circuit P of size t that is a δ-KL predictor of B given X.
We say B is nonuniformly δ KL-hard given X if for every

constant c, B is nonuniformly (nc, δ − 1/nc) KL-hard given
X for all sufficiently large n.

Analogously to pseudoentropy, the nonuniform and uni-
form definitions differ in whether we need to give a sampling
oracle to the adversary.

Definition 3.3 (KL-hard, uniform setting). Let n be a se-
curity parameter, δ = δ(n) > 0, t = t(n) ∈ N, q = q(n).

Let (X,B) be a {0, 1}n × [q]-valued random variable. We
say B is uniformly (t, δ) KL-hard given X if for all time t
randomized oracle algorithms P : {0, 1}n × [q] → (0,+∞)
and all sufficiently large n, POX,B is not a δ-KL predictor of
B given X (where the randomness of POX,B consists both
of its internal coin tosses and the samples it gets from the
oracle OX,B).

We say B is uniformly δ KL-hard given X if for every
constant c, B is uniformly (nc, δ − 1/nc) KL-hard given X.

Note that by letting P (x, a) = 1, we already get C = U[q]

i.e. KL(X,B||X,C) = log q −H(B|X) ≤ log q. Thus it only
makes sense to talk about KL-hardness for δ ≤ log q.

The following related definition may be more natural, as
a closer parallel to the familiar notion of average-case hard-
ness:

Definition 3.4 (KL-hard for sampling, nonuniform set-
ting). Let (X,B) be a {0, 1}n× [q]-valued random variable,
for q = q(n). We say B is nonuniformly (t, δ) KL-hard
for sampling given X if for all size t randomized circuits
S : {0, 1}n → [q] it holds that KL(X,B||X,S(X)) > δ.

Definition 3.5 (KL-hard for sampling, uniform setting).
Let n be a security parameter, δ = δ(n) > 0, t = t(n) ∈
N, q = q(n). Let (X,B) be a {0, 1}n × [q]-valued random
variable. We say B is uniformly (t, δ) KL-hard for sampling
given X if for all time t randomized oracle algorithms S, for
all sufficiently large n, it holds that KL(X,B||X,SOX,B (X))
> δ.

These two notions are equivalent up to a polynomial factor
in t, provided that size of the alphabet q is a polynomial:

Lemma 3.6. Let (X,B) be a {0, 1}n × [q]-valued random
variable. If B is nonuniformly (t, δ) KL-hard for sampling
given X, then B is nonuniformly (Ω(t/q), δ) KL-hard given
X. Conversely, if B is nonuniformly (t, δ) KL-hard given
X, then B is nonuniformly (t′, δ − ε) KL-hard for sampling
given X for t′ = t/poly(n, q, 1/ε), for every ε > 0.

Proof. Suppose B is not nonuniformly (t′, δ) KL-hard given
X. That is, there exists a size t′ circuit P such that KL(X,B
||X,CP ) ≤ δ. Then we can sample S(x) = a w.p. CP (a|x)
so that KL(X,B||X,S(X)) ≤ δ. S has circuit size O(q · t′).
This contradicts the fact that B is nonuniformly (t, δ) KL-
hard for sampling, for t′ = Ω(t/q).

Conversely, suppose KL(X,B||X,S(X)) ≤ δ − ε for some
size t′ circuit S. We will construct a size t randomized δ-KL
predictor P (so that it will be useful for the uniform setting,
Lemma 3.7, as well) as follows. We compute E(x, a) such
that w.p. at least 1 − γ, |Pr[S(x) = a]− E(x, a)| ≤ ε2/c2q
for all x, a, where c is a large enough constant. This is
done by taking m = O (n+ log q + log(1/γ)) · q2/ε4 sam-
ples of the randomness of S. We then output P (x, a) =
max{E(x, a), ε/cq} ∈ (ε/cq, 1].

We view P as a distribution over functions p : {0, 1}n ×
[q]→ (ε/cq, 1]. Consider any p ∈ supp(P ) such that |Pr[S(x) =
a]− E(x, a)| ≤ ε2/c2q for all x, a. Notice that

∑
b p(x, b) ≤

1 + q · (ε/cq) = 1 + ε/c. If Pr[S(x) = a] > ε/cq, then

log
Pr[S(x) = a]

Cp(a|x)
≤ log

p(x, a) + ε2/c2

p(x, a)
+ log

∑
b

p(x, b)

≤ log(1 + ε/c) + log(1 + ε/c) ≤ ε

2
.



If Pr[S(x) = a] ≤ ε/cq, then

log
Pr[S(x) = a]

Cp(a|x)
= log

Pr[S(x) = a]

p(x, a)
+ log

∑
b

p(x, b)

≤ log(1 + ε/c) ≤ ε

2
.

Thus we get

KL(X,B||X,Cp) = KL(X,B||X,S(X))

+ E
x∼X

[∑
a

B(a|x) log Pr[S(x) = a]

Cp(a|x)

]
≤ δ − ε+

ε

2
.

On the other hand, for every p : {0, 1}n × [q] → (ε/cq, 1]
it holds that

KL(X,B||X,Cp) = E

[∑
a

B(a|X) log (B(a|X)/Cp(a|X))

]
≤ max

x,a
log (1/Cp(a|x))

= O

(
log q + log

1

ε

)
.

Thus,

E
p∼P

[KL(X,B||X,Cp)]

≤ (1− γ) · (δ − ε

2
) + γ ·O

(
log q + log

1

ε

)
≤ δ

for an appropriate choice of γ = O(ε/(log q + log(1/ε))).
Furthermore, P has circuit size O (t′m) = t. Thus B is not
nonuniformly (t, δ) KL-hard given X.

Lemma 3.7. Let n be a security parameter, δ = δ(n) >
0, t = t(n) ∈ N, p = p(n), ε = ε(n) > 0, q = q(n) all
computable in time poly(n). Let (X,B) be a {0, 1}n × [q]-
valued random variable. If B is uniformly (t, δ) KL-hard for
sampling given X, then B is uniformly (Ω(t/(q+n)), δ) KL-
hard given X. Conversely, if B is uniformly (t, δ) KL-hard
given X, then B is uniformly (t′, δ−ε) KL-hard for sampling
given X, for t′ = t/poly(n, q, 1/ε).

Proof. The proof for the second part is identical to Lemma
3.6. For the first part, suppose B is not uniformly (t′, δ) KL-
hard given X. That is, there is a time t′ oracle algorithm
P such that when POX,B is viewed as a distribution over
functions p : {0, 1}n × [q]→ (0,+∞), for infinitely many n,

E
p ∼P

OX,B [KL(X,B||X,Cp)] ≤ δ.

Then we can sample S(x) = a w.p. Ep∼P
OX,B [Cp(a|x)],

where we first pick p ∼ POX,B by fixing the internal coin
tosses of P and samples from oracle OX,B . By convexity of
KL(X,B||X, ·),

KL(X,B||X,S(X)) = KL
(
X,B||X,C

P
OX,B

)
≤ E

p∼P
OX,B [KL (X,B||X,Cp)] ≤ δ.

This contradicts the fact that B is uniformly (t, δ) KL-hard
for sampling, for t′ = Ω(t/(q + n)).

In this section, it is more convenient to work with the first
version of KL-hardness (i.e. not for sampling). We show

the following main results which establish equivalence be-
tween (conditional) pseudoentropy and KL-hardness in both
nonuniform and uniform settings.

Theorem 3.8 (Main Theorem, nonuniform setting). Let
(X,B) be a {0, 1}n × [q]-valued random variable, δ > 0,
ε > 0.

1. If B is nonuniformly (t, δ) KL-hard given X, then for
every ε > 0, B has nonuniform (t′, ε) pseudoentropy at

least H(B|X)+δ−ε given X, for t′ = tΩ(1)/poly(n, log q, 1/ε).

2. Conversely, if B has nonuniform (t, ε) pseudoentropy
at least H(B|X) + δ given X, then for every σ > 0,
B is nonuniformly (t′, δ′) KL-hard given X, for t′ =

min{tΩ(1)/polylog (1/σ) ,Ω(σ/ε)} and δ′ = δ − σ.

Corollary 3.9. Let (X,B) be a {0, 1}n× [q]-valued random
variable. Then B has nonuniform pseudoentropy at least
H(B|X) + δ given X if and only if B is nonuniformly δ
KL-hard given X.

By droppingX, the polylog(q) dependence gives us a char-
acterization of nonuniform pseudoentropy for an n-bit ran-
dom variables: (Note that without conditioning on X, the
definition of KL-hard still makes sense, expressing the hard-
ness of computing a measure that approximates the distri-
bution B.)

Corollary 3.10. An n-bit random variable B has nonuni-
form pseudoentropy at least H(B) + δ if and only if B is
nonuniformly δ KL-hard.

We now state the uniform versions of our results, which
are analogous to the nonuniform versions but have a poly-
nomial dependence on q (we do not know whether it can be
made polylogarithmic like in Theorem 3.8, so we don’t have
a uniform analogue of Corollary 3.10.)

Theorem 3.11 (Main Theorem, uniform setting). Let n be
a security parameter, δ = δ(n) > 0, t = t(n) ∈ N, ε = ε(n) >
0, q = q(n), σ = σ(n) all computable in time poly(n). Let
(X,B) be a {0, 1}n × [q]-valued random variable.

1. If B is uniformly (t, δ) KL-hard given X, then B has
uniform (t′, ε) pseudoentropy at least H(B|X) + δ − ε

given X, for t′ = tΩ(1)/poly(n, q, 1/ε).

2. Conversely, if B has uniform (t, ε) pseudoentropy at
least H(B|X) + δ given X, then B is uniformly (t′, δ′)

KL-hard given X, for t′ = min{tΩ(1)/poly(n, log(1/σ),
Ω(σ/ε)} and δ′ = δ − σ.

Corollary 3.12. Let n be a security parameter, δ = δ(n) >
0, q = poly(n) computable in time poly(n). Let (X,B) be a
{0, 1}n × [q]-valued random variable. Then B has uniform
pseudoentropy at least H(B|X) + δ given X if and only if B
is uniformly δ KL-hard given X.

Note that we do not make any samplability assumption
on X (in both nonuniform and uniform settings).

Distinguishers are a central object in studying pseudoen-
tropy. A distinguisher D is a {0, 1}-valued randomized func-
tion, and D(x) denotes the probability that the function
outputs 1 on input x ∈ {0, 1}∗. A generalized distinguisher
D is a R+-valued randomized function, and D(x) denotes
the expectation of the output on input x. For generalized



distinguishers D1 and D2, the scalar multiple kD1 (k ≥ 0)
and the sum D1 +D2 are also generalized distinguishers.
A generalized distinguisher D is said to have distinguish-

ing advantage AdvD(X,Y ) = E [D(X)]− E [D(Y )] between
random variables X,Y . Thus for random variables (X,B),
(X,C):

AdvD((X,B), (X,C))

= E [D(X,B)−D(X,C)]

= E
X

[∑
a

D(X, a)(B(a|X)− C(a|X))

]
.

A key idea in our argument is to analyze the random vari-
able 2D for a generalized distinguisher D, defined as

2D(a|x) = 2D(x,a)∑
b 2

D(x,b)
.

This is a conditional version of the Boltzmann distribution
(orGibbs distribution; canonical ensemble) in statistical physics
[LL], which is the unique distribution that achieves max-
imum entropy under a linear constraint on the pmf. We
consider the conditional Boltzmann distribution in our con-
text for a similar reason: for any distinguisher D, it turns
out that C = 2kD (k ≥ 0) minimizes AdvD((X,B), (X,C))
among all C with H(C|X) ≥ r = H(2kD|X). (The uncon-
ditional version is well known in statistical physics [LL]. We
give a simple proof for the conditional version in Lemma
3.18). Thus a lower bound on AdvD((X,B), (X,C)) for
all C with H(C|X) ≥ r is equivalent to a lower bound for
C = 2kD.
In particular, we are able to relate AdvD((X,B), (X,2D))

to the KL divergence from (X,B) to (X,2D) and the en-
tropies of these random variables by the following key lemma:

Lemma 3.13. Let (X,B) be a {0, 1}n × [q]-valued random
variable, D be a generalized distinguisher. Then

KL(X,B||X,2D) = H(2D|X)−H(B|X)−AdvD((X,B), (X,2D)).

Proof.

KL(X,B||X,2D)

= E
X

[∑
a

B(a|X) log
B(a|X)

2D(a|X)

]
= H(2D|X)−H(B|X)

+ E
X

[∑
a

(B(a|X)− 2D(a|X)) log
1

2D(a|X)

]
= H(2D|X)−H(B|X)

+ E
X

[∑
a

(B(a|X)− 2D(a|X))

(
log
∑
b

2D(X,b) −D(X, a)

)]
= H(2D|X)−H(B|X)

+ E
X

[
−
∑
a

D(X, a)(B(a|X)− 2D(a|X))

]
= H(2D|X)−H(B|X)−AdvD((X,B), (X,2D)).

We note that with D(x, a) ≡ 0, this becomes the familiar
KL(X,B||X,U[q]) = log q − H(B|X). To quickly see why
this lemma is useful: suppose D has good performance dis-
tinguishing 2D from B, then we can use 2D to predict B
within small KL divergence; this is essentially the idea why
KL-hardness implies pseudoentropy, at least in the nonuni-
form setting (Part 1 of Theorem 3.8).

3.1 KL-hardness Implies Pseudoentropy, Nonuni-
form Setting

We begin with the main technical ingredient of pseudoen-
tropy implying KL-hardness.

Lemma 3.14. Let (X,B) be a {0, 1}n × [q]-valued random
variable where H(B|X) ≤ log q−δ for some δ ≥ 0. Let ε > 0,
and D be a distinguisher such that AdvD((X,B), (X,C)) >
ε for all C with H(C|X) ≥ H(B|X) + δ. Then there exists
k ∈ [0, (log q) /ε] such that KL(X,B||X,2kD) ≤ δ.

This lemma says that a universal distinguisher D — one
that distinguishes B from all high-entropy C’s — can be
used to approximate B to within small KL divergence.

Proof of Lemma 3.14. Let k0 = (log q)/ε. First we show
there exists k ∈ [0, k0] such that H(2kD|X) = H(B|X) + δ.
By Lemma 3.13,

AdvD((X,B), (X,2k0D))

=
1

k0

(
H(2k0D|X)−H(B|X)−KL(X,B||X,2k0D)

)
≤ log q

k0
= ε,

where we use nonnegativity of entropy and KL divergence.
Thus, by assumption H(2k0D|X) < H(B|X) + δ. Now we
know (i) H(2k0D|X) < H(B|X) + δ, (ii) H(20|X) = log q ≥
H(B|X) + δ, and (iii) H(2kD|X) is continuous as a funciton
of k ∈ [0,+∞). By the Intermediate Value Theorem, there
exists k ∈ [0, k0] such that H(2kD|X) = H(B|X) + δ.

Given such k, applying Lemma 3.13 again we get:

KL(X,B||X,2kD)

= H(2kD|X)−H(B|X)−AdvkD((X,B), (X,2kD))

= δ − kAdvD((X,B), (X,2kD))

≤ δ − kε ≤ δ.

To prove Part 1 of Theorem 3.8, we use the Min-Max The-
orem to get a universal distinguisher from the assumption
that B has low conditional pseudoentropy, and then apply
Lemma 3.14.

Theorem 3.15 (KL-hardness ⇒ pseudoentropy, nonuni-
form setting). Let (X,B) be a {0, 1}n × [q]-valued random
variable, δ > 0. If B is nonuniformly (t, δ) KL-hard given
X, then for every ε > 0, B has nonuniform (t′, ε) pseudoen-

tropy at least H(B|X)+ δ− ε given X for t′ = tΩ(1)/poly(n,
1/ε, log q).

Proof. Suppose for contradiction thatB does not have nonuni-
form (t′, ε) conditional pseudoentropy at least H(B|X)+δ−ε.
By definition, for any [q]-valued random variable C with
H(C|X) ≥ H(B|X) + δ− ε, there is a size t′ distinguisher D
between (X,B) and (X,C), with AdvD((X,B)(X,C)) > ε.



Consider the following two player zero-sum game. Player
1 picks a [q]-valued random variable C with H(C|X) ≥
H(B|X) + δ − ε. Player 2 picks a size t′ distinguisher D.
The payoff for Player 2 is AdvD((X,B)(X,C)).
Player 1 has no mixed strategy to force Player 2 to achieve

payoff at most ε, because a convex combination of random
variables with conditional entropy at least H(B|X) + δ − ε
also has conditional entropy at least H(B|X) + δ − ε. So,
by the Min-Max Theorem, Player 2 has a mixed strategy
that achieves expected payoff greater than ε regardless of
Player 1’s move. Rephrasing, there is a convex combination
D of size t′ distinguishers that is a universal distinguisher,
in the sense that AdvD((X,B), (X,C)) > ε for all C with
H(C|X) ≥ H(B|X) + δ − ε.
By Lemma 3.14, there exists k ∈ [0, (log q)/ε] such that

KL(X,B||X,2kD) ≤ δ−ε. In other words, P (x, a) = 2kD(x,a)

satisfies KL(X,B||X,CP ) ≤ δ − ε.

Efficiency.
P may not have small circuit size since D is a distribution

on size t′ circuits. Thus we replace D with D̃ which com-
putes the mean ofO

(
(n+ log q) /ε2

)
samples ofD, such that

∀x, a,
∣∣∣D̃(x, a)−D(x, a)

∣∣∣ ≤ ε/2. As |AdvD̃((X,B), (X,C))

− AdvD((X,B), (X,C))| ≤ ε/2, D̃ is an efficient universal
ε/2-distinguisher. By Lemma 3.14 there exists k ∈ [0, O(log q/ε)]

such that KL(X,B||X,2kD̃) ≤ δ − ε. We then approxi-

mate k by some rational k̃ to Θ(ε/c) precision so that ∀x, a,∣∣∣k̃D̃(x, a)− kD̃(x, a)
∣∣∣ ≤ ε/c, for a sufficiently large constant

c. Since k̃D̃ is rational valued, we can use Newton’s method

to construct a circuit P̃ approximating 2k̃D̃. This can be
done in such a way that

KL (X,B||X,CP̃ ) ≤ KL(X,B||X,2kD̃) + ε ≤ δ

and P̃ has size t = poly (t′, n, 1/ε, log q). See Lemma A.3 for
details. This contradicts the hypothesis that B is nonuni-
formly (t, δ) KL-hard given X.

3.2 KL-hardness Implies Pseudoentropy, Uni-
form Setting

To prove the uniform complexity version of Theorem 3.15,
we replace the use of the Min-Max Theorem in the proof
of Theorem 3.15 with a Uniform Min-Max Theorem from
our forthcoming paper [VZ1]. The Uniform Min-Max Theo-
rem constructively builds a near-optimal strategy of the first
player in a 2-player game from several best-responses of the
first player to strategies of the second player.

KL projection. Let C be a non-empty closed convex set of
Γ-valued random variables and let N be a Γ-valued random
variable. One can show that there exists a unique

M∗ = arg min
M∈C

KL(M ||N).

M∗ is called the KL projection of N on C.
A nice property of KL projection is the following geomet-

ric structure (see [CT], Chap 11, Section 6):

Theorem 3.16 (Pythagorean theorem). Let C be a non-
empty closed convex set of Γ-valued random variables. Let
M∗ be the KL projection of N on C. Then for all M ∈ C,

KL(M ||M∗) + KL(M∗||N) ≤ KL(M ||N).

In particular,

KL(M ||M∗) ≤ KL(M ||N).

Assuming KL(M∗||N) is finite, then Pythagorean theo-
rem implies the KL projection M∗ is unique: for any M ∈ C
which is also a KL projection, the theorem implies KL(M ||M∗)
= 0, which holds only when M = M∗.

Finding the exact KL projection is often computationally
imfeasible, so we consider approximate KL projection. We
say M∗ is a σ-approximate KL projection of N on C, if M∗ ∈
C and for all M ∈ C,

KL(M ||M∗) ≤ KL(M ||N) + σ.

In our context, let Cr denote the set of distributions (X,C)
over {0, 1}n × [q] for all C with H(C|X) ≥ r. We state here
the UniformMin-Max Theorem specialized to the case where
the strategies for Player 2 are distinguishers:

Let C(1) = U[q], c a sufficiently large constant
for i← 1 to S do

Obtain an arbitrary D(i) with

AdvD(i)((X,B), (X,C(i))) > cε

Weight Update: Let C(i)′ be such that

C(i)′(a|x) ∝ eε·D
(i)(x,a) · C(i)(a|x)

(X,C(i+1))← an arbitrary σ-approximate KL

projection of (X,C(i)′) on Cr
end

Let D∗ compute the average of D(1), . . . , D(S)

Algorithm 1: Finding Universal Distinguisher

Theorem 3.17 (UniformMin-Max Theorem for distinguish-
ers [VZ1]). Consider the two-player zero-sum game where
V = Cr for some r, W is a set of randomized boolean cir-
cuits, and for every (X,C) ∈ Cr, randomized circuit D ∈W ,
f((x, a), D) = E[D(X,B)]−D(x, a) so that F ((X,C), D) =
AdvD((X,B), (X,C)). Then for any 0 < ε ≤ 1, σ = ε2,
after

S = O

(
max

(X,C)∈Cr
KL(X,C||X,U[q])/ε

2

)
= O

(
(log q− r)/ε2

)
iterations Algorithm Finding Universal Distinguisher always
outputs some D∗ such that for all (X,C) ∈ Cr,

AdvD∗((X,B), (X,C)) = Ω(ε).

The proof of Theorem 3.17 can be found in our techni-
cal report [VZ2]. To implement Algorithm Finding Uni-
versal Distinguisher, in particular, we need to compute σ-
approximate KL projections on the conditional entropy ball
Cr.

3.2.1 Approximate KL Projection on the Conditional
Entropy Ball

In this section we describe how to efficiently find (X,C)
as a σ-approximate KL projection of (X,C′) on Cr. We
first describe the exact KL projection of random variable
(X,C) on a conditional entropy ball Cr, then show how to
approximate it.

Recall that for a generalized distinguisher D : {0, 1}n ×
[q] → R+, k ∈ R, and a {0, 1}n-valued random variable



X, we define a [q]-valued random variable 2kD (jointly dis-
tributed with X) as follows:

2kD(a|x) = 2kD(x,a)∑
b 2

kD(x,b)
.

We begin by showing that C = 2kD (k ≥ 0) minimizes
AdvD((X,B), (X,C)) among all C with H(C|X) ≥ H(2kD|X).
As mentioned above, 2kD is a conditional version of the
Boltzmann distribution in statistical physics [LL], for which
a similar property is well known. While this was our moti-
vation to consider the random variable 2kD, we did not ex-
plicitly need it for the nonuniform theorem (Theorem 3.15).
But why are distinguishers relevant at all, when all we want
is to KL-project an arbitrary (X,C) on some entropy ball?
The reason is that when viewing C as 2D for some gener-
alized distinguisher D, Lemma 3.13 says we can minimize
KL by maximizing the distinguishing advantage, assuming
that the entropy difference is fixed. This will be clear in the
proof of Lemma 3.19 below.

Lemma 3.18. For every C it holds that E
[
D(X,2kD)

]
≥

E [D(X,C)] for all k ≥ 0 such that H(2kD|X) ≤ H(C|X).

Proof. Consider any C where H(C|X) ≥ H(2kD|X). If k =
0, then H(2kD|X) = log q, so C and 2kD must both be
uniform on [q] given X and the result holds vacuously. Thus
assume k > 0. By Lemma 3.13,

H(2kD|X)−H(C|X)−AdvkD((X,C), (X,2kD))

= KL(X,C||X,2kD) ≥ 0,

where we use nonnegativity of KL divergence. Thus,

E [D(X,C)]− E
[
D(X,2kD)

]
=

1

k

(
AdvkD((X,C), (X,2kD))

)
≤ 1

k

(
H(2kD|X)−H(C|X)

)
≤ 0,

as desired.

Lemma 3.19 (KL projection on the conditional entropy
ball). Let (X,C) be a {0, 1}n × [q]-valued random variable
such that C(a|x) 6= 0 for all x, a. Let (X,C∗) be the KL
projection of (X,C) on Cr, where 0 ≤ r < log q. Let

D(x, a) = log
C(a|x)

minb {C(b|x)} .

Then C = 2D and C∗ = 2αD for some α ∈ (0, 1] such that
H(2αD|X) ≥ r (in fact H(2αD|X) = r whenever (X,C) /∈
Cr).

Proof. One can readily verify that D is a generalized distin-
guisher and C = 2D. Moreover, if (X,C) ∈ Cr then the KL
projection is (X,C) = (X,2D) itself, i.e. α = 1.
To find the KL projection for (X,C) /∈ Cr, we first note

there exists α ∈ (0, 1) such that H(2αD|X) = r (by the Inter-
mediate Value Theorem, because H(2D|X) < r, H(20|X) =
log q ≥ r and H(2kD|X) is continuous as a function of
k ∈ (0, 1)). By definition of KL projection, we want to min-
imize KL(X,C′||X,2D) over all C′ where H(C′|X) = r (as

KL projection is always on the boundary of Cr; see Lemma
A.1). By Lemma 3.13,

KL(X,C′||X,2D)

= H(2D|X)−H(C′|X)−AdvD((X,C′), (X,2D)).

Hence minimizing KL(X,C′||X,2D) is equivalent to maxi-
mizing AdvD((X,C′), (X,2D)) = E [D(X,C′)]−E

[
D(X,2D)

]
,

and the result follows from Lemma 3.18.

Lemma 3.20 (approximating KL projection on the condi-
tional entropy ball). There exists a poly(κ, n, q, 1/σ, log(1/γ))
time algorithm that given oracle access to D : {0, 1}n×[q]→
[0, κ] and OX , given σ > 0 and 0 ≤ r ≤ log q−σ, with prob-
ability 1 − γ (over its internal randomness) outputs some
β ∈ (0, 1] of bit length log(κ/σ) + log log q + O(1) such that
(X,2βD) is a σ-approximate KL projection of (X,2D) on
Cr.

Proof. We compute an estimate Hβ ∈ [H(2βD|X)±σ/6] for
a discrete β ranging from 0 to 1 in steps of σ/(cκ log q) for
some large enough constant c, and output D′ = βD for any
β satisfying Hβ ∈ [r + σ/6, r + 5σ/6]. This can be done in
time poly(κ, n, q, 1/σ, log(1/γ)) and with success probability
1−γ after a union bound over all cκ log q/σ values of β (see
Lemma A.3). If we fail to find such β, then we output β = 1.
We now argue correctness of the algorithm.

If we fail to find such β, then it must be only because
H(2D|X) ≥ r, in other words KL projection of

(
X,2D

)
∈ Cr

is simply itself. To see that, suppose H(2D|X) < r. Since
any σ/(cκ log q) variation in β causes at most σ/3 variation
in H(2βD|X) (Lemma A.4), and that H(20D|X) = log q ≥
r+σ, H(21D|X) < r, a discrete Intermediate Value Theorem
says there exists a discrete β ∈ [0, 1] with H(2βD|X) ∈ [r +
σ/3, r + 2σ/3]. In other words, we can find such β.

Hence WLOG assume we have found such β. Closeness
of Hβ to both r and H(2βD|X) ensures that

r ≤ H(2βD|X) ≤ r + σ.

Thus (X,2βD) ∈ Cr. Recall that the exact KL projection
of (X,2D) on Cr is (X,2αD) where α = 1 if (X,2D) ∈ Cr,
or 0 < α < 1 and H(2αD) = r if (X,2D) /∈ Cr (Lemma
3.19). To prove (X,2βD) is a σ-approximate KL projection,
it suffices to show that for any (X,C) ∈ Cr,

KL(X,C||X,2βD)−KL(X,C||X,2αD) ≤ σ.

Then we are done, as it will follow from Pythagorean The-
orem (Theorem 3.16) that

KL(X,C||X,2βD) ≤ KL(X,C||X,2αD) + σ

≤ KL(X,C||X,2D) + σ.

By Lemma 3.13,

KL(X,C||X,2βD)−KL(X,C||X,2αD)

= H(2βD|X)−H(2αD|X)

−
(
AdvβD((X,C), (X,2βD))−AdvαD((X,C), (X,2αD))

)
≤ (r + σ)− r

−
(
AdvβD((X,C), (X,2βD))−AdvαD((X,C), (X,2αD))

)
= σ + (α− β)E [D(X,C)] + βE[D(X,2βD)]− αE[D(X,2αD)].



Note that α ≥ β, because either α = 1 ≥ β (when (X,2D) ∈
Cr), or H(2αD|X) = r ≤ H(2βD|X) (when (X,2D) /∈ Cr)
and it follows from monotonicity of H(2kD|X) as a func-
tion of k in [0,+∞) (Lemma A.2). Thus by Lemma 3.18,
(α− β)E [D(X,C)] ≤ (α− β)E

[
D(X,2αD)

]
, and the above

inequality becomes

KL(X,C||X,2βD)−KL(X,C||X,2αD)

≤ σ + β
(
E
[
D(X,2βD)

]
− E

[
D(X,2αD)

])
= σ + β ·AdvD((X,2βD), (X,2αD)).

Now applying Lemma 3.13 again on 2αD and 2βD gives

AdvαD((X,2βD), (X,2αD))

= H(2αD)−H(2βD)−KL(X,2βD||X,2αD)

≤ H(2αD)−H(2βD) ≤ 0,

where we used nonnegativity of KL divergence. Therefore

KL(X,C||X,2βD)−KL(X,C||X,2αD) ≤ σ.

3.2.2 Putting it Together
We now have all the tools ready to prove Theorem 3.11

(KL hardness implies pseudoentropy, uniform setting). We
just will replace the use of the Min-Max Theorem in the
proof of Theorem 3.15 with the Uniform Min-Max Theorem
for distinguishers (Theorem 3.17), using Lemma 3.20 to im-
plement the approximate KL projection. However, notice
that H(B|X) hence the “radius” of the conditional entropy
ball Cr is unknown. We will simply try all radii (with quan-
tization) and pick the distinguisher that results in the best
KL predictor, which can be tested by sampling (X,B).

Theorem 3.21 (KL-hardness ⇒ pseudoentropy, uniform
setting). Let n be a security parameter, δ = δ(n) > 0,
t = t(n) ∈ N, ε = ε(n) > 0, q = q(n) all computable in
time poly(n). Let (X,B) be a {0, 1}n × [q]-valued random
variable. If B is uniformly (t, δ) KL-hard given X, then B
has uniform (t′, ε) pseudoentropy at least H(B|X) + δ − ε

given X, for t′ = tΩ(1)/poly(n, q, 1/ε).

Proof. Suppose for contradiction that B does not have uni-
form (t′, ε) conditional pseudoentropy at least H(B|X)+δ−ε.
By definition, there is a time t′ randomized oracle algo-
rithm D such that for infinitely many n and every C with
H(C|X) ≥ H(B|X) + δ − ε, DOX,B,C ε-distinguishes (X,B)
and (X,C).
Let Cr denote the entropy ball {(X,C) : H(C|X) ≥ r}.

Let γ > 0 be an error parameter to be fixed later. Assume
that given any r ≥ H(B|X)+ δ− ε/2, we can implement Al-
gorithm Finding Universal Distinguisher on C = Cr using or-
acle OX,B , to output a circuit D∗ of size poly(t′, n, log q, 1/ε,
log(1/γ)) w.p. at least 1−γ, in time poly(t′, n, q, 1/ε, log(1/γ)).
We show how to do in the end.
Let c be a large enough constant. We show that the fol-

lowing time t oracle algorithm P violates the hypothesis that

B is uniformly (t, δ) KL-hard given X:

INPUT: (x, a) ∈ {0, 1}n × [q]
ORACLE: OX,B

for r ← 0 to log q in steps of ε/c do
D∗ ← Run Algorithm Finding Universal

Distinguisher on C = Cr using oracle OX,B

for k ← 0 to (log q)/ε in steps of ε/c do
Add the generalized distinguisher kD∗ to list L

end

end
for each generalized distinguisher D′ ∈ L do

Estimate KL(X,B||X,2D′
) + H(B|X) within ε/c

error using oracle OX,B

end

Let D̃ ∈ L have the lowest estimate
POX,B (x, a) outputs an approximation of 2D̃(a|x)

Algorithm 2: A predictor P violating the KL-hardness of
B given X

To prove correctness, first we claim w.p. at least 1 − γ
there exists a generalized distinguisher kD∗ ∈ L satisfying

KL(X,B||X,2kD∗
) ≤ δ − ε/3 + ε/c.

Consider an iteration where r ∈ [H(B|X)+δ−ε/2,H(B|X)+
δ−ε/3]. Recall that we assume Algorithm Finding Universal
Distinguisher can be implemented on C = Cr to output a
circuit D∗ of size poly(t′, n, log q, 1/ε, log(1/γ)) w.p. at least
1−γ. Theorem 3.17 says that AdvD∗((X,B), (X,C)) = Ω(ε)
for all C with

H(C|X) ≥ H(B|X) + δ − ε/3 ≥ r.

Lemma 3.14 says there exists k∗ ∈ [0, (log q)/ε] such that

KL(X,B||X,2k∗D∗
) ≤ δ − ε/3. Thus in any inner iteration

where k ∈ [k∗ − ε/c, k∗], it follows from Lemma A.4 that

KL(X,B||X,2kD∗
) ≤ KL(X,B||X,2k∗D∗

) + ε/c

≤ δ − ε/3 + ε/c.

It turns out that by sampling, for each D′ ∈ L we can

estimate KL(X,B||X,2D′
) + H(B|X) within ε/c error w.p.

at least 1 − γ/|L|, in time poly (t′, n, 1/ε, q, log(1/γ)) (See
Lemma A.3). Thus, w.p. at least 1− γ the generalized dis-

tinguisher D̃ : {0, 1}× [q]→ [0, (log q)/ε] in L with the least
estimate satisfies

KL(X,B||X,2D̃) ≤ KL(X,B||X,2kD∗
) + 2ε/c.

Finally, approximating 2D̃ can be done using Newton’s method
to produce a predictor p : {0, 1}n × [q]→ [1, q1/ε] such that
w.p. at least 1− 3γ the random variable Cp satisfies

KL (X,B||X,Cp) ≤ KL(X,B||X,2D̃) + ε/c

≤ δ − ε/3 + 4ε/c ≤ δ − ε/4,

and the total running time is t = poly (t′, n, 1/ε, log q, log(1/γ)).
See Lemma A.3 for details.

We view POX,B as a distribution over functions p : {0, 1}n×
[q]→ [1, q1/ε], and it remains show that

E
p ∼P

OX,B

[KL(X,B||X,Cp)] ≤ δ.

By the earlier analysis we know that KL (X,B||X,Cp) <
(δ − ε/4) with probability at least 1 − 3γ over p ∼ POX,B ,



and for every p : {0, 1}n × [q]→ [1, q1/ε],

KL(X,B||X,Cp) = E

[∑
a

B(a|X) log (B(a|X)/Cp(a|X))

]
≤ max

x,a
log (1/Cp(a|x)) = O(log q + 1/ε).

Thus

E
p∼P

OX,B

[KL(X,B||X,Cp)]

≤ (1− 3γ) · (δ − ε/4) + (3γ) ·O(log q + 1/ε) ≤ δ

for an appropriate choice of γ = Ω(ε/(log q + 1/ε)), as de-
sired.

Implementing Finding Universal Distinguisher.
Given any r ≥ H(B|X)+δ−ε/2 and oracle access to OX,B ,

we show how to implement each of the S = O((log q)/ε2)
iterations of Algorithm Finding Universal Distinguisher on
C = Cr efficiently and output a size poly(t′, n, log q, 1/ε, log(1/γ))
circuitD∗ w.p. at least 1−γ, in time poly(t′, n, q, 1/ε, log(1/γ)).
Let γ′ > 0 be an error parameter to be fixed later. For

each iteration j ∈ [S], we will implement C(j) in Algorithm
Finding Universal Distinguisher by constructing a general-
ized distinguisher Dj as a circuit of size poly(t′, n, log q, 1/ε,

log(1/γ′)) such that C(j) = 2Dj . We do this for j = 1 by
setting D1 = 0. Assuming we have constructed Dj , we can
construct Dj+1 in time poly(t′, n, q, 1/ε) as follows:

1. We can obtain a size t′′ = poly(t′, n, log q, 1/ε, log(1/γ′))

distinguisher D(j) from Dj such that

AdvD(j)((X,B), (X,C(j))) > ε′ = cε

in time poly(t′, n, q, 1/ε) w.p. at least 1 − 2γ′, where
c is the constant in Algorithm Finding Universal Dis-
tinguisher.
By using Newton’s method to approximate 2Dj , we
can construct a circuit P̃ such that the random variable
C̃(a|x) = P̃ (x, a)/

∑
b P̃ (x, b) satisfies (i) H(C̃|X) ≥

H(C(j)|X)− ε/2; (ii) For any distinguisher D′, AdvD′

((X,B), (X,C(j))) ≥ AdvD′((X,B), (X, C̃))−ε/3. This
can be done in time poly(t′, n, log q, 1/ε, log(1/γ′)) w.p.
at least 1− γ′ (See Lemma A.3).
We then generate m = O((log(1/γ′) + n + log q)/ε2)

random samples of (X,B, C̃)t
′
and Ut′ , where C̃ is

samplable from X in time poly(t′, n, q, 1/ε, log(1/γ′)).

Finally let D(j) be the distinguisher that given (x, a),

chooses I ∈R [m] and outputs D
O

X,B,C̃ (x, a) using the

Ith copy of (X,B, C̃)t
′
to answer oracle queries and

the Ith copy of Ut′ as the internal randomness of D.
Note that the size of D(j) does not depend on the size
of Dj (but the size of Dj+1 will additively depend on

the size of D(j)).
By a Chernoff bound and union bound, w.p. at least
1− γ′ for every (x, a) we have∣∣∣D(j)(x, a)−D

O
X,B,C̃ (x, a)

∣∣∣ ≤ ε/3.

Thus,∣∣∣AdvD(j)((X,B), (X, C̃))−Adv
D

O
X,B,C̃

((X,B), (X, C̃))
∣∣∣

≤ ε/3.

Since

H(C̃|X) ≥ H(C(j)|X)− ε/4

≥ (H(B|X)+δ−ε/2)−ε/2=H(B|X)+δ−ε

the conditional pseudoentropy of B guarantees that

AdvD(j)((X,B), (X,C(j)))

≥ AdvD(j)((X,B), (X, C̃))− ε/3

≥ Adv
D

O
X,B,C̃

((X,B), (X, C̃))− ε/3− ε/3

> ε− 2ε/3 = ε′.

2. C(j+1)′ = 2Dj+(log e)ε·D(j)

. This is just the conse-
quence of multiplicative weight update.

3. We can obtain a size poly(t′, n, log q, 1/ε, log(1/γ′)) gen-
eralized distinguisher Dj+1 such that (X,2Dj+1) is an

O(ε2)-approximate KL projection of (X,C(j+1)′) on Cr
w.p. at least 1−γ′, in time poly(t′, n, q, 1/ε, log(1/γ′)).
Indeed, using Lemma 3.20 we can obtain an O(ε2)-
approximate KL projection (X,2Dj+1) where Dj+1 =

βj+1 · (Dj + ε′/2 ·D(j)) for some βj+1 ∈ (0, 1]. Notice

that Dj + ε′/2 ·D(j) is a [0, O(Sε)]-valued generalized
distinguisher as each iteration increases the range of
Dj by at most O(ε). Thus by Lemma 3.20, βj+1 is of
bit length log(S/ε) + log log q + O(1). Consequently,
Dj+1 is of size poly(t′, n, log q, 1/ε), as each iteration
increases size ofDj by at most t′′+poly(log(S/ε), log log q).

Let γ′ = γ/c′S for a large enough constant c′. By induc-
tion, w.p. at least 1 − O(Sγ′) = 1 − γ, we can construct
the required Dj for every j and every iteration is correctly
implemented in time poly(t′, n, q, 1/ε, log(1/γ)). Further-

more, D∗ which computes the average of D(j) has circuit
size O(S · t′′) = poly(t′, n, log q, 1/ε, log(1/γ)).

3.3 Pseudoentropy Implies KL-hardness

Theorem 3.22 (pseudoentropy ⇒ KL-hardness, nonuni-
form and uniform settings). Let n be a security parameter,
δ = δ(n) > 0, t = t(n) ∈ N, ε = ε(n) > 0, q = q(n),
σ = σ(n) all computable in time poly(n). Let (X,B) be a
{0, 1}n× [q]-valued random variable. If B has (non)uniform
(t, ε) pseudoentropy at least H(B|X) + δ given X, then B
is (non)uniformly (t′, δ′) KL-hard given X, for t′ = min

{tΩ(1)/poly(n, log(1/σ)),Ω(σ/ε)} and δ′ = δ − σ.
In the uniform case, this implication holds even for a

weaker definition of conditional pseudoentropy where we only
require indistinguishability against distinguishers with oracle
access to OX,B.

Proof. We shall prove the nonuniform version. Once so it
will be clear that the uniform version follows.

Suppose for contradiction thatB is not nonuniformly (t′, δ−
σ) KL-hard. Then there is a (δ − σ)-KL predictor P :
{0, 1}n × [q]→ [1,+∞) as a circuit of size t′. We show that
there is a size poly(t′, log(1/σ)) ≤ t universal distinguisher
D such that AdvD((X,B), (X,C)) > ε for every C with
H(C|X) ≥ H(B|X)+δ. Specifically, we show that if P is a λ-
KL predictor of size t′, then there is a size poly(t′, log(1/σ))
distinguisher D such that AdvD((X,B), (X,C)) ≥ (δ − λ−
σ/2)/2t′ for every C with H(C|X) ≥ H(B|X) + δ.



We claim the following distinguisher D is a desired uni-
versal distinguisher:

D(x, a) =
1

2t′
(
logP (x, a) + t′

)
.

Note that D is a distinguisher i.e. D(x, a) ∈ [0, 1], because

2−t′ ≤ P (x, a) ≤ 2t
′
. Moreover, one can verify that 22t′D =

CP .
Now consider any C with H(C|X) ≥ H(B|X)+ δ. Apply-

ing Lemma 3.13 twice, we obtain

H(22t′D|X)−H(B|X)−Adv2t′D((X,B), (X,22t′D))

= KL(X,B||X,22t′D) ≤ λ,

where the inequality by definition of λ-KL predictor, as well
as

H(22t′D|X)−H(C|X)−Adv2t′D((X,C), (X,22t′D))

= KL(X,C||X,22t′D) ≥ 0,

where the inequality is by nonnegativity of KL divergence.
Taking the difference yields

AdvD((X,B), (X,C))

= AdvD((X,B), (X,22t′D))−AdvD((X,C), (X,22t′D))

=
Adv2t′D((X,B), (X,22t′D))−Adv2t′D((X,C), (X,22t′D))

2t′

≥ H(C|X)−H(B|X)− λ

2t′

≥ δ − λ

2t′
.

Efficiency.
We approximate D by D̃, where logP (x, a) is computed

to precision σ/2. Since P (x, a) is represented as a rational

p1/p2 where p1, p2 ≤ 2t
′
, the logarithm can be approximated

to that precision in time poly(t′, log(1/σ)) using Taylor se-
ries. Thus D has circuit size poly(t′, log(1/σ)) ≤ t. More-
over, for any C with H(C|X) ≥ H(B|X) + δ, we have

AdvD̃((X,B), (X,C)) ≥ AdvD((X,B), (X,C))− 1

2t′
· σ
2

≥ δ − λ− σ/2

2t′
.

This completes the proof for the nonuniform case.
At this point, the uniform version also follows quite nat-

urally: Given P such that when POX,B is viewed as a dis-
tribution over functions p : {0, 1}n × [q]→ (0,+∞),

E
p ∼P

OX,B

[KL(X,B||X,Cp)] ≤ δ − σ.

We let D be the randomized oracle algorithm such that
DOX,B performs the above conversion from a λ-KL predic-
tor to a universal (δ − λ− σ/2)/2t′-distinguisher, replacing
the P (x, a) there with the output of simulating POX,B on
(x, a) (using random coin tosses and OX,B). Thus for every
C with H(C|X) ≥ H(B|X) + δ,

E
[
Adv

D
OX,B ((X,B), (X,C))

]
≥ E

p∼P
OX,B

[
δ −KL(X,B||X,Cp)− σ/2

2t′

]
≥ σ

4t′
> ε.

Furthermore, D runs in time poly(n, t′, log(1/σ)) ≤ t.

Since Theorem 3.22 only requires a weaker version of con-
ditional pseudoentropy, we obtain the following equivalence:

Corollary 3.23. Let n be a security parameter, δ = δ(n) >
0, q = q(n) computable in time poly(n). Let (X,B) be a
{0, 1}n × [q]-valued random variable that is polynomial-time
samplable. Then the following are equivalent:

1. B is uniformly δ KL-hard given X;

2. B has uniform pseudoentropy at least H(B|X)+δ given
X;

3. B has“weak”uniform pseudoentropy at least H(B|X)+
δ given X: For every probabilistic polynomial time al-
gorithm A and every constant c, there is a random
variable C jointly distributed with X,B such that the
following holds for all sufficiently large n:

• H(C|X) ≥ H(B|X) + δ − 1/nc;

• (X,B) and (X,C) are indistinguishable by A:

|Pr[A(X,B) = 1]− Pr[A(X,C) = 1]| ≤ 1

nc
.

Proof. 1⇒ 2 by Theorem 3.21. 2⇒ 3 by definition. 3⇒ 1
by Theorem 3.22 and the fact that (X,B) is polynomial-time
samplable.

4. FROM ONE-WAY FUNCTIONS TO NEXT-
BIT PSEUDOENTROPY

In this section, we show how to obtain a next-bit pseu-
doentropy generator from an arbitrary one-way function f .
One-way functions are functions easy to compute but hard
to invert:

Definition 4.1 (one-way functions). f : {0, 1}∗ → {0, 1}∗
is a (T, γ) one-way function for T = T (n), γ = γ(n) if
f is computable in polynomial time, and for every time T
randomized algorithm A, for all sufficiently large n, it holds
that Pry∼f(Un)[f(A(y)) = y] < γ. We say f is one-way if f
is (nc, 1/nc) one-way for every constant c.

This section is structured as follows. Given a one-way
function f , we first show that Un is KL-hard for sampling
given f(Un). By a chain rule for KL-hardness, we then ar-
gue it is KL-hard to sample the next bit of Un given f(Un)
and all previous bits of Un. Finally, we use the equivalences
between KL-hardness for sampling, KL-hardness, and condi-
tional pseudoentropy (for small q) to derive that (f(Un), Un)
has a lot of total next-bit pseudoentropy.

Lemma 4.2 (KL-hardness from one-way functions). Let n
be a security parameter, and f : {0, 1}n → {0, 1}n be (t, γ)
one-way, for t = t(n), γ = γ(n). Then Un is uniformly
(t′, log(1/γ)) KL-hard for sampling given f(Un), for t′ =
t/poly(n).

Proof. Suppose for contradiction that Un is not uniformly
(t′, log(1/γ)) KL-hard for sampling given f(Un), i.e. there
exists a time t′ randomized oracle algorithm S such that

KL
(
f(Un), Un||f(Un), S

Of(Un),Un (f(Un))
)
≤ log

1

γ
.



Let g(y, x) be the indicator function that f(x) = y. Since
applying a (deterministic) function does not increase KL
divergence (Lemma 2.5),

KL
(
g (f(Un), Un) ||g

(
f(Un), S

Of(Un),Un (f(Un))
))
≤ log

1

γ

where g(f(Un), Un) ≡ 1, and g
(
(f(Un), S

Of(Un),Un (f(Un))
)

equals 1 w.p. p = Pr[SOf(Un),Un (f(Un)) = Un]. Since the
KL divergence from Bernoulli(1) to Bernoulli(p) is log(1/p),
we must have p ≥ γ. That is,

Pr[SOf(Un),Un (f(Un)) = Un] ≥ γ.

Since Of(Un),Un can be simulated in time poly(n), this vio-
lates the fact that f is (t, γ) one-way for t = t′ ·poly(n).

Lemma 4.3 (chain rule for KL-hardness). Let Y be a dis-
tribution over {0, 1}n, jointly distributed with Z. If Y is uni-
formly (t, δ) KL-hard for sampling given Z, then YI is uni-
formly (t′, δ/n) KL-hard for sampling given (Z, Y1, . . . , YI−1),
for I ∈R [n], t′ = t/O(n).

Proof. Suppose YI is not uniformly (t′, δ/n) KL-hard for
sampling given (Z, Y1, . . . , YI−1), that is there exists a time
t′ randomized oracle algorithm S such that

KL
(
Z, Y1, . . . , YI ||Z, Y1, . . . , YI−1, S

OZ,Y1,...,YI (Z, Y1, . . . , YI−1)
)

≤ δ

n
.

Consider the time O(nt′) = t algorithm that samples
W1, . . . ,Wn from Z using oracle OZ,Y , where Wi is induc-
tively defined to be SOZ,Y1,...,YI (Z,W1, . . . ,Wi−1). By the
chain rule for KL divergence (Fact 2.4),

KL(Z, Y1, . . . , Yj ||Z,W1, . . . ,Wj)

−KL(Z, Y1, . . . , Yj−1||Z,W1, . . . ,Wj−1)

= KL((Yj |Z, Y1, . . . , Yj−1)||(Wj |Z,W1, . . . ,Wj−1))

= KL(Z, Y1, . . . , Yj ||Z, Y1, . . . , Yj−1, S
OZ,Y1,...,YI (Z, Y1, . . . , Yj−1))

where the last equality follows from definition of conditional
KL divergence. Telescoping over j = 1, . . . , n,

KL(Z, Y ||Z,W1, . . . ,Wn)

=
n∑

i=1

KL

(Z, Y1, . . . , Yi||Z, Y1, . . . , Yi−1, S
OZ,Y1,...,YI (Z, Y1, . . . , Yi−1))

= n ·KL

(Z, Y1, . . . , YI ||Z, Y1, . . . , YI−1, S
OZ,Y1,...,YI (Z, Y1, . . . , YI−1))

≤ n · δ
n

= δ.

This violates Y being uniformly (t, δ) KL-hard for sampling
given Z.

Now the remainder of showing next-bit pseudoentropy of
(f(Un), Un) follows from (i) KL-hard for sampling implies
KL-hard; (ii) KL-hard implis conditional pseudoentropy (for
small q). Formally,

Theorem 4.4 (next-bit pseudoentropy from one-way func-
tions). Let n be a security parameter, t = t(n), γ = γ(n),
ε = ε(n) all computable in polynomial time. Let f : {0, 1}n →

{0, 1}n be (t, γ) one-way. Then (f(Un), Un) has (t′, ε) uni-
form next-bit pseudoentropy at least n + log(1/γ) − ε, for

t′ = tΩ(1)/poly(n, 1/ε).

Proof. Let Z = f(Un), Y = Un and I ∈R [n]. By Lemma 4.2
and 4.3, YI is uniformly (t/poly(n), log(1/γ)/n) KL-hard for
sampling given (Z, Y1, . . . , YI−1). By Lemma 3.7, YI is uni-
formly (t/poly(n), log(1/γ)/n) KL-hard given (Z, Y1, . . . , YI−1).
By Theorem 3.21, YI has (t′, ε) uniform conditional pseu-
doentropy at least H(YI |Z, Y1, . . . , YI−1)+log(1/γ)/n−ε/n,

for t′ = tΩ(1)/poly(n, 1/ε). Equivalently, (Z, Y ) has (t′, ε)
uniform next-bit pseudoentropy at least H(Y,Z)+log(1/γ)−
ε = n+ log(1/γ)− ε.

Remark 4.5. The argument in this section says (f(Un), Un)
has a lot of next-bit pseudoentropy as long as Un is KL-hard
to sample from f(Un). The KL-hardness of sampling Un

from f(Un) is similar to the notion of a distributional one-
way function [IL] which amounts to replacing KL divergence
with statistical distance.

For Un to be KL-hard to sample from f(Un), it is not
necessary that f is one-way. For example, given any one-
way function h : {0, 1}n → {0, 1}n/2, define

f(x) =

{
x1,...,n/2 (xn/2+1,...,n = 0n/2)

h(x) (otherwise)
.

Clearly f is not one-way, but Un is still KL-hard to sample
from f(Un). Thus, our construction of next-bit pseudoen-
tropy generators (and later on, pseudorandom generators)
can be based on a larger class of functions.

5. FROM NEXT-BIT PSEUDOENTROPY TO
PSEUDORANDOMNESS

In this section, for brevity, we always assume the uniform
setting whenever referring to one-way functions and compu-
tational notions of (conditional) entropy. Nonetheless, these
results hold in the nonuniform setting too, with little or no
change in the argument.

5.1 The Construction
Haitner et al. show a construction of a pseudorandom

generator from any next-bit pseudoentropy generator Gnb.
Their result can be stated as follows:

Theorem 5.1 (pseudorandomness from next-bit pseudoen-
tropy [HRV]). Let n be a security parameter. Let ∆ =
∆(n) ∈ [1/poly(n), n], m = m(n), κ = κ(n) ∈ [n/2] be poly-
nomial time computable. For every polynomial time com-
putable Gnb : {0, 1}n → {0, 1}m such that Gnb(Un) has
(T, ε) next-bit pseudoentropy at least n + ∆, there exists a

(T − nO(1), nO(1) · (ε + 2−κ)) pseudorandom generator G :

{0, 1}d → {0, 1}d·(1+Ω(∆/n)) with seed length

d = O

(
m2n2κ log2 n

∆3

)
.

Moreover, G is computable in NC1 with O(d/n) (uniformly
random) oracle calls to Gnb.

By Theorem 4.4, we can simply use Un → (f(Un), Un) as
the next-bit pseudoentropy generator, and obtain the fol-
lowing construction of PRG G from one-way functions f
(illustrated in Figure 1), by applying the construction in
Theorem 5.1:
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Figure 1: Simplified construction of PRG from one-way
function f : {0, 1}n → {0, 1}m. Each row contains
u = Θ(n/ logn) iid copies of (f(Un), Un), shifted by a
random offset I ∈ [n + m]. To extract pseudorandom bits,
an arbitrary universal hash function H (with a proper
output length) is applied to all t = Θ(d/(u · (n +m))) bits
in the same column.

Construction 1. Given input Ud, the pseudorandom gener-
ator outputs

h, h(G1
1G

2
1 . . . G

t
1), h(G

1
2G

2
2 . . . G

t
2), . . .

where h is a universal hash function, and for each 1 ≤ i ≤ t,
Gi consists of u = Θ(n/∆) iid copies of (f(Un), Un), with
the first I bits of the first copy and the last m+n− I bits of
the last copy discarded, for I ∈R [n+m] (using a new copy
of I for each Gi). We let t = Θ(d/(u · n)).
If f : {0, 1}n → {0, 1}n is one-way, then setting parame-

ters m = n, ∆ = logn and κ = ω(logn), G is a PRG with
seed length any d = ω(n4) and stretch d · Ω((logn)/n).
The following corollary was pointed out to us by Yuval

Ishai: If f is a one-way function with exponential security
and linear circuit size, by using universal hash functions that
have linear circuit size as constructed in [IKOS], we can ob-
tain a PRG whose circuit complexity is linear in its stretch.
Such pseudorandom generators (with circuit complexity lin-
ear in their stretch) are useful for cryptography with con-
stant computational overhead [IKOS].

Corollary 5.2 (pseudorandom generators with constant
overhead). Suppose that there is a function f : {0, 1}n →
{0, 1}n computable by uniform circuits of size O(n) and such
that for some constant α > 0 and every constant c, f is
(nc, 2−αn) one-way. Then there exists a pseudorandom gen-
erator G : {0, 1}d → {0, 1}2d computable by uniform boolean
circuits of size O(d), for d = O(n · polylog(n)).

Proof. By Theorem 4.4, Gnb(Un) has uniform next-bit pseu-
doentropy at least (1 + α)n. By Theorem 5.1, there exists

a pseudorandom generator G : {0, 1}d → {0, 1}d·(1+α) with
seed length d = O(n log3 n). We see from the construction
(Construction 1) that G (i) performs O(d/n) evaluations of
f , for a total circuit size of O(d) since f has O(n) circuit
size; (ii) applies hashing on all Θ(n/α) columns and a total
of O(d) bits, for a total circuit size of O(d) using universal

hash functions computable by uniform circuits of linear size
[IKOS]. Thus G has circuit size O(d). We then do iterative
composition [Gol] d1/αe times to increase the output length
to 2d; this increases the circuit size by a constant factor.

This result does not follow from the [HRV] construction
alone, since their next-bit pseudoentropy generator requires
hash functions that support“local list-decoding”and are not
known to be implementable in linear size.

5.2 Saving Seed Length
In this section, we show how to save the seed length of

[HRV]’s construction of pseudorandom generators from next-
bit pseudoentropy generators, by a factor of Θ(n).

There are three steps in the construction:

1. Entropy equalization — discarding the first I bits of
the first copy and the last m−I bits of the last copy of
Gnb. Since Gnb is highly unstructured, nothing can be
said about the conditional pseudoentropy in any fixed
bit, yet by discarding a random prefix, each position
is now a random bit in Gnb. By taking many copies
of Gnb, the amortized loss of next-bit pseudoentropy
is small.

Lemma 5.3. [HRV] Let n be a security parameter,
m = m(n) = poly(n) and ` = `(n) = poly(n) be
poly(n) time computable integer functions, where `(n) >
1. Let X be random variable over {0, 1}m with (T, ε)-
next-bit pseudoentropy at least k, for T = T (n), ε =
ε(n) and k = k(n). Let J be uniformly distributed over

[m] and let X̃ = X
(1)
J , . . . , X

(1)
m , . . . , X

(`)
1 , . . . , X

(`)
J−1,

where X(i)’s are iid copies of X. Then every bit of X̃
has (T − O(` · m), ` · ε) conditional pseudoentropy at

least (`− 1)k/(`m), conditioned on previous bits of X̃
and J . 6

2. Converting conditional Shannon entropy to conditional
min-entropy — taking multiple (parallel) copies. This
generalizes the standard procedure of converting Shan-
non entropy to min-entropy by taking sufficiently many
copies. Conditional pseudo-min-entropy is defined anal-
ogously to conditional pseudoentropy; see [HRV].

Lemma 5.4. [HRV] Let n be a security parameter,
m = m(n) = poly(n) and t = t(n) = poly(n) be
poly(n) time computable integer functions. Let X be a
random variable over {0, 1}m where every bit of X has
(T, ε) conditional pseudoentropy at least α, for T =
T (n), ε = ε(n), α = α(n). Then for every κ = κ(n) >

0 it holds that every block of (X
(1)
1 , X

(2)
1 , . . . ), . . . , (X

(1)
m

, X
(2)
m , . . . ) conditioned on previous blocks, has (T ′, ε′)

conditional pseudo-min-entropy α′, where X(i)’s are
iid copies of X, and

• T ′ = T ′(n) = T −O(m · t),
• ε′ = ε′(n) = t2 · (ε + 2−κ + 2−ct) for a universal

constant c > 0, and

• α′ = α′(n) = t ·α−Γ(t, κ), for Γ(t, k) ∈ O(
√
t · κ ·

log t).

6This is slightly stronger than the version in [HRV], which
does not condition on J . However, it is easy to see from
their proof that one can additionally condition on J .
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Figure 2: Iterative composition for Z-seeded PRG
G

3. Randomness extraction. This step is essentially a com-
putational version of block source extraction. At the
previous step, the amount of next-bit pseudo-min-entropy
in each block is known. So we may choose hash func-
tions of fixed output length to make the output pseu-
dorandom.

Lemma 5.5. [HRV] Let n be a security parameter,
m = m(n) = poly(n), t = t(n) = poly(n), α = α(n) ∈
[t(n)] and κ = κ(n) ∈ [α(n)] be poly(n) time com-
putable integer functions. Let {hs : {0, 1}t → {0, 1}α−κ}
be some family of universal hash functions. Let X1, . . . , Xm

be random variables over {0, 1}t such that every Xi

conditioned on X1, . . . , Xi−1 has (T, ε) conditional pseudo-
min-entropy α, for T = T (n) and ε = ε(n). Then

(h, h(X1), . . . , h(Xm)) is (T −m · tO(1),m · (ε+2−κ/2))
pseudorandom, where h is a random hash function from
the family.

We refer to [HRV] for the proofs and detailed explanation
of intuition behind these steps.
The seed length blow up in [HRV] comes from Step 1 (En-

tropy Equalization) and Step 2 (Converting to conditional
min-entropy), as each involves repeating the current gener-
ator on many independent seeds. We show how to save the
blow up due to Entropy Equalization, by showing how ran-
domness from a “few” copies of Gnb can be used to generate
more copies of Gnb, and iteratively.
Specifically, we show that the [HRV] construction above,

but taking only ` = 2 copies in Entropy Equalization, gives
rise to a “Z-seeded” PRG, one that given input distribu-
tion Z outputs some (Z̃, Ũσ) indistinguishable from (Z,Uσ).
(If Z were uniformly distributed in {0, 1}d, this would be a
standard PRG.) Then we apply iterative composition (just
like iterative composition for standard PRGs [Gol]) to in-
crease the number of pseudorandom bits (without changing
the seed distribution Z).
We begin by describing the iterative composition of Z-

seeded PRGs, illustrated in Figure 2.

Lemma 5.6 (iterative composition of Z-seeded PRGs). Let
n be a security parameter. Let σ = σ(n), ` = `(n) = poly(n)
be poly(n) time computable functions. Let Z = Z(n) be a
distribution samplable in poly(n) time using d = d(n) bits
of randomness. Let G be a generator computable in poly(n)

time such that G(Z) = (Z̃, Ũσ) is (T, ε)-indistinguishable
from (Z,Uσ), for T = T (n), ε = ε(n). Then there is a (T −
poly(n), `ε) pseudorandom generator G′ : {0, 1}d → {0, 1}`σ
computable in poly(n) time.

Proof. Consider the following algorithm G`(z): If ` = 0 then
output ε (the empty string). If ` ≥ 0 then let (z̃, ũ) = G(z)
and output G`−1(z̃) ◦ ũ.
We claim that G`(Z) is pseudorandom, so we obtain the

desired PRG G′ by composing G` with algorithm that sam-

ples Z given d random bits. Clearly G′ runs in poly(n)
time. We show the pseudorandomness of G`(Z) by a hybrid
argument.

Suppose for contradiction thatG`(Z) is not (T ′, `ε)-pseudo-
random, i.e. there exists a T ′ time `ε-distinguisher D be-
tween G`(Z) and U`σ. For each 0 ≤ i ≤ ` define a hybrid
distribution Hi = (Gi(Z), U(`−i)σ). Thus H0 = U`σ and
H` = G`(Z). Let I ∈R [`]. Then

E [D(HI)−D(HI−1)] =
1

`

∑̀
k=1

E [D(Hk)−D(Hk−1)]

=
1

`
E[D(G`(Z))−D(U`σ)] > ε.

We use this to break the pseudorandomness property of
G. Denote G(Z) = (Z̃, Ũσ). We claim that D′(z, u) =
D(GI−1(z) ◦ u ◦ U(`−I)σ), where I ∈R [`] and |u| = σ, ε′-

distinguishes (Z,Uσ) from (Z̃, Ũσ). Notice that given (z̃, ũ) =
G(z), we have (GI−1(z̃), ũ) = GI(z) by definition of G`.

Thus, D′(Z̃, Ũσ) = D(GI(Z) ◦ U(`−I)σ) = D(HI) whereas
D′(Z,Uσ) = D(GI−1(Z) ◦ Uσ ◦ U(`−I)σ) = D(HI−1). It
follows that

E[D′(Z,Uσ)−D′(Z̃, Ũσ)] = E[D(HI)−D(HI−1)] > ε.

Moreover, D′ is computable in T ′ + poly(n) time. For an
appropriate T ′ = T − poly(n), this contradicts that (Z,Uσ)

and (Z̃, Ũσ) are (T, ε) indistinguishable. Therefore, G`(Z)
is (T − poly(n), `ε)-pseudorandom.

We now show how to construct a Z-seeded PRG G from
any next-bit pseudoentropy generator Gnb, as demonstrated
in Figure 3. By applying iterative composition, this gives
rise to a seed-efficient construction of PRG from a pseu-
doentropy generator Gnb which should be compared to the
original construction illustrated in Figure 1.

Theorem 5.7 (Z-seeded PRGs from next-bit pseudoen-
tropy). Let n be a security parameter. Let ∆ = ∆(n) ∈
[1/poly(n), n], m = m(n), κ = κ(n) ∈ [n/2] be polynomial-
time computable functions. For every polynomial-time com-
putable Gnb : {0, 1}n → {0, 1}m such that Gnb(Un) has (T, ε)
next-bit pseudoentropy at least n + ∆ (for T = T (n) and
ε = ε(n)), there exists distribution Z = Z(n) and generator
G such that:

1. Z is samplable in polynomial time using

d = O

(
m2nκ log2

(
nκ
∆

)
∆2

)

bits of randomness;

2. G is computable in polynomial time and G(Z) is (T −
nO(1), nO(1) · (ε+ 2−κ)) indistinguishable from (Z,U),
U being uniformly random string of length Ω(d ·∆/n).

Moreover, G is computable with O(d/n) (uniform and in-
dependent) oracle calls to Gnb.

Proof. Let t be a parameter to be fixed later. Let J(1), . . . , J(t)

be t iid copies of J ∈R [m], and H ∈R {0, 1}t. Consider

Z =(H ◦ J(1) . . . J (t)

◦Gnb(U
(1))1,...,J(1)−1 . . . Gnb(U

(t))1,...,J(t)−1

◦Gnb(U
(t+1)) . . . Gnb(U

(2t)))



Gnb(Un)

H
(·)

H
(·)

H
(·)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Gnb(Un)

Ũ

Gnb(Ũ
(1))

Gnb(Ũ
(2))

Gnb(Ũ
(t))

Ũ (1)

Ũ (t)
. . .

. . .

(tn bits)

Figure 3: Construction of Z-seeded PRG G from any
next-bit pseudoentropy generator Gnb

The shaded area represents input Z. The bold boxes are the
output G(Z) = (Z̃, Ũ).

The ith row is shifted by a random offset J(i) ∈ [n + m].
An arbitrary universal hash function H (with a proper out-
put length) is then applied to all bits in the same column,

producing pseudorandom bits (Ũ (1), . . . , Ũ (t), Ũ) where each

Ũ (i) is of length n. We then apply Gnb to each Ũ (i). To-
gether with unused bits of Z they form Z̃.
We ignore H, J(1), . . . , J(t) in the figure since they are the
same in the input and output of G.

where U (i)’s are iid copies of Un. Z is clearly samplable in
polynomial time using d = t+ t · (logm+ 2n) = O(tn) bits
of randomness.
We now define G. Interpret G’s input as h ◦ j(1) . . . j(t) ◦

Gnb(u
(1))1,...,j(1)−1 . . . Gnb(u

(t))1,...,j(t)−1◦Gnb(u
(t+1)) . . . Gnb

(u(2t)), where h, j(i), u(i) are strings of length t, logm and n
respectively. G is defined as follows:

1. For each i ∈ [t] (that is, for each “row”), we set y(i) =(
Gnb(u

(t+i))j(i),...,m ◦Gnb(u
(i))1,...,j(i)−1

)
(Entropy Equal-

ization);

2. Apply a universal hash function h : {0, 1}t → {0, 1}t
′

where t′ will be chosen later so that t′m > tn, on

y
(1)
j ◦ . . . ◦ y(t)

j , for each j ∈ [m] (that is, for each

“column”). Thus m calls to h produce t′m bits in total:

ũ(1) . . . ũ(t) ◦ ũ

= h(y
(1)
1 , . . . , y

(t)
1 ) ◦ h(y(1)

2 , . . . , y
(t)
2 ) . . . h(y(1)

m , . . . , y(t)
m )

where ũ(1), . . . , ũ(t) are n-bit strings, and ũ is the re-
maining t′m− tn bits.

3. Output

h ◦ j(1) . . . j(t)

◦Gnb(u
(t+1))1,...,j(1)−1 . . . Gnb(u

(2t))1,...,j(t)−1

◦Gnb(ũ
(1)) . . . Gnb(ũ

(t)) ◦ ũ.

We now prove that G(Z) is computationally indistinguish-
able from (Z ◦ U) where U = Ut′m−tn (i.e. a t′m − tn bit
random string). Suppose we run G(Z) to obtain

G(Z) =
(
H ◦W ◦Gnb(Ũ

(1)) . . . Gnb(Ũ
(t)) ◦ Ũ

)
where Ũ is of length t′m− tn, and

W =(
J(1) . . . J (t) ◦Gnb(U

(t+1))1,...,J(1)−1 . . . Gnb(U
(2t))1,...,J(t)−1

)
.

In the following, we will show thatG(Z) = (H◦W◦Gnb(Ũ
(1))

. . . Gnb(Ũ
(t)) ◦ Ũ) is computationally indistinguishable from

(Z ◦ U) =
(
H ◦W ◦G(1)

nb . . . G
(t)
nb ◦ U

)
, where G

(i)
nb ’s are iid

copies of Gnb(Un). The proof is essentially the same 3-step
analysis as in Haitner et. al, with the tweak that the con-
ditional pseudoentropy and conditional pseudo-min-entropy
are now additionally conditioned on W , and the final indis-
tinguishablility holds for W taking any value.

In Step 1, we set

Y (i) = Gnb(U
(t+i))J(i),...,m ◦Gnb(U

(i))1,...,J(i)−1.

Recall that Gnb(Un) has (T, ε) next-bit pseudoentropy at
least n + ∆. Applying Lemma 5.3 (Entropy Equalization)

with ` = 2, X(1) = Gnb(U
(t+i)) and X(2) = Gnb(U

(i)), we

obtain that every bit of Y (i) conditioned on previous bits
of Y (i), Gnb(U

(t+i))1,...,J(i)−1 and J(i), has (T − O(m), 2ε)
conditional pseudoentropy at least (∆ + n)/m.

Recall that Y (1), . . . , Y (t) are t independent rows. By

Lemma 5.4 (t-fold parallel repetition), Y
(1)
j , . . . , Y

(t)
j has

(T −O(mt), t2 · (2ε+ 2−κ + 2−ct)) conditional pseudo-min-
entropy at least α = t(∆+n)/m−O(

√
tκ log t), conditioned

on W and all Y
(1)
k , . . . , Y

(t)
k where k < j.

In Step 2, we apply hashing to each “column”. By Lemma
5.5, if we set t′ = α−2κ, then (H ◦Ũ (1) . . . Ũ (t)◦Ũ) and (H ◦
Utn ◦U) are (T −O(mt)−mtO(1),mt2 · (2ε+2−κ+2−Ω(t))+
m ·2−κ) indistinguishable, for W taking any value. Thus the

same can be said about (H ◦Gnb(Ũ
(1)) . . . Gnb(Ũ

(t))◦Ũ) and

(H ◦G(1)
nb . . . G

(t)
nb ◦ U). Thus we conclude that

G(Z) =
(
H ◦W ◦Gnb(Ũ

(1)) . . . Gnb(Ũ
(t)) ◦ Ũ

)
is (T −O(mt)−mtO(1),mt2 · (2ε+2−κ +2−Ω(t)) +m · 2−κ)
indistinguishable from(

H ◦W ◦G(1)
nb . . . G

(t)
nb ◦ U

)
= (Z ◦ U) .

We are left to set the parameters. We need to guarantee

Ω

(
∆

n
d

)
≤ t′m− tn

=

(
t(∆ + n)

m
−O(

√
tκ log t)− 2κ

)
m− tn



where d = O(tn). Assuming κ ≤ O(t), this can be simplified
to

√
t

log t
≥ O

(
m
√
κ

∆

)
which is guaranteed for an appropriate choice of

t = O

(
m2κ log2

(
mκ
∆

)
∆2

)
,

and consequently

d = O(tn) = O

(
m2nκ log2

(
mκ
∆

)
∆2

)
= O

(
m2nκ log2

(
nκ
∆

)
∆2

)
.

So (Z,U) and G(Z) are (T − O(ts) − mtO(1),mt2 · (2ε +
2−κ +2−Ω(t))+m2−κ) = (T −nO(1), nO(1) · (ε+2−κ)) indis-
tinguishable. Moreover, G makes O(d/n) uniformly random
oracle calls to Gnb.

Combining Lemma 5.6 and Theorem 5.7, we obtain a seed
length efficient construction of pseudorandom generators:

Corollary 5.8 (pseudorandomness from next-bit pseudoen-
tropy). Let n be a security parameter. Let ∆ = ∆(n) ∈
[1/poly(n), n], m = m(n), κ = κ(n) ∈ [n/2], ` = `(n) =
poly(n) be computable in time poly(n). For every polyno-
mial time computable Gnb : {0, 1}n → {0, 1}m such that
Gnb(Un) has (T, ε) next-bit pseudoentropy at least n + ∆
(for T = T (n) and ε = ε(n)), there exists a polynomial-

time computable (T −nO(1), nO(1) · (ε+2−κ)) pseudorandom

generator G : {0, 1}d → {0, 1}d·(`∆/n) with seed length

d = O

(
m2nκ log2

(
nκ
∆

)
∆2

)
.

Moreover, G is computable with O(`d/n) (uniformly ran-
dom) oracle calls to Gnb.

Proof. By Theorem 5.7, there is a Z-seeded PRG G′ where
Z is samplable in polynomial time from Ud, and G′(Z) is

(T − nO(1), nO(1) · (ε+ 2−κ)) indistinguishable from (Z,U).
By Lemma 5.6 there exists a pseudorandom generator G
with the above parameters.

In particular, from a one-way function f : {0, 1}n →
{0, 1}n and setting m = n, ∆ = logn, κ = ω(logn), ` =
2n/∆ we can construct a pseudorandom generator of seed
length any d = ω(n3 logn). Like [HRV], the construction
obtains Θ(logn) bits of additive stretch per invocation of
the one-way function, which is optimal by [GGKT].
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APPENDIX
A. INFORMATION-THEORETIC FACTS AND

APPROXIMATION
Proofs for these facts can be found in the technical report [VZ2].

Lemma A.1. The KL projection of any C on any convex
set C 63 C is in the boundary of C.

Lemma A.2. For every generalized distinguisher D, H(2kD|X)
is monotone decreasing in k for k ∈ [0,+∞).

Lemma A.3 (approximation lemma).

1. There is a poly(t, n, log q, 1/σ, log(1/γ)) time algorithm

P̃ : {0, 1}n × [q]→ [1, 2κ̃] that, given a generalized dis-

tinguisher D̃ : {0, 1}n × [q] → [0, κ̃] as a circuit of size
t, σ > 0, γ > 0, with probability 1 − γ (over its inter-
nal randomness) the following holds: for the random
variable

C̃(a|x) = P̃ (x, a)∑
b P̃ (x, b)

,

for any generalized distinguisher D where ∀x, a, |D(x, a)−
D̃(x, a)| ≤ σ, and any D′ : {0, 1}n → [0, κ]:∣∣∣E [D′(X, C̃)

]
− E

[
D′(X,2D)

]∣∣∣ = κ ·O(σ),

∣∣∣KL(X,B||X, C̃)−KL(X,B||X,2D)
∣∣∣ = O(σ),

∣∣∣H(C̃|X)−H(2D|X)
∣∣∣ = (H(2D|X) + 1

)
·O(σ).

2. There is a poly(t, n, q, 1/ε, log(1/γ)) time algorithm that
given a generalized distinguisher D : {0, 1}n× [q]→ R+

as a circuit of size t, ε > 0, γ > 0, with probability
1−γ (over its internal randomness) estimates H(2D|X)
within O(ε) additive error.

3. There is a poly(κ, t, n, q, 1/ε, log(1/γ)) time oracle al-
gorithm that given a generalized distinguisher D : {0, 1}n×
[q] → [0, κ] as a circuit of size t, ε > 0, γ > 0, for
any {0, 1}n × [q]-valued random variable (X,B), with
probability 1 − γ (over its internal randomness) esti-
mates AdvD((X,B), (X,2D)) and KL(X,B||X,2D) +
H(B|X) within O(ε) additive error using oracle OX,B.

Lemma A.4. For any generalized distinguishers D1, D2,
any {0, 1}n × [q]-valued random variable (X,B),∣∣∣H(2D1 |X)−H(2D2 |X)

∣∣∣
=
(
H(2D2 |X) + 1

)
·O
(
max
x,a
|D1(x, a)−D2(x, a)|

)
,∣∣∣KL(X,B||X,2D1)−KL(X,B||X,2D2)

∣∣∣
= O

(
max
x,a
|D1(x, a)−D2(x, a)|

)
.
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