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In this paper, we report our investigation of the translational energy relaxation of fast S(1D) atoms
in a Xe thermal bath. The interaction potential of Xe-S was constructed using ab initio methods.
Total and differential cross sections were then calculated. The latter have been incorporated into the
construction of the kernel of the Boltzmann equation describing the energy relaxation process. The
solution of the Boltzmann equation was obtained and results were compared with those reported in
experiments [G. Nan, and P. L. Houston, J. Chem. Phys. 97, 7865 (1992)]. Good agreement with the
measured time-dependent relative velocity of fast S(1D) atoms was obtained except at long relax-
ation times. The discrepancy may be due to the error accumulation caused by the use of hard sphere
approximation and the Monte Carlo analysis of the experimental data. Our accurate description of
the energy relaxation process led to an increase in the number of collisions required to achieve equi-
librium by an order of magnitude compared to the number given by the hard-sphere approximation.
© 2011 American Institute of Physics. [doi:10.1063/1.3600352]

I. INTRODUCTION

An accurate theoretical description of the translational
energy relaxation of energetic atoms and molecules is funda-
mental to a wide variety of fields of chemical physics, plasma
physics, planetary science, and astrophysics. Sources of ener-
getic particles may have very different parameters and char-
acter, but the collisional mechanism of energy relaxation is
similar in different non-equilibrium systems. The theoretical
basis for an accurate description of the energy relaxation pro-
cess is the Boltzmann kinetic equation. We consider the en-
ergy relaxation of fast atoms in an infinite uniform bath gas.
If the density of bath gas is much larger than that of the projec-
tile particles, collisions between projectiles may be neglected
and evolution of the energy distribution function of fast par-
ticles can be described by the linear form of the Boltzmann
equation.2 Closed analytical expression of the kernel of this
Boltzmann equation can be obtained using the fully energy
and angular dependent collision cross sections.3 The time-
dependent solution of the Boltzmann equation can then be
computed and used for different applications. Successful im-
plementations of this method have been reported in the study
of the thermalization problem in physical chemistry, atmo-
spheric physics, and applied atomic spectroscopy.4–6

In the present article, we investigate the kinetic energy
relaxation of energetic sulfur atoms. Sulfur species have been
detected in the upper atmospheres of Jupiter and Titan,7

and atomic sulfur is the dominant atmospheric constituent
in Jupiter’s satellite, Io.8 Energetic S(1D) is produced by the
photodissociation of OCS and H2S molecules and the study
of energy transfer with other atmospheric gases is important

a)Author to whom correspondence should be addressed. Electronic mail:
adalgarno@cfa.harvard.edu.

for understanding the energy balance of the upper atmosphere
and its evolution. Laboratory experiments involving the en-
ergy and speed relaxation of S(1D) atoms in collisions with
planetary and atmospheric gases, such as N2, O, H, and N are
challenging, but investigations of S energy relaxation in rare
gases have been carried out.1 These experiments concluded
that for energy relaxation in heavy bath gases, such as Xe, the
effective cross sections, describing the energy transfer colli-
sions, depend strongly on kinetic energy. These conclusions
have been drawn from comparisons of the experimental data
on the time-dependent energy relaxation of fast S atoms with
the results of Monte Carlo simulations of the S(1D) thermal-
ization process. The Monte Carlo simulations were carried out
using the hard-sphere approximation (HSA) model of atomic
collisions. The additional assumption of a completely frozen
bath gas was made in these simulations. For collisions of neu-
tral atoms or molecules the HSA is a serious misrepresenta-
tion. It does not reproduce the strong forward scattering that
arises from the attractive long-range van der Waals interac-
tion and it ignores the energy dependence of the collisional
cross sections. For elastic collisions of real atomic particles,
the translational energy losses occur by a series of highly
probable collisions with relatively small energy transfer oc-
curring in each of these sequential collisions. Therefore, the
value of energy transferred per collision and the number of
collisions derived by HSA are misleading. We carry out a full
theoretical description of the thermalization process by com-
puting accurate angular-dependent cross sections for energy
transfer collisions between S and Xe atoms and solving the
time-dependent Boltzmann equation that describes the energy
relaxation. Our calculations, starting with ab initio quantum
mechanical calculations of the interaction potential in the S
+ Xe system, have no adjustable parameters. The relaxation

0021-9606/2011/135(2)/024304/7/$30.00 © 2011 American Institute of Physics135, 024304-1
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kinetics are characterized by the fast formation and preserva-
tion of a quasi-Maxwellian distribution, that occurs for light
species thermalized in heavy bath gases (Lorentz gas).5, 9

In this paper, we report our investigation of the transla-
tional energy relaxation of fast S(1D) atoms in a thermal bath
of Xe. The interaction potential of Xe-S is calculated using
ab initio methods and the kernel of the Boltzmann equation
is constructed employing the fully energy and angular depen-
dent differential cross sections. The solution of the Boltzmann
equation is obtained and results are compared with those from
experiment.1

II. THEORY

A. Elastic cross sections

The energy relaxation of electron volt projectile atoms
S(1D) in Xe bath gas is dominated by elastic collisions. The
Schrödinger equation that governs the dynamics of the col-
liding particles for center of mass (CM) scattering energy ε

reads[
d2

d R2
+ k 2 −

(
2μ

¯2

)
V (R) − l(l + 1)

R2

]
ul (R) = 0, (1)

where μ is the reduced mass, l is the angular momentum, R
is the internuclear distance, V (R) is the molecular potential,
and k2 = 2με/¯2. The solution of Eq. (1) at R → ∞ can be
written in terms of the spherical Bessel ( jl) and Neumann (nl)
functions,

ul (R) = k R[ jl(k R) cos ηl − nl (k R) sin ηl], (2)

where ηl is the phase shift. At large R,

ul(R) = sin(k R − lπ/2 + ηl), (3)

and the differential cross section is given by

dσ (ε, χ )

d�
= 1

k 2
|

∞∑
l=0

(2l + 1) sin ηl e
iηl Pl (cos χ )|2, (4)

where Pl denotes the lth Legendre polynomial and χ is the
CM scattering angle. The total elastic cross section is

σ (ε) = 4π

k2

∞∑
l=0

(2l + 1) sin2 ηl . (5)

The diffusion or momentum-transfer cross section, which is
defined as

σd (ε) = 4π

k2

∞∑
l=0

(2l + 1) sin2(ηl − ηl+1), (6)

is commonly used for the description of energy transport pro-
cesses. In the presence of multiple potentials, statistical cross
sections are obtained by taking the weighted sum of the in-
dividual molecular channels. The statistical weights for the
electronic states of the S(1D)Xe molecule, 1�, 1	, and 1
+,
are 0.4, 0.4, and 0.2, respectively.

B. Molecular potential: Ab initio calculations

The adiabatic interaction potential between Xe(1S) and
S(1D) has three molecular terms, 1
+, 1�, and 1	. The

calculations of these potentials have been performed with
the internally contracted multireference configuration inter-
action with singles and doubles10 plus the multireference ver-
sion of the Davidson correction,11 denoted as MRCISD(Q).
The reference wave functions of the MRCISD(Q) calculation
are obtained from a multiconfiguration self-consistent field
(MCSCF) approach.12 The active space in the MCSCF in-
cludes 14 electrons in 8 molecular orbitals (MOs). The 14
electrons are the valence electrons of Xe (5s25p6) and S
(3s23p4) and the 8 MOs are formed from the linear combi-
nation of 5s5p atomic orbitals of Xe and 3s3p of S. In the
MRCISD(Q) calculations, 32 electrons were correlated. The
4d electrons of Xe and the 2s2p electrons of S do not par-
ticipate in the MCSCF active space, but they were correlated
through single and double excitations.

A series of Dunning’s augmented polarized core/valence
aug-cc-pCVnZ basis sets for S and small-core relativistic
pseudo-potential correlation consistent basis sets aug-pVnZ-
PP for Xe (n = T, Q, 5) (Ref. 13) are employed in the MR-
CISD(Q) calculations. The final potential energies were ex-
trapolated to the complete basis set (CBS) limit by using the
mixed exponential/Gaussian function,14

V (n) = VCBS + Be−(n−1) + Ce−(n−1)2
. (7)

MOLPRO 2006.1 suite of quantum chemistry programs24 was
used for these electronic structure calculations.

The long-range part of the interaction potential decays
as R−6. The corresponding dispersion coefficients, C6, were
evaluated as15

C6,0(L) = 3

π

∫ ∞

0
α0(L; iω)αXe(iω)dω (8)

and

C6,2(L) = 3(2L + 3)

2π L

∫ ∞

0
α2(L; iω)αXe(iω)dω, (9)

where αXe(iω) is dynamic dipole-dipole polarizability of Xe
at imaginary frequency iω, and α0(L; iω) and α2(L; iω) are
the scalar and tensor polarizabilities of S. For 1D,16 L = 2
and

α0(D) = [α||(2, 0) + 2α||(2, 1) + 2α||(2, 2)]/5

α2(D) = [−2α||(2, 0) − 2α||(2, 1) + 4α||(2, 2)]/7. (10)

Here α||(L , M) refers to αzz(L , M) with the z component as
the internuclear axis, M to the projection of the electronic
orbit angular momentum L on the z axis. C6 for the three
singlet electronic states of XeS are given by

C6(L , M) = C6,0(L) − 3M2 − L(L + 1)

(2L − 1)(2L + 3)
C6,2(L). (11)

The numerical integration of Eqs. (8) and (9) proceeded with
a 50-point Gaussian quadrature.20 The dynamic polarizabil-
ities of S(1D) were obtained from the linear response MC-
SCF theory17 as implemented in DALTON quantum chemistry
program.18 The active space in this MCSCF calculation is
defined as 6 electrons distributed in 13 MOs, which include
3s3p3d4s4p of S. The d-aug-cc-pCV6Z basis set19 was em-
ployed in the MCSCF calculation. For Xe, we adopted the
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accurate values obtained from the relativistic many-body cal-
culations in Ref. 20.

C. Kernel of Boltzmann equation

The energy evolution of atoms due to elastic and inelas-
tic collisions with a uniform bath gas has been considered by
Kharchenko et al.3 The rate of energy transfer of the projectile
atoms from initial energy E ′ to final energy E in the labora-
tory frame (LF) is given by the kernel of the Boltzmann equa-
tion B(E |E ′). In a uniform bath gas, whose density is much
higher than that of the projectile atoms, collisions and energy
exchange between projectile particles are negligible and the
energy distribution f (E, t) of the projectile can be described
by the linear Boltzmann equation,

∂

∂t
f (E, t) =

∫
B(E |E ′

) f (E
′
, t)d E

′ − f (E, t)

×
∫

B(E
′ |E)d E

′
. (12)

For binary elastic and inelastic collisions, B(E |E ′) can be de-
rived analytically through the double differential cross sec-
tions d2σ/d�dε3 and in the case of elastic scattering, the en-
ergy relaxation B(E |E ′

) can be calculated using the differen-
tial cross section given by Eq. (4),

B(E |E ′) = nbm3/2

2
√

2πμ2

√
E

×
∫

dσ (ε, cos χ )

d�
δ(E − E ′ + Eb(p′

b + p − p′)

−Eb(p′
b))ρ(p′

b)dp′
bd�pd�p′ , (13)

where m is the mass of the projectile, �p′ and �p are the solid
angles of the initial p′ and final momenta p in the LF for fixed
|p′| =

√
2m E ′ and |p| = √

2m E , nb is the density of the bath
gas, and ρ(p′

b) is the Maxwell-Boltzmann distribution func-
tion of the bath gas. The numerical solution and the propaga-
tion scheme used for Eq. (8) have been given in greater detail
in earlier publications,4, 5 and we shall not repeat them. The
time-dependent average translational energy is obtained from
the time-dependent solution of the Boltzmann equation,

〈E(t)〉 =
∫

f (E, t)Ed E, (14)

and the average number of collisions is given by

n(t) =
∫ t

0

∫ ∞

0
B(E |E ′

)d E
′
dt

′
. (15)

In their paper, Nan and Houston1 presented an analysis of
their experimental data and obtained the average relative
speed of S and Xe collisions as a function of the number of
collisions. The average relative speed 〈vi 〉, �vi = �v p − �vb, was
found by averaging the absolute value of relative velocity over
a Boltzmann distribution f (vb) of the bath gas,

〈vi 〉 = 〈|�vi |〉 =
∫ ∞

0
vi f (vb)d3vb, (16)

where v p and vb are velocities of the projectile and the bath
gas atoms, respectively. We found

〈vi 〉 = vT

[√
2

π
e
− v2

p

2v2
T + Erf

[
v p√
2vT

] (
v p

vT
+ vT

v p

)]
,

(17)
where vT is defined as

vT =
√

kB T

mb
,

where kB is the Boltzmann constant, T is the temperature of
the bath gas, and Erf is the error function.

III. RESULTS AND DISCUSSION

A. Potential energy curves and long-range dispersion
coefficients

We first checked the accuracy of the present ab ini-
tio approach by a comparison of the energy separation of
S(1D)–S(3P). The calculated spin-free energy separation is
8989 cm−1. According to Lande’s interval rule, the spin-
orbit coupling (SOC) constant of S(3P) is between –177 and
–198 cm−1, obtained from the experimental spin-orbit levels
of S(3P).21 Thus, the energy separation of S(1D)–S(3P0) is
9166–9187 cm−1, which differs from the experiment value of
9238 cm−121 by only 50–70 cm−1. The calculated poten-
tial energy curves of the S(1D)–Xe system are shown in
Fig. 1. The 1
+ state is relatively strongly bound and
shows a minimum at around 4.60 bohr. The 1� and 1	

states are largely repulsive with shallow van der Waals
wells in the long range region. Spectroscopic data are
listed in Table I for the system with rotational angular mo-
mentum J = 0 corresponding to masses of 131.9041535
amu and 31.97207100 amu for Xe and S, respectively.
A comparison with an earlier theoretical calculation of
the excited states of XeS (Ref. 22) is given in Table I.
No potential minimum was found for the 1	 and 1� states
since the calculations were limited to internuclear distances
up to 3.8 Å. As for the 1
+ state, our computed dissociation
energy, D0, of 0.502 eV is about 0.17 eV deeper than the pre-
vious result. A relatively small basis set (double-ζ quality)
was employed in that study.
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FIG. 1. Diatomic potentials for the three states of S-Xe.
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TABLE I. Spectroscopic constants for the lowest three singlet states of the
XeS molecule.

D0 (eV) Re(bohr) ωe (cm−1) ωexe (cm−1)

1
+ (this work) 0.5020 4.60 257.9 2.18
1
+ (Ref. 22) 0.33 4.95 205 2.13
1� (this work) 0.0416 7.20 32.73 0.37
1	 (this work) 0.0314 8.22 32.86 0.87

The calculated long-range dispersion coefficients accord-
ing to Eqs. (8)–(11) are reported in Table II with the derived
static dipole polarizabilities of S(1D). The static dipole polar-
izabilities have been examined in previous theoretical calcu-
lations using the finite field approach with the multireference
second order perturbation theory,23 and the results are listed
in Table II for comparison. Our linear response results are in
good agreement with this high-level theoretical analysis; the
difference is less than 2%.

B. Elastic differential and total cross sections

The calculated statistical weighted differential cross-
sections are shown in Fig. 2 at three selected energies. The
oscillating structure of the differential cross sections reflect
quantum interference. Large backward scattering is present
for low energies. With increasing collision energies, more par-
tial waves contribute to the scattering process and small angle
scattering dominates.

The calculated total and diffusion cross sections weighted
according to the three potentials are presented in Fig. 3 as a
function of the scattering energy. The magnitude of the cross
sections is large due to the large polarizabilities of S and Xe
and strong long-range interaction. The diffusion coefficient
DAB can be evaluated from the diffusion cross sections by

DAB = 3kB T

16μ�A,B

1

(n A + nB)
, (18)

where the transport integral �AB
26 is given in terms of binary

collisions between species A and B by

�AB = 2√
πμ

(
1

2kB T

)5/2 ∫ ∞

0
ε2exp

(
− ε

kB T

)
σd (ε)dε,

(19)
where σd (ε) is given by Eq. (6) and (n A + nB) is the total
molecular number density. DXeS can be satisfactorily repro-
duced for T ≥ 50 K by using the following expression:

DXeS = −3.701 × 10−12 × e4.9096/T + 3.323 × 10−15

+ 9.264 × 10−13 × ln(4.7228T )

TABLE II. Static dipole polarizabilities (a.u.) of S(1D) and long-range dis-
persion coefficients (a.u.) of Xe-S(1D).

State α (this work) α (Ref. 23) State C6

1D(M=0) 18.34 18.11 1
+ 182.7
1D(M=1) 19.37 19.18 1� 191.0
1D(M=2) 22.16 22.39 1	 216.1
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FIG. 2. Differential cross sections at selected CM collision energies ε.

in units of cm2 s−1.

C. Energy transfer kinetics

The calculated differential cross sections were used to
construct the kernel of the Boltzmann equation B(E |E ′)
at the experimental bath gas temperatures of 296 K. In
Fig. 4, we show the kernels for T = 296 K and a pressure of
0.947 Torr at three different initial energies E ′ of 0.25, 1.20,
and 2.55 eV. Sharp maxima with more than four orders of
magnitude increase occur at E ∼ E ′ because the elastic colli-
sions are dominated by energy losses at small angles. For the
time-independent gas density, the kernel scales linearly with
the gas pressure.

In the experiment of Nan and Houston,1 the fast S(1D)
atoms were produced by 222 nm photodissociation of the
OCS molecule. The Doppler profiles of emission of S atoms
were recorded at a fixed delay time of 200 ns between the
photolysis and the probe lasers for different pressures (den-
sities) to determine the time evolution of the relaxation.
They adopted HSA and matched these experimental data with
Monte Carlo simulations to derive the average relative veloc-
ity as a function of the number of collisions. In the Monte
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FIG. 3. Total and transport cross sections as a function of CM collision en-
ergy.
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FIG. 4. The kernels of the linear Boltzmann equation at three initial labora-
tory frame (LF) energies of Ei = 0.25, Ei = 1.20, and Ei = 2.55 eV as a
function of the final LF energy. The bath gas temperature is 296 K and the
pressure is 0.947 Torr.

Carlo simulations carried out in Ref. 1, the nascent distri-
bution was constructed by shifting a Maxwellian distribu-
tion at 1100 K by +600 m s−1 and we adopted the same
initial distribution of fast atoms. The angular anisotropy is
not included in the initial distribution. It is known that the
angular relaxation for the Lorentz gas is faster than the en-
ergy relaxation,25 which is also observed in the experiment of
Nan and Houston. The isotropic time-dependent distribution
function f (E, t) was obtained by propagating the Boltzmann
equation using an efficient matrix exponential scheme. The
average relative velocity is obtained from Eq. (17) and the
number of collisions from Eq. (15). The calculated results are
presented in Table III together with those reported in the ex-
periment. Without any adjustable parameter in our ab initio
calculations, the average relative velocities are in close agree-
ment with the results obtained by Nan and Houston. Differ-
ences appear at longer relaxation times where our ab initio
calculated curve approaches equilibrium faster. This discrep-
ancy may be explained by the strong energy dependence of
the relaxation cross sections. In Fig. 5, the average kinetic
energy of the evolving sulfur atoms at the experimental bath
gas temperature of 296 K and bath gas pressure of 0.947
Torr, obtained from the solution of the Boltzmann equation,
is presented. For comparison, results from HSA with selected

TABLE III. Calculated average projectile velocity (〈vS〉, ms−1), relative
velocity (〈vi〉 ms−1), and number of collisions (ncol ) at selected bath gas
pressures (P, Torr). The experimental data are reported in the 4th and 6th
columns.

P 〈vS〉 〈vi 〉 〈vi 〉a ncol ncol
a

0.270 1251 1266 1250 47 0.6 ± 0.2
0.586 1062 1079 1050 100 1.3 ± 0.1
0.947 896 917 910 161 2.2 ± 0.2
1.350 761 785 790 226 3.5 ± 0.3
1.790 657 686 710 295 4.6 ± 0.5
2.780 531 566 647 445 7.0 ± 0.9

aExperimental data from Table IV of Ref. 1.

0 300 600 900 1200 1500
Relaxation time (ns)

2

4

6

8

10

12

14

A
ve

ra
ge

 tr
an

sl
at

io
na

l e
ne

rg
y 

(k
T

)

σ = 50 Å
2

σ = 40 Å
2

σ = 60 Å
2

Solution of the linear Boltzmann equation

FIG. 5. The translational energy relaxation of sulfur atoms in a Xe bath gas
with temperature T = 296 K and a pressure of 0.947 Torr (dashed curve).
The HSA energy relaxation obtained from three different hard sphere cross
sections are shown as the curves with symbols.

effective HS cross sections are also shown in Fig. 5. None of
the results from HSA reproduce the ab initio calculations. For
light particles thermalized in heavy bath gas, as demonstrated
earlier,4 an energy independent HS cross section is incapable
of providing an accurate description of the entire relaxation
process. The energy dependence of the effective relaxation
cross section was also inferred from the experiment.

It has been shown in previous calculations22 that the
triplet manifolds, originating from Xe-S(3P), cross with these
singlet potential curves in the small R region, and this may
lead to the inelastic energy loss because of the SOC. Earlier
close-coupling studies27 in an analogous system, Xe-O(1D),
showed that the cross sections for inelastic SO processes are
small, ∼20 Å2 for collision energies higher than 0.03 eV. The
SOC in Xe-S is of the same order of magnitude and may con-
tribute marginally to the translational energy relaxation.

The number of thermalizing collisions obtained from
Eq. (15) is at least an order of magnitude larger than those
derived by HSA by Nan and Houston. For the elastic scat-
tering of a particle by a long-range interaction potential, the
energy transfer per collision, which is determined by the dif-
ferential cross section or the interaction potentials, is small
and a significantly larger number of collisions occurs in com-
parison with the hard sphere model, in which the cross section
is an empirical parameters obtained by fitting the overall rate
of energy transfer. For comparison, the Lennard-Jones (LJ)
potential extracted from the experimental measurements1 is
plotted in Fig. 1. The C6 coefficient of the effective poten-
tial is 952 a.u. The LJ potential differs significantly from the
actual interactions.

We showed5 that the approach to equilibrium in neutral
atomic collisions can be described by a two-stage process,
the fast formation and preservation of a quasi-Maxwellian
distribution and a slow relaxation of the effective tempera-
ture of this distribution. We also checked this property in the
present research. Figure 6 shows energy distribution functions
at selected relaxation times for the same conditions discussed
for Fig. 5. The total relaxation time, defined as the time re-
quired for the initial energy to relax to the value that is within
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FIG. 6. Calculated energy distribution functions (black dashed curves) at selected relaxation times of fast S atoms thermalized in Xe gas with temperature of
296 K and a pressure of 0.947 Torr. The dotted curve represents the Maxwell-Boltzmann distribution of the bath gas. The solid curve is the exact Maxwellian
distribution defined according to the effective temperature Tef f at the corresponding relaxation time. The average translational energy, 〈E〉, is in the units of
kB T . The embedded picture in the relaxation time at 200 ns shows the variation of the root mean square deviation, χ , as a function of the relaxation time. χ

reflects the deviation of the time-dependent distribution function from the exact Maxwell-Boltzmann distribution.

1% of the thermal energy, is about 1500 ns. The time when
the distribution function of the projectile begins to assume
a Maxwellian-like shape was numerically determined by its
root mean square deviation (χ ) from the exact dimensionless
Maxwell-Boltzmann distribution,

f (x) = 2√
π

√
xe−x ,

where x = E/kB Tef f (t) and the effective temperature Tef f (t)
is related to the average kinetic energy 〈E(t)〉 by Tef f (t)
= (2/3)〈E(t)〉/kB . The evolution of χ is also shown in
Fig. 6. The figure clearly shows that the system reaches a
quasi-Maxwellian stage after 300 ns, at which time the aver-
age energy is 4.2 kB T , about three times the thermal energy.
The width of the distribution function depends directly on the
temperature, and the quasi-Maxwellian distribution is signifi-
cantly wider than the thermal Boltzmann distributions shown
as the dotted curves in Fig. 6.

IV. SUMMARY AND CONCLUSION

Ab initio calculations of the time-dependent thermaliza-
tion of initially non-thermal sulfur atoms in a buffer gas
of xenon were performed. Elastic differential cross sections
were evaluated quantum mechanically and used to construct
the kernels of the Boltzmann equation, describing the rate
of energy transfer collision in the LF. The corresponding
time-dependent solutions of the Boltzmann equation were ob-
tained by propagating the LF energy distribution function.
Our calculations are compared to the experimental data from
Ref. 1. Consistent results for the time dependent relative ve-

locity were observed except at long relaxation times. The
strong energy dependent relaxation cross sections are respon-
sible for the difference between the results of our ab initio cal-
culations and prediction of the Monte Carlo simulation with
the hard sphere model.1 The relative velocity reported in the
experiment was obtained with the aid of HSA Monte Carlo
simulation. Ab initio calculations yield a larger number of col-
lisions than HSA to reach equilibrium, reflecting the physical
characteristics of the energy transfer process.
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