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Abstract

We develop a computer-assisted method for the discovery of insightful conceptualizations, in
the form of clusterings (i.e., partitions) of input objects. Each of the numerous fully automated
methods of cluster analysis proposed in statistics, computer science, and biology optimize a
different objective function. Almost all are well defined, but how to determine before the
fact which one, if any, will partition a given set of objects in an “insightful” or “useful” way
for a given user is unknown and difficult, if not logically impossible. We develop a metric
space of partitions from all existing cluster analysis methods applied to a given data set (along
with millions of other solutions we add based on combinations of existing clusterings), and
enable a user to explore and interact with it, and quickly reveal or prompt useful or insightful
conceptualizations. In addition, although uncommon in unsupervised learning problems, we
offer and implement evaluation designs that make our computer-assisted approach vulnerable
to being proven suboptimal in specific data types. We demonstrate that our approach facilitates
more efficient and insightful discovery of useful information than either expert human coders
or many existing fully automated methods. We (will) make available an easy-to-use software
package that implements all our suggestions.
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1 Introduction

Creating categories and classifying objects in the categories “is arguably one of the most central

and generic of all our conceptual exercises. It is the foundation not only for conceptualization,

language, and speech, but also for mathematics, statistics, and data analysis in general. Without

classification, there could be no advanced conceptualization, reasoning, language, data analysis or,

for that matter, social science research” (Bailey, 1994). An important step in the development of

new hypotheses is the adoption of new ways of partitioning objects into categories. In this paper, we

develop a method intended to assist in the creation of new and insightful conceptualizations from a

wide array of possible data sets and substantive problems. We focus on creating “clusterings” (i.e.,

partitions) of a given set of input objects in an “unsupervised” framework (i.e., with no training

set).

Illustrations of useful clusterings in particular applications have been found for some of the

existing individual cluster analysis methods. However, for a given application, no method exists

for choosing before the fact which of these unsupervised approaches will lead to the most useful

clusterings, or the most insightful discoveries.

Although our approach builds on almost all prior methods, our goal diverges from the existing

literature in one crucial respect: whereas current cluster analysis methods are designed to produce

fully automated clustering (FAC), we attempt to create a computer-assisted clustering (CAC) ap-

proach. The problem with FAC is that it requires a single, precisely defined objective function

that works across applications. This is infeasible given that human beings are typically optimizing

a (mathematically ill-defined) goal of “insightful” or “useful” conceptualizations; the definition of

“insightful” differ to some degree by user; and codifing human creativity in a mathematical func-

tion is either logically impossible or well beyond current technology. (Existing methods, which we

describe as FAC, do come with tuning parameters that enable a user to adjust the optimization

function, but most adjustments turn out to have very small empirical effects, typically much smaller

than the differences between alternative methods.)

We develop a CAC approach that uses and encompasses all existing automated cluster analysis

methods, numerous novel ones we create (based on combinations of existing solutions), and any

others a researcher may create by hand or other technique. By using the collective wisdom of
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the statistical literature on cluster analysis, we generate a single approach applicable across many

substantive problems, without having to know ahead of time which method to apply. We are able

to do this by requiring interaction between our methodology and a human user.

In part because of the unsupervised learning nature of cluster analysis, the literature offers few

satisfactory procedures for evaluating categorization schemes or the methods that produce them.

Unlike in supervised learning methods or classical statistical estimation, straightforward concepts

like unbiasedness or consistency do not immediately apply. We respond to this challenge with new

designs for evaluation experiments that reveal the quality of the results and the degree of useful

information discovered. We implement these experimental designs in a variety of data sets and

show that our CAC methods lead to more insightful conceptualizations than either subject matter

experts or FAC programs can do alone.

In practice, before applying our algorithm and evaluation techniques, researchers may wish to

set aside a randomly selected test set of observations. This hold-out set could then be used as a way

of making the researcher vulnerable to beign wrong about the applicability or generality of a new

conceptualization. This may also help prevent researchers from choosing clusterings that merely

conform to preexisting conceptualizations, although of course researchers may also choose to let

these preexisting views help guide their search for new conceptualizations. Below, we demonstrate

that the clusterings and conceptualizations we discover in our subset of documents provide a useful

way of analyzing the entire collection of documents.

Although our methods apply to categories of any type of object, we apply them here to clustering

documents containing unstructured text. The spectacular growth in the production and availability

of text makes this application of crucial importance in many fields.

2 Methodology

One way to think about CAC is to imagine presenting an extremely long list of clusterings (ideally,

all of them), and letting the researcher choose the best one for his or her substantive purposes.

However, human beings do not have the patience, attention span, memory, or cognitive capacity

to evaluate so many clusterings in haphazard order. Moreover, from the point of view of a human

being, many clusterings are essentially the same (imagine 10,000 documents sorted into 5 categories
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and moving one document from category 3 to 4; these clusterings are essentially the same since

few would even be able to perceive the difference.) Thus, we seek to organize these clusterings so

researchers can quickly (usually in 15-30 minutes) select the one that best satisfies their particular

objectives.

Our procedure represents each clustering as a point in a two-dimensional visual space, such

that clusterings (points) close together in the space are almost the same (and so can be disregarded

except for fine tuning), and those farther apart may warrent a closer look because they differ

in some important way. In effect, this visualization translates the unintepretable chaos of huge

numbers of possible clusterings into a simple framework that (we show) human researchers are able

to comprehend and use to efficiently select one or a small number of clusterings which conveys the

most useful information.

To create our space of clusterings, we follow six steps, outlined here and detailed below. First,

we translate textual documents to a numerical data set (Section 2.1). (This step is necessary only

when the items to be clustered are text documents or in general not already numerical; all our

methods would apply without this step to objects with preexisting numerical data.) Second, we

apply (essentially) all clustering methods proposed in the literature, one at a time, to the numerical

data set (Section 2.2). Each approach represents different substantive assumptions that are difficult

to express before their application, but the effects of each set of assumptions are easily seen in the

resulting clusters, and it is the resulting clustering that is of most interest to applied researchers. (A

new R package we have written makes this relatively fast.) Third, we develop a metric to measure

the similarity between any pair of clusterings (Section 2.3). Fourth, we use this metric to create

a metric space of clusterings, along with a lower dimensional Euclidean representation useful for

visualization (Section 2.4).

Fifth, we introduce a “local cluster ensemble” method (Section 2.5) as a way to summarize any

point in the space, including points for which there exist no prior clustering methods — in which

case they are formed as local weighted combinations of existing methods, with weights based on

how far each existing clustering is from the chosen point. This allows for the fast exploration of

the space, ensuring that users of the software are able to quickly identify partitions useful for their

particular research question. Sixth and finally, we develop a new type of animated visualization
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which uses the local cluster ensemble approach to explore the metric space of clusterings by moving

around it while one clustering slowly morphs into others (Section 2.6), again to rapidly allow users

to easily identify the partition (or partitions) useful for a particular research question. We also

introduce an optional addition to our method which creates new clusterings (Section 2.7).

2.1 Standard Preprocessing: Text to Numbers

We begin with a set of text documents of variable length. For each, we adopt common procedures for

representing them quantitatively: we transform to lower case, remove punctuation, replace words

with their stems, and drop words appearing in fewer than 1% or more than 99% of documents. For

English documents, about 3,500 unique word stems usually remain in the entire corpus. We then

code each document with a set of (about 3,500) variables, each coding the number of times a word

stem is used in that document.

Despite all the information discarded, these procedures are very common (Manning, Raghavan

and Schütze, 2008). The reason is that most human language is highly repetitive and so this

representation is usually more than adequate. For example, we need not read many sentences of a

vitriolic blog post about a political candidate before getting the point. Our general procedure also

accommodates multiple representations of the same documents. These might include tf-idf or other

term weighting representations, part of speech tagging, tokenization rules such as replacing “do”

and “not” with “do not”, etc. (Monroe, Colaresi and Quinn, 2008). Likewise, the many variants of

kernel methods — procedures to produce a similarity metric between documents without explicitly

representing the words in a matrix — could also be included (Shawe-Taylor and Cristianini, 2004).

2.2 The Collective Wisdom of the Statistical Community

Second, we apply a large number of clustering methods, one at a time, to the numerical representa-

tion of our documents. To do this, we have written an R package that runs (with a common syntax)

every published clustering method we could find that has been applied to text and used in at least

one article by an author other than its developer; we have also included many clustering methods

that have not been applied to text before. We developed computationally efficient implementations

for the methods included in our program (including variational approximations for the Bayesian

statistical methods; Jordan et al. 1999) so that we can run all the methods on a moderate sized data
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set in only about 15 minutes; new methods can easily be added to the package as well. Although

inferences from our method are typically not affected much, and almost never discontinuously, by

including any additional individual method, there is no disadvantage in including as many methods

as are available.

A complete list of the methods that we include in our application is available in the supplemen-

tary appendix, but the method is extremely flexible. The only requirement is that each “method”

form a proper clustering, with each document assigned either to a single cluster or to different

clusters with weights that sum to 1.

2.3 Distance Between Clusterings

We next derive a metric for measuring how similar one clustering is to another. We do this

stating three axioms that narrow the range of possible choices to only one. First, the distance is a

function of the number of pairs of documents not placed together (i.e., in the same cluster) in both

clusterings. (We also prove in the supplementary notes that focusing on pairwise disagreements

between clusterings is sufficient to encompass differences based on all possible larger subsets of

documents, such as triples, quadruples, etc.) Second, we require that the distance be invariant to

the number of documents, given any fixed number of clusters in each clustering. Third, we set

the scale of the measure by fixing the minimum distance to zero and the maximum distance to

log(k). A key point is that none of these axioms require that one artificially “align” clusterings

before judging their distance, as some others have attempted; in fact, we have not even restricted

the clusterings to have the same number of clusters.

As we prove in the supplementary notes, only one measure of distance satisfies all three axioms,

the variation of information. This measure has also been derived for different purposes from a

larger number of different first principles by Meila (2007).

2.4 The Space of Clusterings

The matrix of distances between each pair in the set of J clusterings can be represented in a J-

dimensional metric space. The clusterings can each have the same number of clusters, if chosen

by the user, or differing numbers. We project this space down to two Euclidean dimensions for

visualization. As projection entails the loss of information, the key is to choose a multidimensional
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scaling method that retains the most crucial information. For our purposes, we need to preserve

small distances most accurately, as they reflect clusterings to be combined (in the next section)

into local cluster ensembles. As the distance between two clusterings increases, a higher level of

distortion will affect our results less. This leads naturally to the Sammon multidimensional scaling

algorithm (Sammon, 1969); in the supplementary notes, we define this algorithm and explain how

it satisfies our criteria.

An illustration of this space is given in the central panel of Figure 1, with individual clusterings

labeled (we discuss this figure in more detail below). Nearby points in this space represent similar

clusterings, as judged by our distance metric.

2.5 Local Cluster Ensembles

A “cluster ensemble” is a technique used to produce a single clustering by averaging in a specific way

across many individual clusterings (Strehl and Grosh, 2002; Fern and Brodley, 2003; Law, Topchy

and Jain, 2004; Caruana et al., 2006; Gionis, Mannila and Tsaparas, 2005; Topchy, Jain and Punch,

2003). This approach has the advantage of creating a new, potentially better, clustering, but by

definition it eliminates the underlying diversity of individual clusterings and so does not work for

our purposes. A related technique that is sometimes described by the same term organizes results

by performing a “meta-clustering” of the individual clusterings. This alternative procedure has the

advantage of preserving some of the diversity of the clustering solutions and letting the user choose,

but since no method is offered to summarize the many clusterings within each “meta-cluster,” it

does not solve the problem. Moreover, for our purposes, the technique suffers from a problem

of infinite regress: Since any individual clustering method can be used to cluster the clusterings,

a researcher would have to use them all and their combinations to avoid eliminating meaningful

diversity in the set of clusterings to be explored. So whether the diversity of clusterings is eliminated

by arbitrary choice of meta-clustering method rather than a substantive choice, or we are left with

more solutions than we started with, these techniques although useful for some other purposes do

not solve our particular problem.

Thus, to preserve local diversity and avoid the infinite regress resulting from clustering a set

of clusterings, we develop here a method of generating local cluster ensembles, which we define
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as a new clustering created at a point in the space of clusterings from a weighted average of

nearby existing clusterings. The procedure requires three steps. First, we define the weights

around a user selected point in the space. Consider point x∗ = (x∗
1, x

∗
2) in our space of clusterings.

The new clustering defined at this point is a weighted average of nearby clusterings with one

weight for each existing clustering in the space, so that the closer the existing clustering, the

higher the weight. We define the weight for each existing clustering j on a normalized kernel as

wj = p(x∗, σ2)/
∑J

m=1 p(xm, σ2), where p(x∗, σ2) is the height of the kernel (such as a normal or

Epanechnikov density) with mean x∗ and smoothing parameter σ2. The collection of weights for

all J clusterings is then w = (w1, . . . , wJ). Note that although we are using a density to define the

kernel, the approach requries no statistical or probabilistic reasoning.

Second, given the weights, we create a similarity matrix for the local cluster ensemble, where

each clustering casts a weighted vote for whether each pair of documents appears together in a

cluster in the new clustering. First, for a corpus with N documents clustered by method j into

Kj clusters, we define an N × Kj matrix cj which records how each document is allocated into

(or among) the clusters (i.e., so that each row sums to 1). We then horizontally concatenate the

clusterings created from all J methods into an N × K weighted “voting matrix” of methods by

document pairs, V (w) = {w1c1, . . . , wJcJ} (where K =
∑J

j=1 Kj). The result of the election is a

new similarity matrix, which we create as S(w) = V (w)V (w)
′
. This calculation places priority

on those cluster analysis methods closest in the space of clusters.

Finally, we create a new clustering for point x∗ in the space by applying any coherent clus-

tering algorithm to this new averaged similarity matrix (with the number of clusters fixed to a

weighted average of the number of clusters from nearby clusterings, using the same weights). As

we demonstrate in our supplementary notes, our definition of the local cluster ensemble approach

becomes invariant to the particular choice of clustering method applied to the new averaged simi-

larity matrix as the number of clusterings increase. This invariance eliminates the infinite regress

problem by turning a meta-cluster method selection problem into a weight selection problem (with

weights that are variable in the method). The supplementary notes also show how our local cluster

ensemble approach is closely related to our underlying distance metric defined in Section 2.3. The

key point is that the local cluster ensemble approach will approximate more possible clusterings
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Space of Clusterings
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Figure 1: A Clustering Visualization: The center panel gives the space of clusterings, with each
name printed representing a clustering generated by that method, and all other points in the space
defined by our local cluster ensemble approach that averages nearby clusterings. Two specific
clusterings (see red dots with connected arrows), each corresponding to one point in the central
space, appear to the left and right; labels in the different color-coded clusters are added by hand
for clarification, as is the spacing in each.

as additional methods are included, and of course will never be worse, and usually considerably

better, in approximating a new clustering than the closest existing observed point.

2.6 Cluster Space Visualization

Figure 1 illustrates our visualization of the space of clusterings, when applied to one simple corpora

of documents. This simple and small example, which we choose for expository purposes, includes

only the biographies of each U.S. president from Roosevelt to Obama (see http://whitehouse.

gov).

The two-dimensional projection of the space of clusterings is illustrated in the figure’s central

panel, with individual methods labeled. Each method corresponds to one point in this space,

and one set of clusters of the given documents. Points corresponding to a labeled method corre-
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spond to results from prior research; other points in this space correspond to new clusterings, each

constructed as a local cluster ensemble.

A key point is that once the space is constructed, the labeled points corresponding to previous

methods deserve no special priority in choosing a final clustering. For example, a researcher should

not necessarily prefer a clustering from a region of the space with many prior methods as compared

to one with few or none. In the end, the choice is the researcher’s and should be based on what he

or she finds to convey useful information. Since the space itself is crucial, but knowledge of where

any prior method exists in the space is not, visualization software can easily toggle off these labels

so that researchers can focus on clusterings they identify.

The space is formally discrete, since the smallest difference between two clusterings occurs

when (for non-fuzzy partitions) exactly one document moves from one cluster to another, but an

enormous range of possible clusterings still exists: even this tiny data set of only 13 documents

can be partitioned in 27,644,437 possible ways, each representing a different point in this space.

A subset of these possible clusterings appear in the figure corresponding to all those clusterings

the statistics community has come up with, as well as all possible local cluster ensembles that

can be created as weighted averages from them. (The arching shapes in the figure occur regularly

in dimension reduction when using methods that emphasize local distances between the points in

higher dimensional space; see Diaconis, Goel and Holmes 2008.)

Figure 1 also illustrates two points (as red dots) in the central space, each representing one

clustering and portrayed on one side of the central graph, with individual clusters color-coded (and

substantive labels added by hand for clarity). Clustering 1, in the left clustering, creates clusters

of “Reagan Republicans” (Reagan and the two Bushes) and all others. Clustering 2, on the right,

happens to group the presidents into two clusters organized chronologically.

This figure summarizes snapshots of an animated software program at two points. In general,

the software can be set up so a researcher can put a single cursor somewhere in the space of

clusterings and see the corresponding set of clusters for that point appear in a separate window.

The researcher can then move this point and watch the clusters in the separate window morph

smoothly from one clustering to another. Our experience in using this visualization often leads us

first to check about 4–6 well-separated points, which seems to characterize the main aspects of the
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diversity of all the clusterings. Then, we narrow the grid further by examining about the same

number of clusterings in the local region. Although the visualization offers an enormous number

of clusterings, the fact that they are highly ordered in this simple geography makes it possible to

understand without much time or effort.

2.7 Optional New Clustering Methods to Add

For most applications, beginning with the collective wisdom of the statistics community, and clus-

terings constructed from them, helps to narrow down the enormous space of all possible clusterings

to a large (indeed larger than has ever before been explored) but yet still managable set of solutions.

However, there may well be useful insights to be found outside of the large space we we have already

identified. Thus, we offer two methods to explore some of the remaining uncharted space. First,

we randomly sample new clusterings from the entire space. Second, we define a Markov chain to

move beyond the space of existing clusterings to the area around those clusterings. Details about

both algorithms are available in the supplementary notes.

3 Evaluation Designs

The most important approach to evaluating a purely unsupervised learning approach to clustering

is whether the user, or the user’s intended audience, finds the chosen clustering useful or insightful.

Thus, a perfectly reasonable approah is to use our method, choose a clustering and gather insight,

and be done. However, one may also wish to go further in some circumstances and formally evaluate

the clustering solutions.

Common approaches to evaluating the performance of cluster analysis methods, which include

comparison to internal or supervised learning standards, have known difficulties. Internal standards

of comparison define a quantitative measure indicating high similarity of documents within, and low

similarity of documents across, clusters. But, if this were the goal, we could define a cluster analysis

method with an objective function that optimizes it directly; this may lead to a good answer but

not one which is vulnerable to being proven wrong. Indeed, because any one quantitative measure

is unlikely to reflect the actual substance a researcher happens to be seeking, “good scores on an

internal criterion do not necessarily translate into good effectiveness in an application” (Manning,
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Raghavan and Schütze, 2008, pp.328–329).

The alternative evaluation approach is based on supervised learning standards, which involve

comparing the results of a cluster analysis to some “gold standard” set of clusters, pre-chosen by

human coders. Although human coders may be capable of assigning documents to a small number

of given categories, they are incapable of choosing an optimal clustering or one in any sense better

than what a CAC method could enable them to create. As such, using a supervised learning “gold

standard” to evaluate an unsupervised learning approach is also of questionable value.

Success at facilitating discovery is difficult to formalize mathematically and easy to lead to

unfalsifiable approaches. Indeed, some in the statistical literature have even gone so far as to

chide those who attempt to use unsupervised learning methods to make systematic discoveries as

unscientific (Armstrong, 1967).

To respond to these problems, we introduce and implement three direct evaluation approaches

using insights from survey research and social psychology to compare to elicited human judgment

in ways that people are capable of providing. We first evaluate cluster quality, the extent to

which intracluster similarities outdistance inter-cluster similarities (Section 3.1). Cluster quality

demonstrates that users of our approach are able to efficiently search through the space of clusterings

to identify clusterings that are coherent and useful to others. Second is discovery quality, a direct

evaluation by substance matter experts of insights produced by different clusterings in their own

data (Section 3.2). This ensures that the clusterings identified are insightful for experts working in

a field of study. Third and finally, we offer a substantive application of our method and show how

it assists in discovering a specific useful conceptualization and generates new verifiable hypotheses

that advance the political science literature (Section 3.3). For this third approach, the judge of the

quality of the knowledge learned is the reader of this paper.

3.1 Cluster Quality

We judge cluster quality with respect to a particular corpus by randomly drawing pairs of documents

from the same cluster and from different clusters, and asking human coders unaware how each

document was chosen to rate the similarity of the documents within each pair on a simple three point

scale: (1) unrelated, (2) loosely related, (3) closely related. (Our extensive pretesting indicated
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that inter-coder reliability suffers with more categories, but coders are able to understand and use

effectively this coding scheme. We also found that the average code from ten graduate students

correlated with the average code from the Amazon Mechanical Turk system at 0.99.) The idea is

to keep our human judges focused on well-defined tasks they are are able to perform well, in this

case comparing only two documents at a time. Then the numerical measure of cluster quality is

the average rating of pair similarity within clusters minus the average of pairs in different clusters.

(The supplementary notes also introduce a way to save on evaluation costs in measuring cluster

quality.)

We apply this measure in each of three different corpora by choosing 25 pairs of documents (13

from the same clusters and 12 from different clusters), computing cluster quality, and averaging

over the judgments about the similarity of each pair made separately by many different human

coders. We then compare the cluster quality generated by our approach to the cluster quality from

a pre-existing hand-coded clustering. This comparison demonstrates that users of our method are

able to identify clusterings that are coherent and are able to efficiently search through the millions

of clusterings we present users.

What we describe as “our approach” here is a single clustering from the visualization we chose

ourselves without participating in evaluating document similarity. This procedure is biased against

our method since if we had let the evaluators use our visualization, our approach would almost

by definition have performed much better. Although the number of clusters does not necessarily

affect the measure of cluster quality, we constrained our method further by requiring it to choose a

clustering with approximately the same number of clusters as the pre-existing hand coded clustering.

Press Releases We begin with 200 press releases we randomly selected from those issued by

Senator Frank Lautenberg’s Senate office and categorized by him and his staff in 24 categories

(http://lautenberg.senate.gov). These include appropriations, economy, gun safety, education,

tax, social security, veterans, etc. These are a good test for our approach since the documents,

the categorization scheme, and the individual classifications were all created by the same people at

great time and expense.

The top line in Figure 2 gives the results for the difference in our method’s cluster quality minus
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the cluster quality from Lautenberg’s hand-coded categories. The point estimate appears as a dot,

with a thick line for the 80% confidence interval, and thin line for the 95% interval. The results,

appearing to the right of the vertical dashed line that marks zero, indicate that we were able to

use our method to identify a clustering with unambiguously higher quality than the author of the

documents produced by hand. This provides evidence that the clusterings are organized in a way

that allows for the efficient search over many millions of different (but similar) conceptualizations.

(We give an example of the substantive importance of our selected clustering in Section 3.3.)

(Our Method) − (Human Coders)

−0.3 −0.2 −0.1 0.1 0.2 0.3

●

Lautenberg Press Releases

●

Policy Agendas Project

●

Reuter's Gold Standard

Figure 2: Cluster Quality Experiments: Each line gives a point estimate (dot), 80% confidence
interval (dark line), and 95% confidence interval (thin line) for a comparison between our automated
cluster analysis method and clusters created by hand. Cluster quality is defined as the average
similarity of pairs of documents from the same cluster minus the average similarity of pairs of
documents from different clusters, as judged by human coders one pair at a time.

State of the Union Messages Our second example comes from an analysis of all 213 quasi-

sentences in President George W. Bush’s 2002 State of the Union address, hand coded by the Policy

Agendas Project (Jones, Wilkerson and Baumgartner, 2009). Each quasi-sentence (defined in the

original text by periods or semicolon separators) takes the role of a document in our discussion.

The authors use 19 policy topic-related categories, including agriculture, banking & commerce, civil

rights/liberties, defense, education, etc. Quasi-sentences are difficult tests because they are very

short and may have meaning obscured by the context, which most automated methods ignore.

The results of our cluster quality evaluation appear as the second line in Figure 2. Again, using

our CAC methods we selected a clustering that turned out to have higher quality than the policy-
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agendas project coding scheme; this can be seen by the whole 95% confidence interval appearing

to the right of the vertical dashed line. These results do not imply that anything is wrong with

the Policy Agendas classification scheme, only that there seems to be more information in the data

they collected than their categories may indicate.

Substantively, our CAC approach led us to notice that the largest cluster of statements in

Bush’s address were those that addressed the 9/11 tragedy, including many devoid of immediate

policy implications, and so are lumped into a large “other” category by the project’s coding scheme,

despite considerable political meaning. For example, “And many have discovered again that even

in tragedy, especially in tragedy, God is near.” or “We want to be a Nation that serves goals

larger than self.” This cluster thus conveys how the Bush administration’s response to 9/11 was

sold rhetorically to resonate with his religious supporters and others, all with considerable policy

and political content. For certain research purposes, this discovery may reflect highly valuable

additional information.

Reuters News Stories For a final example, we use 250 documents randomly drawn from the

“Reuters-21578” news story categorization. This corpus has often been used as a “gold standard”

baseline for evaluating clustering (and supervised learning classification) methods in the computer

science literature (Lewis, 1999). In this collection, each Reuters financial news story from 1987 has

been classified by the Reuters news organization (with help from a consulting firm) into one of 22

categories, including trade, earnings, copper, gold, coffee, etc. We again apply the same evaluation

methodology; the results, which appear as the bottom line in Figure 2, indicate again that the

clustering we identified turned out to have unambiguously higher cluster quality than Reuter’s own

gold standard classification.

3.2 Discovery Quality

We show here that using our approach leads to more informative discoveries for researchers engaged

in real scholarly projects. This is an unusually hard test for a statistical method, and one rarely

performed; it would be akin to requiring not merely that a standard statistical method possesses

certain properties like being unbiased, but also, when given to researchers and used in practice,

that they actually use it appropriately and estimate their quantities of interest correctly.
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The question we ask is whether the computer assistance we provide helps. To perform this

evaluation, we recruited two scholars in the process of evaluating large quantities of text in their own

(independent) works-in-progress, intended for publication (one faculty member, one senior graduate

student). In each case, we offered an analysis of their text in exchange for their participation in

our experiment. One had a collection of documents about immigration in America in 2006; the

other was studying a longer period about how genetic testing was covered in the media. Both had

spent many months reading their documents. (To ensure their right of first publication goes to the

authors, we do not describe the specific insights we found here and instead only report how they

were judged in comparison to those produced by other methods.) Using a large collection of texts

from each researcher, we spent about an hour using our method to identify two distinct clusterings

from our space that we thought provided useful and distinct insights into the data. For comparison,

we also applied the popular k-means clustering methodology (with variable distance metrics), and

one of two more recently proposed clustering methodologies — the Dirichlet process prior and the

mixture of von Mises Fisher distributions, estimated using a variational approximation (Blei and

Jordan, 2006). We used two different clusterings from each of the three cluster analysis methods

applied in each case. For our method, we again biased the results against our method and this time

chose the two clusterings ourselves instead of letting them use our visualization.

We then created an information packet on each of the six clusterings. This included the pro-

portion of documents in each cluster, an exemplar document, and a brief automated summary of

the substance of each cluster, using a technique that we developed. To create the summary, we

first identified the 10 most informative words stems for each cluster, in each clustering (i.e., those

with the highest “mutual information”). The summary then included the full length word most

commonly associated with each chosen word stem. We found through much experimentation, that

words selected in this way usually provide an excellent summary of the topic of the documents in

a cluster.

We then asked each researcher to familiarize themselves with the six clusterings. After about 30

minutes, we asked each to perform all
(
6
2

)
= 15 pairwise comparisons, presented in random order,

between the clusterings and in each case to judge which clustering within a pair they thought was

“more informative”. In the end, we want a cluster analysis methodology that produces at least one
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“Immigration” Discovery Experiment:

Our Method 1 // vMF VA // vMF EM // Our Method 2 // K-Means, Cosine // K-Means, Euc.

“Genetic testing” Discovery Experiment:

Our Method 1 // {Our Method 2, K-Means Max, K-means Canberra} // Dir Proc. 1 // Dir Proc 2

Figure 3: Results of Discovery Experiments, where A�B means that clustering A is judged to be
“more informative” than B in a pairwise comparison, {with braces grouping results in the second
experiment tied due to an evaluator’s cyclic preferences.}. In both experiments, a clustering from
our method is judged to beat all others in pairwise comparisons.

method that does well. Since the user ultimately will be able to judge and choose among results,

having a method that does poorly is not material; the only issue is how good the best one is.

We are evaluating two clusterings from each cluster analysis method, and so label them 1 and

2, although the numbers are not intended to convey order. Figure 3 gives a summary of our results,

with arrows indicating dominance in pairwise comparisons. In the first (immigration) example,

illustrated at the top of the figure, the 15 pairwise comparisons formed a perfect Guttman scale

(Guttman, 1950) with “our method 1” being the Condorcet winner (i.e., it beat each of the five

other clusterings in separate pairwise comparisons). (This was followed by the two mixtures of Von

Mises Fisher distribution clusterings, then “our method 2”, and then the two k-means clusterings.)

In the genetics example, our researcher’s evaluation produced one cycle, and so it was close to

but not a perfect Guttman scale; yet, “our method 1” was again the Condorcet winner. (Ranked

according to the number of pairwise wins, after “our method 1” was one of the k-means clusterings,

then “our method 2”, then other k-means clustering, and then the two Dirichlet process cluster

analysis methods. The deviation from a Guttman scale occurred among the last three items.)

3.3 Partisan Taunting: An Illustration of Computer-Assisted Discovery

We now give a brief report of an example of the whole process of analysis and discovery using our

approach applied to a real example. We develop a categorization scheme that advances one in the

literature, measure the prevalence of each of its categories in a new out-of-sample set of data to

show that the category we discovered is common, develop a new hypothesis that occurred to us

because of the new lens provided by our new categorization scheme, and then test it in a way that
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could be proven wrong. The degree of insight discovered can be judged by the reader.

In a famous and monumentally important passage in the study of American politics, Mayhew

(1974, p.49ff) argues that “congressmen find it electorally useful to engage in. . . three basic kinds

of activities” — credit claiming, advertising, and position taking. This typology has been widely

used over the last 35 years, remains a staple in the classroom, and accounts for much of the core

of several other subsequently developed categorization schemes (Fiorina, 1989; Eulau and Karps,

1977; Yiannakis, 1982). In the course of preparing our cluster analysis experiments in Section 3.1,

we found much evidence for all three of Mayhew’s categories in Senator Lautenberg’s press releases,

but we also made what we view as an interesting new discovery.

We illustrate this discovery process in Figure 4, where the top panel gives the space of clusterings

we obtain when applying our methodology to Lautenberg’s press releases (i.e., like Figure 1). Recall

that each name in the space of clusterings in the top panel corresponds to one clustering obtained

by applying the named clustering method to the collection of press releases; any point in the space

between labeled points defines a new clustering using our local cluster ensemble approach; and

nearby points have clusterings that are more similar than those farther apart.

The clusters within the single clustering represented by the black point in the top panel is

illustrated in the bottom panel, with individual clusters comprising Mayhew’s categories of claiming

credit, advertising, and position taking (all in red), as well as an activity that his typology obscures,

and he does not discuss. We call this new category partisan taunting (in blue), and describe it below.

Each of the other points in the red region in the top panel represent clusterings that also clearly

suggest partisan taunting as an important cluster, although with somewhat different arrangements

of the other clusters. That is, the user would only need to examine one point anywhere within

this (red) region to have a good chance at discovering partisan taunting as a potentially interesting

category.

Examples of partisan taunting appear in Table 1. Unlike any of Mayhew’s categories, each of

the colorful examples in the table explicitly reference the opposition party or one of its members,

using exaggerated language to put them down or devalue their ideas. Most partisan taunting

examples also overlap two or three of Mayhew’s existing theoretical category definitions, which is

good evidence of the need for this separate, and heretofore unrecognized, category. We did find
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Figure 4: Discovering Partisan Taunting: The top portion of this figure presents the space of
clustering solutions of Frank Lautenberg’s (D-NY) press releases. Partisan taunting could be easily
discovered in any of the clustering solutions in the red region in the top plot. The bottom plot
presents the clusters from a representative clustering within the red region at the top (represented
by the black dot). Three of the clusters (in red) align with Mayhew’s categories, but we also found
substantial partisan taunting cluster (in blue), with Lautenberg denigrating Republicans in order
to claim credit, position take, and advertise. Other points in the space have different clusterings
but all clearly reveal the partisan taunting category.

that the documents were relatively easy to distinguish from Mayhew’s existing categories.

Partisan taunting provides a new category of Congressional speech that emphasizes the inter-

actions inherent between members of a legislature. Mayhews (1974) original theory supposed that

members of Congress were atomistic rational actors, concerned only with optimizing their own

chance of reelection. Yet, legislators interact with each other regularly, criticizing and supporting
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Date Lautenberg
Category

Quote

2/19/2004 Civil
Rights

“The Intolerance and discrimination from the Bush administration
against gay and lesbian Americans is astounding”

2/24/2004 Government
Oversight

“Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”

8/12/2004 Government
Oversight

“John Kerry had enough conviction to sign up for the military during
wartime, unlike the Vice President [Dick Cheney], who had a deep
conviction to avoid military service”

12/7/2004 Homeland
Security

“Every day the House Republicans dragged this out was a day that
made our communities less safe”

7/19/2006 Healthcare “The scopes trial took place in 1925. Sadly, President Bush’s veto
today shows that we haven’t progressed much since then.”

Table 1: Examples of Partisan Taunting in Senator Lautenberg’s Press Releases

ideas, statements, and actions. This interaction is captured with partisan taunting, but absent

from the original typology. In the supplementary notes, we detail how analyzing partisan taunting

provides additional insights in addition to Mayhew’s (1974) original typology.

Our technique has thus produced a new and potentially useful conceptualization for understand-

ing Senator Lautenberg’s 200 press releases. Although asking whether the categorization is “true”

makes no sense, this modification to Mayhew’s categorization scheme would seem to pass the tests

for usefulness given in Section 3.1. We now show that it is also useful for out-of-sample descriptive

purposes and separately for generating and rigorously testing other hypotheses suggested by this

categorization.

We begin with a large out-of-sample test of the descriptive merit of the new category, for which

we analyze all 64,033 press releases from all 301 Senator-years during 2005–2007. To do this, we

developed a coding scheme that includes partisan taunting, other types of taunting (to make sure

our first category is well defined), and other types of press releases, including Mayhew’s three

categories. We then randomly selected 500 press releases and had three research assistants assign

each press release to a category (we had approximately 83% agreement and resolved disagreements

by reading the press releases ourselves). Finally, we applied the supervised learning approach to

text analysis given by (Hopkins and King, 2010) to the entire set of 64,033 press releases to estimate

the percent of press releases which were partisan taunts for each senator in each year. (By setting

aside a portion of this training set, we verified that the Hopkins-King methodology produced highly
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accurate estimates in these data.)

Overall, we find that 27% of press releases among these 301 Senator-years were partisan taunts,

thus confirming that this category was not merely an idiosyncrasy of Senator Lautenberg. Instead

partisan taunting seems to play a central role in the behavior many Senators find it useful to engage

in. Indeed, it may even define part of what it means to be a member of the party in government.

The histogram in the left panel of Figure 5 gives the distribution of taunting behavior in our data;

it conveys the large amount of taunting across numerous press releases, as well as a fairly large

disperson across senators and years in taunting behavior.1
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Figure 5: Partisan Taunting Hypothesis Verification. The left panel shows the distribution in
partisan taunting in senators’ press releases and the right panel demonstrates that taunting is
more likely when senators are in less competitive states. Each of the 301 points in the right panel
represents the results of an analysis of one year’s worth of a single senator’s press releases, with
blue for Democrats and red for Republicans.

Finally, analyzing Senator Lautenberg’s press releases led us to consider the role of taunting

behavior in theories of democratic representation. Almost by definition, partisan taunting is anti-
1The top 10 Senator-year taunters include Baucus (D-MT), 2005; Byrd (D-WV), 2007; Thune (R-SD), 2006;

Ensign (R-NV), 2005; McConnell (R-KY), 2006; Biden (D-DE), 2005; Reid (D-NV), 2005; Coburn (R-OK), 2007;
Sarbanes (D-MD), 2006; Kennedy (D-MA), 2007.
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thetical to open deliberation and compromise for the public good (Gutmann and Thompson, 1996).

Thus, an important question is who taunts and when — which led us to the hypothesis that taunt-

ing would be less likely to occur in competitive senate seats. The idea is that taunting is most

effective when a senator has the luxury of preaching to the choir and warning his or her partisans

of the opposition (which has few votes); if instead, a politician’s electoral constituency is composed

of large numbers of opposition party members, we would expect partisan taunting to be less effec-

tive and thus less used. If true, this result poses a crucial tension in democratic representation.

Deliberation is seen as a normative good, but the degree to which a representative is a reflection of

his or her constituency is also often seen to be an important component of democracy (Miller and

Stokes, 1963; Pitkin, 1972). However, if our hypothesis is empirically correct, then democracies may

have a zero sum choice between deliberation, which occurs more often in the absence of partisan

taunting and thus in the most competitive states, and reflection, which by definition occurs in the

least competitive states.

By using our large data set of press releases, we construct an out-of-sample test of our hypothesis.

The right panel of Figure 5 gives the results. Each dot in this figure represents one senator-year,

with red for Republicans and blue for Democrats. The horizontal axis is the proportion of the 2004

two-party vote for George W. Bush — a measure of the size of the underlying Republican coalition

in each state, separate from all the idiosyncratic features of individual senatorial campaigns. We

also portray the dominant patterns with a smoothed (LOESS) line for the Republicans (in red)

and Democrats (in blue). The results overall clearly support the hypothesis: As states become

more Republican (moving from left to right), partisan taunting by Republicans increase, whereas

partisan taunting by Democrats decline.

Of course, much more can be done with this particular empirical example, which is in fact the

point: our clustering methodology helped us choose a new categorization scheme to understand an

aspect of the world in a new way, a new concept represented as a new category, a new hypothesis

capable of being proven wrong, and a rigorous out-of-sample validation test for both describing and

explaining the variation in the prevalence of this category among all Senators.
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4 Concluding Remarks

We introduce in this paper a new computer-assisted approach to unsupervised learning through

cluster analysis. We also introduce new empirically based procedures for evaluating this and other

cluster analytic methods and their resulting clusterings that use human judgment in a manner

consistent with their cognitive strengths. Through a variety of examples, we demonstrate how this

approach can relatively easily unearth new discoveries of useful information from large quantities

of unstructured text.

Given the ongoing spectacular increase in the production and availability of unstructured text

about subjects of interest to social scientists, and the impossibility of assimilating, summarizing,

or even characterizing much of it by reading or hand coding, the most important consequence of

this research may be its potential for scholars to help efficiently unlock the secrets this information

holds.

For methodologists and statisticians working on developing new methods of cluster analysis,

this research also offers new ways of evaluating their products. Research that follows up on our

strategy by creating new ways of encompassing existing methods might be designed to make the

process easier, visualized in other ways, or computationally faster. Most of the research currently

being done is focused on developing individual (i.e., non-encompassing) methods; we know that,

by definition, any one individual method cannot outperform the approach proposed here, but new

individual methods may be able to improve our approach if included in the cluster methods we

encompass. For that purpose, we note that the most useful new individual methods would be those

which fill empty areas in the space of clusterings, especially those outside the convex hull of existing

methods in this space. Methods that produce clusterings for many data sets close to others would

not be as valuable.

References

Armstrong, J.S. 1967. “Derivation of theory by means of factor analysis or Tom Swift and his

electric factor analysis machine.” American Statistician pp. 17–21.

Bailey, Kenneth D. 1994. Typologies and taxonomies: an introduction to classification techniques.

23



Beverly Hills: Sage.

Blei, David and Michael Jordan. 2006. “Variational Inference for Dirichlet Process Mixtures.”

Journal of Bayesian Analysis 1(1):121–144.

Caruana, Rich, Mohamed Elhawary, Nam Nguyen and Casey Smith. 2006. Meta clustering. In

ICDM’06. Sixth International Conference on Data Mining. pp. 107–118.

Diaconis, Persi, Sharad Goel and Susan Holmes. 2008. “Horseshoes in multidimensional scaling

and local kernel methods.” Annals of Applied Statistics 2(3):777–807.

Eulau, Heiz and Paul Karps. 1977. “The Puzzle of Representation: Specifying Components of

Responsiveness.” Legislative Studies Quarterly 2(3):233–254.

Fern, Xiaoli and Carla Brodley. 2003. Random Project for High Dimensional Data Clustering:

A Cluster Ensemble Approach. In Proceedings of the Twentieth International Conference on

Machine Learning.

Fiorina, Morris. 1989. Congress, Keystone of the Washington Establishment. New Haven: Yale

University Press.

Gionis, A, H Mannila and P Tsaparas. 2005. Clustering aggregation. In Proceedings of the 21st

International Conference on Data Mining.

Gutmann, Amy and Dennis Thompson. 1996. Democracy and Disagreement. Harvard University

Press: Harvard University Press.

Guttman, L. 1950. “The problem of attitude and opinion measurement.” Measurement and pre-

diction 4.

Hopkins, Daniel and Gary King. 2010. “A Method of Automated Nonparametric Content

Analysis for Social Science.” American Journal of Political Science 54(1, January):229–247.

http://gking.harvard.edu/files/abs/words-abs.shtml.

Jones, Bryan, John Wilkerson and Frank Baumgartner. 2009. “The Policy Agendas Project.”.

http://www.policyagendas.org.

Jordan, Michael, Zoubin Ghahramani, Tommi Jaakkola and Lawrence Saul. 1999. “An Introduction

to Variational Methods for Graphical Models.” Journal of Machine Learning 37:183–233.

Law, Martin, Alexander Topchy and Anil Jain. 2004. Multi-objective Data Clustering. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition.

24



Lewis, David. 1999. “Reuters -21578 text Categorization Test Collection Distribution 1.0.”.

Manning, Christopher D., Prabhakar Raghavan and Hinrich Schütze. 2008. Introduction to Infor-

mation Retrieval. NY: Cambridge University Press.

Mayhew, D. 1974. “The electoral connection.” New Haven: Yale University .

Meila, Marina. 2007. “Comparing Clusterings: An Information Based Distance.” Journal of Mul-

tivariate Analysis 98(5):873–895.

Miller, W.E. and D.E. Stokes. 1963. “Constituency influence in Congress.” The American Political

Science Review pp. 45–56.

Monroe, Burt, Michael Colaresi and Kevin Quinn. 2008. “Fightin’ Words: Lexical Feature Selection

and Evaluation for Identifying the Content of Political Conflict.” Political Analysis 16(4):372–403.

Pitkin, Hanna F. 1972. The Concept of Representation. University of California Press.

Sammon, John. 1969. “A Nonlinear Mapping for Data Structure Analysis.” IEEE Transactions on

Computers 18(5):401–409.

Shawe-Taylor, John and Nello Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge:

Cambridge University Press.

Strehl, Alexander and Joydeep Grosh. 2002. “Cluster Ensembles: A Knowledge Reuse Framework

for Combining Multiple Partitions.” Journal of Machine Learning Research 3:583–617.

Topchy, A, AK Jain and W Punch. 2003. Combining Multiple Weak Clusterings. In Proceedings

IEEE International Conference on Data Mining.

Yiannakis, Diane Evans. 1982. “House Members Communication Styles: Newsletters and Press

Releases.” Journal of Politics 44(4):1049–1071.

25


