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Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local
quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a “dip-hump”
feature at energy Ω ∼ 4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe
films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc

superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to
reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in
unconventional superconductors.

DOI: 10.1103/PhysRevLett.112.057002 PACS numbers: 74.55.+v, 68.60.Bs, 74.20.-z, 74.70.Xa

Iron-based superconductors (Fe-SCs), due to their
relatively high transition temperature Tc and resemblance
to the even higher-Tc cuprates, have evoked tremendous
excitement and renewed hope for unveiling the microscopic
pairing mechanism of high-Tc superconductivity [1].
Similar to cuprate and heavy fermion materials, the super-
conductivity in most Fe-SCs emerges in close proximity to
an antiferromagnetic order, suggesting the relevance of spin
fluctuations to the pairing glue [2,3]. In support of this
hypothesis, inelastic neutron scattering experiments have
revealed a spin resonance at the nesting wave vector
connecting the Γ-centered hole pockets to the M-centered
electron pockets in iron pnictides [4–6], as well as
FeSe0.4Te0.6 [7]. However, the recently discovered super-
conductivity in ternary iron selenides AFe2Se2 (A ¼ K, Cs,
Rb, or Tl) without Γ-centered hole pockets [8–10], together
with the unexpected robustness of Tc against impurities in
Fe-SCs [11], challenges this picture and returns attention to
other pairing candidates, such as phonon and phonon- or
magnetism-induced orbital fluctuations [12–14]. The
superconducting mechanism in Fe-SCs thus remains
enigmatic.
Tunneling experiments can provide crucial insights into

the pairing mechanism. The mediator (or bosonic mode),
which binds electrons into superconducting Cooper pairs,
interacts with electrons and thus reconstructs the quasipar-
ticle density of states (DOS). TheDOS reconstruction can be
probed by the differential tunneling conductance dI=dV, in
which the features of the bosonic mode often appear at
energies �ðΔþ ΩÞ, where Δ is the superconducting gap
energy and Ω is the energy of the bosonic mode. Such
experiments have unequivocally established the electron-
phonon mechanism of conventional superconductivity in

materials such as Pb [15]. For cuprates and themore recently
discovered iron pnictides, measurements with scanning
tunneling microscopy and spectroscopy (STM/STS)
revealed dip-hump structures at energies above Δ, which
have been controversially interpreted as fingerprints of
phonon or spin fluctuations [16–23]. Furthermore,
such STM/STS studies in cuprates and iron pnictides con-
sistently revealed a surprising anticorrelation betweenΔ and
Ω [17–21]. This has been tentatively accounted for by a local
strong coupling model [24], although the key parameter
ranges of this model have not been experimentally verified.
On the other hand, no such collective mode has yet been

experimentally elucidated in the structurally simplest 11-
type binary superconductor FeSe [25]. The lack of large
stoichiometric FeSe single crystals poses tremendous
barriers to obtaining such information by inelastic neutron
scattering, although previous studies have raised interesting
questions. These include, for example, a different magnetic
order for the parent compound FeTe compared to other
FeAs-based parent compounds [26], the occurrence of
superconductivity in stoichiometric FeSe without doping,
and reports of Tc up to 65 K in single-unit-cell FeSe films
on SiTiO3 which completely lack Γ-centered Fermi pockets
[27–30]. Moreover, dI=dV spectra on multilayer FeSe
films on graphitized SiC(0001) revealed evidence for a
gap function with nodal lines [31], in stark contrast to the
nodeless superconducting gap in single unit cell FeSe films
on SiTiO3 [27,28] and in closely related FeSe0.4 Te0.6 [32].
Thus, considerable concerns over the interplay between
electronic structure, phonons, magnetism, and supercon-
ductivity have emerged.
Here we report the STM observation of a bosonic mode

occurring outside the superconducting gap, and its coupling
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with electrons in stoichiometric and superconducting FeSe
films. All experiments are conducted on a Unisoku ultra-
high vacuum STM system equipped with molecular beam
epitaxy (MBE) for film growth. High-quality FeSe films
are obtained by coevaporating high-purity Fe (99.995%)
and Se (99.999%) onto graphitized 6H-SiCð0001Þ sub-
strate, as detailed elsewhere [31,33,34]. A polycrystalline
PtIr tip is used throughout the experiments. Tunneling
spectra are measured by disabling the feedback circuit at
setpoint voltage Vs ¼ 10 mV and I ¼ 0.2 nA, sweeping
the sample voltage V, and extracting the differential
conductance dI=dV using a standard lock-in technique
with a small bias modulation of 0.1 mV at 987.5 Hz.
Figure 1(a) depicts a constant-current topographic image

of the as-grown FeSe(001) films. Three color-coded terraces
(fromleft to right:magenta,yellow,anddarkblue)aredivided
by twosteps“AB”and“CD”withdifferentheights, as clearly
revealed by the line profile in Fig. 1(b). The left stepAB has a
height of 0.55 nm, equal to the c-axis lattice constant
(0.5518 nm) of FeSe [25], while the right stepCD is higher,
0.75 nm. Shown in Fig. 1(c) is a zoom-in STM image of the
CD step region, marked by the black rectangle in Fig. 1(a).
Intriguingly, the atomic lattice is continuous, indicative of a
physically continuous FeSe film across the CD step.
Additionally, the step height of 0.75 nm matches with three

SiC bilayers (0.25 nm each). We thus propose that the two
distinct steps are formed by the atomic configuration
sketched in Fig. 1(d). Here the CD step stems from the
SiC substrate, and FeSe films can continuously straddle the
underlyingSiCstep.Thiswill certainly lead to strainandmay
alter the superconductivity in the step region.
Figure 1(e) typifies the dI=dV tunneling spectrum

measured on the flat terraces. We observe a single dominant
superconducting gap of energy 2Δ, in contrast to the two-
gap features of LiFeAs and Ba0.6K0.4Fe2As2 [21–23]. The
contrast may be due to the momentum-dependent tunneling
matrix element effects [21]. In addition to the super-
conducting gap, dip-hump features are visible outside
the coherence peaks, with Edip ∼�5.7 meV (top panel).
They are more clearly seen in the normalized dI=dV
spectrum (middle panel), and bear striking resemblance
to those observed in cuprates and iron pnictides [16–23]. In
analogy to these previous studies, we assign the dip-hump
features to the coupling of the quasiparticles with a
collective bosonic excitation. To read out the mode energy,
we calculate numerically the second derivative of conduct-
ance d2I=dV2, shown in the bottom panel of Fig. 1(e). We
take the maximum at positive voltage and minimum at
negative voltage, marked by the red dashes, as estimates of
the energies�ðΔþ Ω) (∼� 6.0 meV) [35]. Δ is measured
as half the peak-to-peak energy separation in dI=dV
(∼2.2 meV). We thereby extract the bosonic mode energy
Ω ∼ 3.8� 0.1 meV.
To determine whether this bosonic mode links with the

superconducting state in FeSe, we explored the temperature
and magnetic field dependence of the tunneling spectra.
Figure 2(a) presents the evolution of the normalized dI=dV
spectra with temperature up to 10 K, just above Tc ∼ 9.3 K
[33]. As can be seen, the bosonic excitations and the
dominant superconducting gap progressively vanish near
Tc. Furthermore, one can investigate the interplay between
the bosonic excitations and superconductivity around
magnetic vortices. When the magnetic field enters the
superconducting FeSe films in the form of vortices, it
destroys the superconductivity inside the vortex cores
[31,34]. Figure 2(b) shows a series of normalized dI=dV
spectra cutting through one vortex in Fig. 2(c). The vortices
are imaged by mapping zero bias conductance (ZBC) at 2 T
magnetic field applied perpendicular to the sample surface.
Figure 2(d) plots the site dependence of normalized dI=dV
at Edip ¼ �5.7 meV. Smaller dI=dV (Edip) means a
stronger electron-boson coupling [36]. Apparently, both
the bosonic excitations and superconducting gap gradually
broaden out on approaching the vortex center. All evidence
consistently indicates an intimate connection between the
observed bosonic mode and superconductivity, suggesting
that this mode may act to “glue” electrons together to form
Cooper pairs in FeSe.
To bring more insight into the observed bosonic mode,

we quantify its relationship to the superconducting gap Δ
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FIG. 1 (color online). (a) Large-scale STM topographic image
of a FeSe film (Vs ¼ 2.5 V, I ¼ 0.1 nA, 100 nm × 100 nm).
(b) Profile taken along the black curve in (a). (c) Atomically
resolved STM image on the region marked by a black rectangle in
(a) (Vs ¼ 1.0 mV, I ¼ 0.1 nA, 6 nm × 10 nm). (d) Cross-sec-
tional schematic representation of the formation of the two
different steps in (a). The 6H-SiCð0001Þ unit cell consists of
six bilayers (ABCACB stacking) with sequences of three linearly
stacked bilayers followed by an orientation change. (e) Black
traces show raw dI=dV (top panel), normalized dI=dV (middle
panel), and d2I=dV2 (bottom panel) spectra on the flat terraces at
3.0 K. The normalization was performed by dividing the raw
dI=dV spectrum by its background, which was extracted from a
cubic fit to the conductance for jVj > 8 mV (blue dashes in the
top panel). The purple and red dashes show the approximate
energy positions of �Δ, �ðΔþΩÞ, respectively.
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by studying the tunneling spectra on the strained regions.
Figure 3(a) shows a topographic image of another con-
tinuous FeSe film straddling a single SiC bilayer. Such
films bend downwards in the step region, resulting in
tensile strain at the top surface, which enables a local
measurement of the strain-tailored superconducting proper-
ties and bosonic excitations. Figure 3(b) displays the
dI=dV spectra in regions with and without strain. In the
strained region, Δ decreases, ZBC is elevated, and the
superconducting coherence peaks are strongly suppressed,
compared to the strain-free region. These observations
demonstrate the suppression of superconductivity by ten-
sile strain, consistent with previous transport measurements
[37]. Furthermore, the dip-hump features shift toward the
Fermi level, indicating the reduction of Δþ Ω. To reveal
the relationship betweenΩ andΔ clearly, Fig. 3(c) plots the
normalized dI=dV spectra across the step, with the energy
shifted by Δ. The red dashed lines indicate the energies of
Ω, while the short purple lines the energies of 2Δ.
Evidently, Ω increases with increasing Δ. Figure 4(a)
summarizes the gap magnitude Δ versus Ω. Despite some
scatter in the data, it is clear that Δ correlates positively
with Ω. This supports the contribution of the observed
bosonic mode to electron pairing and superconductivity
in FeSe.
Having established the collective mode energy and its

close connection to superconductivity, we now discuss the
nature of this excitation. One candidate is spin fluctuations,
which have been found to link with the high-Tc phase in
pressurized FeSe crystals [38]. Angle-resolved photoemis-
sion spectroscopy also revealed evidence of a short-ranged

spin density wave in FeSe=SrTiO3 films [29]. Furthermore,
we here estimate Ω=kBTc ¼ 4.7� 0.2 in FeSe, close to the
ratios measured in other Fe-SCs by either electron tunnel-
ing or inelastic neutron scattering [5,7,22,39]. Based on the
Eliashberg theory of superconductors with sign-reversing
gaps, the energy of such a spin excitation must remain
below the pairing-breaking energy, namely, Ω=2Δ < 1
[40]. Figure 4(b) demonstrates that the ratio Ω=2Δ is
generally below 1 in our data. Taken together, this evidence
is consistent with the identification of the observed mode as
a spin fluctuation mode.
However, we cannot exclude the possibility that the

mode may originate from phonons. Although density
functional theory reported insufficient electron-phonon
coupling λ (∼0.17) to explain Tc in FeSe [41], such
calculations have been recently questioned to significantly
underestimate λ in most correlated materials [42].
Additionally, the measurement of an iron isotope effect
in FeSe highlights the importance of lattice vibrations in
electron pairing [43]. Finally, the bosonic mode energy is
reduced with local strain in Fig. 3(c). This evidence is
consistent with the identification of the observed bosonic
mode as a phonon, because strain can modify the lattice
vibrations and thus the phonon frequency. In conclusion,
the observed collective mode has some features which are
consistent with either spin fluctuations or phonons, and
further studies are needed to fully clarify its identity.
Finally, we comment on the dependence of the local

superconducting gap Δ on the bosonic mode energy Ω.
As has been demonstrated previously, Ω is locally
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dI=dV at energy Edip ¼ �5.7 meV from (c).
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anticorrelated with Δ in cuprate and iron pnictide super-
conductors [17–21], which remains a counterintuitive
puzzle and differs substantially from the present study.
Balatsky et al. tentatively addressed the puzzle in cuprates,
proposing a local strong coupling model [24], where ΔðrÞ
not only scales linearly with the boson mode energy ΩðrÞ,
but also correlates exponentially with the effective electron-
boson coupling constant geffðrÞ as

ΔðrÞ ¼ ΩðrÞ exp
� −1
N0geffðrÞ

�
; (1)

where N0 is the density of states at the Fermi level. In
addition, it was found that geffðrÞ is inversely proportional
to ΩðrÞ by

geffðrÞ ¼
2g2ðrÞ
ΩðrÞ : (2)

Here, gðrÞ is the local electron-boson coupling constant,
which was found to be uncorrelated with ΔðrÞ in cuprates
[36]. In order to examine gðrÞ in FeSe, we quantified the
normalized conductance ratio in Fig. 3(c),

σ ¼ dI=dVðEhumpÞ
dI=dVðEdipÞ

; (3)

where a larger σ means a stronger electron-boson coupling,
i.e., larger gðrÞ. Figure 4(c) shows the measured σ as a
function of Δ. No correlation is seen between the electron-
boson coupling strength σ and Δ within the experimental
error. Therefore, we can approximately write gðrÞ≡ g and
arrive at the local gap magnitude ΔðrÞ as

ΔðrÞ ¼ ΩðrÞ exp
�−ΩðrÞ
2N0g2

�
: (4)

Here, ΔðrÞ shows a nonmonotonic dependence on ΩðrÞ,
which works for both cuprates and Fe-SCs, with details in
the Supplemental Material [44]. When ΩðrÞ is compara-
tively large (higher Tc), the exponential terms dominate, so

the local enhancement in ΩðrÞ leads to weaker geffðrÞ, and,
consequently, to smaller ΔðrÞ. This agrees excellently with
the results in high-Tc cuprates and iron pnictides [17–21].
However, whenΩðrÞ is smaller (lower Tc), as in the case of
FeSe, the prefactor dominates and leads to a positive
correlation between local ΔðrÞ and ΩðrÞ, in agreement
with our experimental data shown in Fig. 4(a).
In conclusion, our detailed STM/STS study has revealed

a clear bosonic mode in FeSe. This mode is neither
detectable above Tc nor within the vortex cores. In strained
regions, the local mode energy ΩðrÞ shrinks as the super-
conducting gap ΔðrÞ is also reduced, in contrast to other
higher-Tc superconductors where ΩðrÞ anticorrelates with
ΔðrÞ [17–21]. A local strong coupling model [24] explains
the contrast well, and represents a unified theory of local
electron-boson coupling in superconducting cuprates, iron
pnictides, and iron selenides.
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