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T-cell co-stimulatory blockade in kidney
transplantation: back to the bench
Leonardo V. Riella1 and Mohamed H. Sayegh1

1Transplantation Research Center, Department of Medicine, Renal Division, Brigham and Women’s Hospital, Children’s Hospital Boston,
Harvard Medical School, Boston, Massachusetts, USA

It is believed that blocking positive T-cell co-stimulatory

pathways should lead to long-term graft acceptance. Despite

the exciting initial achievements in experimental animal

models, targeting co-stimulatory pathways has shown to be

much more complex in the clinic. In addition to multiple

binding partners, some co-stimulatory interactions have

been found to be inhibitory in nature, whereas others were

demonstrated to be important in the development of

regulatory T cells. Moreover, memory T cells have been

shown to be resistant to co-stimulation blockade. Herein we

focus on the B7:CD28 pathway and describe the evolution of

targeting this pathway with cytotoxic T-lymphocyte antigen-

4-Ig from bench to clinic. We also attempt to address possible

causes for the unexpected high rejection rate observed in the

phase III clinical trials with belatacept, using experimental

data obtained from basic science research.
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T cells have a central role in allograft rejection. The specificity
of the alloimmune response is determined by the interaction
of the major histocompatibility complex (MHC) molecule on
antigen-presenting cells with the T-cell receptor (TCR) on
T cells, consisting of ‘signal 1’. However, in order to fully
activate a naı̈ve T cell, a second antigen-independent co-
signal must be delivered by co-stimulatory molecules (signal
2). Therefore, co-stimulation has a key role in determining
the outcome of the T-cell encounter with the alloantigen,
with important therapeutic applications in transplantation.1,2

The best characterized co-stimulatory pathway is the
B7:CD28 pathway. In both, mice and humans, CD28 is
constitutively expressed on all naı̈ve CD4þ and CD8þ

T cells,3 and it can interact with two ligands, B7.1 (CD80)
and B7.2 (CD86), expressed on antigen-presenting cells
(Figure 1a). In the presence of TCR signaling, B7:CD28
interaction leads to full activation and expansion of T cells,
whereas blocking this pathway results in anergy and/or
apoptosis of responding T cells (Figure 1b).4 In the transplant
setting, initial studies in experimental animal models with
blockade of B7 ligands revealed promising results. However,
the continuous expansion of co-stimulation knowledge led to
some unexpected findings.5 Additional co-stimulatory mo-
lecules were discovered that shared ligands with each other,
and some of these receptors demonstrated capability of
inhibiting rather than activating T cells. For example,
cytotoxic T-lymphocyte antigen-4 (CTLA4) was found to
be structurally related to CD28 and bind to the same ligands
on antigen-presenting cells (B7.1 and B7.2) as CD28;
however, its interaction with B7 ligands led to inhibition of
T-cell activation (Figure 1c). Moreover, other positive co-
stimulatory pathways were discovered with non-redundant
and compensatory roles in T-cell activation.5 Currently, it is
clear that the integration of multiple positive and negative
co-stimulatory signals ultimately determines the outcome of
the T-cell response.5 In this review, we will focus on the
B7:CD28 co-stimulatory pathway and discuss the evolution
of this therapeutic target from bench to bedside, and then
back to the bench, in an attempt to understand and explain
recent clinical outcomes in kidney transplantation.

B7:CD28 BLOCKADE: FROM BENCH TO BEDSIDE

After an alloantigen encounter, B7:CD28 signaling was shown
to help in fully activating T cells by increasing transcription
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and mRNA stability of interleukin-2 (IL-2),6 elevating the
expression of antiapoptotic molecules such as Bcl-XL,7 and
decreasing the threshold of T-cell receptor activation.8 After
failed attempts to develop an effective CD28 blocking
antibody,9 researchers were able to successfully target CD28
ligands with antibodies against B7.1 and B7.2.10,11 In the
early 1990s, a recombinant fusion protein, CTLA4-Ig, was
developed by fusing the extracellular domain of human
CTLA4 with an Ig heavy chain tail.12 This antibody had a
higher affinity to the B7 ligands than CD28, and was shown
to be a powerful inhibitor of T-cell activation in vitro.12

Subsequent testing of CTLA4-Ig revealed its capability of
protecting the allograft against acute rejection in MHC-
mismatched cardiac transplantation, as well as in islet cell
transplantation in murine models.13,14 Despite its potent
effect, CTLA4-Ig alone was incapable of inducing tolerance in
non-human primates,15,16 requiring additional immunosup-
pression to promote graft survival.17

Further mechanistic studies revealed that CTLA4-Ig was
100-fold less potent in inhibiting B7.2 co-stimulation
compared with B7.1 co-stimulation,18 possibly explaining
its lower-than-expected potency in vivo. Therefore, a
modification of this antibody was undertaken, with substitu-
tion of two amino acids within the B7.2 binding domain,
creating a second generation of CTLA4-Ig (LEA29Y), which
was shown to have higher affinity to both B7.1 and B7.2,
translating into a 10-fold increase in biological potency.18

LEA29Y, later named belatacept (Bristol–Myers Squibb, New
York, NY), was tested in non-human primates and showed
superior prolongation in renal allograft survival as mono-
therapy, when compared with the first-generation CTLA4-Ig,
and led to a marked improvement in survival when used in
combination with other immunosuppressive regimens such
as mycophenolate mofetil and steroids, or an anti-IL-2
receptor antibody.18

On the basis of these encouraging results, belatacept
moved to a phase II clinical trial to evaluate the efficacy of
this drug in kidney transplant recipients in comparison with
cyclosporine (CsA).19 During this trial, recipients were
assigned to receive either an intensive or a less-intensive
regimen of belatacept, compared with CsA. Induction
therapy consisted of basiliximab (IL-2 receptor monoclonal
antibody), and maintenance therapy included steroids and
mycophenolate mofetil. The results of this trial suggested that
belatacept was non-inferior to CsA and it could potentially
have a beneficial effect on glomerular filtration rate at 1 year
after transplantation, presumably by the absence of calci-
neurin inhibitor-induced nephrotoxicity.19 Subsequently, a
phase III clinical trial (BENEFIT) was published, in which an
unexpected higher rate of acute rejection was observed in the
belatacept group, especially in the intensive arm receiving
more frequent doses (22 vs 7% on CsA arm).20 Moreover,
these rejections were more severe than the ones with CsA,
with most of them with the Banff grades of IIA or higher.
Nevertheless, the belatacept groups had a similar graft
survival at 1 year and demonstrated superior renal function
when compared with CsA.20 Overall, the unexpected higher
rate of rejection, especially in the more intensive regimen,
was intriguing and suggested some unexpected consequences
of the intensive B7:CD28 blockade that required further
investigation.

TARGETING B7:CD28 PATHWAY: BACK TO THE BENCH
Regulatory T cells

Although targeting B7:CD28 pathway to improve graft
survival was becoming a reality, basic knowledge of this
pathway and of the alloimmune response kept expanding.
The discovery of regulatory T cells as a sub-population of
T cells with inhibitory function and capability of controlling
the alloimmune response generated great enthusiasm in the
transplant community, as inducing this sub-population of
T cells could potentially lead to tolerance development.21

Indeed, several groups published initial exciting results with
cell-based therapy with regulatory T cells (Tregs) in tolerance
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Figure 1 | Role of co-stimulation in T-cell activation. (a) Upon
antigen encounter, B7.1/B7.2 ligands expressed on antigen-
presenting cells interact with CD28 receptors on T cells, leading to
full T-cell activation. (b) In the absence of B7:CD28 interaction,
T cells become anergic and/or apoptotic in the context of T-cell
receptor (TCR) stimulation. This can be seen, for example, with
blockade of the B7 ligands by CTLA4-Ig. (c) Co-stimulatory
pathways can also be inhibitory as in the case of B7:CTLA4, which
is able suppress T-cell activation. It is the balance between
positive and negative co-stimulatory pathways that will ultimately
determine T-cell outcome. APC, antigen-presenting cells;
CTLA4, cytotoxic T-lymphocyte antigen-4.
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induction.22,23 Importantly, the development and home-
ostasis of Tregs was shown to be directly dependent on
B7:CD28 co-stimulation, and deficiency on this pathway
significantly decreased the amount of regulatory T cells in
rodents (Figure 2).24 This was a concern, as blocking this
pathway could potentially affect Treg generation. Recently, in
a single MHC class II-mismatched model of murine cardiac
transplantation, in which allografts survive long term because
of the emergence of Tregs that inhibit alloreactive T cells, the
deficiency of either B7 or CD28 in recipients paradoxically
led to an accelerated rejection.25 This effect was related to the
significantly lower number of Tregs in the deficient mice,
tipping the balance toward more T-effector/memory cells
rather than Tregs.

Therefore, B7:CD28 signal is important not only for the
activation of pathogenic effector T cells but also for the
generation of regulatory T cells, being the balance of effector
T cells and Tregs that ultimately determines the fate of an
allograft.26 In an attempt to understand the observations
above in rodents, we could hypothesize that in a fully
allogeneic mismatched model, the pool of alloreactive T cells
is much greater in size than on a single mismatched model;
therefore, blockade of B7:CD28 is especially efficient in
suppressing the activation and decreasing the alloimmune
response in the former (Figure 3a). However, if the pool of
alloreactive T cells is smaller, such as in the single mismatch
model described above, B7:CD28 blockade could have a more
deleterious effect in Tregs than on effector T cells, tipping the

balance toward the pathogenic side and precipitating
rejection (Figure 3b). The pool size of the alloreactive T cells
could potentially correlate in humans with different scenar-
ios, such as in deceased donor recipients and in sensitized
patients vs first living-related transplants in a non-sensitized
recipient (Figure 3).

Although an initial small study did not reveal a significant
decrease in peripheral regulatory T cells of patients treated
with belatacept in comparison with CsA,27 this finding
requires further evaluation, as the degree of mismatch, the
sensitization of the recipient, the dose, and timing of
belatacept must be taken into account, given that some
recipients with well-matched grafts might suffer from the
deleterious effects of B7:CD28 blockade on Treg generation.
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Figure 2 | Regulatory T cells and co-stimulatory pathways.
(a) B7:CD28 pathway was demonstrated to have a major role in
the generation and maintenance of regulatory T cells (Tregs),
leading to some concerns on the effect of long-term B7:CD28
blockade on Tregs in transplantation. (b) Another concern arose
from the discovery that Tregs use the inhibitory pathway
B7:CTLA4 to suppress dendritic cell (DC) function via induction of
indoleamine 2,3-dioxygenase (IDO) and inhibition of the
maturation of DCs (not shown). However, Tregs also exert their
suppressive function through other mechanisms, such as
secretion of inhibitory cytokines (e.g., interleukin (IL)-10,
transforming growth factor (TGF)-b) and granzyme B (GrB),
possibly representing parallel pathways of immune regulation.
APC, antigen-presenting cells; CTLA4, cytotoxic T-lymphocyte
antigen-4; Teff, effector T cell.
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Figure 3 | The pool size of alloreactive T cells and the effect of
co-stimulation blockade. (a) In the setting of a large pool size of
alloreactive T cells, blockade of B7:CD28 pathway by CTLA4-Ig
leads to a predominant effect on effector T cells, tipping the
balance toward regulatory T cells (Tregs)/tolerance. (b) When the
number of alloreactive T cells is smaller, blockade of B7:CD28
leads to a dominant inhibitory effect on the generation of
regulatory T cell, leading to more effector T cells than Tregs, and
precipitating rejection in the transplant setting; CTLA4, cytotoxic
T-lymphocyte antigen-4.
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B7:CTLA4 pathway

The failure of the CTLA4-Ig to uniformly induce tolerance may
also relate, at least in part, to its blocking capacity of B7:CTLA4
interaction, which has been shown to be a critical inhibitory
co-stimulatory signal.28 In fact, CTLA4-deficient mice develop
a severe systemic autoimmune disorder leading to death at
several weeks of age,28,29 demonstrating a key role of CTLA4 in
maintaining self-tolerance. In addition, blockade of CTLA4
with an anti-CTLA4 antibody has been shown to precipitate
rejection and prevent induction of allograft tolerance in the
transplant setting,30 reinforcing the important role of CTLA4
signaling in inhibiting the alloimmune response.

CTLA4 is constitutively expressed on Tregs and has a 20-fold
higher affinity than CD28 for both B7.1 and B7.2 ligands.31 In
addition to the direct effect of Tregs on effector T cells by the
secretion of inhibitory cytokines (e.g., IL-10) and apoptotic
effects through granzyme B, the function of Tregs was also
shown to be dependent on CTLA4 expression32 (Figure 2b).
CTLA4 on Tregs can interact with B7.1/B7.2 ligands on antigen-
presenting cells and downregulate the expression of these
ligands while upregulating the expression of indoleamine 2,3-
dioxygenase, a potent inhibitory molecule.33 An agonistic agent
to CTLA4 could potentially promote tolerance and improve
graft survival; however, attempts of developing this agent have
so far been unsuccessful. Overall, CTLA4 is an important
inhibitory signaling pathway, and its blockade by CTLA4-Ig
could affect the regulation of the alloimmune response.

Th17 cells

After antigen encounter, naı̈ve T helper (Th) cells might
differentiate into different subtypes according to signals
delivered by antigen-presenting cells and the cytokines
present in the microenvironment.34 The subtypes of Th cells
are characterized by diverse cytokine productions, with Th1
cells producing predominantly interferon-g, whereas Th2
cells secreting IL-4. Donor-specific T cell responses after
transplantation are typically dominated by interferon-g-
producing T cells (Th1).35 More recently, T cells that produce
IL-17 were discovered and showed an association with
allograft rejection.36 The concern about Th17 cells is that
they have been reported to be resistant to current available
immunosuppression, and especially resistant to co-stimula-
tion blockade.37,38 In fact, CD28 co-stimulation reduced the
frequency of Th17 cells, whereas CTLA4-Ig facilitated both
murine and human Th17 differentiation in vitro.39 In
addition, CTLA4:B7 interaction was also demonstrated to
inhibit Th17 cell differentiation and suppress the develop-
ment of Th17-mediated autoimmunity.40 Collectively, these
findings suggest that B7:CD28 blockade might favor Th17
cell differentiation with potential concern for allograft
outcome; however, the true role of IL-17 in the alloimmune
response in humans still needs to be clarified.

Memory T-cell resistance

Memory T cells are lymphocytes that have been previously
activated and possess a unique capacity to generate rapid

effector functions upon rechallenge with antigen. This
capacity is related to their lower threshold for activation,
less dependence on co-stimulation, and enhanced trafficking/
adhesion mechanisms, being especially important in the
response to infectious organisms.41 Humans develop allo-
reactive memory T cells after exposure to blood transfusions,
pregnancies, or prior transplantation. More recently, it has
been proposed that alloreactive memory T cells can also be
generated by exposure to pathogens and environmental
antigens, because of the resemblance of allogeneic MHC
and microbial Ag/self-MHC complex (cross-reactive re-
sponse).42,43 Finally, T-cell-depleting induction therapies
used in transplantation have been shown to promote
homeostatic proliferation of non-depleted T cells and these
proliferating cells carry a memory phenotype.44,45

The presence of memory T cells has important clinical
relevance, as higher frequency of alloreactive T cells before
transplantation correlate with an increased risk of rejec-
tion.46,47 Furthermore, these memory T cells are more
resistant to B7:CD28 co-stimulation blockade48 and, conse-
quently, targeting solely this pathway might be ineffective in
inducing tolerance. Indeed, the previous observations of
effective results of CTLA4-Ig in naı̈ve recipients with naı̈ve
T-cell repertoire in a laboratory-controlled environment
(rodents) and failure of the same agent in promoting
tolerance in recipients with memory cells (non-human
primates) suggest a key role of these cells in tolerance
resistance to co-stimulation blockade. Confirming this, the
combination of CTLA4-Ig with a selective memory T cell
agent (CD2-specific fusion protein alefacept) was shown to
improve allograft survival in non-human primates,49 opening
potential new avenues in targeting memory cells. Never-
theless, targeting these cells carry its own risks as they have a
key role in immunity against infectious diseases.

FUTURE OF TARGETING CO-STIMULATORY PATHWAYS
IN THE CLINIC

Co-stimulation has a central role in T-cell activation, and
targeting this pathway has become a reality in transplanta-
tion, consisting of a true translational research. However, the
complex interplay between different co-stimulatory pathways
and the function of these pathways in different cell types
raised a number of challenges, and it is now clear that
targeting a single pathway will likely be ineffective for the
induction of transplantation tolerance.

To improve long-term graft survival, avoiding calcineurin
inhibitor nephrotoxicity and long-term cardiovascular and
metabolic side-effects are important goals. A recent open-label
phase II trial has demonstrated that switching from a
calcineurin inhibitor-based therapy to a belatacept-based
regimen at 6 months after transplant is feasible and well
tolerated, demonstrating potential improvements in renal
function at 12 months.50 This latter switch could be beneficial
as it will require a less-intensive dose of belatacept in face of
the smaller pool of alloreactive T cells later after transplant,
and might be associated with a lower rejection rate.
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Another experimental approach with remarkable results is
the combination of CTLA4-Ig with a T-cell-depleting agent
such as thymoglobulin. In a stringent transplant model in
rodents, this combination tipped the balance of Tregs/Teff in
favor of Tregs, promoting regulation and favoring graft
survival.51 Moreover, the development of newer synergistic
agents targeting negative co-stimulatory pathways such as
PD-1:PD-L1 could enhance immune regulation and promote
tolerance.52 Finally, the role of B cells in chronic rejection has
been increasingly recognized,53 and the generation of
selective agents that are capable of decreasing alloantibody
production and generating regulatory B cells will likely lead
to considerable improvements in graft outcomes.

Overall, the future of co-stimulation targeting in kidney
transplantation will most likely involve the combination of
agents with different mechanisms of action, with the goal of
inhibiting pathogenic lymphocytes and promoting regulatory
ones, limiting single-drug toxicity, and possibly achieving the
Holy Grail of transplant tolerance.
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