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Meiosis is a specialized cell divi-
sion program that results in the 

formation of haploid gametes (i.e., sperm 
and eggs) from diploid parental cells, 
and is essential for all sexually reproduc-
ing organisms. Crossover formation, the 
reciprocal exchange of genetic informa-
tion during recombination, is critical for 
accurate meiotic chromosome segrega-
tion. Misregulation of crossover forma-
tion leads to genomic instability and 
aneuploidy (cells with the incorrect num-
ber of chromosomes), resulting in tumor-
igenesis, birth defects, miscarriages, 
and infertility in humans. Recently, a 
shuriken/Swiss army knife-like multi-
nuclease complex has been implicated in 
processing various types of DNA repair 
intermediates. However, how these 
nucleases coordinate their functions dur-
ing repair remained unclear. Our studies 
in C. elegans revealed genetic redundan-
cies between these nucleases for meiotic 
crossover formation and that they pro-
mote distinct crossover control at dif-
ferent chromosome regions. Specifically, 
XPF-1 acts redundantly with both MUS-
81 and SLX-1 to resolve Holliday junc-
tion recombination intermediates into 
crossover products at designated future 
crossover sites on chromosome arms. In 
contrast, SLX-1 is required for suppres-
sion of crossovers at the center region of 
chromosomes. Altogether, our studies 
have shed light on the interplay between 
structure-specific endonucleases and 
uncovered their ability to exert either 
positive or negative meiotic crossover 
control on a chromosome region-specific 
basis.

Introduction

Meiosis accomplishes the reduction of 
the chromosome number in half by fol-
lowing a single round of DNA replica-
tion with two consecutive rounds of cell 
division (meiosis I and II). The formation 
of crossovers via homologous recombi-
nation is essential for the production of 
chiasmata, physical attachments between 
homologous chromosomes, which secure 
their accurate separation at meiosis I. 
Failure in forming crossovers results in 
the missegregation of chromosomes at 
meiosis I and leads to infertility and mis-
carriages in adults as well as congenital 
abnormalities in newborns. Therefore, 
understanding the molecular mecha-
nisms underlying the regulation of mei-
otic recombination is critical for human 
reproductive health.

Homologous recombination is initi-
ated via induction of DNA double strand 
breaks (DSBs) by the conserved topoi-
somerase-like protein, SPO-11. DNA end 
resection and single-strand invasion of a 
homologous sequence, which serves as a 
repair template, leads to the formation 
of a recombination intermediate referred 
to as a double Holliday junction (dHJ). 
Resolution of the dHJs is the final step 
in homologous recombination and can 
result in either crossover or non-crossover 
formation. However, only crossovers will 
results in a physical attachment between 
homologs at meiosis.

The mechanism of homologous 
recombination is largely conserved 
from phage to humans. Recently, four 
kinds of HJ resolvases, MUS81 (Methyl 
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Methanesulfonate and UV Sensitive 81)-
EME1 (Essential Meiotic Endonuclease 
1)/Mms4 (Methyl Methanesulfonate 
Sensitive 4), SLX1 (Synthetic Lethal 
of unknown (X) function 1)-SLX4, 
XPF (Xeroderma Pigmentosum group 
F)-ERCC1 (Excision Repair Cross-
Complementation group 1), and GEN1 
(XPG-like Endonuclease 1) were identi-
fied by genetic and biochemical analysis. 
Mus81–Mms4 (also known as Slx3–
Slx2) and Slx1–Slx4 were first identified 
in a synthetic lethal screen in budding 
yeast performed in the absence of Sgs1, 
the BLM ortholog.1 XPF–ERCC1 is 
known as a nuclease required for nucleo-
tide excision repair.2 Notably, a MEI-9/
XPF mutant in Drosophila exhibited a 
90% decrease in meiotic crossover forma-
tion, suggesting a role for this nuclease 
in HJ resolution.3 Recently, GEN1/Yen1 
were identified as canonical HJ resolvases 
by biochemical analysis in human cells 
and budding yeast.4 Interestingly, SLX1, 
MUS81, and XPF associate with SLX4,5-9 
and therefore, SLX4, the non-catalytic 
subunit of the SLX1–SLX4 complex, 
has been proposed to act as a scaffold 
protein for several structure-specific 
nucleases (Fig.  1). Coordinated action 
between SLX1 and MUS81 is required 

to resolve HJs in mice and humans.10-12 
We and other groups found that XPF-1 
acts redundantly with both MUS-81 
and SLX-1 to promote meiotic cross-
over formation in C. elegans.8,13,14 Here, 
we discuss how structure-specific endo-
nucleases coordinate their functions to 
either promote or suppress meiotic cross-
over formation in a chromosome region-
specific manner.

Conserved Protein–Protein 
Interactions Form a  

Molecular “Shuriken,” Which  
is a Multinuclease Complex  

for DNA Repair

A series of studies have recently iden-
tified various SLX4-interacting proteins 
(Table 1).1,5-7,9,15,16 In budding yeast, Slx4 
was shown to interact with Slx1 and 
Rad1, a human XPF homolog. In f lies, 
mice, and humans, SLX4 interacts with 
SLX1, MUS81, and XPF. In C. elegans, we 
found that HIM-18 interacts with SLX-
1, MUS-81, and XPF-1.8 More recently, 
SNM1B/Apollo, a member of the highly 
conserved metallo-β-lactamase super 
family of nucleases, which plays a central 
role in interstrand crosslink repair, has 

also been identified as an SLX4 interactor 
in human cells.17 These protein–protein 
interactions are reminiscent of the mul-
tipronged shuriken, a traditional weapon 
used by Ninjas (Fig.  1). An important 
remaining question is whether these pro-
teins form a single complex or heterodi-
mers with SLX4. In yeast, Slx1–Slx4 and 
Rad1–Slx4 exist in a mutually exclusive 
manner, while these same proteins form a 
single complex in mammals.7,9,18 Further 
studies will reveal the state of HIM–18/
SLX4-associated nucleases, especially 
what combinations are formed between 
subunits and their substrate specificities 
in C. elegans.

MUS-81 and SLX-1, but not  
XPF-1 and GEN-1, Have 
Overlapping Roles with  

HIM-6/BLM for DNA Repair

The Sgs1 helicase disassembles early 
meiotic recombination intermediates, 
both to generate non-crossovers and to 
prevent formation of aberrant multi-
chromatid recombination intermediates 
in budding yeast.19,20 It is known that 
there is a functional overlap between 
Sgs1 and the Slx proteins in budding 
yeast.1 Similar to yeast, we found that 
mus-81 and slx-1, but not xpf-1 and gen-
1, exhibit synthetic germline defects with 
him-6, the C. elegans BLM homolog.8 
Specifically, more than 95% embryonic 
lethality was observed in mus-81;him-6 
and slx-1;him-6 double mutants com-
pared with 7.0%, 7.3%, and 59.1% in 
mus-81, slx-1, and him-6 single mutants, 
respectively.8 These results suggest that 
MUS-81 and SLX-1, but not XPF-1 
and GEN-1, have overlapping roles with 
HIM-6, probably in processing recom-
bination intermediates. HIM-18/SLX4 
also exhibits synthetic germline defects 
with him-6, as evidenced by the elevated 
levels of chromosome bridges with asso-
ciated RAD-51, a protein involved in 
strand invasion/exchange during repair, 
detected in mitotically proliferating germ 
cells.16 Therefore, the accumulation of 
unresolved recombination intermediates 
can result in mitotic catastrophe, further 
highlighting the important function of 

Figure  1. The HIM-18 complex: a molecular “shuriken” for DNA repair. (A) HIM-18 interacts with 
multiple nucleases including XPF-1, MUS-81 and SLX-1. X corresponds to SNM1B/Apollo in mam-
mals. (B) Each unit of Shuriken: XPF-1-ERCC1, MUS-81-EME1 and SLX-1-HIM-18. (C) Representative 
DNA structures that arise during repair via homologous recombination. Black triangles indicate the 
sites of nicks induced by structure-specific endonucleases.
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HIM-18 and its associated nucleases in 
maintaining genomic integrity.

XPF-1 Acts Redundantly  
With Both MUS-81 and SLX-1  

to Promote Crossover  
Formation During Meiosis

To investigate whether the structure-
specific endonucleases have an overlapping 
role during crossover formation, we mea-
sured crossover frequencies along three 
chromosome regions (left arm, center, and 
right arm), encompassing approximately 
97% of the whole lengths of chromosomes 
V and X. The boundaries between these 
chromosome regions have been defined 
by utilizing single-nucleotide polymor-
phisms (SNPs) present in the C. elegans 
Bristol and Hawaiian strains.8,21 Crossover 
frequencies were not affected in any of 
the mus-81, xpf-1, slx-1, and gen-1 single 
mutants. However, crossover frequencies 
were significantly reduced in mus-81;xpf-1 
and slx-1;xpf-1 double mutants on both 
chromosome V (65% and 81% of wild-
type; P = 0.0041 and 0.0013, respectively, 
by the Fisher’s Exact Test) and the X chro-
mosome (40% and 68% of wild-type; P 
= 4.85E-08 and 3.04E-05, respectively).8 
Therefore, this analysis revealed that 
XPF-1 acts redundantly with both MUS-
81 and SLX-1 to promote crossover for-
mation during C. elegans meiosis (Fig. 2). 
Our conclusion is also supported by the 
recent finding that MUS81-EME1 and 
SLX1-SLX4 act in the same pathway for 
HJ resolution in mice and human cells.10-12 
In yeast, flies, and humans, a genetic inter-
action has been shown between GEN1 
and MUS81-EME1.22-25 However, we 
could not find any evidence of a genetic 
interaction between these factors in C. 
elegans. Further studies will determine 

whether there are proteins compensat-
ing for the role of GEN1 in C. elegans. 
Interestingly, we observed that crossover 
frequencies were more reduced on the X 
chromosome compared with chromosome 
V.8 Gene expression is repressed along 
the X compared with the autosomes in 
the germline due to both meiosis-specific 
transcriptional silencing as well as dosage 
compensation that serves to halve tran-
scription from both X chromosomes in 
hermaphrodites, equating it to the tran-
script levels stemming from the single X 
chromosome present in the X0 males.26-

28 Therefore, there is higher nucleosome 
occupancy at X-linked gene promoters29 
and an enrichment for histone modifi-
cations associated with transcriptional 
silencing detected on the X chromosome 
compared with the autosomes. This raises 
the interesting question of how chromatin 
state/architecture may influence the reso-
lution of recombination intermediates.

SLX-1 is Required for Suppression 
of Crossover Formation at the 

Center Region of the Autosomes

Crossover formation does not occur 
randomly along chromosomes. For exam-
ple, crossovers are formed at the arm 
regions, but are rarely formed at centro-
meres and telomeres, in many species.30-32 
It is known that crossover formation is 
suppressed at the center region of chromo-
somes in C. elegans (Fig. 3).21,33 However, 
the molecular mechanism underlying this 
chromosome region-dependent difference 
in crossover regulation is not understood.

Among the structure-specific endo-
nucleases, we found that only SLX-1 
is required for suppression of crossover 
formation at the center region of chro-
mosome V, which encompasses 51% of 
its whole length. Specifically, 36% of 
total crossovers are observed at the cen-
ter region in slx-1 mutants (1.7 cM/Mb), 

Table 1. Comparison between model organisms for HIM-18/SLX4-associated nucleases

S. pombe S. cerevisiae C. elegans D. melanogaster M. musculus H. sapiens

SLX1-SLX4 YES YES YES YES YES YES

MUS81-EME1 YES YES YES YES YES YES

XPF-ERCC1 YES YES YES YES YES YES

MUS81-SLX4 - - YES - YES YES

XPF-SLX4 - YES YES YES YES YES

Yes indicates positive interactions. – indicates no detected interactions.

Figure 2. A model for crossover formation. XPF-1 has redundant roles with MUS-81 and SLX-1 to 
resolve dHJs in crossover formation.
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compared with only 21% in wild-type 
(1.1 cM/Mb; P = 0.0312). Nevertheless, 
the crossover frequency observed for the 
whole chromosome V is similar between 
slx-1 mutants (50 cM) and wild-type (48 
cM). Interestingly, there are some dis-
tinct features between the arm and cen-
ter regions of the chromosomes. First, 
while DNA repeat sequences and trans-
posons are enriched at the arm regions, a 
high gene density is observed in the cen-
ter region.34 Second, histone H3 lysine 9 
methylation (H3K9me1/2/3), which is 
associated with heterochromatin, and the 
nuclear transmembrane protein LEM-
2, are both enriched at the arm regions, 
while H3K4me3, which is associated with 
euchromatin, is enriched in the center 
regions during early embryogenesis and 
the L3 larval stage.35-37 While it remains 
to be determined whether these epigenetic 
marks and their distribution are main-
tained in the adult germline, we propose 
two possible models for how suppression 
of crossover formation is exerted by SLX-1 
(Fig. 3). One possibility is that SLX-1 acts 
as a non-crossover-specific HJ resolvase at 
the center region of chromosome V, and 

presumably other autosomes. The second 
model is that SLX-1 may act as an epigen-
etic reader given that it has a PHD finger 
domain that is largely known to recog-
nize modified histones such as H3K4me. 
This recognition would in turn recruit yet 
unknown non-crossover-promoting fac-
tors, resulting in non-crossover formation 
at the center region of the chromosomes.

Structure-Specific  
Endonucleases Play a Role  
in Crossover Interference

Crossover distribution is tightly regu-
lated in most organisms including bud-
ding yeast, flies, worms, and mammals, 
as indicated by the fact that crossovers 
exhibit “interference” since a crossover 
in one location of the genome discour-
ages the formation of another crossover 
nearby.38,39 C. elegans is an ideal system 
to understand the mechanism of cross-
over interference given that the number 
of crossover is tightly regulated during 
meiosis such that only and always one 
crossover occurs between each pair of 

homologous chromosomes.40,41 However, 
4.1% and 7.1% of total crossover events 
are double crossovers in slx-1;xpf-1;gen-1 
triple and mus-81 slx-1;xpf-1;gen-1 qua-
druple mutants, respectively.8 This raises 
two possibilities: (1) structure-specific 
endonucleases are redundantly required 
for crossover interference; or (2) if recom-
bination intermediates are not properly 
resolved at the designated future cross-
over site, crossover interference is attenu-
ated to accommodate multiple crossovers. 
Therefore, understanding the mechanisms 
underlying crossover interference, which 
remain a mystery for over more than a 
century, is an issue of critical importance 
in the field and will further clarify which 
of the possibilities outlined above might 
apply.

Unresolved Holliday Junctions 
Result in Chromosome 

Bridges Between Homologous 
Chromosomes

If recombination intermediates are 
not properly resolved, they are detected 

Figure 3. Two non-mutually exclusive hypotheses for how SLX-1 suppresses crossovers at the center of the chromosomes. (A) While crossover formation 
is suppressed at the center region in wild type, it is not suppressed in slx-1 mutants. (B) SLX-1 may act as a non-crossover specific resolvase in a HIM-18-
dependent manner. (C) SLX-1 may act as an epigenetic reader, via its PHD finger, recognizing boundaries between the arms and the center region of the 
chromosomes delimited in part by their differences in histone methylation.
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as chromatin bridges at anaphase of 
mitosis.42 In C. elegans meiosis, this can 
also be observed as chromosome bridges 
at late diakinesis and prometaphase I.16 
Resolution of a HJ into a crossover, results 
in the formation of mature bivalents in 
wild-type. It is thought that unresolved 
HJs trapped as interhomolog connections 
result in the intrabivalent bridges observed 
in the resolvase mutants. Consistent with 
the reduction in crossover frequencies 
observed in mus-81;xpf-1 and slx-1;xpf-1 
mutants, a high frequency of chromosome 
bridges in oocytes at the late diakinesis 
stage were also observed in these genetic 
backgrounds compared with wild-type 
and each single mutant.8 These results 
further support the model that XPF-1 
functions in a redundant manner with 
both MUS-81 and SLX-1 for HJ resolu-
tion in order to promote the formation of 
functional or intact chiasmata.

Structure-Specific  
Endonucleases Act Downstream 

of Crossover Designation

Studies in budding yeast and worms 
suggest that the positions of the crossovers 
along chromosomes are designated prior to 
the resolution of recombination interme-
diates, which is the final step of crossover 
formation.16,43-46 We examined the local-
ization of ZHP-3, the budding yeast Zip3 
homolog containing a ring finger motif, 
which has been implicated as a pro-cross-
over factor,47 and determined that cross-
over designation was not affected in any 
of the nuclease mutants (single or combi-
natorial mutants).8 These results indicate 
that structure-specific endonucleases act 
downstream of crossover designation.

Hypothetical Model

Based on our results and recent chro-
mosome-wide epigenetic analyses, we pro-
vide a hypothetical model for crossover 
control by structure-specific endonucle-
ases. XPF-1, MUS-81, and SLX-1, which 
interact with HIM-18, promote crossover 
formation at the arm regions that are epi-
genetically marked by histone H3K9me 
in somatic cells. Repeat sequences are also 

enriched in these regions. Probably these 
nucleases are recruited to the arm regions 
and work coordinately. While H3K9me is 
enriched at the arm regions, it is low at the 
center region of autosomes and the right 
arm of the X chromosome, where instead 
there is enrichment for H3K4me. Given 
that SLX-1-dependent crossover suppres-
sion is observed at the center region of the 
autosomes,8,48 we propose that the PHD 
finger motif of SLX-1 might act as an 
epigenetic reader, thereby recognizing the 
H3K4me and promoting non-crossover 
formation at the center region (Fig. 3).

Concluding Remarks

We found that MUS-81 and SXL-1 
act in the same pathway, while XPF-1 acts 
in a parallel pathway to promote meiotic 
crossover formation. Moreover, SLX-1 
has the additional function of suppressing 
crossover formation at the center of the 
autosomes. Important future directions 
in this research field will include identi-
fying additional resolvases for recombina-
tion intermediates and determining how 
SLX-1-dependent suppression of crossover 
occurs.
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