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Abstract

Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks
underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional
information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal
sampling rate of functional magnetic resonance imaging (fMRI) is increased 20-fold. Specifically, healthy volunteers
performed a simple visuomotor task during blood oxygenation level dependent (BOLD) contrast based whole-head inverse
imaging (InI). Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected
causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar
fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data
points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data
were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of
InI improves the Granger causality connectivity analysis of the human brain.
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Introduction

Determining causal mechanisms by which different brain areas

interact to support cognition and behavior has been a persistent

challenge in neuroscience. Whereas analyzing synchronization of

cerebral activations can identify cortical areas acting in concert,

revealing causal influences among them requires measures of

effective connectivity [1–3]. Previously, effective connectivity analyses

of human PET [4] and fMRI [5–8] data have been conducted

using structural equation modeling (SEM), which aims at

determining directional modulations across the activated areas

using covariance or correlation matrices derived from the

measured time series [9]. However, a major limitation of SEM

is that it requires strong a priori assumptions on the number and

directionality of connections, which are often difficult to justify or

validate. Similar limitations exist in dynamic causal modeling

(DCM), which also requires a priori models of directional

connections [10–12]. To circumvent such limitations, the tech-

nique of Granger causality [13] has been applied to data obtained

with both EEG [14–22] and fMRI [18,23–29]. The main

advantage of Granger causality over SEM and DCM is that it

can estimate the directionality of modulations within a network

without a priori assumptions on which connections are active and

on directions of the connections. Essentially, Granger causality

tests how additional information improves prediction of the future

of a given time series. In other words, a Granger causal influence

from a time series ‘‘X’’ to time-series ‘‘Y’’ exists if the combined

information from ‘‘X’’ and ‘‘Y’’ predicts the future of ‘‘Y’’ better

than information from ‘‘Y’’ alone.

Functional MRI of the human brain [30] with blood

oxygenation level dependent (BOLD) contrast [31,32] is the

prevailing method for studying brain functions noninvasively.

There are two major limitations to using BOLD fMRI for

causality modelling. First, BOLD signals are vascular responses

that lag the underlying neuronal events by seconds [33] and may

show notable voxel-to-voxel latency variability at the individual

level [34]. However, it has been suggested that with appropriate

modelling to obtain neuronal activity estimates, BOLD fMRI can

still be used for causality modelling [35]. The other challenge for

using BOLD fMRI in Granger causality estimation is the rather

low sampling rate, which is critically important in all time series

modeling. Typically fMRI Granger causality analyses use data

sampled at the rate of approximately 1–2 s [24,26–29]. Such a

slow sampling rate, which is necessary to achieve whole-brain

fMRI coverage at a spatial resolution of 3–4 mm, provides only

about 10–15 samples during the 20–30 sec duration of a canonical

hemodynamic response function [36]. Estimating Granger cau-
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sality from fMRI time series recorded at such a low sampling rate

can be problematic.

Using the recently developed dynamic functional magnetic

resonance inverse imaging (InI), one can achieve an order of

magnitude faster sampling rate. InI is based on the utilization of

simultaneous measurements from multiple channels of an RF head

coil array, and by solving sets of inverse problems InI can detect

dynamic changes of the BOLD fMRI signals at ,10 Hz sampling

rate with whole-brain coverage and approximately 5-mm spatial

resolution at the cortex [37–39]. Our recent study suggests that,

InI hemodynamic responses can elucidate neuronally related

timing information when cross-subject and within-region variabil-

ity is suppressed by averaging [40].

Several studies have consistently suggested that the sensitivity

and stability of Granger causality values can be critically improved

if the temporal sampling rate is high enough [26,41–47]. However,

to our knowledge, there have been to date no studies empirically

demonstrating this. Based on our data showing that the BOLD

fMRI signal can reflect neuronal timing at the group level [40],

here we hypothesize that increasing the fMRI sampling rate using

InI one can provide more robust and sensitive Granger causality

estimates compared to conventional multi-slice EPI acquisitions.

We test this empirically using InI fMRI with 10-Hz InI sampling

rate and a simple visuomotor detection task, which generates feed-

forward inter-area information flow [48]. Three different time

series were used in this study: fMRI raw time series, hemodynamic

response function after General Linear Model, and the estimated

neuronal activity using hemodynamic deconvolution. Time series

with lower sampling rates (2 Hz, 1 Hz, 0.5 Hz, and 0.2 Hz) were

artificially generated by either discarding InI samples or interpo-

lating sub-sampled time series in order to keep the same number of

time points. Our results indicate that the high sampling rate

provided by InI can robustly improve detection of causal

modulations between cortical areas.

Materials and Methods

Ethic statement, subjects, and tasks
This study was approved by the Institute Review Boards of

National Taiwan University Hospital and National Yang Ming

University. Written informed consent approved by the Institute

Review Board of National Taiwan University Hospital and

National Yang Ming University was obtained from each subject

prior to participation. Healthy human volunteers (n = 23, 6

females, all right-handed, age 22–30 years) were presented with

left or right visual hemifield reversing (8 Hz) checkerboard stimuli

in a rapid event-related fMRI design. The hemifield checkerboard

subtended a 4.3u visual angle and was generated from 24 evenly

distributed radial wedges and eight concentric rings of equal

width. The stimuli were presented using the Psychtoolbox [49,50].

Stimulus duration was 500 ms; the onset of each presentation was

randomized with a uniform distribution of inter-stimulus intervals

varying from 3 to 16 s (average 10 s). Part of data has been

previously reported in studying the correlation between hemody-

namic and neuronal activity [51].

The subjects were instructed to press the button upon detecting

a visual stimulus, presented randomly at the left or right side of the

screen, with the hand ipsilateral to the stimulus. Thus, there were

two conditions: right visual hemifield–right hand (R condition) and

left visual hemifield–left hand (L condition). This relatively simple

task was chosen for its feedforward connectivity from visual to

motor systems. Accordingly, our a priori hypothesis predicted

directional information flow from visual to motor cortices.

Twenty-four stimulation epochs were presented during four

240 s runs, resulting in a total of 96 trials per subject.

Structural MRI acquisitions and reconstructions
Structural T1-weighted MRIs were acquired with a 3T scanner

(Tim Trio, Siemens, Erlangen, Germany) and a 32-channel head

phased array coil using a standard MPRAGE sequence (repetition

time/echo time/inversion time [TR/TE/TI] = 2,530/3.49/

1100 ms, flip angle = 7u, partition thickness = 1.33 mm, image

matrix = 2566256, 128 partitions, field-of-view = 21 cm621 cm).

The location of the gray-white matter boundary for each

participant was estimated with an automatic segmentation

algorithm to yield a triangulated mesh model with approximately

340,000 vertices [52–54]. This cortical model was then used to

facilitate mapping of the structural image from native anatomical

space to a standard cortical surface space [52,53]. Between-

subjects averaging was done by morphing individual data through

a spherical coordinate system [55].

fMRI inverse imaging (InI) acquisitions and
reconstructions

BOLD-contrast fMRI data were acquired using inverse imaging

[39,56], which included a reference scan to collect spatial

information from different channels in a radio-frequency coil

array and a set of dynamic scans to achieve high temporal

sampling rate (.10 Hz) with whole brain coverage. The InI

reference scan was collected using a single-slice echo-planar

imaging (EPI) readout, after exciting one thick coronal slab

covering the entire brain (FOV 256 mm6256 mm6256 mm;

64664664 image matrix) with the flip angle set to the gray matter

Ernst angle of 30u (considering the T1 of gray matter is 1 second

at 3T). Partition phase encoding was used to obtain spatial

information along the anterior-posterior axis (Y direction). EPI

readout had frequency encoding along the superior-inferior (Z

direction) and phase encoding along the left-right axis (X

direction). We used TR = 100 ms, TE = 30 ms, band-

width = 2604 Hz and a 12.8-s total acquisition time for the

reference scan, allowing the coverage of the whole-brain volume

with 64 partitions and two repetitions.

For the InI functional scans, we used the same volume

prescription, TR, TE, flip angle, and bandwidth as for the InI

reference scan. The principal difference was that, to achieve the

high temporal resolution, partition phase encoding (in the Z

direction) was removed so that the full volume was excited, and the

spins were spatially encoded by a single-slice EPI trajectory,

resulting in a coronal X/Z projection image with spatially

collapsed projection along the anterior-posterior direction. The

k-space InI reconstruction algorithm [57] was then used to

estimate the spatial information along the anterior-posterior axis.

In each run, we collected 2,400 measurements after collecting 32

measurements in order to reach the longitudinal magnetization

equilibrium. A total of 4 runs of data were acquired from each

participant. The total fMRI acquisition time for each subject was

16 minutes.

InI data were reconstructed time-point by time-point using the

minimum-norm estimate method [39,56], which generated 2,400

reconstructed volumes in each run. Subsequently, we used

General Linear Model (GLM) to identify functional areas. The

design matrix of GLM included the impulse trains of stimulus

onset convolving the finite-impulse-response (FIR) basis function,

which included 6-s pre-stimulus baseline and 24-s post-stimulus

response, as well as DC and linear drift terms to estimate the

hemodynamic responses. For statistical analyses, the noise levels in

the reconstructed images were estimated by calculating the

Fast fMRI Improves Causality Estimates
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standard deviation of the time series during the 6-s pre-stimulus

interval. Using these noise estimates, dynamic statistical paramet-

ric maps (dSPMs) were derived as the time-point by time-point

ratio between the InI reconstruction values and the baseline noise

estimates. Such dSPMs can be assumed to be t distributed under

the null hypothesis of no hemodynamic response [58].

Each subject’s InI time series, including the estimated hemo-

dynamic responses and raw fMRI time series before GLM, were

spatially registered into their cortical surface space by using a 12-

parameter affine transformation between the volumetric InI

reference scan and the MPRAGE anatomical space (FSL,

http://www.fmrib.ox.ac.uk/fsl). The resulting spatial transforma-

tion was subsequently applied to each time point of the

reconstructed InI volume. For inter-subject averaging the individ-

ual functional results were co-registered to a spherical brain

surface representation [59].

Regions-of-interest (ROIs) were determined by the spatial

distribution of the temporally average t statistics greater than 4.0

(Bonferroni corrected p-value,0.05) between 4 s and 7 s after

visual stimulus onset. This interval was chosen to capture the

maximum BOLD response. Time courses for each ROI were

extracted and averaged within the ROI for each subject

separately.

Echo-planar imaging (EPI) collection and analysis
We also collected EPI with 2 s TR in order to use empirical

data to compare the detection sensitivity to causality modulation

using InI data. The subjects were instructed to perform the same

lateralized visuomotor task as that during the InI acquisitions.

Data were collected from 13 subjects over one 4-minute run,

where 30 left hemifield and 30 right hemifield visual stimulations

were randomly presented. EPI parameters were: TR/TE = 2000/

30 ms, field-of-view (FOV) = 2206220 mm, matrix = 64664, slice

thickness = 4 mm, flip angle = 90u. For each subject, thirty-four

trans-axial slices with no gap were acquired with the spatial

coverage of cerebrum and cerebellum.

EPI fMRI data were first pre-processed for motion correction,

slice timing correction, and spatial smoothing (12 mm 3D full-

width-half-maximum Gaussian filter) by using the FreeSufer

software (http://surfer.nmr.mgh.harvard.edu). We used GLM to

identify visual and motor cortices with the FIR bases described

above. Estimated hemodynamic activity from each subject was

spatially registered to a common surface coordinate system using

FreeSufer. The BOLD signals were then averaged across subjects

and the dynamic significance of the BOLD signal was calculated

using the dSPM procedure described above.

Time series preparation
In this study, we analyzed the causal modulation using the fMRI

time series directly, instead of using the estimated HRF. In

preparation of these fMRI time series, GLM was first used to

identify the location of visual and sensorimotor cortices (see section

fMRI inverse imaging (InI) acquisitions and reconstruc-
tions and Echo-planar imaging (EPI) collection and
analysis above). These time series were then averaged within

each ROI from each subject. The DC value and the linear drift

were also removed from these time series.

This study evaluates how the increased temporal resolution in

InI acquisitions and reconstructions can help elucidate the causal

interactions in the human visuomotor system. This was done by

parametrically downsampling the InI data to generate time series

from 0.1-s to 0.5, 1, and 2-s temporal resolution, the last of which

is quite common in whole-head fMRI studies. In addition, to avoid

the confound of different sampling rates and thus different lengths

of time series, we also generated SINC-interpolated time series

from the sub-sampled time series such that all time series have the

same length in the causality analysis. Finally, we also used EPI

time series (before GLM) to estimate causality modulations in

order to compare the results based on down-sampled InI data.

Granger causality and conditional Granger causality
analysis

We used an auto-regressive (AR) model to implement the

Granger causality modeling. Consider a zero-mean time series at

the ‘‘destination node’’, y(t). The pth-order AR model description of

y(t) is:

y(t)~
Xp

k~1

aky(t{k)z"y(t), t~1 � � � n, ð1Þ

where ak are AR model coefficients, and ey(t) is the residual time

series of AR model fitting at the destination node. n is the total

number of samples in the time series. Provided with the time series

from a ‘‘source’’, x(t), we can model the bivariate time series of x(t)

and y(t) as:

y(t),x(t)½ �T~

Xp

k~1

Ak y(t{k),x(t{k)½ �Tz "y,x(t),"x,x(t)
� �T

,t~1 � � � n
ð2Þ

where Ak’s are the AR model coefficient matrices, and [ey,x(t),

ex,x(t)]T is the joint bivariate residual time series of AR model

fitting at the destination node and source node. The Granger

causality metric is

GCx?y~ log
Xn

t~1

"2
y(t)

,Xn

t~1

"2
y,x(t)

 !
ð3Þ

Since the bivariate time series [y(t), x(t)]T contains the information

of univariate time series y(t), from Cauchy inequality we can

conclude that GxRy is well defined and positive since the quotient

inside the logarithm is greater or equal to one. Previously, it has

been suggested that the inference of GxRy can be calculated by

referring ((n2p)/p) (exp(GxRy)–(n22p)/(n2p)) to an F distribution

with (p, n22p) degrees of freedom [60].

For each pair of ROI time series (‘‘X’’ and ‘‘Y’’), we respectively

calculated the Granger causality GxRy and GyRx. Previous

simulation studies suggest that naive computation of Granger

causality over fMRI signals can be misleading [26]. However, the

influence difference (the difference between the pair GxRy and

GyRx) can be much more robust [25,26]. Following this rationale,

for each pair of ROIs, we only calculated the difference between

two Granger causality values in order to identify the dominant

influence direction.

The implementation of the AR modeling was done by the

ARFIT algorithm [61,62], where the optimal model order was

jointly determined by model fitting (i.e., favoring the model with

smaller power of the residual time series after fitting) and model

parsimoniousness (i.e., favoring a lower order model). This

implementation has been previously used to explore the causal

modulation of epileptic spike propagation measured by MEG [63].

Allowing the AR model ordering ranging between 1 and 20 or the

largest order allowed by the number of sample, we used the

Bayesian information criterion to choose the optimal order of the

AR model. In the Granger causality analysis on time series of a
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pair of ROIs, we used the minimum of the estimated AR model

orders to estimate the GC for the sake of model simplicity.

We used a non-parametric approach to estimate the statistical

significance of the influence difference, because the null distribu-

tion of such influence difference has no analytic form. Further-

more, if we want to use the F/Chi-square distributions in causality

estimation, samples in the time series need to be independent. This

may not be the case in BOLD-contrast fMRI time series with

different sampling rates. Our non-parametric analysis started from

generating the null distribution of influence difference using the

Adjusted Amplitude Fourier Transform (AAFT), a method of

generating surrogate time series while preserving the linear

correlation structure of the original time series and the marginal

distribution [64]. The permutation procedure was repeated 1000

times for Granger causality analysis and 100 times for conditional

Granger causality analysis, because the latter analysis took a longer

computation time. We defined the p-value as the number of

occurrences of the Granger causality values using a swapped

source time series exceeding the Granger causality value using the

original source time series. The p-value of the Granger causality

difference in the group analysis was calculated accordingly as the

ratio between the number of the Granger causality difference

values from permuted time series higher than that from the

original time series in each subject and the total number of

permutation test across subjects. Note that such a p-value

calculation amounts to a fixed-effect analysis.

Granger causality can be complicated by a ‘‘common source’’

problem. Specifically, the causal modulation between a pair of

time series can be mediated through other time series within the

set of analyzed time series. This problem has been partially

addressed by the conditional Granger causality approach [25,65–

67]. In the case of studying the causal modulations between the

time series pair [y(t), x(t)]T, suppose that a multivariate auto-

regressive model can be used to describe all other time series

[z(t)]T. The conditional Granger causality cGxRy is calculated as

the ratio between the residual variance in the joint time series [y(t),

z(t)]T and the residual variance in the joint time series [x(t), y(t),

z(t)]T:

Table 1. Timing indices and the full-width-half-maximum (FHWM) of the group-average hemodynamic responses in five regions-
of-interest.

V PCC PreM S M

Onset (s) L 0.63 0.91 0.69 1.04 1.18

R 0.60 1.03 0.84 1.04 1.19

Time-to-half (s) L 1.70 1.90 1.90 2.20 2.40

R 1.70 2.00 2.20 2.20 2.40

Time-to-peak (s) L 3.60 3.70 4.00 4.10 4.50

R 3.70 4.10 4.20 4.20 4.40

FWHM (s) L 4.60 4.30 5.10 4.60 4.70

R 4.80 4.80 4.70 4.60 4.60

V: visual cortex; PCC: parietal cortex; PreM: pre-motor cortex; S: sensorimotor cortex; M: motor cortex. L: left hemisphere (R condition). R: right hemisphere (L condition).
doi:10.1371/journal.pone.0100319.t001

Figure 1. (Left) Locations of the five ROIs (t statistics of the BOLD signal averaged between 4.0 s and 7.0 s after the visual stimulus
onset) in each hemisphere. (Right) Hemodynamic time courses and estimated neuronal activity using hemodynamic deconvolution at five ROIs.
doi:10.1371/journal.pone.0100319.g001
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y(t),z(t)½ �T~

Xp

k~1

Bk y(t{k),z(t{k)½ �Tz "y,z(t),"z,y(t)
� �T

, t~1 � � � n

x(t),y(t),z(t)½ �T~

Xp

k~1

Ck x(t{k),y(t{k),z(t{k)½ �Tz "x,yz(t),"y,xz(t),"z,xy(t)
� �T

,

t~1 � � � n

cGCx?y~ log
Xn

t~1

"2
y,z(t)

,Xn

t~1

"2
y,xz(t)

 !

ð4Þ

Heuristically, conditional Granger causality evaluates the improve-

ment of the additionally explained variance in the target time series

by adding the source time series after controlling the information in

all other time series. Statistical significance can be similarly derived

from the empirical null distribution.

All calculations were done using Matlab (Mathworks, Natick,

MA, USA).

Results

The visuomotor task elicited strongest BOLD signal at the left

hemisphere, contralateral to the visual stimulus/motor response.

Thus, results for the L condition are reported in the right

hemisphere and the R condition in the left hemisphere. We

identified five regions-of-interest (ROIs), including visual cortex

(V), parietal cortex (PPC), pre-motor cortex (PreM), somatosen-

sory cortex (S), and motor cortex (M) for both L and R conditions,

as shown in Figure 1. Notably, the details of the average time

courses (Figure 1) show sequential BOLD activity with different

onsets, time-to-half (TTH), time-to-peak (TTP) timing, and width

of regional hemodynamic response (Table 1).

Figure 2. shows that increasing the fMRI sampling rate

significantly improved the sensitivity of our Granger causality

estimates, as indicated by the emergence of multiple directional

influences consistent with the visuomotor task. The dominant

direction of information flow between any two ROIs (denoted X

and Y) was determined by calculating the difference (GXRY–

GYRX) between the two uni-directional Granger causality

estimates [23,26]. Table 2 lists the order of the optimal AR

model for each ROI time series. P-values of all directions of

information flow between ROI’s were listed in Table 3. At the

highest temporal resolution (TR = 0.1 s), significant bottom-up

causal influences were observed from visual to PPC, premotor,

somatosensory, and motor cortices in both left and right

hemispheres. Reducing the temporal resolution clearly decreased

the number of significant causality influences. At TR = 0.5 s, left

hemisphere still shows three strong feedforward connections.

However, the significance levels of two connections (from visual

cortex to premotor and motor cortices) have decreased. Further

lowering the sampling rate down to 1 s and 2 s, the conventional

TR for whole-head EPI, shows no significant feedforward

connections. In addition to the influence differences, we also

report the Granger causality values and their associated signifi-

cance in Table 4, showing that almost all causality estimates were

significant at TR, = 1 s and non-significant at TR = 2 s and that

the majority of statistically significant GC connections were

bidirectional.

Granger estimates can be confounded by one source driving

multiple targets. To reduce confounds related to potential

common sources, we also calculated the difference conditional

Granger causality values among pairs of the time series in 5 ROIs.

Different from the Granger causality, conditional Granger

causality estimates the specific information flow between two

chosen ROIs while the information from all other ROIs through

direct or indirect information flow are removed [65,67,68]. P-

values are marginally different between Granger causality analysis

and conditional Granger causality analysis in all sampling rates

(Table 5). Again, increasing the TR gradually reduced the

number of significant paths – no significant causal modulation was

observed in both hemispheres at TR = 1 s and 2 s.

To confirm that the increased sensitivity in detecting feedfor-

ward connections is not due to different time series length, we

SINC interpolated the time series from the subsampled data such

that all time series had the same length before Granger causality

analysis. For example, TR = 0.5 s data were first down-sampled by

5-fold from the densely sampled time series with TR = 0.1 s and

subsequently SINC interpolated by 5-fold. Results in Figure 3
shows that, while interpolation can artificially help improve the

detection, slow sampling rates at the order of 1 s cannot provide

significant feedforward connection estimates in left and right

hemispheres. Specifically, we found that the significance levels for

the VRM and VRPreM connections in the left hemisphere

Table 2. The optimal order of the AR model of the time series at five ROI’s.

V PCC PreM S M

TR = 0.1 s L 11 11 11 11 12

R 10 8 9 9 9

TR = 0.5 s L 3 3 3 3 3

R 4 3 4 4 4

TR = 1 s L 1 1 2 1 1

R 2 2 2 2 2

TR = 2 s L 1 1 1 1 1

R 1 1 1 1 1

V: visual cortex; PCC: parietal cortex; PreM: pre-motor cortex; S: sensorimotor cortex; M: motor cortex. L: left hemisphere (R condition). R: right hemisphere (L condition).
doi:10.1371/journal.pone.0100319.t002
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decreased (increased p-value) at TR = 0.5 s. A significant

VRPreM connection shows up at TR = 0.5 s in the right

hemisphere after data interpolation. Results with TR = 1 s

suggested possible VRPreM and VRM connections. However,

the trend of losing detecting feedforward connections at a slower

sampling rate prevails. In particularly, TR = 2 s, the typical whole-

head EPI sampling rate, shows no significant connections in both

hemispheres.

Finally, in addition to using down-sampled InI data, we also

used EPI data with TR = 2 s record the subjects’s BOLD signal at

visual and motor cortices in the same lateralized visuomotor task.

Consistent with the down-sampled InI simulations (Table 3), we

found that there was no significant VRM causal modulation in

both R and L conditions (p-values = 0.27 and 0.22 for R and L

conditions, respectively).

Discussion

Our results demonstrate that the inverse imaging method with a

20-fold increase in fMRI temporal resolution can greatly improve

the detection power of causality analysis in the human brain.

Using whole-head InI acquisitions with 100 ms temporal resolu-

tion, we were able to infer directional causal influences between

five functional areas activated during a lateralized visuomotor task

in each hemisphere with both Granger causality and conditional

Granger causality analyses. Consistent with the a priori predicted

pattern of functional connectivity in a visuomotor choice-reaction

task [48], the results were dominated by feedforward influences

from visual to sensorimotor, premotor, and posterior parietal

regions. These observations strongly underline the importance of

high temporal sampling rates in determining effective connectivity,

because the connectivity patterns only emerged at the 100 ms TR

Table 3. P-values of all directions of information flow estimated by Granger causality between ROI’s at different sampling rates
from 1000 bootstrap iterations.

TR = 0.1 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC ,0.001; 0.006 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM ,0.001; ,0.001 ,0.001; 0.006 N/A 1-p; 1-p 1-p; 1-p

S ,0.001; 0.016 0.002; 0.576 0.883; 0.897 N/A 1-p; 1-p

M ,0.001; 0.003 ,0.001; 0.390 0.110; 0.861 0.904; 0.256 N/A

TR = 0.5 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC 0.027; 0.573 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM 0.069; 0.259 0.305; 0.618 N/A 1-p; 1-p 1-p; 1-p

S 0.120; 0.358 0.597; 0.152 0.891; 0.416 N/A 1-p; 1-p

M 0.076; 0.541 0.378; 0.128 0.489; 0.387 0.304; 0.470 N/A

TR = 1 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC 0.377; 0.542 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM 0.119; 0.648 0.339; 0.540 N/A 1-p; 1-p 1-p; 1-p

S 0.224; 0.442 0.263; 0.324 0.551; 0.518 N/A 1-p; 1-p

M 0.206; 0.381 0.268; 0.280 0.374; 0.419 0.402; 0.426 N/A

TR = 2 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC 0.744; 0.280 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM 0.669; 0.806 0.463; 0.833 N/A 1-p; 1-p 1-p; 1-p

S 0.713; 0.338 0.313; 0.610 0.636; 0.381 N/A 1-p; 1-p

M 0.668; 0.356 0.252; 0.543 0.602; 0.396 0.389; 0.382 N/A

Each cell contains two p-values. The left p-value is for the left hemisphere (R condition) and the right p-value is for the right hemisphere (L condition). Only lower-
triangular off-diagonal entries are listed. Upper-triangular off-diagonal entries can be calculated by (1–listed p-value). V: visual cortex; PCC: parietal cortex; PreM: pre-
motor cortex; S: sensorimotor cortex; M: motor cortex. L: left hemisphere (R condition). R: right hemisphere (L condition).
doi:10.1371/journal.pone.0100319.t003
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(Figures 2 and 3). Controlling the number of time points by

interpolating the time series with a lower sampling rate can only

partially mitigate the problem of losing sensitivity in correct

causality estimates (Figure 3).

The advantage of higher temporal resolution has been suggested

by simulation studies [26,41–46], but has not been previously

shown with empirical data. Moreover, the previous simulation

studies assumed that regular EPI would be used, where any

increase in fMRI temporal resolution has to be traded off for

smaller spatial coverage, poorer spatial resolution, or jittered

designs that greatly increase the duration of the imaging session

[2,69]. Specifically, limited by the gradient slew rate, the

acquisition of each echo-planar imaging slice takes approximately

80 ms at ,3 mm63 mm spatial resolution. Assuming that 30

slices would be needed to cover the entire brain, a jittered stimulus

design would require a 30-fold increase in data acquisition time,

leading to impractical session durations (several hours). With the

InI approach in the present study, we obtained a whole-head

volume in 100 ms, but it is possible to speed up the acquisition

even further. The temporal resolution of InI is determined by TE

(30 ms) optimized for the BOLD contrast and desired field-of-

view/spatial resolution. Using partial Fourier acquisition and a

higher readout bandwidth, the readout time could be reduced

from 32 ms (2 KHz bandwidth and 64 lines) to 16 ms (6/8 partial

Fourier, 48 lines at 3 KHz bandwidth) at the cost of reduced SNR.

However, if using an echo-shifting pulse sequence [56,70], it is

possible to achieve 20 ms TR at 30 ms TE. These future

developments could allow for testing causal modulations between

hemodynamic time series with putative latency differences well

below 100 ms.

Figure 2. The dominant information flow calculated from the difference between two uni-directional Granger estimates among the
visual (V), PPC, premotor (PreM), somatosensory (S), and motor (M) cortex ROIs at TR = 0.1 s, 0.5 s, 1 s, and 2 s. Significant causal
modulations (p#0.05) were shown in thick yellow arrows and connections showing a trend of causal modulation (0.05,p#0.1) were shown in thin
yellow arrows.
doi:10.1371/journal.pone.0100319.g002
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In this study we chose InI for its whole-brain coverage,

reasonable spatial resolution at cortex, and high sampling rate

(TR = 0.1 s). Note that recently there are other fast fMRI

acquisition methods, such as generalized InI [71], fast fMRI

[72], MR-encephalography (MREG) [73], and simultaneous

multi-slice EPI [74] methods. Each method has different

magnetization excitation strategies and image reconstruction

algorithms. Yet all of them can provide a sub-second sampling

rate. As we demonstrate that fast fMRI acquisitions can help

improve detecting causal modulations in human brain in general,

researchers can choose any method adaptively under different

theoretical or practical concerns without losing the detection

power.

InI trades off a small amount of spatial resolution in one

encoding direction for a substantially higher temporal resolution.

Depending on the reconstruction methods, InI has approximately

5 mm spatial resolution at cortex using a 32-channel head coil

array at 3T [37–39], which is in the range of spatial filtering/

smoothing that is typically applied in echo-planar imaging as a

post-processing step. Without reaching the limit based on the

electromagnetic theory [75,76], using a head coil array of more

channels at a higher field (for example, 7T) could further improve

the spatial resolution of InI. Novel reconstruction methods

targeted at suppressing the point spread function, such as using

the minimum L-1 norm constraint [77], can also be used to

improve the spatial resolution in studies where the highest possible

spatial resolution is critical.

In addition to the neurophysiologically expected feedforward

modulation from VRPPCRpreMRM, our InI results also

suggest direct feed-forward connectivity from V to preM, M,

Table 5. P-values of all directions of information flow estimated by conditional Granger causality between ROI’s at different
sampling rates from 100 bootstrap iterations.

TR = 0.1 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC ,0.01; 0.01 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM ,0.01; ,0.01 ,0.01; 0.01 N/A 1-p; 1-p 1-p; 1-p

S ,0.01; ,0.01 ,0.01; 0.57 0.88; 0.89 N/A 1-p; 1-p

M ,0.01; ,0.01 ,0.01; 0.37 0.11; 0.87 0.89; 0.26 N/A

TR = 0.5 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC 0.03; 0.54 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM 0.07; 0.28 0.30; 0.62 N/A 1-p; 1-p 1-p; 1-p

S 0.10; 0.38 0.69; 0.15 0.88; 0.40 N/A 1-p; 1-p

M 0.08; 0.57 0.41; 0.13 0.49; 0.38 0.22; 0.48 N/A

TR = 1 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC 0.37; 0.57 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM 0.13; 0.64 0.35; 0.54 N/A 1-p; 1-p 1-p; 1-p

S 0.20; 0.50 0.27; 0.32 0.56; 0.49 N/A 1-p; 1-p

M 0.22; 0.45 0.29; 0.29 0.36; 0.40 0.38; 0.43 N/A

TR = 2 s FROM

V PPC PreM S M

TO V N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p 1-p; 1-p

PPC 0.73; 0.25 N/A 1-p; 1-p 1-p; 1-p 1-p; 1-p

PreM 0.67; 0.78 0.49; 0.84 N/A 1-p; 1-p 1-p; 1-p

S 0.70; 0.33 0.34; 0.64 0.66; 0.39 N/A 1-p; 1-p

M 0.65; 0.39 0.27; 0.56 0.58; 0.38 0.37; 0.39 N/A

Each cell contains two p-values. The left p-value is for the left hemisphere (R condition) and the right p-value is for the right hemisphere (L condition). Only lower-
triangular off-diagonal entries are listed. Upper-triangular off-diagonal entries can be calculated by (1–listed p-value). V: visual cortex; PCC: parietal cortex; PreM: pre-
motor cortex; S: sensorimotor cortex; M: motor cortex. L: left hemisphere (R condition). R: right hemisphere (L condition).
doi:10.1371/journal.pone.0100319.t005
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and S. Although these influences can be supported by animal

models showing direct structural connections from visual to

sensory and motor cortices in rats [78], it is also possible that

different neurovascular coupling in the different ROIs caused

smearing of neuronal temporal information that reduced the

sensitivity of GC to detect the dominant feedforward connections

in our estimates.

In contrast to the present finding, previous studies have shown

that EPI data may show causal modulation in the human

sensorimotor system using EPI with TR in the order of 2 s

[24,26]. However, this seeming discrepancy may be explained by

the different nature of the present two-choice reaction-time task

and those used in many previous studies. Here, the group average

reaction time was less than 400 ms [40]. Therefore, without

considering the differential vascular responses at visual and

sensorimotor cortices, the BOLD signal time series in the visual

and sensorimotor cortices were expected to be delayed by only a

few hundreds of milliseconds. Such a latency is difficult to be

resolved by regular EPI with TR = 2 s. Consequently, one can

expect that quite similar BOLD signal time series in visual and

sensorimotor cortices were elicited during this task. Two similar

time series are actually difficult to use Granger causality analysis to

reveal any causal modulation between them. In a simple

theoretical example with two identical time series, it is clear that

Figure 3. The dominant information flow calculated from the difference between two uni-directional Granger estimates among the
visual (V), PPC, premotor (PreM), somatosensory (S), and motor (M) cortex ROIs at TR = 0.1 s, 0.5 s, 1 s, and 2 s. The time series at 0.5 s,
1 s, and 2 s were SINC interpolated such that all time series are of the same length as the 0.1 s time series, which contains the real measured data.
Significant causal modulations (p#0.05) were shown in thick yellow arrows and connections showing a trend of causal modulation (0.05,p#0.1)
were shown in thin yellow arrows. Importantly, only very little improvement is observed in the estimates where the number of observations is
artificially increased using the SINC interpolation procedure: the strongest connectivity patterns are, clearly, observed in the 0.1-s condition with only
real data.
doi:10.1371/journal.pone.0100319.g003
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the residual time series in modeling one time series will not be

further improved by providing the other time series, because all

information has been provided by the first time series already. In

such a case, the Granger causality value will be insignificant

because no further reduction on the power of residual time series

after modeling the first one.

To support our argument above, Figure 4 shows an example of

two highly correlating (r = 0.446) EPI time series at visual and

sensorimotor cortices from one representative subject. Figure 4
also shows the residual time series after modeling the sensorimotor

time series when either only the sensorimotor cortex time series

was provided, or both the sensorimotor and visual cortices time

series were provided. The residual time series power only changed

marginally (108.0R105.6; 2.3% reduction), in line with our main

result of no significant Granger causality modulation between

visual and sensorimotor cortices as measured by EPI with

TR = 2 s. For comparison, we also show the InI time series in

visual and sensorimotor cortices from one representative subject,

and the residual time series after modeling the sensorimotor time

series when either only the sensorimotor cortex time series was

provided, or both the sensorimotor and visual cortices time series

were provided. Visually, it is difficult to discern the precedence of

either time series. However, numerically the variance of residual

time series at the sensorimotor cortex was apparently reduced

when the visual cortex time series was provided (0.0026R0.0023;

11.5% reduction).

Finally, it should be noted that BOLD-contrast fMRI measures

the vascular responses secondary to neuronal events. On top of

information reflecting neuronal activity, there are well document-

ed vascular confounds in fMRI time series [34,79]. Our previous

study has shown that, with group averaging and improved

sampling rate, inter-regional hemodynamic responses can be

significantly correlated with inter-regional neuronal activity [51].

In this study, we chose a relatively simple two-choice reaction-time

task with a priori assumption of observing strong feed-forward

connectivity from the visual to the motor cortices. Such findings

are consistent with a previous study [80] suggesting that fast

sampling can eliminate confounding effects of differential HRF

delays over areas by fine features of the HRF waveform (see also

Table 1). However, while our results suggest that it is feasible to

increase the fMRI sampling rate to enhance sensitive of causality

estimates, caution must be always exercised when interpreting the

results provided by these methods in the context of tasks eliciting

more complex feed-forward/feedback information flow patterns.

Taken together, our results suggest that using MR InI with a

100 ms sampling interval (20-fold faster than conventional EPI),

the sensitivity of detecting causal connectivity is significantly

improved. We expect that this method can be used in other fMRI

experiments to reveal effective connectivity when the vascular

confound of the BOLD-contrast fMRI is carefully controlled and

thus potentially open up entirely new possibilities for non-invasive

imaging of effective connectivity in the human brain.
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