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Close-coupling calculations of the resonance and near resonance charge exchange in ion–atom

collisions of Be+2 at low and intermediate energies are presented. Accurate ab initio calculations

are carried out of the Born–Oppenheimer potentials and the non-adiabatic couplings that are due

to the finite nuclear masses and drive the near resonance charge exchange. We show that the near

resonance charge exchange cross section follows Wigner’s threshold law of inelastic processes for

energies below 10�8 eV and that the zero temperature rate constant for it is 4.5 � 10�10 cm3 s�1.

At collision energies much larger than the isotope shift of the ionization potentials of the atoms,

we show that the near resonance charge exchange process is equivalent to the resonance charge

exchange with cross sections having a logarithmic dependence. We also investigate the

perturbation to the charge exchange process due to the non-adiabatic interaction to an electronic

excited state. We show that the influence is negligible at low temperatures and still small at

intermediate energies despite the presence of resonances.

I. Introduction

The possibility of creating small ensembles of ultracold

atoms and molecules has opened new research in physics

and chemistry.1–3 The recent experimental production of ultra-

cold molecular ions4–7 provides new opportunity for exploring

ion–atom interactions8,9 and collisional dynamics.10–15 Of

particular interest of cold molecular ions are novel appli-

cations to mass spectrometry, chemistry, and spectroscopy;16

the implementation of scalable quantum-computation archi-

tecture;17–19 the precision measurement tests of fundamental

physics;20 a better understanding of polaron physics;21 the

charge transport at low temperature22 and producing ion–

atom bound states to study many-body physics.23

The properties of the low-energy scattering states as well as

those bound states near the dissociation thresholds depend

ultimately on the long range part of the potential. The typical

atom–ion interaction, asymptotically, has a R�4 dependence

on distance and therefore decays more slowly than the van der

Waals interaction between neutral atoms. Because of this

strong polarization potential, the collision dynamics exhibits

unique features both at low and high energies.8–12,24 An

atom–ion collision can lead to a charge exchange process

which generally is an inelastic process when two different

atoms are involved but is resonant when the two atoms are

the same. In collisions of a positive ion with its parent atom of

the same isotopic composition the identity of the nuclei must

be taken into account and charge transfer collisions

A + A+ - A+ + A

cannot be distinguished in principle from elastic collisions

A + A+ - A + A+.

This charge exchange process has been studied theoretically

and the cross sections are governed by the difference between

the interaction potentials of the gerade and ungerade symmetry

of the molecular ions A+
2 . Explicit examples include the

calculations for Na + Na+10 and Yb + Yb+.13 Analysis of

the differential cross sections has shown that, in the relatively

high energy regime, peaks in the forward direction arise from

elastic collisions and those in the backward direction from

charge transfer.13

In the case of identical atoms, but with different isotopic

composition, we have shown11,12 that the charge transfer

reaction becomes inelastic (near resonant process). This in-

elastic process is driven by the small non-adiabatic couplings

between the two electronic states that are due to the small

kinematic effects because of the finite nuclear mass. When

different isotopes are involved, there occurs a change in the

kinetic energies of the particles in the charge transfer collisions

and not in the elastic collisions. The molecular u–g symmetry

is broken and the molecular states separate at large

internuclear distances to asymptotic binding energies for

A + A0+ and for A+ + A0, differing by a small amount

DE that depends on the masses and, to a smaller extent, on

the electronic wavefunction. The Born–Oppenheimer (BO)
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approximation fails because its symmetry properties are

determined by the electronic Hamiltonian. We have explicitly

dealt with such a case in our previous studies of the

HD+11 and Li+2
12 molecular ions. While in the former

we have used an analytical resolution of the one-particle

Hamiltonian, in the latter we have devised a scheme for

calculating by means of ab initio methods the rather weak

couplings due to non-BO corrections using a MCSCF/MRCI

framework.

We have also shown that the difference between the collision

of identical isotopes (the resonant charge transfer) and that

with isotopic exchange (near resonant charge transfer) is small

for high collision energies, but becomes significantly larger at

low energy. In the ultra-low energy limit, while a resonant

charge transfer process has a constant cross section and the

corresponding rate coefficient goes to zero, the near resonant,

inelastic process has a diverging cross section. At energies

much larger than DE, the scattering can be described by an

elastic two-state approximation for which the direct coupling

arising from the difference in nuclear masses is neglected,11,12

and the charge exchange is governed largely by the difference

between the two potentials.

As interest in the cold ion–atom collision is increasing,

we have extended our efforts to the Be+2 molecular ion.

A distinct and interesting feature arises because a third state,

B2P, is involved in the collision process even at very low

scattering energies since it crosses the two lowest S states in

the inner regions of their potential wells. The non-adiabatic

interaction between the S and P states is weak, but noneth-

eless, we shall show that it does have an effect on the dynamics.

Therefore, we believe that the work we present here goes

well beyond a mere extension of our previous calculations

to another mass combination and adds an interesting new

element to the picture that may help in understanding

the effects of this small non-adiabatic perturbation to

collision processes governed by a strong polarization potential

and to the prototypical two-state description of the charge

exchange.

II. Collision dynamics

We consider the ion–atom collisions between Be+ and Be,

which may be the same or different isotopes. Their nuclear

masses are labeled as ma and mb. After the separation of the

kinetic energy operator of the center of nuclear mass (CNM)

motion of the total system, the Hamiltonian of the entire

system in the body fixed frame25 is

H = TN + Te + Tmp + Vint(r, R), (1)

where TN is the kinetic energy operator for the relative

motion of the nuclei, Tmp is the mass polarization term,

Te is the electron kinetic energy, R is the vector connecting

the colliding nuclei, r measures the coordinates of electrons in

the CNM frame, and Vint(r, R) contains all the electrostatic

interactions. Combining Vint(r, R) and Te yields the non-

relativistic BO electronic Hamiltonian Hel, whose eigenstate

and the corresponding eigenvalue are labeled collectively

as c(r; R) and e. For the state a, HelcaL(r; R) = eacaL(r; R)

with L being the projection of electronic orbital angular

momentum onto the molecular axis. The mass polarization

term reads

Tmp ¼ �
1

2m

XNe

i;j¼1
rirj; ð2Þ

where m = ma + mb is the total nuclear mass and summation

runs over the number of electrons Ne. Atomic units are used

throughout the paper. The matrix element of Tmp between BO

eigenstates ca(r; R) and cb(r; R) is denoted as emp
ab . This matrix

is symmetric, and asymptotically, the two diagonal matrix

elements are the same for the X̃2S+
g and B2S+

u states.

The total wave function of the colliding system can be

expanded as a sum of terms CJ,M(r, R), characterized by the

total angular momentum quantum number J and its projection

M. Each CJ,M(r, R) in the BO basis can be expressed as

CJ;Mðr;RÞ ¼ eiMj
X
a;L

1

R
wJaLðRÞYJ

M;LðWÞcaLðr;RÞ; ð3Þ

where W and j are the spherical angles of vector R, YJ
M,L(W) is

a generalized spherical harmonic, and wJaL(R) describes the

radial motion of the nuclei.

Substituting expansion (3) into the time-independent

Schrödinger equation and integrating out the electronic

coordinates, we obtain a set of coupled equations for the

radial functions wJ(R) in the BO representation at the total

energy E26–28

� 1

2m
d2

dR2
þ ea þ

JðJþ 1Þ � L2

2mR2
� E

� �
wJaL

¼ þ 1

m

X
baa

ca
@

@R

����
����cb

� �
dwJbL
dR
þ 1

2m

X
b

ca
@2

@R2

����
����cb

� �
wJbL

� 1

2mR2

X
b

ca L̂
2

x þ L̂
2

y

��� ���cb

D E
wJbL �

X
b

emp
ab w

J
bL

þ 1

mR2

X
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ Lþ 1ÞðJ� LÞ

p
hcajiL̂yjcbiwJbLþ1

� 1

mR2

X
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ� Lþ 1ÞðJþ LÞ

p
hcajiL̂yjcbiwJbL�1;

ð4Þ

where m is the reduced mass of the system, and L̂x and L̂y are

the x and y components of the electronic orbital angular

momentum operator. We define

Fab ¼
1

m
ca

@

@R

����
����cb

� �

Vab ¼ emp
ab �

1

2m
ca

@2

@R2

����
����cb

� �
þ 1

2mR2
hcajL̂

2

x þ L̂
2

yjcbi

Lab ¼
1

mR2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ Lþ 1ÞðJ� LÞ

p
hcajiL̂yjcbi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ� Lþ 1ÞðJþ LÞ

p
hcajiL̂yjcbi�

ð5Þ
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Eqn (4) can be written in a matrix form

I
d2

dR2
þ 2mF

d

dR
þ 2mE� 2m I

JðJþ 1Þ � L2

2mR2
þ eþV� L

� 	� �
v

¼ 0;

ð6Þ

with I being the identity matrix. In the present study, three

BO states are included in eqn (6) and they are X̃2S+
u , B2S+

g ,

and A2Pu. The g and u symmetry disappear in the case of

isotopic combination. The 2s- 2p transition of Be is 2.72 eV.

For collisions at low temperatures, the contributions from the

other molecular states formed by Be+(2S) + Be(3P) are

negligible.

F and L matrices have only off-diagonal elements and

approach zero asymptotically in the BO representation

(see discussion in Section III). The matrix V originates

from the nuclear kinetic operator and the mass polarization

term. Its diagonal elements are an adiabatic correction to

the BO states. The off-diagonal elements couple the two S+

states, and asymptotically separates the isotopic combina-

tions of Be+2 to the correct limit of �1
2DE. This asymptotic

property can be easily understood by re-writing V in a

Hermitian form

~Vab ¼ Vab �
1

2

d

dR
Fab: ð7Þ

Eqn (7) is obtained by symmetric and anti-symmetric

combinations of the matrix elements of the nuclear kinetic

operator

Ṽa,b = 1
2[hca|TN|cbi + hcb|TN|cai], (8)

and

@

@R
Fab ¼ hcajTNjcbi � hcbjTNjcai: ð9Þ

Eqn (9) is obtained by differentiating Fab and Fba.

Asymptotically, eqn (6) remains coupled. The proper

scattering boundary conditions can be restored by transforming

the radial wave functions associated with the S+ states into

an atomic representation. This is achieved by addition and

subtraction of the two coupled equations in eqn (6), and the

resulting equation is

I
d2

dR2
þ 2mF

d

dR
þ 2mE� 2m I

JðJþ 1Þ � L2

2mR2
þ C

� 	� �
f ¼ 0:

ð10Þ

Here z1 = w1 + w2, z2 = w2 � w1, and z3 = w3. The numbers 1,

2, and 3 associated with w label the X̃2S+, B2S+, and A2P
states, respectively. The C matrix is

where e+ = 1
2(e1 + e2), e

� = 1
2(e2 � e1), Ṽ

+ = 1
2(Ṽ11 + Ṽ22),

and Ṽ� = 1
2(Ṽ22 � Ṽ11).

Solutions to eqn (10) are obtained through a modified

Numerov propagator that accounts for the linear derivative

term.11,29 The scattering S matrix is derived in the asymptotic

region from the radial function f(R) = J(R) � N(R)K,

where J(R) and N(R) are matrices of the Riccati-Bessel and

Riccati-Neumann functions.30 S = (I + iK)�1(I � iK). The

charge exchange and the elastic cross sections can then be

expressed as

scxða! bÞ ¼ p
k2a

X
J

ð2Jþ 1ÞjSJ
abj

2 ð12Þ

and

selða! aÞ ¼ p
k2a

X
J

ð2Jþ 1Þj1� SJ
aaj

2; ð13Þ

where ka is the wave vector of the channel a. Nuclear masses of

9.0121822 and 10.0135338 were used in the calculation.

III. Electronic structure calculations of

Born–Oppenheimer potentials and couplings

A Born–Oppenheimer potentials

The interaction potentials of the Be+2 molecular ion have

been examined theoretically by several groups.31–33 The

ro-vibrational structure of the ground electronic state, X̃2S+
u ,

has been characterized experimentally using the pulsed-field

ionization zero kinetic energy photoelectron technique.34

Similar to H+
2 and Li+2 , the low energy ion–atom collisions

are effectively governed by two molecular potentials, X̃2S+
u

and B2S+
g . However, at short internuclear distances the

potential of the A2Pu state, which originates from the asymp-

tote Be+(2S) + Be(3P), undergoes a rapid decrease and crosses

both of the S states.31 In the case of the scattering of different

isotopes, this 2P state interacts with the S states, and con-

sequently, in principle, it could modify the collision dynamics

at low temperatures. In addition, the potential of the B2S+
g

state has a double minimum, which results from an avoided

crossing with an upper state of the same symmetry.

To obtain a consistent description of these BO states and

their interactions, the calculations of the three corresponding

BO potentials were performed with the internally contracted

multi-reference configuration interaction with singles and

doubles (MRSDCI)35 plus the multireference version of the

Davidson correction (Q).36 The reference wave functions of

the MRCISD(Q) calculations are derived from a state-average

multiconfiguration self-consistent field (MCSCF) approach,37

in which the active space is formed by seven electrons in ten

molecular orbitals (MOs) and the average includes all the

six doublet states correlated to the Be+(2S) + Be(3P) and

Be+(2S) + Be(1S) asymptotes with equal weights. The ten

MOs come from the linear combination of 1s2s2p atomic

C ¼
eþ � ~Vþ � ~V12 e� � ~V� � 1

2F12 �
ffiffiffiffiffiffiffiffiffiffiffi
JðJþ1Þ
p

R2 ðL13 þ L23Þ

e� � ~V� þ 1
2F21 eþ � ~Vþ þ ~V21 �

ffiffiffiffiffiffiffiffiffiffiffi
JðJþ1Þ
p

R2 ðL23 � L13Þffiffiffiffiffiffiffiffiffiffiffi
JðJþ1Þ
p

2R2 ðL31 þ L32Þ
ffiffiffiffiffiffiffiffiffiffiffi
JðJþ1Þ
p

2R2 ðL32 � L31Þ e3

0
BBB@

1
CCCA; ð11Þ
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orbitals of Be, and the seven electrons are all the electrons of

Be+2 . The scalar relativistic effects were also included in our

calculation by means of the third-order Douglas–Kroll–Hess

Hamiltonian (DKH3).38 DK-contracted augmented polarized

weighted core/valence quintuple and quadruple zeta basis

sets39 (aug-cc-pwCVQZ and aug-cc-pwCV5Z) were used in

the calculations. The final X̃2S+
g , B2S+

u and A2Pu potentials

were obtained by extrapolating to the complete basis set limit

(CBS) through40

VðnÞ ¼ VCBS þ
B

ðnþ 1=2Þ4
: ð14Þ

The resulting CBS ab initio points for the two S states were

fitted to the following analytical expression

VðRÞ ¼ e�bR
X
i

aiR
i

 !
�
X

n¼4;6;8

fnðbRÞCn

Rn
; ð15Þ

where fn is a damping function41 and the dispersion coeffi-

cients, in atomic units, are C4 = 18.88, C6 = 270.7, and C8 =

1890.5 a.u. The coefficient C4 is half of the dipole polarizability

of the beryllium atom.42 C6 is half of the quadrupole polariz-

ability of Be,42 to which we added 120.4 a.u. for the contribution

of the ion–atom Be–Be+ van der Waals interaction. This

contribution is estimated from the Casimir–Polder equation,

in which the frequency-dependent dipole polarizabilities of

Be+ were evaluated using the linear response coupled-cluster

theory (LR-CCSD)43 as implemented in NWCHEM 6.044 with

a doubly augmented (d-aug-cc-pwCV5Z) basis set, and those

for Be were taken from ref. 42. The coefficient C8 is half of the

octupole polarizability of Be.42 These dispersion coefficients

were held fixed in the fitting.

For the A2Pu state we used an analogous expression.

The long range part is given by

VLRðRÞ ¼ �
X
n¼3;4

fnðbRÞCn

Rn
: ð16Þ

The leading interaction is a permanent quadrupole-charge

interaction which is followed by the induced-dipole charge

interaction. The quadrupole moment extracted from the fitting

of the ab initio points is 4.20 a.u., which agree well with the

theoretical values of B4.54 a.u.45,46 The fourth order term

corresponds to the dipole polarizability of Be(3P). Our fitting

yields 38.0 a.u., which is in close agreement with the theoretical

value of 39.04 a.u.45

The computed BO potentials are shown in Fig. 1, and the

corresponding spectroscopic constants are reported in

Tables 1 and 2 for the ground and excited states, respectively.

Comparisons with the available experiment and representative

theoretical results are also listed. The spectroscopic constants

of the X̃2S+
u state agree closely with experiment34 and a

recent high-level theoretical analysis.33 For the B2S+
g state, a

double minimum is found in our calculations. De of the inner

potential well is about 75 cm�1 smaller than a recent theoretical

Fig. 1 The potential energy curves, adiabatic corrections and nonadiabatic couplings of the X̃2S+
u , B2S+

g and A2Pu as functions of internuclear

distance R. The g and u symmetries are labeled according to the center of charge. (a) BO potentials; (b) Ṽab between the two 2S+ states; (c) the Ly

couplings of X̃2S+
u –A2Pu and B2S+

g –A2Pu; and (d) the first derivative coupling Fab.

Table 1 Spectroscopic constants of the X̃2S+
u state of Be+2

De (cm
�1) Re/Å oe

a/cm�1 oexe
a/cm�1

This work 16 472 2.221 527.4 (500.4)b 4.49 (4.05)b

Exp.34 16 438 2.211 525.88 4.44
Theory33 16 434 2.223 525.299 4.454
Theory31 15 889 2.231 502 4.2

a oe and oexe were fitted using the first 7 vibrational levels according

to E(n) = oen � oexen(n + 1), the same procedure as in Exp.34

b Numbers with and without parentheses were calculated for 10Be and
9Be, respectively.
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value of 2821 cm�1.34 Values for the outer well are in good

agreement. The potential maximum is located at R= 3.452 Å,

and the corresponding potential energy relative to the disso-

ciation limit is 1260.3 cm�1.

The A2Pu state shows a deep potential minimum. The

computed potential depth is about 1500 cm�1 deeper than

those of previous calculations, and the potential minimum at

R= 1.878 Å lies 6369 cm�1 below the Be(1S) + Be+(2S) limit.

A2Pu crosses both of the X̃2S+
u and B2S+

g states near its

potential equilibrium distance. The crossing with X̃2S+
u is

located at R = 1.615 Å and is 1764 cm�1 below the ground

state dissociation limit. The crossing with B2S+
g occurs at

R = 2.222 Å, and lies 2557 cm�1 below the same limit.

B Non-Born–Oppenheimer corrections

The derivative coupling Fab in eqn (5) is zero unless the

colliding particles have different nuclear masses. The evaluation

of Fab can be conveniently achieved through the expression

for its origin dependence.26,28 The g and u symmetries of the

electronic wave functions are labeled according to the center of

charge (CC), and the relationship connecting CNM and CC is

given by

Fab ¼
1

m
ca

@

@R

����
����cb

� �
CNM

¼ 1

m
ca

@

@R

����
����cb

� �
CC

þ Zma þ ðZ� 1Þmb

ma þmb

1

m
hcajrrjcbiCC;

ð17Þ

where Z is the parameter that determines the origin of

the coordinate system. For the homonuclear diatomic species

Z = 1
2. The first term on the right hand side (RHS) of eqn (17)

is zero because of the g and u symmetries of the electronic

wave functions. The second term is nonzero only if there exists

a mass difference between the colliding partners. The calcula-

tion of Fab becomes the evaluation of the matrix element of

the electron velocity operator rr in the CC frame. In the

present study, we computed the matrix element using the same

MRCISD wave function as in the construction of the PECs.

The derived couplings as a function of internuclear distance

R are depicted in Fig. 1 for the case of isotopic combination of
9Be and 10Be. In the BO representation Fab becomes zero

exponentially as R - N, which can be seen by transforming

Fab into the length gauge

Fab E hca|rr|cbiCC E (ea � eb)hca|r|cbiCC. (18)

The V matrix as in eqn (5) contains adiabatic and non-

adiabatic corrections to the BO approximation. Accurate

accounts of each contributing term expressed in eqn (5) are

non-trivial. We have demonstrated12 that V can be accurately

determined by directly evaluating the nuclear kinetic operator

in the space fixed (SF) frame47–49 through a numerical differ-

entiation procedure12

Vab ¼
XNcoord

I

ca �
1

2mI
r2

I

����
����cb

� �
; ð19Þ

where the sum runs over the number of nuclear Cartesian

coordinates Ncoord, mI is the nuclear mass, and r2
I the

Lapacian in Cartesian coordinate I. In our calculation, the

molecule was placed in the SF nuclear coordinate frame with

the origin placed at the CNM and the z-axis along the

molecular axis. The second derivative for each Cartesian

coordinate was computed by numerical differentiation at a

MCSCF level of theory with a doubly augmented valence

quintuple-z (d-aug-cc-pV5Z) basis.39 The active space in this

MCSCF wave function was composed of seven electrons in

eighteen MOs, formed by 1s2s2p3s3p orbitals of the Be atoms.

The accuracy of the MCSCF approach was checked at selected

internuclear distances by comparing with those obtained from

the MRCISD wave functions. The differences are less than

5%. In addition, a comparison of Fab obtained from numerical

differentiation with that evaluated through the electron

velocity operator according to eqn (17) served as a check on the

accuracy of the MCSCF numerical differentiation procedure.

Finally, the asymptotic value of the off-diagonal matrix element

of V can be inferred from atomic calculations combined

with atomic spectroscopy, which provide a severe check of

our calculation.

In the actual calculation, we directly derive the Hermitian

matrix Ṽ, given in eqn (7), by computing the overlap of the BO

wave functions at displaced nuclear Cartesian coordinates,

ODx
ab = hca(x � Dx; R)|cb(x + Dx; R)i, (20)

where x represents the general nuclear Cartesian coordinate

and Dx is the displacement. After straightforward algebra,

Table 2 Spectroscopic constants of the B2S+
g and A2P+

u states of 9Be+2

State De/cm
�1 Re/Å oe/cm

�1 oexe/cm
�1 T0/cm

�1 Rc/Å (Ec/cm
�1)a

B2S+
g (inner well) This work 2745 2.114 544 13.7 13 730 2.222 (�2557)b

Theory33 2820.8 2.123 547.452 11.681 — —
Theory31 3145 2.128 517 13.2 13 953 —
Theory32 2358 2.140 — — — —

B2S+
g (outer well) This work 79.7 7.100 18.2 1.13 — —

Theory33 85.0 7.106 33.703 3.548 — —
A2P+

u This work 28 354 1.878 859 6.9 10 266 —

Theory31 26 858 1.882 818 6.2 11 017 1.615 (�1746)c
Theory32 27 989 1.887 — — — —

a Rc is the internuclear distance where two state cross and Ec is the potential energy at Rc relative to Be(1S) + Be+(2S). b The crossing between B2S+
g

and A2P+
u . c The crossing between X̃2S+

u and A2P+
u .
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we obtain for each coordinate I

~Vab;I ¼
1

48Dx2
½16ðODx

ab þODx
ba Þ � ðO2Dx

ab þO2Dx
ba Þ � 30dab�

þ OðDx3Þ; ð21Þ

and therefore

~Vab ¼
XNcoord

I

� 1

2mI

~Vab;I: ð22Þ

Bi-orthogonal molecular orbitals50 at displaced nuclear

configurations were used to calculate the BO overlaps and

Dx = 0.005a0.

The derived diagonal and off-diagonal matrix elements of Ṽ

for the two lowest S+ states of (9Be10Be)+ are shown in Fig. 1

as a function of R. They are small quantities and vary slowly

as a function of R. Only at very short R, do they become

significant. Asymptotically, the diagonal correction is calculated

to be 372 cm�1 for both states, and the off-diagonal matrix

element is determined to be 0.226 cm�1.

The asymptotic off-diagonal matrix element is 1
2DE, and it

causes the two adiabatic states to separate to the correct limits

of (9Be+ + 10Be) and (9Be + 10Be+) with the former lower in

energy. DE can be inferred from the high-precision atomic

calculations51,52 and resonance ionization mass spectroscopy.53

The energy difference in these two limits largely results from

the finite mass differences including specific mass shift (SMS)

and normal mass shift (NMS). The SMS contribution has been

calculated to be 292 MHz (1.2076 meV),51 and the experimental

value is 270 � 40 MHz (1.1166 � 0.1654 meV).53 The NMS can

be estimated from the atomic calculation with the infinite

nuclear mass

ENMS ¼ �
me

ma þme
Eð1BeÞ: ð23Þ

The nonrelativistic energies for NBe and NBe+ are determined

to be �14.6673564631 a.u. and �14.3247631754 a.u. in a

recent variational calculation employing explicitly correlated

Gaussian functions.52 According to eqn (23), the NMS differ-

ence in the isotopic combination of (9Be10Be)+ is 56.4655 meV.
Therefore, DE D 57.67 meV. No relativistic and nuclear field

effects are considered in our estimate, since they are small for

light elements. Our numerical differentiation calculation of

Ṽab reproduced this asymptotic result. The accuracy in the

numerical differentiation procedure was further checked in

the small R region by comparison of the first derivative

coupling, given by

Fnum
ab ¼

1

4Dx
ðODx

ab �ODx
ba Þ þ OðDx2Þ; ð24Þ

with the analytical result of Fab. The two sets of calculations

are in good agreement except in the small range (R o 2.3a0),

where the numerical noise is large. The difference is normally

smaller than 5%.

The electronic orbital angular momentum coupling matrix

L couples S+ and P states. For the same isotopic combi-

nation, only the matrix element between S+
u and Pu states

survives. We computed this coupling matrix element using

the same MRCISD wave functions as in the construction of

the PECs. In the case of the different isotopic combination, we

evaluated these matrix elements using the MCSCF(7e, 18o)

wave function as in the calculation of Ṽ. Benchmark calcula-

tions at selected R showed that the MCSCF results agree

closely with the one obtained from MRCISD wave functions.

Asymptotically, the couplings approach zero because the

Be(1S) - Be(3P) transition is spin-forbidden. As R - N,

the electronic basis |ci becomes an atomic eigenfunction, and

the matrix element is given by28,54

hcL|iLy|cL�1i E R(eL�1 � eL)hcL|x
at|cL�1iN

+ hcL|iL
at
y |cL�1iN, (25)

where terms on the RHS with the superscript ‘‘at’’ refer to

atom-centered operators. The computed couplings for

(9Be10Be)+ are plotted in Fig. 1. Similar to the mass depen-

dence in Fab, the coupling between S+
g and Pu (for conve-

nience in the discussion, we keep the g and u labelings for the

isotopic combination) is weak in the whole range of R.

MOLPRO 2009.155 suite of quantum chemistry programs

was employed for all of the MRICSD andMCSCF calculations.

IV. Results and discussion

A Near resonance and resonance charge exchange

Scattering calculations have been carried out for collision

energies from 10�12 eV to 0.5 eV. In the case of near resonance

charge exchange (NRCE), the scattering energy is measured

from the second channel of 9Be + 10Be+, whose asymptotic

energy was set at 5.767 � 10�5 eV above the lowest limit

of 9Be+ + 10Be. The PEC of the A2P state was shifted

(B5 cm�1) to match the asymptotic energy separation to the

experimental value of 2.724 eV56 between Be(1S) and Be(3P).

The computed cross sections for the NRCE processes are

shown in Fig. 2. The inelastic exothermic process

9Be + 10Be+ - 9Be+ + 10Be

is described as ‘‘quenching’’ in Fig. 2. At low collision energies

(o10�8 eV), the quenching cross section exhibits the inverse

velocity dependence behavior of Wigner’s threshold law.57

Fig. 2 Charge exchange and elastic cross sections for (9Be + 10Be)+

as a function of collision energy measured from the 9Be + 10Be+

threshold.
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According to microscopic reversibility, the reverse endo-

thermic excitation process consequently has a cross-section

that approaches zero at the threshold DE. The elastic cross

section tends to a constant. The zero energy collisions can be

characterized by a complex scattering length,58 a � ib, the
imaginary part of which is related directly to the inelastic cross

section. The derived complex scattering length from the S

matrix at near zero incident energy is reported in Table 3. The

real and negative scattering length of �981.4 a.u. indicates the

absence of a near zero energy bound state.

The rate constant for the quenching reaction at zero

temperature limit is determined to be 4.5 � 10�10 cm3 s�1.

Compared to similar quenching reactions in the ion–atom

collisions of H and Li with their isotopes,11,12 this rate is

smaller. We have shown that the comparable quenching rates

in HD+ and 6Li7Li+ were the result of the balance between

the smaller threshold energy DE and the weaker non-adiabatic

couplings. The reduced charge exchange rate is mainly due to

the larger mass of the Be atoms: if we assume that the mass

independent terms in eqn (17) are nearly the same for Li and

Be cases, we see that the increase in the nuclear mass reduces

the non-adiabatic coupling term by about 40% and the energy

separation only by 20%. Therefore in the present situation, the

elastic process is always dominant except at very low energies,

Eo 10�11 eV (which corresponds to a temperature of 10�7 K).

Resonance charge exchange (RCE) occurs together with

NRCE in an ensemble of mixed isotopes. The computed cross

sections for 9Be+2 and 10Be+2 are presented on the left in Fig. 3

together with one of NRCE (same data as Fig. 2) for comparison.

The overall behavior of the cross section is similar to what has

been found in our previous calculations,11,12 but the details

depend on the interaction potentials and particularly on the

position of the last bound state in the potential well at very

low energy. In the present case, the RCE cross sections for 9Be

and 10Be are close to each other in the whole energy range.

They dominate over the NRCE process in a wide energy range

from 10�3 eV to 10�10 eV, and they tend to constants at

low energies. The derived scattering lengths, ag and au, for the

S+
g and S+

u potentials and for the two isotopes are listed in

Table 3. Both isotopes show a negative scattering length for

the B2S+
g state.

For collision energies above 10�3 eV, which is about two

orders of magnitude larger than the threshold energy of

(9Be10Be)+, the cross sections for the three charge exchange

processes are very much the same. The cross sections vary as

(a ln E � b)2, reflecting the exponential decay of the exchange

energy at large R.24 a and b are determined to be 1.4 a0 and

18.7 a0 with Emeasured in electron volts and scx in units of a20.

This result is consistent with isotopic ion–atom collisions in

H and Li.11,12

The elastic cross sections are reported on the right panel

in Fig. 3 for both NRCE and RCE processes and are seen to

be quite similar for E > 10�5 eV. They can be well described

by the semiclassical theory and vary as B(mC2
4/E)

1/3.10,24 For

low energies, they become constants, whose magnitudes are

governed by the last bound state of the interaction potential

and are characterized by the scattering lengths in Table 3.

With the computed charge exchange cross sections, we

evaluated the thermally averaged charge exchange rate

constants, and the results are plotted in Fig. 4 as a function

of temperature. As T - 0, the rate coefficient of NRCE

approaches a constant because the cross section varies inversely

as the relative velocity. On the other hand, the RCE rate tends

to zero because of the elastic nature of the process. In a wide

temperature range, T E mK–K, the rate of NRCE is smaller

than those of the RCE because of the small cross section. At

high temperatures, the rate coefficients of RCE and NRCE

processes are indistinguishable. In the NRCE, the rate constant

Table 3 Scattering length (atomic units) for resonance and near
resonance charge exchange collisions. The number next to b is the
limiting value of zero temperature quenching rate constant in cm3 s�1

System a b/rate
9Be + 10Be+ - 9Be+ + 10Be �981.4 50.3/4.5 � 10�10

System ag (B
2S+

g ) au (X̃
2S+

u )
9Be + 9Be+ �941.8 569.4
10Be + 10Be+ �229.2 1237.0

Fig. 3 Charge exchange (left) and elastic (right) cross sections of near

resonance and resonance as a function of collision energy. The

collision energy in the near resonance case is measured with respect

to the 9Be + 10Be+ threshold.

Fig. 4 Thermal rate constants of the charge exchange processes

for ion–atom collisions of Be isotopes as functions of temperature.

The Langevin rate constant is evaluated for the reduced mass of
9Be + 10Be+.
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of the excitation process decreases significantly as the

temperature decreases, and becomes negligible (o10�17 cm3 s�1)

for T o 0.04 K. According to the microscopic reversibility,

the quenching rate coefficient (kq) and the excitation rate

coefficient (ke) are related by

kq = kee
�DE/kBT (26)

where kB is the Boltzmann constant. The rate coefficients

evaluated by eqn (26) are consistent with those derived from

the computed excitation cross sections.

We have shown previously10,12,13,24 that the Langevin

charge exchange model is successful in the intermediate energy

range. The semiclassical Langevin model assumes that every

collision whose energy overcomes the centrifugal barrier

penetrates to sufficiently small distances to form a complex

that leads to reaction with a probability of order unity.59 The

rate coefficient for the R�4 potential is p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C4=m

p
, which is

independent of temperature and has a weak dependence on the

reduced mass. The rate coefficient of NRCE at low energies is

also independent of temperature, but it is governed by the

s-wave scattering, which sensitively depends on the details of

the interaction potential and the reduced mass. In the present

case, for 9Be atoms undergoing charge exchange with 10Be+,

the Langevin rate coefficient is 1.27 � 10�9 cm3 s�1. It is

plotted in Fig. 4 for comparison. For the NRC, the quantum

mechanical rate coefficients are close to the Langevin value

in a broad temperature range from 100 K down to mK.

However, the Langevin result is always larger than that of the

NRCE except in a limited temperature range of 1 K–100 K.

Overall, these results agree with our previous findings. While

the agreement between the Langevin model and quantum

mechanical results is close, large discrepancies may exist, e.g.

the RCE of 6Li + 6Li+12 and 171Yb + 171Yb+13 and the

NRCE of 9Be + 10Be+. Care must be taken when applying the

Langevin formula, especially at low energies.

B The influence of the P state

The main difference with our previous studies10–13 of other

similar systems is that, here, a third state, A2P, is directly

involved in both the RCE and NRCE processes. In the former

case, the A2Pu state interacts only with X̃2S+
u because of the

g/u inversion symmetry, while it couples both S states in the

latter case. To explore its role in the charge exchange processes,

we performed model studies by removing the A2P state and the

corresponding electronic orbital angular momentum couplings

from the coupled eqn (6). The computed elastic and charge

exchange cross sections are compared with those obtained

from the full three-state calculations. The differences in the

charge exchange cross sections are expressed as the percentage

deviation from the results of the full calculations, and are

plotted in Fig. 5 as a function of collision energy for NRCE

and RCE processes, respectively. A similar situation occurs for

the elastic cross sections, but it is not shown for brevity.

For the charge exchange cross sections, the A2P state plays

a negligible role for scattering energies smaller than 10�6 eV.

The percentage difference is much smaller than 0.1%. There

are various causes for this behavior: first of all, the non-

adiabatic interaction between the A2P and 2S+ states is weak.

At the crossing region its magnitude is on the order of 10�5

a.u. Secondly, in the low energy regime, the inner region of the

B2S+ state is inaccessible because of the potential barrier of

1260 cm�1 (see Fig. 6). The crossing between the A2P state

and X̃2S+ state at Rc = 3.015a0 is located 1746 cm�1 below

the maxima in the B2S+ potential. Furthermore, for an R�4

potential the scattering phase shift at low energies is domi-

nated by the long-range part of the interaction potentials.

The shape of the potential well region makes only a minor

contribution. This can be easily verified by manipulating the

inner part of the potential of the X̃2S+ state. When we set this

potential to be a constant for R o 2.9a0 arbitrarily larger or

smaller of �200 cm�1 than its value at R = 2.9a0, we noticed

that the phase shifts coming from this modified potential did

not differ significantly from those coming from the actual

potential at few selected energies from 10�10 eV to 10�7 eV.

We found, in particular, that the variation of the module of

the phase shifts was smaller than 1% depending on the

collision energy. Therefore, the charge exchange cross sections

at low energies are largely insensitive to the A2P state, and so

are the elastic cross sections.

Fig. 5 The percentage differences of the charge exchange cross

sections as a function of collision energy obtained from the calculations

with and without the A2Pu state for the near resonance (left) and

resonance (right) charge exchange processes.

Fig. 6 BO potentials in the short R region.
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Relatively large discrepancies between the calculations

including the P state or not start to appear when E > 10�4 eV.

The difference remains small and does not exceed 20% in the

sampled interval of scattering energies. The differences are mainly

caused by Feshbach resonances due to the presence of quasi-

bound states of theA2P potentials embedded in the S continuum.

In Fig. 7, we show the positions of a few selected bound states of

the A2P state of (9Be10Be)+. Their positions coincide with the

peaks in the difference of the cross section, identifying the

energies where the S–P interaction is enhanced by this resonant

mechanism. At collision energies below 10�4 eV, no bound state

is found to be in resonance with the incoming wave.

V. Summary and conclusions

We have investigated slow collisions of a Be atom with a Be

ion including the case of different isotopes. High-level electronic

structure calculations at the MRCISD and MCSCF levels of

theory have been performed to construct the Born–Oppenheimer

molecular potentials and the diagonal and off-diagonal correc-

tions that reflect the breakdown of the BO approximation. The

calculated potential energy curves agree closely with recent

experiments and theoretical analysis. The computed energy

splitting of DE = 56.47 meV in the isotopic combination of

the (9Be10Be)+ molecular ion is consistent with the result of

57.76 meV derived from high precision atomic calculations and

resonance ionization mass spectroscopy.

Close-coupling calculations have been carried out to examine

the collision dynamics of resonance and near resonance charge

exchange. We have demonstrated that the NRCE cross section

in the low-energy limits follows Wigner’s threshold law, varying

as the inverse of the initial velocity. The limiting charge exchange

rate coefficient is determined to be 4.5 � 10�10 cm3 s�1. In

comparison, the resonance charge exchange rate tends to zero.

When the collision energy is much higher than the threshold

energy arising from the isotope shift, NRCE becomes identical

to RCE. Close agreement with the Langevin charge model is

found over a wide energy range. These results are consistent

with findings in our earlier investigations of the isotopic

ion–atom collision of HD+11 and Li+2 .12

A key aspect of the present work was to explore the

perturbation, originating from the non-adiabatic interaction

with aP state, to the two-state approximation for the description

of ion–atom collisions. Our theoretical analysis showed that in

the low energy regime, the effects due to the P state on the

elastic and the charge exchange processes in both NRCE and

RCE cases are negligible. Not only because the P–S coupling

is weak, but more importantly, because the low energy scattering

dynamics is dominated by the strong long-range polarization

interaction. The majority of the scattering phase is accumulated

in the long-range part of the potential. The contribution from

the short range is small and insensitive to the details of the

interaction potentials. Above 0.1 meV of collision energy, the

effects due to the P state are still relatively small and mainly

caused by the appearance of Feshbach resonances due to the

presence of quasi-bound states of the P state. Of course, if there

existed quasi-bound states at suitable positions, this type of

resonances could also take place below 0.1 meV. Nonetheless,

we have explicitly checked that the two-state approximation for

the slow ion–atom collision is largely valid even in this case.
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