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Abstract

Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several
studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have
been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their
association with the risk of non-Hodgkin’s lymphoma (NHL). With a population of 1,297 NHL cases and 1,946 controls, we
have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs) tagging the
genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for
rs227060 (OR = 1.27, 95% CI: 1.13–1.43, p = 6.7761025), which remained significant after adjustment for multiple testing. In a
subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas
(DLBCL) and small lymphocytic lymphomas (SLL), however there was no association observed among follicular lymphomas
(FL). In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated
with NHL risk (OR = 0.51, 95% CI: 0.34–0.77, p = 0.0002). Finally, an imputation analysis using the 1,000 Genomes Project data
combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the
observed association signals. While the findings generated here warrant independent validation, the results of our large
study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL.
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Introduction

The incidence of non-Hodgkin’s lymphoma (NHL) in the U.S.

has doubled over the past two decades. While the etiology of the

disease remains largely unknown [1], surmounting evidence

suggests that genetic predisposition plays a role in NHL

development [2–4]. Besides recently completed genome-wide

association studies (GWAS) [5–13], the search for missing genetic

susceptibility to lymphoma in the past decade also involved the

association analyses of common genetic variants in candidate

molecular pathways putatively involved in lymphoma develop-

ment. In contrast to GWAS, candidate scans allow for the focused

assessment of biologically relevant molecular pathways by testing

larger sample populations and maintaining a higher statistical

power for detecting association effects [14]. Among the candidate

networks previously investigated for the association with NHL risk,

DNA repair was frequently explored [15–25] due to its strong

relevance to lymphomagenesis [26–28].

Associations between DNA repair genes and lymphoma risk

have been reported previously [15–19], however the results in

many of these studies either failed to reach the necessary level of

statistical significance, or lacked independent validation. In the

present study, we attempted to improve on these prior efforts by

performing a two-stage case-control analysis of 1,297 NHL cases

and 1,946 controls to identify associations between 446 SNPs

tagging 81 DNA repair genes and NHL risk. The two-stage design,

thorough selection of DNA repair genes, assessment of genetic

interactions, and identification of putatively functional variants by

using public genomic and expression data are among the major

innovations in our study, which provides yet another focused

exploration of the role of DNA repair pathways in genetic

susceptibility to NHL.
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Materials and Methods

Ethics Statement
All cases were ascertained through Memorial Sloan-Kettering

Cancer Center (MSKCC) IRB-approved protocols, or a protocol

approved by the IRB at the Dana Farber Cancer Institute (DFCI)

or Hadassah-Hebrew University. These protocols required written

informed consent either for identified use of specimens for

research into the genetic basis of lymphoma, or research use of

specimens permanently de-identified prior to genotyping. Controls

were part of the New York Cancer Project (NYCP) and all subjects

gave written consent for use of samples in genetic studies of any

disease state.

Study population
In total, the study involved 1,297 non-Hodgkin’s lymphoma

(NHL) cases from the combined resources at MSKCC, DFCI and

Hadassah-Hebrew University, Israel as well as 1,946 controls

collected from the NYCP, a study of 18,000 New York City

residents originally designed to assess the role of environment and

genetics in cancer risk, and described previously elsewhere [29–

31]. The NYCP data include age, gender, history of cancers

(including lymphoma) and ethnicity. A subset of NHL cases

(n = 222) were probands from families with a strong family history

(FH) of NHL, described in detail recently [32]. The remaining

fraction of NHL patients (n = 1,075), were unrelated and

unselected for FH. All cases and controls were of white European

ancestry, with a fraction of cases (n = 534, 41.2%) and controls

(n = 1,043, 53.6%) of self reported Ashkenazi Jewish (AJ) ancestry.

In this study we have employed a two-stage design; the discovery

stage (stage 1) consisting of 650 cases and 965 controls, and the

replication stage (stage 2) involving 647 cases and 981 controls.

The detailed structure, demographic, and clinical information of

case/control populations in both stage 1 and 2 is summarized in

Table S1. A subset of the patient collection in this study was

previously included in a GWAS on lymphoma susceptibility [9].

Of the 944 lymphoma cases that constituted the GWAS phase of

that prior study, 515 cases (39.7%) overlap with the 1,297 patients

included here. While 1,043 controls (53.6%) overlap between the

current study and the validation stage of the prior GWAS, there

was no control overlap between this study and the GWAS

discovery stage.

Selection of genes and tagging SNPs (tSNPs)
The selection of candidate DNA repair genes was performed as

summarized in Figure S1. The initial subset of genes (n = 34) has

been identified for their known role in DNA repair processes and

queried for their catalytic activities from Gene Ontology (GO) [33]

and KEGG [34]. The key networks of DNA repair defined by the

catalytic domains in the seed list were further passed to: 1) GO

search for genes containing identified catalytic activities and 2)

yeast proteome database [35] identifying yeast homologues with

experimental evidence demonstrating their effect on UV sensitiv-

ity, radiation, and DNA damage response. The yeast genes were

subsequently queried for human homologues. The targets from 1)

and 2) were crossed for gene overlap and passed to an interactome

analysis (GeneGO, Ingenuity) to query interacting partners

(defined by at least two independent reports, and confirmed by

at least two experimental methods). After merging, 87 DNA repair

genes were identified for the study (Table S2). The SNPs tagging

87 selected genes were chosen using Haploview with a haplotype

Pearson’s correlation coefficient (r2) threshold ,0.6 across selected

gene regions (including 5 kb from 39 and 59 UTR), and minor

allele frequency (MAF) .0.05. The tagging SNP selection has

been performed using the CEU data (120 individuals) of HapMap

Phase II, the most accurate resource available for this purpose at

the time of the study design and still serves as the most validated

reference for capturing the common genetic variation in European

populations. In total, 531 tagging SNPs (tSNPs) were selected to

tag the 87 DNA repair genes.

Genotyping
For stage 1, the genotyping of 531 tSNPs from 87 selected DNA

repair genes on 698 lymphoma cases and 1,041 controls was

conducted using Sequenom MassARRAY iPLEX (Sequenom

Inc., CA), multiplexed into a 16-plex design as per manufacturer’s

protocol and as described previously [30]. For quality control

(QC), duplicates (8 per each 384-well plate) showed .99%

concordance and non-template controls (2 per plate) revealed no

evidence of cross-contamination. Thirty-four SNPs were excluded

due to low genotyping rate across samples (,85%), poor

clustering, or significant departure from Hardy-Weinberg Equi-

librium (p,0.001 in control population); an additional 51 SNPs

were dropped due to low MAF (,0.05) in our study population.

Forty-eight cases and 76 controls were dropped due to low

genotyping rate (,85%). After QC, in total 446 SNPs, tagging 81

DNA repair genes and n = 650 cases and n = 965 controls

remained for the association analysis in stage 1. Twenty-eight

SNPs associated with NHL (p,0.05) from stage 1 were passed to

the validation analysis in stage 2 on an additional 684 cases and

1,042 controls. In order to perform downstream haplotype and

imputation analyses, in stage 2 we also included 81 additional

SNPs tagging the genes captured by the 28 significant loci in stage

1. A total of 109 SNPs were passed to the replication analysis in

stage 2 using a re-plexed Sequenom design (iPLEX). While all 109

SNPs passed the QC in stage 2, 37 cases and 61 controls were

dropped due to low genotyping rates across SNPs (,85%),

resulting in the genotyping data on 109 SNPs in 647 cases and 981

controls. Data can be made available to other researchers: please

contact the authors for details.

Statistical association analyses
Single SNP associations with NHL risk were tested using a

logistic regression model under a per-allele test, calculating odds

ratios (OR) and 95% confidence intervals (95% CI), adjusted for

age, gender and AJ status. The associations were analyzed for

stage 1, stage 2, and the aggregate sample set including both

stages. In the aggregate sample set we also used a per-allele logistic

regression model to test fifteen SNP associations within the three

most common NHL subtypes in our dataset: diffuse large B-cell

lymphoma (DLBCL), follicular lymphoma (FL) and small

lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/

CLL). Quantile/quantile (Q/Q) plots were produced using ggplot2

in R, and inflation factors (l) were calculated based on 90% of

least significant SNPs. Statistical analyses were performed using

PLINK [36]. The main analysis examining single SNP associa-

tions with NHL risk and the associations among subtypes were

controlled for multiple testing using Bonferroni adjustment. The

Bonferroni level of significance was defined as p,0.000154,

accounting for 247 independent SNPs in stage 1, 33 independent

SNPs in stage 2, and 15 SNPs tested among three NHL subtypes

(number of tests = 247+33+(15*3) = 325; p = 0.05/

325 = 0.000154). Independent SNPs were defined under Pearson’s

correlation coefficient (r-square) ,0.5 calculated among our

sample population.

Haplotypes were visualized by Haploview and haplotype

associations were performed by logistic regression analysis adjusted

for age, gender, and AJ status. We have also tested the

DNA Repair Pathways and Risk of NHL
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homogeneity of the odds ratios between these three major subtypes

by calculating the Breslow-Day statistics for each SNP.

In order to explore possible epistatic interactions associated with

NHL risk, logistic regressions were modeled by adding an

interaction term between the genotypes of each SNP pair. First,

pairwise comparisons were performed between each SNP from the

list of fifteen associations with NHL (105 tests), followed by

pairwise comparisons of fifteen SNPs with the additional 94 SNPs

included in the aggregate analysis (1,410 tests, Bonferroni adjusted

p-value: 0.05/(105+1410) = 3.361025). This analysis was per-

formed using PLINK [36]. For the targeted analysis of the MRN

complex (MRE11A, NBS1), the multiplicative two-way gene-gene

interactions were estimated using multiple logistic regression

models. For each SNP pair, a logistic regression model was built

to test case/control association based on the indicator variables

(sex, age and AJ status) and the 2-SNP variable, for a total of 5

variables and an intercept. The 2-SNP variable was defined

separately under three genetic models, based on the number of risk

alleles in individual subjects.

For the assessment of SNP-gene association by incorporating

expression information (expressed quantitative trait loci – eQTL)

we used Genevar [37]. The eQTL associations were calculated by

Spearman’s rank correlation tests.

Imputation and functional prediction
The imputation of genotypes from 1,297 NHL cases and 1,946

controls was performed using IMPUTE2 [38] with a reference

panel consisting of the 1,000 Genomes Project (1KG) data freeze

from November 2010 for low-coverage genomes, May 2011 for

high-coverage exomes, and the phased haplotypes released March

2012 (n = 1,092 individuals). Imputed loci were filtered based on

the quality metric score (info score) .0.7 [39], chosen based on

inflation estimates from a Q/Q analysis; the imputed SNPs with

info score ,0.7 showed significant inflations in our data (Figure

S2). The functional annotation of the associated tagging SNPs and

their correlated imputed SNPs was performed by ANNOVAR

[40], focusing on 8 functional categories: coding regions,

conserved transcription factor (TF) binding sites, TF binding sites

based on ChIP-Seq data (using ENCODE database), enhancer

sites based on H3K4me1 chromatin marks (using ENCODE

database), DNase I hypersensitivity clusters (using ENCODE

database), known CNVs, and 39 UTR, and 59 UTR.

Results

Sample population
The demographic and clinical composition of our sample

population is summarized in Table S1. No significant difference

was observed in the distribution of demographic variables or

lymphoma subtypes between stage 1 and stage 2. Also, no

significant difference between demographic characteristics or

subtype distribution has been noted between cases with FH and

NHL cases unselected for FH. However, there was a difference in

the proportion of age, AJ ancestry and gender between the NHL

cases and controls. Hence, age, AJ status and gender were used as

covariates in all subsequent statistical analyses.

Single SNP associations with NHL risk
In this study we applied a two-stage design: in stage 1 we

performed the association analysis on 446 SNPs tagging 81 DNA

repair genes in the population of 650 cases and 965 controls.

There was no significant inflation in observed versus expected

associations (l= 1.07), indicating no detectable genotyping arti-

facts or population substructures impacting our findings (Figure

S3).

We first tested the association of DNA repair variants with NHL

cases (all subtypes pooled). The association analysis of NHL cases

in stage 1 identified 28 SNPs associated with NHL risk (p,0.05).

The strongest associations in stage 1 were found for 3 SNPs in the

ATM locus: rs611646, rs419716 and rs227060, the latter showing

the strongest effect (OR = 1.27, 95% CI: 1.07–1.49, p = 0.005).

Other associations in stage 1 included tSNPs in MRE11A

(rs625245, OR = 0.78, 95% CI: 0.65–0.93, p = 0.006), GTF2H1

(rs4150606, OR = 0.82, 95% CI: 0.69–0.97, p = 0.02), and MSH2

(rs4952887, OR = 0.66, 95% CI: 0.47–0.91, p = 0.01).

The twenty-eight most significant SNPs from stage 1 and an

additional 81 SNPs, as described in Materials and Methods (total

109 SNPs) were passed to stage 2, which involved 647 NHL cases

and 981 controls. The associations were replicated for rs227060

and rs611646 in ATM with a more pronounced effect than in stage

1; rs227060 again shows the strongest association in stage 2

(OR = 1.30, 95% CI: 1.10–1.54, p = 0.002). Other SNPs that

replicated in stage 2 include GTF2H1 (rs4150606, OR = 0.81,

95% CI: 0.68–0.95, p = 0.01), MSH2 (rs4952887, OR = 0.76, 95%

CI: 0.58–1.01, p = 0.05) and MRE11A (rs625245, OR = 0.84, 95%

CI: 0.69–1.01, p = 0.05). See Table S3 for the complete association

results.

In the aggregate analysis of stage 1 and 2, fifteen SNPs showed

associations with NHL risk (Table 1). These included two SNPs in

the ATM locus: rs227060 and rs611646 (OR = 1.27, 95% CI:

1.13–1.43, pagg = 0.00007; OR = 1.26, 95% CI: 1.12–1.43,

pagg = 0.00015, respectively, where pagg is a p-value from

aggregate analysis). Importantly, the associations for both loci

remained significant after Bonferroni correction, as detailed in

Material and Methods (padj = 0.022; padj = 0.049, respectively,

where padj is the Bonferroni corrected p-value for each SNP). The

two SNPs show incomplete LD (r2 = 0.642, Figure S4). In order to

test whether the associations in ATM were independent we

conditioned the analyses by the status of rs227060 and found

rs611646 and rs419716 no longer significant (data not shown),

suggesting the association signals observed for ATM SNPs are

correlated. No other SNP associations in the aggregate analysis

passed Bonferroni correction. To further explore the structure of

associated loci, we also examined common haplotypes (MAF.

0.05) for association with NHL risk. The strongest risk effect has

been observed for a haplotype in ATM. Other loci have also shown

specific haplotypes associated with NHL risk, however none were

more significant than the associations from single SNP analyses

(Table S4). As our study population includes a large fraction of AJ

ancestry, we have investigated potential association differences

between AJ and non-AJ samples. The majority of the 109 SNPs

(n = 94) in the aggregate analysis show no more than a 5%

difference in minor allele frequency (MAFs) between AJ and non-

AJ subsets (Figure S5). Three SNPs (rs4150606, rs7149962,

rs7562048) that present with .5% difference in MAF also show

association with NHL. The analysis stratified by AJ status

indicated that most associations, including our two most significant

ATM SNPs, appear to be largely driven by non-AJ subsets which

are predominant in our case population (Table S5). However, for

other SNP associations such as rs4150606 (GTF2H1), rs4952887

(MSH2), and rs702019 (POLQ), both AJ and non-AJ subsets

contribute to the association signal. Therefore, all analyses in the

study were also adjusted by AJ status.

The associations of DNA repair genes with NHL subtypes
We have further tested the associations identified in the NHL

pooled analysis among NHL subtypes on fifteen SNPs that

DNA Repair Pathways and Risk of NHL
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associated with overall NHL risk in the aggregate analysis. We

focused on the three most common NHL subtypes in our study

population in order to maintain analytical power: diffuse large B-

cell lymphomas (DLBCL), follicular lymphomas (FL), and small

lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/

CLL). As shown in Table 2, associations were identified for the

three ATM tSNPs in DLBCL (n = 412), with the strongest effect for

rs611646 (OR = 1.37, 95% CI 1.14–1.64, p = 0.0008). Associa-

tions for rs611646 and rs227060 were also observed in SLL/CLL

(n = 164). No ATM tSNPs were associated with risk in the FL

subset (n = 301). In contrast, the strongest effects in FL was

observed for CHEK1 (rs565416, OR = 0.71, 95% CI: 0.58–0.87,

p = 0.001) and TDP1 (rs7149962, OR = 1.64, 95% CI: 1.14–2.35,

p = 0.007), which were not associated with DLBCL or SLL/CLL.

In SLL/CLL, the strongest association effect was found for

rs4150606 tagging GTF2H1 (OR = 0.51, 95% CI: 0.39–0.69,

p = 4.8461026); this association was not seen in FL or DLBCL

sub-analyses. The association of rs4150606 with SLL/CLL

remains significant after Bonferroni correction for multiple testing

(padj = 0.0016). The SNP/MAF plot between AJ and non-AJ

(Figure S5) identified rs4150606 as an outlier. Despite the MAF

difference it appears that both AJ and non-AJ ancestries contribute

to the observed association risk effect of rs4150606 (Table S5).

We have also tested the association heterogeneity among the

three major subtypes in our analysis of fifteen SNPs (Table 2). The

Breslow-Day test results showed an association for rs227060

(p = 0.037), indicating heterogeneity in the odds ratios between the

DLBCL, SLL/CLL, and FL. Heterogeneity has also been

observed for an additional two SNPs with subtype-specific

associations: rs4150606 (GTF2H1, p = 0.001) and rs565416

(CHEK1, p = 0.006).

The epistatic SNP-SNP interactions in DNA repair genes
and NHL risk

Using the additive model in pairwise SNP-SNP interaction

analysis, we found several associations with NHL risk among the

top fifteen SNPs from the aggregate analysis. However, none of

these associations survived the adjustment for multiple testing

(Table S6). Nonetheless, we noted several interactions of variants

in MRE11A with SNPs in NBS1 associated with NHL risk.

Interestingly, both genes biologically interact in the MRN

complex, a centerpiece of double strand break repair machinery,

which prompted us to examine these interactions more closely

using different genetic models. While all interactions involve

rs1805812 in NBS1, for MRE11A there are four different variants

which contribute to these associations (rs10831227, rs625245,

rs607974, rs557148). After examination of the four pairwise

associations (rs1805812 in NBS1 with each of the four MRE11A

SNPs) using three genetic models (Models 1–3 detailed in Table

S7), we focused on two pairwise interactions with the strongest

effects, rs1805812 (NBS1) x rs625245 (MRE11A) and rs1805812

(NBS1) x rs607974 (MRE11A). As shown in Table 3, the strongest

interaction association was observed for rs1805812 x rs607974

under Model 3, with the strongest effect for heterozygotes or

homozygotes for the minor allele on both gene loci (MRE11A,

NBS1). The association observed for rs1805812 x rs625245 also

shows the strongest effect under Model 3 (Table 4). Interestingly,

both of these interactions replicate independently in both stage 1

and 2.

Imputation and functional predictions using data from
the 1,000 Genomes Project

In order to identify the SNPs with putative functional impact,

we imputed all associated loci from the aggregate analysis using

data from the 1,000 Genomes Project (1KG; described in Material

and Methods). As seen in Figure 1, the association analysis of

imputed data did not yield association effects that were stronger

than those observed in the analysis of genotyped SNPs. The

imputation, however, identified variants that correlate with

genotyped SNPs and show an association effect comparable with

single SNP analyses of aggregate data (Figure 1). To investigate

possible biological implications of these associations we tested the

imputed SNPs using ANNOVAR (Materials and Methods). While

only one non-synonymous SNP was found among the imputed

variants (rs1381057 in POLQ), other imputed SNPs map within

high-impact regulatory regions. In the ATM locus we found

numerous putatively functional variants strongly correlated with

associated tSNPs (Table 5). Of these, rs228594 merits particular

attention; it maps in a DNase I hypersensitivity cluster as well as

within junD and FOSL2 binding sites, providing a rationale for

future molecular exploration. The detailed list of imputed SNPs

with predicted functional impact is in Table S8.

eQTL analysis
Using Genevar [37] we investigated eQTL associations for the

ATM region by examining publicly available data collected from

lymphoblastoid cell lines (LCL), T-cell lines (TCL), and fibroblast

cell lines (FCL) derived from 75 individuals of European ancestry

[41]. Out of the three ATM SNPs associated with NHL risk in our

data, the most significant eQTL effect was observed for rs227060

in LCL based on data from probe ILMN_1716231, showing that

reduced expression correlates with the risk allele (genetic

correlation coefficient rho = 0.284, p = 0.0136; Figure S6). Inter-

estingly, for the probe ILMN_1716231, the association of

rs227060 with ATM expression was the second most significant

eQTL in the region (Figure 2).

Discussion

Extensive published data suggest that DNA repair pathways are

associated with lymphoma susceptibility [26,27]. The rare

syndromes attributed to inherited mutations in DNA repair genes,

such as ataxia talangiectasia (A-T; mutations in ATM) or Nijmegen

breakage syndrome (NBS; mutations in NBS1) manifest with early

onset lymphomas of various histological subtypes [42,43]. DNA

repair plays a central role in B-cell development in germinal

centers of primary and secondary lymphoid organs via V(D)J

recombination, which is regulated by the genes involved in double

strand break repair, mainly in non-homologous end-joining

(NHEJ) [26]. The mouse knockout models of different components

of NHEJ have serious defects in the V(D)J recombination process

and manifest with increased incidence of B-cell specific lympho-

mas [26,44,45]. Also, inherited immunodeficiency syndromes (e.g.

SCID), which are often associated with early onset lymphomas

[26] are due to germline mutations in NHEJ genes. This and other

evidence points to the importance of DNA repair genes in

lymphomagenesis and suggest that these pathways are putative

candidates in the susceptibility to lymphoma. In this study we

tested common genetic variation in DNA repair genes for its role

in susceptibility to NHL. The two-stage design, the thorough

computational selection of DNA repair targets, the examination of

potential epistatic effects of the associated loci, and the suggested

functional implication of associated variants are among the major

enhancements of our study design compared to prior efforts.
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In this study, we report the most significant association with risk

of NHL for two SNPs in the ATM locus, remaining significant

after adjustment for multiple testing (Bonferroni). Although among

FL patients there was no association observed, ATM SNPs did

correlate with risk of DLBCL and SLL/CLL. While the FL subset

was the second largest in the study (n = 301), many other subtypes

were underrepresented (n,100) and hence it was not possible to

assess risk among these smaller groups due to the limited power

(although a suggestive, yet non-significant effect was observed

among Mantle Cell lymphomas; rs611646, OR = 1.45, 95% CI:

1.03–2.05, p = 0.035). It is also important to note that the

associations of ATM SNPs are stronger among the pooled NHL

analysis (all subtypes) compared to separate associations with

DLBCL or SLL/CLL. This evidence suggests for the first time

that ATM is a putatively novel candidate NHL susceptibility locus.

In our study we have noted association differences in stratified

analyses by AJ status (Table S5). This relates to the two most

significant ATM SNPs, which show the significant risk effect only

in non-AJ population. While the frequency of the risk allele of both

SNPs appears to be similar among AJ and non-AJ cases (for

rs227060 MAF = 40%, for rs611646 MAF = 48%), the MAF in AJ

and non-AJ controls differs by approximately 4% (for rs227060

MAF = 37% and 33% respectively, for rs611646 MAF = 45% and

MAF = 42% respectively). While there is a possibility of underlying

genetic substructure [46,47], we believe reduced power of the AJ

stratified sub-analysis is the most plausible explanation for the

observed differences in the risk effects between AJ and non-AJ

subsets, as AJ cases are underrepresented by ,43% compared to

non-AJ cases in the study. It is likely that despite the differences in

allele frequency of both SNPs in AJ, the risk would be detected by

increasing the number of cases to a comparable size of the non-AJ

subset. The issue of power reduction contributing to the observed

association differences between AJ and non-AJ is further supported

by the same directionality of odds ratios in both AJ and non-AJ

subsets and aggregate analysis. To explore both possibilities in

detail, a larger validation analysis and possibly the detailed fine

mapping of the ATM locus in AJ as well as non AJ populations will

be needed.

Prior evidence linking ATM with lymphoid malignancies has

been largely restricted to the somatic level; ATM somatic

mutations were noted in particular lymphoma subtypes of DLBCL

[48], CLL [49–52], and MCL [53,54], consistent with the results

of the subtype-specific analysis in our data. Rare germline variants

in ATM (MAF,0.05) have previously been associated with CLL

susceptibility [25], however as the current study focused on

common variants (MAF.0.05), these SNPs are not strongly

correlated with tSNPs in our study (r2,0.1). The study by

Sipahimalani, et al. performed an extensive analysis exploring the

association of six common genetic variants in ATM with

lymphoma risk [55]. Notably, while the least significant ATM

SNP associated with NHL risk in our data, rs419716, is strongly

correlated with one of the SNPs from that prior study, rs664982

(r2.0.9), no association was reported for rs664982 by Sipahima-

lani, et al. [55], although the directionality of the effects for both

SNPs is similar. The smaller sample size (798 cases, 793 controls)

of this prior report, together with a more heterogeneous

population (.15% of Asian ancestry) likely explains the different

association outcomes [55]. The different distribution of NHL

subtypes in the study by Sipahimalani, et al. provides another

possible explanation. While our strongest signals appear to be

driven by associations of ATM SNPs in DLBCL and SLL/CLL,

the study population from Sipahimalani, et al. had a much higher

proportion of FL, for which we did not observe an association in

our study. DLBCL specific GWAS studies have been previously

Figure 1. The results of association analysis, displayed as Manhattan plot, after imputation of 28 SNPs genotyped in both stage 1
and 2, which tag 11 DNA repair genes that showed association with NHL risk in our study. The SNPs and genes are ordered by
chromosomal position (x-axis). The associations are displayed as –log10(p-value) for each SNP. Red dots represent fifteen tagging SNPs that were
genotyped in our study and were associated with NHL risk. Green dots represent tagging SNPs that were genotyped in our study and that showed no
association with NHL. Blue markers represent SNPs imputed by IMPUTE from 1KG. The red dotted line defines the threshold of p-value ,0.05. *
indicates an associated SNP with a putatively functional impact; non-synonymous coding change or SNP mapping in: transcription factor binding site,
H3K4Me1 chromatin mark, DNaseI hypersensitivity cluster, 59UTR, 39UTR.
doi:10.1371/journal.pone.0101685.g001
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reported [7,12], and most recently a large GWAS by international

consortia has identified novel loci in apoptotic pathways associated

with the risk of SLL/CLL [11]. While ATM was not among the

reported associations in these prior studies, these reports focused

only on the loci that passed the threshold of genome wide level of

significance. For independent confirmation, a separate deeper

analysis of this published data will be needed in the follow up study

to validate the potential association effect of ATM with SLL/CLL

and DLBCL in the large populations studied in these scans.

Although the replication of our findings in NHL subtypes will be

critical as part of the prior and upcoming GWAS studies from

large consortia, it will also be very important to test the association

effect of identified ATM variants in pooled NHL population,

where we observed the most significant associations in our

analysis. Such rationale is particularly relevant given the critical

role of DNA repair pathways (with ATM as an important cell cycle

checkpoint) in early development of progenitor B and T-cell

lineages [56–59] via the process of V(D)J recombination producing

diverse immune repertoire [60]. Because of the common origin of

these precursor cell populations among different NHL subtypes, it

is reasonable to hypothesize that variation in DNA repair networks

in these progenitor cells could confer risk effects that are shared

among multiple NHL subtypes, as we have suggested in our most

recent GWAS scan [9] and as also discussed previously [7].

Additionally, double-stranded DNA break and non-homologous

end joining repair mechanisms have been implicated in the

occurrence of chromothripsis [61], which has recently been

observed in both CLL and DLBCL [62–64] and proposed along

with ‘‘chromoplexy’’ [65] to be involved in a punctuated cancer

evolution. ATM is a critical checkpoint impacting both homolo-

gous recombination and non-homologous end joining [66]. It is

possible that the inherited genetic variants in ATM may affect the

capacity of DSB repair in a way that would associate with the

patterns of specific large-scale genomic alterations and rearrange-

ments in a subset of cells in the tumor due to yet unknown genetic

or microenvironment modifiers. Although in the context of this

study it is highly speculative, given the associations with the ATM

locus observed here, such a biological scenario is an attractive

possibility and should be further investigated in detail on the

somatic level of lymphomagenesis.

Numerous other studies have previously examined the germline

variation in major DNA repair genes for their association with

lymphoma risk [15–17,19]. However, mostly due to the limited

selection of candidates, limited power or lack of independent

validation, the results were of marginal significance. These

borderline associations included the variants in nucleotide excision

repair proteins, such as XRCC1 and XRCC2 [17], cell cycle protein

BLM [19], and MGMT, a gene involved in DNA repair of

alkylation damage [17]. We examined those previously associated

loci, which had perfect proxies in our data and observed a

borderline association in stage 1 for a proxy of rs1799782 in

XRCC1 [17], (rs3213344, OR = 1.44, 95% CI: 1.03–2.01,

p = 0.03), however this SNP did not replicate in our stage 2.

MRE11A and NBS1, which were associated with NHL risk in our

study, were examined in a previous report on a small subset of

NHL population [18]. Although some marginal associations with

NHL risk were observed, the SNPs reported in that previous study

were in weak correlation with the variants in MRE11A and NBS1

associated with lymphoma risk in our analysis.

One novelty of our study design compared to prior efforts is the

exploratory assessment of potential epistatic effects in DNA repair

networks contributing to lymphoma risk. Our data suggest that the

interactions between several genetic variants in MRE11A and

NBS1, critical components of the MRN complex, associate with

Figure 2. The distribution of eQTLs across the region of ATM determined by ILMN_1716231 probe from the data of lymphoblastoid
cell lines from 75 individuals of European ancestry. The eQTLs were identified using Genevar. The eQTL association with rs227060 (arrow), the
most significant SNP associated with NHL risk in our data, is the second strongest eQTL across ATM locus. The circles indicate all SNPs that correlate
with rs227060. Zoom in shows eQTL associations of four correlated SNPs in lymphoblastoid cell line versus T-cell and fibroblastoid cell lines. The eQTL
associations are displayed as –log10(p-value) on y-axis.
doi:10.1371/journal.pone.0101685.g002
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increased risk of NHL. Interestingly, these findings show that the

carriers of at least one copy of the minor (protective) allele

inherited in both MRE11A and NBS1 are at more than a 2-fold

reduced risk of developing NHL compared to the single SNP effect

of each locus separately. While these findings are novel they are

also exploratory, given the reduced power of this analysis and the

fact that none of these observations reached the significance

threshold adjusted for multiple testing. Importantly however, these

epistatic interactions were observed in both stage 1 and 2

separately (Table 3 and Table 4) suggesting that the observed

SNP-SNP associations merit further attention. Looking forward,

the addition of other critical checkpoint DNA repair genes (such as

ATM or CHEK1/2) to the MRN interaction model found in our

study would be of interest. This analysis, along with the

independent validation of epistatic and single SNP associations

identified here, will need to be performed in a large consortium as

part of the analyses following up on recent reports [11,67].

Our study provides a suggestive link between the associated

SNPs and putatively functional variants to be pursued in

subsequent molecular studies. By imputing our data from the

public resources of 1KG we have identified several functional

variants highly correlated with the SNPs associated with NHL risk

in our study. Most notably, several of the variants in ATM were

located within multiple functional regions, as annotated utilizing

ENCODE data from lymphoblastoid cell lines. For example,

rs228594, rs228599, and rs189037, which correlate with the

associations observed in ATM, map within known transcription

factor binding sites as well as chromatin marks, DNase I

hypersensitivity clusters, and 59 UTR, strongly supporting a

possible impact on expression regulation.

The eQTL association with our top SNP, rs227060, was the

second most significant eQTL association within the ATM region,

and was detected in lymphoblastoid cell lines but not in fibroblast

controls [41] (Figure 2). The observed eQTL effect shows the

reduced expression of ATM correlating with the dosage of

rs227060 risk allele. The reduction of ATM expression has been

strongly linked with radiosensitivity and defective DNA damage-

induced ATM-dependent signaling in various experimental studies,

and was clearly shown to promote the tumor growth in lymphoma

and other cancer models [68]. However, despite the potential

biological implications of these associations, more detailed

molecular investigations will be needed to link the imputed loci

with lymphomageneis. Nonetheless, the in-silico functional predic-

tions as presented here can substantially improve subsequent fine

mapping strategies of associated SNPs. At the same time this

approach can reduce the need for a large scale re-sequencing by

functional prioritizing the target variants for further molecular

investigation.

Besides ATM, other loci also showed association effects in

pooled NHL or subtype-specific analyses. As power limitations of

our study may also be a concern, subsequent validation of these

findings should be performed in large consortia. These future

studies, with the concomitant collection of epidemiologic data and

clinical characteristics, will also allow for a more in-depth analysis

of potential gene-environment interactions attributed to DNA

repair pathways. At the same time, the utilization of data from

completed and ongoing lymphoma GWAS will be critical for the

assessment of other interacting molecular pathways that may

define the complex genetic susceptibility to NHL. For example,

the HLA locus has been consistently replicated as a low-penetrant

allele in recent NHL GWAS and follow-up meta-analyses

[7,8,10,11,32,69]. It has been shown that the innate immunity

pathways are closely connected with particular DNA repair

networks (e.g. B-cell maturation in germinal centers) [58,70],

suggesting that detailed exploration of such interactions will be

important. Our results strongly support the strategies for the

pathway analysis of data from current and future GWAS on

lymphoma susceptibility, using a deep validation of associations,

considering the loci that did not reach genome-wide association

thresholds, but may be biologically related. Our observations

indicate that the genetic variants in key biological pathways, such

as DNA repair, may account for an additional fraction of missing

inherited susceptibility to lymphoid neoplasia. The associations

observed here can also serve as the basis for further molecular

investigations of the biological roles of the implicated loci on both

a germline and somatic level. Such investigations will contribute

not only to more efficient risk algorithms, but will lead to the

improved understanding of lymphomagenesis for more effective

targeting of therapy and prevention.

Supporting Information

Figure S1 Strategy schema for the selection of candi-
date DNA repair genes in the study.

(TIF)

Figure S2 Quantile/Quantile (Q/Q) plot comparing –
log10(expected p-value) vs. –log10(observed p-value)
under different quality metric scores (info). Based on

imputation analysis of 109 genotyped SNPs using IMPUTE2. Q/

Q analysis of imputed data was used to select quality score

threshold with least inflation of significant SNPs, which we have

set at 0.7.

(TIF)

Figure S3 Quantile/Quantile (Q/Q) plot of the associ-
ation results from stage 1 SNPs genotyped in 650 NHL
cases and 965 controls; 2log10(expected p-value) vs.
2log10(observed p-value). The blue dashded line indicates the

inflation factor based on 90% of the least significant SNPs

(l= 1.07).

(TIF)

Figure S4 LD structure generated by Haploview shown
for ATM gene region. The triangle plot displays correlation

between the three tagging SNPs genotyped in the study (r2 values).

The associations of individual SNPs are displayed as 2log10(p-

value) for each SNP from the main effect aggregate analysis.

(TIF)

Figure S5 Minor allele frequency plot for non-AJ vs. AJ
samples. Data based on allele frequencies in the aggregate

analysis (for 109 SNPs with genotype information in stage 1 and

stage 2). Blue dots indicate those SNPs associated with NHL in the

aggregate analysis. Only 15 SNPs (14%) showed a difference in

MAF .0.05. Indicated by arrows are NHL associated SNPs which

did show a MAF difference .0.05 between non-AJ and AJ

samples.

(TIF)

Figure S6 Genotype vs. expression (eQTL) results for
rs227060 and four expression probes across the ATM
locus. Data generated from lymphoblastoid cell lines (GenCord-

L), T-cell lines (GenCord-T) and fibroblastoid cell lines (GenCord-

F) established from 5 individuals of European ancestry. The most

significant association for rs227060 in GenCord-L has been
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observed for ILMN-1716231. Data were generated using

Genevar.

(TIF)

Table S1 Summary of the demographic characteristics
of the case/control study population.
(XLSX)

Table S2 List of DNA repair genes and tagging SNPs
genotyped. Chromosome and base pair position are based on

GRCh37/hg19 build. Allele frequencies calculated among our

sample population.

(XLSX)

Table S3 Results of single SNP associations analysis of
tSNPs in DNA repair genes with the risk of NHL
observed in our study, including 109 SNPs genotyped
in stage 1 and stage 2.
(XLSX)

Table S4 Full list of haplotype associations (p,0.05) for
DNA repair genes associated with NHL in our study.
(XLSX)

Table S5 Stratified AJ and non-AJ results for SNPs
associated with NHL in the main effect aggregate
analysis.
(XLSX)

Table S6 Results from pairwise SNP-SNP interaction
associations of tSNPs in DNA repair genes with NHL
risk. A) Pairwise comparisons among the 15 tSNPs associated

with NHL risk in the aggregate main effect analysis. B) Pairwise

comparisons of 15 tSNPs with all additional SNPs genotyped in

both stage 1 and stage 2 (n = 94). Associations between MRE11A

and NBS1 are shaded in grey.

(XLSX)

Table S7 Pairwise interaction results between NBS1
(rs1805812) and MRE11A (rs607974, rs625245, rs557148,
rs10831227) and NHL risk under three different genetic
models. Each model was tested for a different SNP x SNP

combination between rs1805812 and 4 SNPs tagging MRE11A.

Indicated are the different combinations of genotypes used for

each respective genetic model.

(XLSX)

Table S8 Summary of tagging and imputed SNPs in
DNA repair genes associated with NHL risk with high
predicted functional impact. Functional information was

annotated using ANNOVAR, and included data generated from

the ENCODE project.

(XLSX)
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