
 

Elastic scattering and rotational excitation of nitrogen molecules by
sodium atoms

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Loreau, Jerome, Peng Zhang, and Alexander Dalgarno. 2011.
“Elastic Scattering and Rotational Excitation of Nitrogen
Molecules by Sodium Atoms.” The Journal of Chemical Physics
135, no. 17: 174301.

Published Version doi:10.1063/1.3653983

Accessed February 16, 2015 5:01:56 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12718787

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH 

https://core.ac.uk/display/28950426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/12718787&title=Elastic+scattering+and+rotational+excitation+of+nitrogen+molecules+by+sodium+atoms
http://dx.doi.org/10.1063/1.3653983
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12718787
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Elastic scattering and rotational excitation of nitrogen molecules by
sodium atoms
Jérôme Loreau, Peng Zhang, and Alexander Dalgarno 
 
Citation: J. Chem. Phys. 135, 174301 (2011); doi: 10.1063/1.3653983 
View online: http://dx.doi.org/10.1063/1.3653983 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v135/i17 
Published by the American Institute of Physics. 
 
Related Articles
Relaxation of energetic S(1D) atoms in Xe gas: Comparison of ab initio calculations with experimental data 
J. Chem. Phys. 135, 024304 (2011) 
Ultracold O2 + O2 collisions in a magnetic field: On the role of the potential energy surface 
J. Chem. Phys. 134, 124310 (2011) 
Cold and ultracold NH–NH collisions: The field-free case 
J. Chem. Phys. 134, 124309 (2011) 
Quantum and classical study of surface characterization by three-dimensional helium atom scattering 
J. Chem. Phys. 134, 024319 (2011) 
Efficient numerical method for locating Feshbach resonances of ultracold molecules in external fields 
J. Chem. Phys. 134, 014101 (2011) 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 12 Jan 2012 to 128.103.149.52. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=J�r�me Loreau&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Peng Zhang&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Alexander Dalgarno&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3653983?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v135/i17?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3600352?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3573968?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3570596?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3519811?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3512627?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 135, 174301 (2011)

Elastic scattering and rotational excitation of nitrogen molecules
by sodium atoms

Jérôme Loreau,a) Peng Zhang, and Alexander Dalgarno
Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP), Harvard-Smithsonian
Center for Astrophysics, Cambridge, Massachusetts 02138, USA

(Received 11 July 2011; accepted 1 October 2011; published online 1 November 2011)

A quantal study of the rotational excitation of nitrogen molecules by sodium atoms is carried out. We
present the two-dimensional potential energy surface of the NaN2 complex, with the N2 molecule
treated as a rigid rotor. The interaction potential is computed using the spin unrestricted coupled-
cluster method with single, double, and perturbative triple excitations (UCCSD(T)). The long-range
part of the potential is constructed from the dynamic electric dipole polarizabilities of Na and N2. The
total, differential, and momentum transfer cross sections for rotationally elastic and inelastic transi-
tions are calculated using the close-coupling approach for energies between 5 cm−1 and 1500 cm−1.
The collisional and momentum transfer rate coefficients are calculated for temperatures between
100 K and 300 K, corresponding to the conditions under which Na–N2 collisions occur in the meso-
sphere. © 2011 American Institute of Physics. [doi:10.1063/1.3653983]

I. INTRODUCTION

Collisions between sodium atoms and nitrogen molecules
occurring in Earth’s mesosphere play an important role in the
understanding and development of sodium Laser Guide Stars
(LGS).1 LGS are currently being developed at ground-based
telescopes in an effort to improve the use of adaptive optics.
This technique requires a reference source (a guide star) in
order to efficiently correct the effects of the atmospheric dis-
tortion on the light received by telescopes. However, a suffi-
ciently bright guide star is not always available in the region
of the sky under observation. Sodium laser guide stars provide
a solution to this problem by shining a laser at a wavelength
of 589 nm into the atmosphere. This laser light is absorbed by
sodium atoms present in the atmosphere and then reemitted,
providing an artificial star that can be used as a reference star
in any region of the sky. The process takes advantage of the
natural sodium layer present in the mesosphere at an altitude
of about 90 km. This layer has a thickness of about 10 km
and is mainly due to the burning of meteorites in the Earth’s
atmosphere so that sodium is produced continuously in the
mesosphere. However, it is also removed by a series of com-
plex mechanisms. At altitudes higher than 100 km, sodium is
still present as an ion (see Ref. 2 for a review on the chemistry
of the sodium layer).

One of the main difficulties in the development of laser
guide stars is to describe accurately the photon return from
the mesosphere. Indeed, the LGS return flux depends on a
combination of various effects and parameters (laser param-
eters, atmospheric parameters, telescope parameters, etc.).
Holzlöhner et al. recently simulated the photon return flux
by using the optical Bloch equations for the atomic density
matrix.1 They emphasized the importance of including colli-
sional processes between Na and N2 or O2 in the simulation,
as they modify the velocity of sodium atoms and therefore the

a)Electronic mail: jloreau@cfa.harvard.edu.

Doppler shift of the atoms. In their modeling of the photon re-
turn flux, Holzlöhner et al. treated these collisions by assum-
ing that the particles behave as hard spheres with an effective
particle radius given by the Van der Waals radius.

The purpose of this work is to describe these Na–N2 col-
lisions using a fully quantal method. In addition to providing
more precise values for the cross sections and rate constants,
the differential cross sections obtained in this work can be
used to model the velocity redistribution of the Na atoms.

In Sec. II, we calculate the potential energy surface of
the ground state of the Na–N2 Van der Waals complex using
ab initio methods. We freeze the N–N bond to its equilib-
rium distance, so that the vibration of N2 is neglected in the
scattering calculations and the molecule is effectively treated
as a rigid rotor. We compare our ab initio calculations with
previous results obtained by Lee and Wright 3 for the linear
and T-shaped geometries. In Sec. III, we calculate the elastic
and inelastic rotational cross sections, as well as the differen-
tial and momentum transfer cross sections, for energies in the
range 5–1500 cm−1. We also calculate the corresponding rate
constants for temperatures between 100 K and 300 K.

II. MOLECULAR DATA

A. Interaction potential

The intermolecular potential between a sodium atom and
a nitrogen molecule may be represented by three coordinates.
We used the standard Jacobi coordinates R, r, θ , where R is
the distance between the atom and the center of mass of the
N2 molecule, r denotes the length of the N–N bond, and θ

is the angle between R and r. In this work, we have frozen
the N2 internuclear distance to the equilibrium geometry, r
= 2.0743a0. In Na–N2 collisions, this means that we neglect
the vibrational motion of N2. This is appropriate since the am-
bient temperature in the sodium layer is about T = 185 K,
while the first excited vibrational state of N2 lies more than

0021-9606/2011/135(17)/174301/9/$30.00 © 2011 American Institute of Physics135, 174301-1
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2000 cm−1 above the ground vibrational state. If the nitrogen
molecules are assumed to be in thermal equilibrium, only the
v = 0 state will be populated.

The ground state configuration of the sodium atom
is (1s22s22p63s) 2S, while the ground state of the nitrogen
molecule is a 1�+

g state. Therefore, the ground state of the
Na–N2 van der Waals complex corresponds to the 2A′ repre-
sentation of the symmetry group Cs. For the particular geome-
tries θ = 0◦ (linear) and θ = 90◦ (T-shaped), the ground state
will be respectively a 2�+ or a 2A1 state.

The Na–N2 complex was previously investigated by Lee
and Wright 3 for the linear and T-shaped geometries. They
reported calculations using several ab initio methods and ba-
sis sets, and concluded that the minimum of the Na–N2 com-
plex corresponds to the linear geometry. Using the RCCSD(T)
method, they obtained a dissociation energy of 24 cm−1

and an equilibrium distance Re ∼ 10.6 a.u. However, the
value of Re was strongly dependent on the method used. The
T-shaped geometry was found to be a saddle point, lying
7.5 cm−1 higher than the linear minimum.

In the present study, the two-dimensional potential en-
ergy surface (PES) of the ground state was calculated us-
ing the spin unrestricted coupled-cluster method with sin-
gle, double, and perturbative triple excitations (UCCSD(T))
(Refs. 4 and 5) implemented in the the MOLPRO 2009.1
package.6 We used the augmented polarized core-valence
quadruple zeta (aug-cc-pCVQZ) basis set7 to perform the
CC calculations. The reference wave function employed in
the CC calculations was generated from the spin restricted
Hartree-Fock (ROHF) method. Nineteen electrons, including
the 2s22p63s electrons of the Na atom and the 2s22p3 electrons
of the N atoms, were correlated explicitly in the UCCSD(T)
calculations. We constructed the PES using an uniform grid
of 605 geometries. The grid for the intermolecular distance
was 3 ≤ R ≤ 19.2a0 with a step length of 0.3a0, while for θ

we used a grid 90◦ ≤ θ ≤ 180◦ with a step size of 10◦, with an
additional series of points at θ = 95◦. The potential for 0◦ ≤
θ < 90◦ is obtained by symmetry with respect to θ = π /2.
The effect of the basis set superposition error (BSSE) on the
energy was taken into account by means of the counterpoise
correction.8
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FIG. 1. Potential energy surface V(R, θ ) for the Na–N2 complex.

TABLE I. Geometry of the minimum of the Na–N2 potential, as well as for
the linear and T-shaped geometries (with r fixed to the equilibrium geometry),
dissociation energy De, and effect of the BSSE on De.

R (a.u.) θ (degrees) De (cm−1) BSSE (cm−1)

10.47 135 26.92 6.7
10.46 90 23.24 6.1
10.93 180 24.41 7.1

Our potential energy surface is shown in Figure 1.
It is strongly repulsive at distances smaller than 9a0, and
weakly attractive for large R. The potential has a minimum at
θ = 135◦ (and θ = 45◦) and the equilibrium distance is
R = 10.47a0, with a dissociation energy De = 26.92 cm−1.
For the specific value θ = 90◦, the potential has a saddle point,
with a dissociation energy of 23.24 cm−1 (lying only 3.7 cm−1

above the minimum), while for the linear geometry the disso-
ciation energy is 24.41 cm−1. However, the minimum for the
linear geometry occurs at a larger Na–N2 distance. These re-
sults are summarized in Table I. The effect of the BSSE on
the dissociation energies is also reported in the same table.
For such a weakly bound complex, it is clear that the BSSE
cannot be neglected as it can contribute significantly to the
dissociation energy. We found that the effect of the BSSE on
De was ∼7 cm−1, or about 28% of the dissociation energy, a
value similar to the one reported by Lee and Wright. For the
linear geometry, the values of the dissociation energy and of
the equilibrium distance are seen to be very close to the ones
reported in Ref. 3 (De = 24 cm−1 and Re = 10.6 a.u.). How-
ever, this geometry does not correspond to the global mini-
mum of the potential. The T-shaped structure is confirmed to
be a saddle point, although the energy gap between the mini-
mum of this structure and the minimum of the linear structure
is only of about 1 cm−1, as opposed to the value of 7.5 cm−1

reported in Ref. 3.

B. Long-range interactions—Asymptotic potential

The asymptotic long-range attractive potential Vas is
dominated by the dispersion forces and can be constructed
with an analytical form. We consider here only the leading
term,

Vas = −C6

R6
, (1)

since the next term in the series, C8/R8, is not expected to
contribute significantly.

In the case of the interaction between an S-state atom and
a linear molecule, the C6 coefficient is given by the sum of an
isotropic and an anisotropic component:9

C6 = C6,0P0(cos θ ) + C6,2P2(cos θ ), (2)

where P0 and P2 are the Legendre polynomials of order 0
and 2, respectively. The isotropic and anisotropic dispersion
coefficients may be derived by

C6,0 = 3

π

∫ ∞

0
αNa(iω)αN2 (iω)dω, (3)
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C6,2 = 1

π

∫ ∞

0
αNa(iω)

[
α

N2
‖ (iω) − α

N2
⊥ (iω)

]
dω, (4)

where α‖(iω) and α⊥(iω) are respectively the longitudinal and
transverse dynamical electric dipole polarizabilities, evalu-
ated as functions of imaginary frequencies iω. α is the average
dipole polarizability:

α = 1

3
(α‖ + 2α⊥). (5)

The expressions (3) and (4) can be calculated efficiently
using Gaussian quadrature.10 The integral is then replaced by
a sum over N quadrature points ωk, with weights wk. The
dynamic polarizabilities of the N2 molecule were evalu-
ated using the time-independent linear response coupled
cluster theory11 at the third-order in the fluctuation po-
tential as implemented in MOLPRO. A triply augmented
correlation consistent polarized core-valence sextuple zeta
(t-aug-cc-pCV6Z) basis12 was employed in the coupled clus-
ter calculations. Our computed static polarizabilities are
α

N2
⊥ =10.13 a.u. and α

N2
‖ =14.75 a.u., which are consistent

with other theoretical values in the ranges of 9.8–10.34 a.u.
and 14.5–15.02 a.u., respectively.13

For Na, we adopted the accurate many-body relativis-
tic values reported in Ref. 14. The integration was real-
ized using a 50-points Gaussian quadrature. We found C6, 0

= 206.70 a.u. and C6, 2 = 26.44 a.u.. The accuracy of the de-
rived dispersion coefficient can be further verified through the
direct comparison with the UCCSD(T) calculations. Substi-
tuting the values of the C6 coefficients into Eq. (1), the en-
ergy difference between the UCCSD(T) calculations and the
asymptotic potential (1) at the last point of our computed grid
(R = 19.2a0) is smaller than 0.2 cm−1 and depends on the
value of θ . In order to smoothly connect the ab initio points
and the asymptotic potential, we used a switching function
expressed as the product of a R-dependent and a θ -dependent
function. It is given by

f (R, θ ) = −(1 + tanh(aR + b)) cos(c(θ + d)). (6)

The four parameters a, b, c, d were optimized with respect to
the ab initio points at large R using a nonlinear least-squares
Marquardt-Levenberg algorithm and are given in Table II. The
root mean square deviation was 0.015 cm−1.

III. SCATTERING CALCULATIONS

A. Method

We calculated the cross sections for Na–N2 collisions
using the quantum close-coupling method of Arthurs and
Dalgarno.15 N2 was treated in the rigid-rotor approximation
being held fixed at its equilibrium bond-length. We will only

TABLE II. Parameters of the switching function (6).

a b c d

−0.0478069 1.24173 0.171625 13.6938

briefly review the method here, as it has been described in
detail in the literature.15, 16

The Hamiltonian for the Na–N2 complex in the rigid ro-
tor approximation can be written as

H = − 1

2μ
∇2

R + Hrot + V (R, θ ), (7)

where μ is the reduced mass of the Na–N2 system, V(R, θ )
is the interaction potential between Na and N2, and Hrot de-
scribes the rotation of the N2 molecule. Its eigenvalues are the
rotational energies,

HrotYjmj
= εjYjmj

, (8)

where j is the rotational quantum number, mj is its projection
on the space-fixed z axis, and Yjmj

are the spherical harmon-
ics. In this work, we have represented the energy of the rota-
tional levels of the nitrogen 1�+

g ground state by

εj = (Be − αe/2)j (j + 1) − Dej
2(j + 1)2 , (9)

with the rotational constants of N2 given by17, 18

Be = 1.99824 cm−1, De = 5.76 × 10−6 cm−1,

αe = 0.017318 cm−1.

In the close-coupling method, the total wave function of
the Na–N2 complex is expanded as a sum of products of ra-
dial and rotational functions. These basis channels functions
are labelled by the rotational quantum number j and by the
orbital quantum number l. This expansion is then inserted in
the Schrödinger equation with the Hamiltonian (7), leading to
a set of second-order coupled differential equations for the ra-
dial functions which must be solved with appropriate bound-
ary conditions. In these equations, the coupling between the
different channels is represented by matrix elements of the
intermolecular potential.

It is convenient to introduce the total angular momentum
J = j + l, where j is the angular momentum of N2 and l is
the orbital momentum. The total angular momentum is con-
served during the collision, so that the coupled equations are
block-diagonal in J. The S matrix elements SJ

j ′l′j l can be ob-
tained from the asymptotic behavior of the radial functions.
The cross section for the transition from an initial state j to a
final state j′ is then given in terms of the S matrix elements as

σjj ′ = π

(2j + 1)k2
j

∞∑
J=0

|J+j |∑
l=|J−j |

|J+j ′ |∑
l′=|J−j ′ |

(2J +1)|δjj ′δll′ −SJ
j ′l′j l|2,

(10)
where kj = √

2μ(E − εj ) is the wavenumber in the entrance
channel and E is the total (kinetic plus rotor) energy.

We carried out the scattering calculations for collision
energies between 5 and 1500 cm−1 using the nonreactive
scattering code MOLSCAT of Hutson and Green.19 The ra-
dial equations were solved using the log-derivative propaga-
tor method. The log-derivative matrix is propagated on a grid
of intermolecular distances between Rmin and Rmax . At Rmax ,
the numerical calculations are matched with the asymptotic
solutions and the S matrix elements are extracted. We used a
grid starting at Rmin = 3 a.u., while the Rmax was in the range
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FIG. 2. The first four radial functions Vλ(R) in the expansion (11) of the
intermolecular potential.

50–150 a.u., depending on the energy of collision. For a par-
ticular energy, the propagation is carried out until conver-
gence of the sum over the total angular quantum number J in
Eq. (10) is achieved. For the elastic cross sections, the num-
ber of partial waves required ranged from 50 for E = 5 cm−1

to about 400 for an energy of 1500 cm−1, while the conver-
gence is faster for inelastic cross sections. At low energies
(E ∼ 10 cm−1), we found that it was typically necessary to
include 5–6 closed channels in our calculations, while at high
energy (E ∼ 1000 cm−1) the inclusion of 2 closed channels
was enough to guarantee convergence of the cross sections.
At the highest energy considered in this work, this requires a
basis set of about 30 rotational functions.

The calculation of the cross section is considerably sim-
plified if the intermolecular potential V(R, θ ) is expanded in
terms of Legendre polynomials of order λ,

V (R, θ ) =
∑

λ

Vλ(R)Pλ(cos θ ), (11)

where the Vλ(R) are known as “radial strength functions.”
This equation can be inverted as

Vλ(R) = (λ + 1/2)
∫ π

0
V (R, θ )Pλ(cos θ ) sin θdθ, (12)

and evaluated using a Gauss-Legendre quadrature. Note that
in the case of a collision between an atom and an homonu-
clear diatomic molecule, only even values of λ appear in Eq.
(11) due to the symmetry of the intermolecular potential. The
first four radial functions Vλ(R) are shown in Figure 2. In our
calculations we found that it was sufficient to include terms
up to λ = 10 to ensure convergence of the cross sections.

In the modeling of LGS, one of the key quantities is
the momentum transfer between Na and N2. The momentum-
transfer cross section σ tr

jj ′ , also called transport cross section,
from an initial level j to a final level j′ may be obtained from
the differential cross section as 20

σ tr
jj ′(Ec) = 2π

∫
dγ sin γ

dσjj ′ (Ec, γ )

d�

(Ec, γ ) , (13)

with the function


(Ec, γ ) = 1 − √
E′

c/Ec cos γ , (14)

10-3

10-2

10-1

100

101

102

103

 10  100  1000

C
ro

ss
 s

ec
tio

n 
(1

0-1
6  c

m
2 )

Energy (cm-1)

j’ = 0
j’ = 2
j’ = 4
j’ = 6
j’ = 8
j’ = 10

FIG. 3. Elastic and inelastic cross sections from the initial rotational level
j = 0 to the final rotational level j′.

where E′
c is the final kinetic energy, related to the initial

kinetic energy by

E′
c = Ec + εj − εj ′ . (15)

B. Results and discussions

1. Cross sections

The elastic and inelastic cross sections for transitions be-
tween the initial level j = 0 and the final levels j′ = 0 − 10 are
shown in Figure 3. We observe that the collision is dominated
by the elastic process at all energies, the cross section j = 0
→ j′ = 0 being almost two orders of magnitude larger
than any of the inelastic cross sections. At energies below
1000 cm−1, the rotationally inelastic cross sections decrease
with increasing final rotational level j′. However, at an energy
of about 1000 cm−1, the 0–4 transition becomes the leading
inelastic transition.

The cross sections can be understood qualitatively with
the potential expansion (11). The leading term is the isotropic
potential V0, which drives the elastic transitions. At inter-
molecular distances smaller than 9 a.u., this term is much
larger than the anisotropic terms, so that the collision can
be expected to be mostly elastic. The radial functions Vλ get
smaller when λ increases, except for the V4 term which is
larger than V2 in the classically allowed region. The cross sec-
tions for transitions �j ≥ 4 thus quickly become negligible as
�j = |j − j′| increases, and there is a strong hierarchy between
the inelastic cross sections.

At energies below 40 cm−1, the cross sections 0–0, 0–2,
and 0–4 exhibit an oscillatory behavior characteristic of res-
onances. These resonances at low kinetic energy are a conse-
quence of the attractive potential well, which allows Na to
be temporarily trapped and hence quasi-bound states to be
formed before the molecular complex dissociates. The quasi-
bound states may arise from the tunneling from the centrifugal
barrier and from excitation of N2 to an asymptotically closed
channel where N2 becomes temporarily trapped in one of the
bound states of the potential well.21–23 Compared to the depth
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of the potential well, the energy spacing of the N2 rotational
structure is small, so that both types of quasibound states oc-
cur in the same energy range.

The disappearance of the resonances as a function of the
collision energy can be qualitatively understood by examin-
ing the radial functions Vλ(R): the spherical term V0, which
governs the elastic transitions, has a potential well of about
25.2 cm−1 positioned at R = 10.50 a.u., close to the equi-
librium distance of the van der Waals complex. The pres-
ence of this well explains the resonances found in the elas-
tic cross sections at energies below 25 cm−1. The V2 term,
which dominates the �j = 2 transitions, also has a poten-
tial well, located around an intermolecular distance of 6 a.u.,
with a depth of 39.6 cm−1. However, the region R < 8 a.u. is
classically forbidden at low energy and the resonances can
therefore be attributed to quasi-bound levels of the Na–N2

complex. It should be noted that the resonances are gradually
suppressed with increase in the initial rotational level, as can
be observed on Figure 5. The shallow Van der Waals potential
well supports only a limited number of excited quasi-bound
levels, and levels corresponding to higher j become virtual
states producing no shape resonances, so that we observe no
resonances for initial diatomic rotational levels j ≥ 2.

In Figure 4, we show the elastic cross section for the ro-
tational state j = 1. In the energy range considered in this
work, the general behavior of the elastic cross section is a de-
crease with increasing energy. However, the decrease is not
monotonic and we observe three peaks located around Ec

= 20 cm−1, Ec = 75 cm−1, and Ec = 500 cm−1. On the
same figure, we also display the elastic cross section for j
= 5 (the most populated rotational level at T = 185 K) and
for the highly excited state j = 15. Except for the presence
of resonances at low energy for j = 1, we see that the elastic
cross section is almost independent of j. This peak structure
is characteristic of glory undulations, as manifested by the
plot of σ elv2/5 vs 1/v.24 The independence of the peak posi-
tions with respect to the initial rotational state indicates that
the rotational time of N2 is short compared to a characteris-
tic translational time and hence inelastic processes make little
contribution to the glory undulations. A crude estimate shows
that the rotational time of N2 is ∼10−13 s depending on the
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FIG. 5. Inelastic cross sections for the transition j → j + 2 for several values
of j.

rotational level, and the translational time is estimated to be
∼10−12 s if one assumes a path length of about 15a0. In the
energy range of the present study, the inelasticity of scatter-
ing, defined as the ratio between the total inelastic cross sec-
tion and the total cross section, is small, varying from 2% to
15% depending on the initial rotational state. The similarity
of the elastic cross sections reflects the fact that the total cross
section is independent of the initial state apart from the factor
accounting for the detailed balance.25

The cross sections for rotational excitation with �j = 2
and �j = 6, respectively, from the initial rotational levels
j = 0, 1, 5 and j = 9 are shown in Figures 5 and 6. By compar-
ing the two figures, we see that as was observed for j = 0, the
inelastic cross sections are much smaller for �j = 6 than for
�j = 2. Moreover, the inelastic cross sections decrease as the
initial rotational level j increases, although this observation
is partly masked in Figures 5 and 6 due to threshold effects.
Therefore, as j increases, the collisions will be more and more
dominated by the elastic process.

The differential cross sections are useful for the eval-
uation of momentum transfer in collisions of Na and N2.
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FIG. 6. Inelastic cross sections for the transition j → j + 6 for several values
of j.
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FIG. 7. Elastic differential cross section for j = 0 for several energies, as a
function of the scattering angle.

The elastic differential cross section for j = 0 is shown in
Figure 7 for various energies of collision. The differential
cross sections present a fast oscillatory behavior as a function
of the scattering angle γ which reflects quantum mechanical
interferences. At low energy, these oscillations occur at all
angles, so that there is an important contribution from back-
ward scattering. However, this contribution quickly decreases
with increasing energy and the elastic collision becomes dom-
inated by forward scattering. The inelastic cross section j = 0
→ j = 2 is presented in Figure 8 for a few selected energies.
Similarly to the elastic cross section, we observe fast oscil-
lations as a function of the scattering angle and a backward
scattering contribution which decreases with increasing en-
ergy. However, the magnitude of these oscillations is much
smaller.

The differential cross sections dσjj ′/d� are used to com-
pute the momentum transfer cross section, given by Eq. (13).
The total momentum transfer cross section, obtained by sum-
ming σ tr

jj ′ over all the final rotational states j′, is shown in
Figure 9 for j = 1. We also display on the same figure the
contribution of the elastic and inelastic scattering. At low en-
ergy, the momentum transfer cross section is entirely due to
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FIG. 8. Inelastic differential cross section j = 0 → j = 2 for several energies,
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FIG. 9. Momentum transfer cross sections for j = 1. Full line: total cross
section, dashed line: elastic cross section, and dotted line: total inelastic cross
section.

the elastic collisions, but the relative contribution of rotational
excitation increases with the energy to reach 35% of the total
momentum transfer cross section at Ec = 1500 cm−1. The
momentum transfer cross sections are generally smaller than
the scattering cross sections, and the difference between the
two types of cross sections increases with the energy. This ef-
fect is caused by the function 
(Ec, γ ) = 1 − √

E′
c/Ec cos γ

(see Eq. (14)), which suppresses the contributions from the
small angles in the differential cross section. At low energy,
we have seen (cf. Figure 7) that the differential cross sec-
tion can be large for all scattering angles. However, as the
energy increases, the contributions from large γ decreases
rapidly. Therefore, the momentum transfer cross sections de-
crease more quickly than the scattering cross section as the
energy increases.

We found that the total momentum transfer cross sections
are similar for all values of j up to a few percent, which can be
seen as surprising at high scattering energy. Indeed, we have
shown that the inelastic transitions contribute to a large part of
the momentum transfer cross section for j = 1 (see Figure 9),
but also that the inelastic cross sections decrease very quickly
with increasing initial rotational level (see Figures 5 and 6).
We thus expect a lower contribution of inelastic scattering to
the momentum transfer cross section as j increases. However,
this effect is compensated by the fact that the elastic cross sec-
tion increases slightly with j, as shown in Figure 4. Therefore,
we conclude that the total momentum transfer cross section is
similar for all initial rotational levels, but that the contribution
of the elastic collisions increases with j. As an example, at

TABLE III. Total, elastic and inelastic momentum transfer cross sections
for j = 0, j = 5, and j = 9 (in units of 10−16 cm2) for Ec = 128.6 cm−1.

σ tr
tot σ tr

el σ tr
inel

j = 0 67.5 51.0 16.5
j = 5 68.0 60.5 7.5
j = 9 68.0 67.4 0.6
Ref. 1 72
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TABLE IV. Scattering and momentum transfer rate coefficients for j = 0 for temperatures in the range 100–300 K.
The rates are given in units of cm3 s−1. Powers of 10 are given in brackets.

Scattering rate coefficient, k(T) Momentum transfer rate coefficient, ktr(T )

T (K) kel kinel ktot ktr
el ktr

inel ktr
tot

100 2.36[−9] 8.80[−11] 2.44[−9] 2.70[−10] 6.73[−11] 3.37[−10]
125 2.53[−9] 9.82[−11] 2.63[−9] 2.70[−10] 7.35[−11] 3.44[−10]
150 2.70[−9] 1.07[−10] 2.80[−9] 2.72[−10] 7.86[−11] 3.51[−10]
165 2.79[−9] 1.12[−10] 2.90[−9] 2.74[−10] 8.13[−11] 3.55[−10]
175 2.85[−9] 1.15[−10] 2.97[−9] 2.75[−10] 8.30[−11] 3.58[−10]
185 2.92[−9] 1.18[−10] 3.03[−9] 2.76[−10] 8.46[−11] 3.60[−10]
195 2.98[−9] 1.21[−10] 3.10[−9] 2.77[−10] 8.61[−11] 3.63[−10]
205 3.03[−9] 1.23[−10] 3.16[−9] 2.78[−10] 8.76[−11] 3.66[−10]
250 3.28[−9] 1.35[−10] 3.42[−9] 2.83[−10] 9.33[−11] 3.77[−10]
300 3.52[−9] 1.45[−10] 3.67[−9] 2.89[−10] 9.87[−11] 3.87[−10]

an energy of 1000 cm−1 the inelastic scattering accounts for
about 30% of the momentum transfer cross section for j = 0,
while this number drops to 13% for j = 9.

The energy corresponding to the temperature of the
mesospheric sodium, T = 185 K, is kBT/hc = 128.6 cm−1.
At this energy, our calculated value for the total momentum
transfer cross section is σ tr = 68 × 10−16 cm2 for j = 5 (the
most populated rotational level at T = 185 K). We show in
Table III the value of the total momentum transfer cross sec-
tion and the contribution from elastic and inelastic scattering,
for three values of j. As indicated above, the total cross section
is almost independent of j, but the contribution from inelastic
scattering decreases with j. The value estimated by Holzlöh-
ner et al.,1 who treated Na and N2 as hard spheres with effec-
tive particle radii given by the Van der Waals radii, is σ = 72
× 10−16 cm2, in surprisingly good agreement given the very
simple assumptions made in their calculation. However, more
detailed models of the velocity redistribution of the sodium
atoms following collisions with N2 can be achieved by using
the elastic and inelastic differential cross sections presented
in this work over a whole range of energies.

2. Rates

The thermal rate coefficient for a transition j − j′ at
a given temperature T is given by the integral of the cross

section over a Maxwell-Boltzmann distribution of initial
energies:

kjj ′(T ) =
( 2

kBT

)3/2 1√
πμ

∫ ∞

0
Ece

−Ec/kBT σjj ′ (Ec) dEc.

(16)
The rate coefficient for momentum transfer, ktr(T ), is given
by the same expression, replacing σ (Ec) by σ tr(Ec).

We compare in Tables IV–VI the rate coefficients for the
three initial rotational states j = 0, j = 5, and j = 9. The elas-
tic rate coefficient is simply kel = kjj , while the inelastic rate
coefficient (including excitation and de-excitation transitions)
is defined as kinel = ∑

j ′ 
=j kjj ′ and the total rate coefficient
is ktot = kel + kinel. We only report the rates for temperatures
between 100 K and 300 K, which are close to the average
mesospheric temperature, T = 185 K. In this range, the rate
coefficients vary slowly with the temperature.

As expected from the previous discussion, the rate co-
efficient is dominated by the elastic transitions for all initial
rotational states. For j = 0, the ratio between the elastic and
inelastic rate is kel/kinel ∼ 25 at T = 185 K, so that inelastic
collisions enhance the rate coefficient by less than 5%. The in-
elastic rate coefficients are dominated by �j = 2 transitions,
as expected from the cross sections of Figure 3. The total rate
coefficients are very similar for the three values of j. How-
ever, the contribution of inelastic collisions decreases quickly

TABLE V. Same as Table IV, but for the initial rotational state j = 5.

Scattering rate coefficient, k(T) Momentum transfer rate coefficient, ktr(T )

T (K) kel kinel ktot ktr
el ktr

inel ktr
tot

100 2.46[−9] 3.07[−11] 2.49[−9] 3.15[−10] 2.88[−11] 3.44[−10]
125 2.63[−9] 3.75[−11] 2.67[−9] 3.15[−10] 3.43[−11] 3.49[−10]
150 2.79[−9] 4.40[−11] 2.83[−9] 3.16[−10] 3.93[−11] 3.55[−10]
165 2.88[−9] 4.77[−11] 2.93[−9] 3.17[−10] 4.19[−11] 3.59[−10]
175 2.94[−9] 5.00[−11] 2.99[−9] 3.18[−10] 4.36[−11] 3.62[−10]
185 3.00[−9] 5.23[−11] 3.06[−9] 3.19[−10] 4.52[−11] 3.64[−10]
195 3.06[−9] 5.46[−11] 3.12[−9] 3.20[−10] 4.67[−11] 3.67[−10]
205 3.12[−9] 5.67[−11] 3.18[−9] 3.21[−10] 4.81[−11] 3.69[−10]
250 3.37[−9] 6.57[−11] 3.43[−9] 3.26[−10] 5.37[−11] 3.79[−10]
300 3.60[−9] 7.43[−11] 3.68[−9] 3.30[−10] 5.87[−11] 3.89[−10]
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TABLE VI. Same as Table IV, but for the initial rotational state j = 9.

Scattering rate coefficient, k(T) Momentum transfer rate coefficient, ktr(T )

T (K) kel kinel ktot ktr
el ktr

inel ktr
tot

100 2.47[−9] 3.11[−12] 2.47[−9] 3.44[−10] 2.82[−12] 3.46[−10]
125 2.65[−9] 4.71[−12] 2.65[−9] 3.47[−10] 4.02[−12] 3.51[−10]
150 2.81[−9] 6.55[−12] 2.82[−9] 3.52[−10] 5.32[−12] 3.57[−10]
165 2.91[−9] 7.76[−12] 2.92[−9] 3.54[−10] 6.14[−12] 3.61[−10]
175 2.97[−9] 8.59[−12] 2.98[−9] 3.56[−10] 6.70[−12] 3.63[−10]
185 3.04[−9] 9.46[−12] 3.05[−9] 3.58[−10] 7.28[−12] 3.65[−10]
195 3.10[−9] 1.03[−11] 3.11[−9] 3.60[−10] 7.86[−12] 3.68[−10]
205 3.16[−9] 1.12[−11] 3.17[−9] 3.62[−10] 8.45[−12] 3.70[−10]
250 3.40[−9] 1.54[−11] 3.42[−9] 3.69[−10] 1.11[−11] 3.80[−10]
300 3.64[−9] 2.01[−11] 3.66[−9] 3.74[−10] 1.41[−11] 3.88[−10]

with j. The inelastic rate constant for j = 5 is about a factor
of 2 smaller than for j = 0, while the difference between the
rates for j = 9 and j = 0 represents an order of magnitude.
The ratio between the elastic and inelastic rates thus increases
to kel/kinel ∼ 60 for j = 5 and kel/kinel ∼ 300 for j = 9. It
should also be noted that the ratio decreases with increasing
temperature.

For the three values of j, the elastic momentum transfer
rate coefficient ktr

el is about an order of magnitude smaller than
the elastic scattering rate coefficient kel, while the two types of
inelastic rates have a comparable magnitude. In consequence,
inelastic transitions play a more important role in the momen-
tum transfer rates. For j = 0, the ratio between the elastic and
inelastic rate is only ktr

el/ktr
inel ∼ 3. The ratio is larger for ro-

tationally excited initial states: for j = 5, it reaches the value
ktr

el/ktr
inel ∼ 8, while we have ktr

el/ktr
inel ∼ 50 for j = 9.

IV. CONCLUSIONS

We have performed a complete quantal study of elastic
and inelastic rotational collisions of Na with N2 for collision
energies relevant to the modeling of the photon return flux for
sodium laser guide stars.

We have obtained the two-dimensional PES of the ground
state of the Na–N2 complex by means of the coupled cluster
method implemented in MOLPRO with the N–N internuclear
distance fixed to its equilibrium geometry. The potential has
a minimum at R = 10.47 a.u. and θ = 135◦. The depth of the
well is 26.9 cm−1, and the basis set superposition effect on the
depth is about 7 cm−1. The asymptotic part of the potential
was constructed analytically by calculating the C6 dispersion
coefficient.

We investigated the Na–N2 collisions with the quantum-
mechanical close-coupling method for energies in the range
5 − 1500 cm−1. We obtained the cross sections for elastic
and inelastic rotational scattering. We found that the colli-
sions were dominated by elastic scattering and were largely
independent of the initial rotational state. On the other hand,
inelastic cross sections were found to decrease quickly with
the increase in the initial rotational state. With the differen-
tial cross sections, we computed the momentum transfer cross
sections. We found the momentum transfer cross sections to
be smaller than the scattering cross sections, the difference

between the two types of cross sections increasing with the
energy of collision. The contribution of inelastic transitions
was found to be more important for momentum transfer cross
sections than for scattering cross sections. Finally, we calcu-
lated the elastic and inelastic rate coefficients for the process
for temperatures close to 185 K.

The 2D potential energy surface, the first five radial func-
tions Vλ, as well as the integral and diffusion cross sections
presented in this work are available online as Supplementary
Material.26
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