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Quantum computers promise to e�ciently solve important problems that are intractable on a con-
ventional computer. For quantum systems, where the dimension of the problem space grows expo-
nentially, finding the eigenvalues of certain operators is one such intractable problem and remains a
fundamental challenge. The quantum phase estimation algorithm can e�ciently find the eigenvalue
of a given eigenvector but requires fully coherent evolution. We present an alternative approach
that greatly reduces the requirements for coherent evolution and we combine this method with a
new approach to state preparation based on ansätze and classical optimization. We have imple-
mented the algorithm by combining a small-scale photonic quantum processor with a conventional
computer. We experimentally demonstrate the feasibility of this approach with an example from
quantum chemistry—calculating the ground state molecular energy for He–H+, to within chem-
ical accuracy. The proposed approach, by drastically reducing the coherence time requirements,
enhances the potential of the quantum resources available today and in the near future.

In chemistry, the properties of atoms and molecules can
be determined by solving the Schrödinger equation. How-
ever, because the dimension of the problem grows expo-
nentially with the size of the physical system under con-
sideration, exact treatment of these problems remains
classically infeasible for compounds with more than 2–3
atoms [1]. Many approximate methods [1] have been de-
veloped to treat these systems, but e�cient exact meth-
ods for large chemical problems remain out of reach for
classical computers. Beyond chemistry, the solution of
large eigenvalue problems [3] would have applications
ranging from determining the results of internet search
engines [4] to designing new materials and drugs [5].

Recent developments in the field of quantum compu-
tation o↵er a way forward for e�cient solutions of many
instances of large eigenvalue problems which are classi-
cally intractable [6–12]. Quantum approaches to finding
eigenvalues have previously relied on the quantum phase
estimation (QPE) algorithm. The QPE algorithm o↵ers
an exponential speedup over classical methods and re-
quires a number of quantum operations O(1/p) to obtain
an estimate with precision p [13–18]. In the standard
formulation of QPE, one assumes the eigenvector | i of
a Hermitian operator H is given as input and the prob-
lem is to determine the corresponding eigenvalue �. The
time the quantum computer must remain coherent is de-
termined by the necessity of O(1/p) successive applica-
tions of e�iHt, each of which can require on the order of
millions or billions of quantum gates for practical appli-
cations [17, 19], as compared to the tens to hundreds of
gates achievable in the short term.

Here we introduce and experimentally demonstrate an
alternative to QPE that significantly reduces the require-

ments for coherent evolution. We have developed a re-
configurable quantum processing unit (QPU), which e�-
ciently calculates the expectation value of a Hamiltonian
(H), providing an exponential speedup over conventional
methods. The QPU is combined with an optimization al-
gorithm run on a classical processing unit (CPU), which
variationally computes the eigenvalues and eigenvectors
of H. By using a variational algorithm, this approach
reduces the requirement for coherent evolution of the
quantum state, making more e�cient use of quantum
resources, and may o↵er an alternative route to practical
quantum-enhanced computation.
Algorithm 1: Quantum expectation estimation
This algorithm computes the expectation value of a given
Hamiltonian H for an input state | i. Any Hamiltonian
may be written as

H =
X

i↵

hi

↵

�i

↵

+
X

ij↵�

hij

↵�

�i

↵

�j

�

+ ... (1)

for real h where Roman indices identify the subspace on
which the operator acts, and Greek indices identify the
Pauli operator, e.g. ↵ = x. By exploiting the linearity of
quantum observables, it follows that

hHi =
X

i↵

hi

↵

h�i

↵

i+
X

ij↵�

hij

↵�

h�i

↵

�j

�

i+ ... (2)

We consider Hamiltonians that can be written as a num-
ber of terms which is polynomial in the size of the sys-
tem. This class of Hamiltonians encompasses a wide
range of physical systems, including the electronic struc-
ture Hamiltonian of quantum chemistry, the quantum
Ising Model, the Heisenberg Model [20, 21], matrices that
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FIG. 1. Architecture of the quantum-variational eigensolver. Algorithm 1: Quantum states that have been previously
prepared, are fed into the quantum modules which compute hHii, where Hi is any given term in the sum defining H. The
results are passed to the CPU which computes hHi. Algorithm 2: The classical minimization algorithm, run on the CPU,
takes hHi and determines the new state parameters, which are then fed back to the QPU.

are well approximated as a sum of n-fold tensor prod-
ucts [5, 22], and more generally any k�sparse Hamilto-
nian without evident tensor product structure (see Ap-

pendix for details). Thus the evaluation of hHi reduces
to the sum of a polynomial number of expectation val-
ues of simple Pauli operators for a quantum state | i,
multiplied by some real constants. A quantum device
can e�ciently evaluate the expectation value of a tensor
product of an arbitrary number of simple Pauli opera-
tors [5], therefore with an n-qubit state we can e�ciently
evaluate the expectation value of this 2n ⇥ 2n Hamilto-
nian.

One might attempt this using a classical computer
by separately optimizing all reduced states correspond-
ing to the desired terms in the Hamiltonian, but this
would su↵er from the N -representability problem, which
is known to be intractable for both classical and quantum
computers (it is in the quantum complexity class QMA-
Hard [24]). The power of our approach derives from the
fact that quantum hardware can store a global quantum
state with exponentially fewer resources than required by
classical hardware, and as a result the N-representability
problem does not arise.

As the expectation value of a tensor product of an arbi-
trary number of Pauli operators can be measured in con-
stant time and the spectrum of each of these operators is
bounded, to obtain an estimate with precision p, our ap-
proach incurs a cost of O(|h|2/p2) repetitions. Thus the
total cost of computing the expectation value of a state
| i is given by O(|h

max

|2M/p2), where M is the number
of terms in the decomposition of the Hamiltonian. The
advantage of this approach is that the coherence time to
make a single measurement after preparing the state is

O(1). In essence, we dramatically reduce the coherence
time requirement while maintaining an exponential ad-
vantage over the classical case, by adding a polynomial
number of repetitions with respect to QPE.
Algorithm 2: Quantum variational eigensolver
The procedure outlined above replaces the long coher-
ent evolution required by QPE by many short coherent
evolutions. In both QPE and Algorithm 1 we require a
good approximation to the ground state wavefunction to
compute the ground state eigenvalue and we now consider
this problem. Previous approaches have proposed to pre-
pare ground states by adiabatic evolution [15], or by the
quantum metropolis algorithm [25]. Unfortunately both
of these require long coherent evolution. Algorithm 2 is a
variational method to prepare the eigenstate and, by ex-
ploiting Algorithm 1, requires short coherent evolution.
Algorithm 1 and 2 and their relationship are shown in
Fig. 1 and detailed in the Appendix.
It is well known that the eigenvalue problem for an

observable represented by an operator H can be re-
stated as a variational problem on the Rayleigh-Ritz quo-
tient [26, 27], such that the eigenvector | i corresponding
to the lowest eigenvalue is the | i that minimizes

h |H | i
h | i . (3)

By varying the experimental parameters in the prepa-
ration of | i and computing the Rayleigh-Ritz quotient
using Algorithm 1 as a subroutine in a classical mini-
mization, one may prepare unknown eigenvectors. At
the termination of the algorithm, a simple prescription
for the reconstruction of the eigenvector is stored in the
final set of experimental parameters that define | i.



3

D
1

D
2

D
3

D
4

CPU
Optimization

algorithm

dc
1

dc
2

dc
3

dc
9

dc
6

dc
7

dc
8

dc
10

dc
11

dc
12

dc
13

dc
4

dc
5

QPU

(a)

(b)

from SPDC 
source

from CPU

QPU
to detectors

from SPDC 
source

from CPU

QPU
to detectors

1 cm

FIG. 2. Experimental implementation of our scheme. (a) Quantum state preparation and measurement of the expectation
values h |�i ⌦ �j | i are performed using a quantum photonic chip. Photon pairs, generated using spontaneous parametric
down-conversion are injected into the waveguides encoding the |00i state. The state | i is prepared using thermal phase shifters
�1�8 (orange rectangles) and one CNOT gate and measured using photon detectors. Coincidence count rates from the detectors
D1�4 are passed to the CPU running the optimization algorithm. This computes the set of parameters for the next state and
writes them to the quantum device. (b) A photograph of the QPU.

If a quantum state is characterized by an exponentially
large number of parameters, it cannot be prepared with
a polynomial number of operations. The set of e�ciently
preparable states are therefore characterized by polyno-
mially many parameters, and we choose a particular set
of ansatz states of this type. Under these conditions, a
classical search algorithm on the experimental parame-
ters which define | i, needs only explore a polynomial
number of dimensions—a requirement for the search to
be e�cient.

One example of a quantum state parametrized by a
polynomial number of parameters is the unitary coupled
cluster ansatz [4]

| i = eT�T

† |�i
ref

(4)

where T is the cluster operator (defined in the Appendix )
and |�i

ref

is some reference state, normally taken to be
the Hartree-Fock ground state. There is currently no
known e�cient classical algorithm based on these ansatz
states. However, non-unitary coupled cluster ansatz is
sometimes referred to as the “gold standard of quantum
chemistry” as it is the standard of accuracy to which
other methods in quantum chemistry are often compared.

The unitary version of this ansatz is thought to yield
superior results to even this “gold standard” [4]. Details
of e�cient construction of the unitary coupled cluster
state using a quantum device are given in the Appendix

(see also Ref. [29]).

Prototype demonstration
We have implemented the QPU using integrated quan-
tum photonics technology [30]. Our device, shown
schematically in Fig. 2 is a reconfigurable waveguide chip
that implements several single qubit rotations and one
two-qubit entangling gate and can prepare an arbitrary
two-qubit pure state. This device operates across the
full space of possible configurations with mean statisti-
cal fidelity F > 99% [31]. The state is prepared, and
measured in the Pauli basis, by setting 8 voltage driven
phase shifters and counting photon detection events with
silicon single photon detectors.

The ability to prepare an arbitrary two-qubit separable
or entangled state enables us to investigate 4⇥ 4 Hamil-
tonians. For the experimental demonstration of our al-
gorithm we choose a problem from quantum chemistry,
namely determining the bond dissociation curve of the
molecule He-H+ in a minimal basis. The full configura-
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FIG. 3. Finding the ground state of He-H+ for a specific
molecular separation, R = 90 pm. (a) Experimentally com-
puted energy hHi (colored dots) as a function of the opti-
mization step j. The color represents the tangle (degree of
entanglement) of the physical state, estimated directly from
the state parameters {�j

i}. The red lines indicate the en-
ergy levels of H(R). The optimization algorithm clearly con-
verges to the ground state of the molecule, which has small
but non zero tangle. The crosses show the energy calculated
at each experimental step, assuming an ideal quantum device.
(b) Overlap | h j | Gi | between the experimentally computed
state | ji at each the optimization step j and the theoretical
ground state of H, | Gi. Further details are provided in the
Appendix.

tion interaction Hamiltonian for this system has dimen-
sion 4, and can be written compactly as

H(R) =
X

i↵

hi

↵

(R)�i

↵

+
X

ij↵�

hij

↵�

(R)�i

↵

�j

�

(5)

The coe�cients hi

↵

(R) and hij

↵�

(R) were determined us-
ing the PSI3 computational package [3] and tabulated in
the Appendix.

In order to compute the bond dissociation of the
molecule, we use Algorithm 2 to compute its ground state
for a range of values of the nuclear separation R. In
Fig. 3 we report a representative optimization run for a
particular nuclear separation, demonstrating the conver-
gence of our algorithm to the ground state of H(R) in the
presence of experimental noise. Fig. 3(a) demonstrates
the convergence of the average energy, while Fig. 3(b)
demonstrates the convergence of the overlap | h j | Gi |
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FIG. 4. Bond dissociation curve of the He-H+ molecule. This
curve is obtained by repeated computation of the ground state
energy (as shown in Fig. 3) for several H(R). The magnified
plot shows that after correction for the measured systematic
error, the data overlap with the theoretical energy curve and
importantly we can resolve the molecular separation of min-
imal energy. Error bars show the standard deviation of the
computed energy.

of the current state | ji with the target state | Gi. The
color of each entry in Fig. 3(a) represents the tangle (ab-
solute concurrence squared) of the state at that step of
the algorithm. It is known that the volume of separable
states is doubly-exponentially small with respect to the
rest of state space [33]. Thus, the ability to traverse non-
separable state space increases the number of paths by
which the algorithm can converge and will be a require-
ment for future large-scale implementations. Moreover,
it is clear that the ability to produce entangled states is
a necessity for the accurate description of general quan-
tum systems where eigenstates may be non-separable, for
example the ground state of the He-H+ Hamiltonian has
small but not negligible tangle.

Repeating this procedure for several values of R, we
obtain the bond dissociation curve which is reported in
Fig. 4. This allows for the determination of the equilib-
rium bond length of the molecule, which was found to be
R=92.3±0.1 pm with a corresponding ground state elec-
tronic energy of E= -2.865±0.008 MJ/mol. This energy
has been corrected for experimental error using a method
fully described in the Appendix. The corresponding theo-
retical curve shows the numerically exact energy derived
from a full configuration interaction calculation of the
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molecular system in the same basis. More than 96% of
the experimental data are within chemical accuracy with
respect to the theoretical values. At the conclusion of
the optimization, we retain full knowledge of the exper-
imental parameters, which can be used for e�cient re-
construction of the state | i in the event that additional
physical or chemical properties are required.
Discussion
Algorithm 1 uses relatively few quantum resources com-
pared to QPE. Broadly speaking, QPE requires a large
number of n-qubit quantum controlled operations to be
performed in series—placing considerable demands on
the number of components and coherence time—while
the inherent parallelism of our scheme enables a small
number of n-qubit gates to be exploited many times,
drastically reducing these demands. Moreover, adding
control to arbitrary unitary operations in practice is dif-
ficult if not impossible for current quantum architectures
(although a proposed scheme to add control to arbitrary
unitary operations has recently been demonstrated [34]).
To give a numerical example, the QPE circuit for a 4
x 4 Hamiltonian such as that demonstrated here would
require at least 12 CNOT gates, while our method only
requires one.

In implementing Algorithm 2, the device prepares
ansatz states that are defined by a polynomial set of
parameters. This ansatz might be chosen based on
knowledge of the physical system of interest (as for the
unitary coupled cluster and typical quantum chemistry
ansätze) thus determining the device design. However,
our architecture allows for an alternative, and poten-
tially more promising approach, where the device is first
constructed based on the available resources and we de-
fine the set of states that the device can prepare as the
“device ansatz”. Due to the quantum nature of the de-
vice, this ansatz can be very distinct from those used
in traditional quantum chemistry. With this alterna-
tive approach the physical implementation is then given
by a known sequence of quantum operations with ad-
justable parameters—determined at the construction of
the device—with a maximum depth fixed by the coher-
ence time of the physical qubits. This approach, while ap-
proximate, provides a variationally optimal solution for
the given quantum resources and may still be able to pro-
vide qualitatively correct solutions, just as approximate
methods do in traditional quantum chemistry (for exam-
ple Hartree Fock). The unitary coupled cluster ansatz
(Eq. 4) provides a concrete example where our approach
provides an exponential advantage over known classical
techniques.

We have developed and experimentally implemented
a new approach to solving the eigenvalue problem with
quantum hardware. Algorithm 1 shares with QPE the
need to prepare a good approximation to the ground
state, but replaces a single long coherent evolution by
a number of shorter coherent calculations proportional

to the number of terms in the Hamiltonian. While the
e↵ect of errors on each of these calculations is the same
as in QPE, the reliance on a number of separate calcula-
tions makes the algorithm sensitive to variations in state
preparation between the separate quantum calculations.
This e↵ect requires further investigation. In Algorithm 2,
we experimentally implemented a ground state prepara-
tion procedure through a direct variational algorithm on
the control parameters of the quantum hardware. Larger
calculations will require a choice of ansatz, for which
there are two possibilities. One could experimentally im-
plement chemically motivated ansätze such as the uni-
tary coupled cluster method described in the Appendix.
Alternatively one could pursue those ansätze that are
most easy to implement experimentally—creating a new
set of device ansätze states which would require classi-
fication in terms of their overlap with chemical ground
states. Such a classification would be a good way to
determine the value of a given experimental advance—
for ground state problems it is best to focus limited
experimental resources on those e↵orts that will most
enhance the overlap of preparable states with chemical
ground states. In addition to the above issues, which we
leave to future work, an interesting avenue of research is
to ask whether the conceptual approach described here
could be used to address other intractable problems with
quantum-enhanced computation. Examples that can be
mapped to the ground state problem, and where the n-
representability problem does not occur, include search
engine optimisation and image recognition. It should
be noted that the approach presented here requires no
control or auxiliary qubits, relying only on measurement
techniques that are already well established. For exam-
ple, in the two qubit case, these measurements are iden-
tical to those performed in Bell inequality experiments.
Quantum simulators with only a few tens of qubits are

expected to outperform the capabilities of conventional
computers, not including open questions regarding fault
tolerance and errors/precision. Our scheme would allow
such devices to be implemented using dramatically less
resources than the current best known approach.
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APPENDIX

SUPPLEMETARY THEORY
Quantum eigenvector preparation algorithm

Below we detail the steps involved in implementing
Algorithm 2.

1. Design a quantum circuit, controlled by a set of
experimental parameters {✓

i

}, which can prepare
a class of states. Using this device, prepare the
initial state | 0i and define the objective function
f({✓n

i

}) = h ({✓n
i

})|H | ({✓n
i

})i, which e�ciently
maps the set of experimental parameters to the ex-
pectation value of the Hamiltonian and is computed
in this work by Algorithm 1. n denotes the current
iteration of the algorithm.

2. Let n = 0

3. Repeat until optimization is completed

(a) Call Algorithm 1 with {✓
i

} as input:

i. Using the QPU, compute h�i

↵

i, h�i

↵

�j

�

i,
h�i

↵

�j

�

�k

�

i, ..., on | ni for all terms of H.
ii. Classically sum on CPU the values from

the QPU with their appropriate weights,
h, to obtain f({✓n

i

})
(b) Feed f({✓n

i

}) to the classical minimization
algorithm (e.g. gradient descent or Nelder-
Mead Simplex method), and allow it to deter-
mine {✓n+1

i

}.

Second Quantized Hamiltonian
When taken with the Born-Oppenheimer approximation,
the Hamiltonian of an electronic system can be generally
written [1] as

H(R) =
X

pq

h
pq

(R)â†
p

â
q

+
X

pqrs

h
pqrs

(R)â†
p

â†
q

â
r

â
s

(6)

where â†
i

and â
j

are the fermionic creation and annihila-
tion operators that act on the single particle basis func-
tions chosen to represent the electronic system and obey
the canonical anti-commutation relations {â†

i

, â
j

} = �
ij

and {â
i

, â
j

} = {â†
i

, â†
j

} = 0. R is a vector representing
the positions of the Nuclei in the system, and is fixed for
any given geometry. The constants h

pq

(R) and h
pqrs

(R)
are evaluated using an initial Hartree-Fock calculation
and relate the second quantized Hamiltonian to the first
quantized Hamiltonian. They are calculated as

h
pq

=

Z
dr �

p

(r)⇤
 
�1

2
r2 �

X

↵

Z
↵

|r
↵

� r|

!
�
q

(r) (7)

h
pqrs

=

Z
dr1 dr2

�
p

(r1)⇤�q

(r2)⇤�r

(r1)�s

(r2)

|r1 � r2| (8)

where �
p

(r) are single particle spin orbitals, Z
↵

is the
nuclear charge, and r

↵

is the nuclear position. From the
definition of the Hamiltonian, it is clear that the number
of terms in the Hamiltonian is O(N4) in general, whereN
is the number of single particle basis functions used. The
map from the Fermionic algebra of the second quantized
Hamiltonian to the distinguishable spin algebra of qubits
is given by the Jordan-Wigner transformation [2], which
for our purposes can be concisely written as

â
j

! I⌦j�1 ⌦ �+ ⌦ �⌦N�j

z

(9)

â†
j

! I⌦j�1 ⌦ �� ⌦ �⌦N�j

z

(10)

where �+ and �� are the Pauli spin raising and lowering
operators respectively. It is clear that this transforma-
tion does not increase the number of terms present in the
Hamiltonian, it merely changes their form and the spaces
on which they act. Thus the requirement that the Hamil-
tonian is a sum of polynomially many products of Pauli
operators is satisfied. As a result, the expectation value
of any second quantized chemistry Hamiltonian can be
e�ciently measured with our scheme.
For the specific case of He-H+ in a minimal, STO-

3G basis, it turns out that full configuration interaction
(FCI) Hamiltonian has dimension four, thus a more com-
pact representation is possible than in the general case.
In this case, the FCI Hamiltonian can be written down
for each geometry expanded in terms of the tensor prod-
ucts of two Pauli operators. Thus the Hamiltonian is
given explicitly by an FCI calculation in the PSI3 com-
putational package [3] and can be written as

H(R) =
X

i↵

hi

↵

(R)�i

↵

+
X

ij↵�

hij

↵�

(R)�i

↵

�j

�

(11)

Unitary Coupled Cluster Theory
One example of a state which is e�ciently preparable
on a quantum computer, but not so on a classical com-
puter is the unitary coupled cluster expansion [4]. The
unitary coupled cluster theory method is a variational
ansatz which takes the form

| i = eT�T

† |�i
ref

(12)

where |�i
ref

is some reference state, usually the Hartree
Fock ground state, and T is the cluster operator for an
N electron system defined by

T = T1 + T2 + T3 + ...+ T
N

(13)

with

T1 =
X

pr

tr
p

â†
p

â
r

(14)

T2 =
X

pqrs

trs
pq

â†
p

â†
q

â
r

â
s

(15)
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where repeated indices imply summation as in the main
text, and higher order terms follow logically. It is clear
that by construction the operator (T � T †) is anti-
hermitian, and exponentiation maps it to a unitary op-
erator U = e(T�T

†). For any fixed excitation level k, the
reduced cluster operator is written as

T (k) =
kX

i=1

T
i

(16)

Unfortunately, in general no e�cient implementation of
this ansatz has yet been developed for a classical com-
puter, even for low order cluster operators due to the
non-truncation of the BCH series [4]. The reduced anti-
hermitian cluster operator (T (k) � T (k)†) is the sum of
a polynomial number of terms in the number of one
electron basis functions, namely it contains a number of
terms O(Nk(M � N)k) where M is the number of sin-
gle particle orbitals. By defining an e↵ective Hermitian
Hamiltonian H = i(T (k) � T (k)†) and performing the
Jordan-Wigner transformation to reach a Hamiltonian
that acts on the space of qubits, H̃, we are left with a
Hamiltonian which is a sum of polynomially many prod-
ucts of Pauli operators. The problem then reduces to
the quantum simulation of this e↵ective Hamiltonian, H̃,
which can be done in polynomial time using the proce-
dure outlined by Ortiz et al. [5]. This represents one
example of a state which can be e�ciently prepared on a
quantum device, which cannot be e�ciently prepared by
any known means on a classical computer.

Finding excited states
Frequently, one may be interested in eigenvectors and
eigenvalues related to excited states (interior eigenval-
ues). Fortunately our scheme can be used with only mi-
nor modification to find these excited states by repeating
the procedure on H

�

= (H � �)2. The folded spectrum
method [6, 7] allows a variational method to converge
to the eigenvector closest to the shift parameter �. By
scanning through a range of � values, one can recover
the eigenvectors and eigenvalues of interest. Although
this operation incurs a small polynomial overhead —the
number of terms in the Hamiltonian is quadratic with
respect to the original Hamiltonian— this extra cost is
marginal compared to the cost of solving the problem
classically.

Application to k�sparse Hamiltonians
The method described in the main body of this work
may be applied to general k�sparse Hamiltonian ma-
trices which are row-computable even when no e�cient
tensor decomposition is evident with only minor modi-
fication. A Hamiltonian H is referred to as k�sparse if
there are at most k non-zero elements in each row and
column of the matrix and row computable if there is an

e�cient algorthim for finding the locations and values of
the non-zero matrix elements in each row of H.

Let H be a 2n ⇥ 2n k�sparse row-computable Hamil-
tonian. A result by Berry et al. [8] shows that H may be
decomposed as H =

P
m

j=1 Hj

with m = 6k2, H
j

being
a 1�sparse matrix and each H

j

may be e�ciently simu-
lated (e�iHjt may be acted on the qubits) by making only
O(log⇤ n) queries to the Hamiltonian H. Alternatively, a
more recent result by Childs et al. [9] has found that it
possible to use a star decomposition of the Hamiltonian
such that m = 6k and each H

j

is now a galaxy which can
be e�ciently simulated using O(k+log⇤ N) queries to the
Hamiltonian. Either of these schemes may be used to im-
plement our algorithm e�ciently for a general k�sparse
matrix, and the choice may be allowed to depend on the
particular setup available. Following a prescription by
Knill et al. [10], the ability to simulate H

j

is su�cient
for e�cient measurement of the expectation value hH

j

i.
After determining these values, one may proceed as be-
fore in the algorithm as outlined in the main text and
use them to determine new parameters for the classical
minimization.

Classical optimization algorithm
For the classical optimization step of our integrated
processor we implemented the Nelder-Mead (NM) algo-
rithm [11], a simplex-based direct search (DS) method
for unconstrained minimization of objective functions.
Although in general NM can fail because of the dete-
rioration of the simplex geometry or lack of su�cient
decrease, the convergence of this method can be greatly
improved by adopting a restarting strategy. Although
other DS methods, such as the gradient descent, can per-
form better for smooth functions, these are not robust to
the noise which makes the objective function non-smooth
under experimental conditions. NM has the ability to
explore neighboring valleys with better local optima and
likewise this exploring feature usually allows NM to over-
come non-smoothnesses. We verified that the gradient
descent minimization algorithm is not able to converge
to the ground state of our Hamiltonian under the experi-
mental conditions, mainly due to the poissonian nature of
our photon source and the accidental counts of the detec-
tion system, while NM converged to the global minimum
in most optimization runs.

Computational Scaling
In this section, we demonstrate the polynomial scaling
of each iteration of our algorithm with respect to system
size, and contrast that with the exponential scaling of
the current best-known classical algorithm for the same
task. Suppose that the algorithm has progressed to an
iteration j in which we have prepared a state vector | ji
which is stored in n qubits and parameterized by the set
of parameters {✓j

i

}.
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We wish to find the average value of the Hamiltonian,
hHi on this state. We will assume that there are M
terms comprising the Hamiltonian, and assume that M
is polynomial in the size of the physical system of interest.
Without loss of generality, we select a single term from
the Hamiltonian, H

i

that acts on k bits of the state, and
denote the average of this term by hH

i

i = h h�̃i where h
is a constant and �̃ is the k�fold tensor product of Pauli
operators acting on the system. As the expectation value
of a tensor product of an arbitrary number of Pauli oper-
ators can be measured in constant time and the spectrum
of each of these operators is bounded, if the desired preci-
sion on the value is given by p, we expect the cost of this
estimation to be O(|h|2/p2) repetitions of the prepara-
tion and measurement procedure. Thus we estimate the
cost of each function evaluation to be O(|h

max

|2M/p2).
For most modern classical minimization algorithms (in-
cluding the Nelder-Mead simplex method [11]), the cost
of a single update step, scales linearly or at worst poly-
nomially in the number of parameters included in the
minimization [12]. By assumption, the number of pa-
rameters in the set {✓j

i

}, is polynomial in the system
size. Thus the total cost per iteration is roughly given
by O(nr|h

max

|2M/p2) for some small constant r which
is determined by the encoding of the quantum state and
the classical minimization method used.

Contrasting this to the situation where the entire al-
gorithm is performed classically, a much di↵erent scaling
results. Storage of the quantum state vector | ji using
currently known exact encodings of quantum states, re-
quires knowing 2n complex numbers. Moreover, given
this quantum state, the computation of the expectation
value h�̃i = h j | �̃ | ji using modern methods requires
O(2n) floating point operations. Thus a single function
evaluation is expected to require exponential resources
in both storage and computation when performed on a
classical computer. Moreover, the number of parameters
which a classical minimization algorithm must manip-
ulate to represent this state exactly is 2n. Thus per-
forming even a single minimization step to determine
| j+1i requires an exponential number of function evalu-
ations, each of which carries an exponential cost. One
can roughly estimate the scaling of this procedure as
O(M2n(r+1))

From this coarse analysis, we conclude that our algo-
rithm attains an exponential advantage in the cost of a
single iteration over the best known classical algorithms,
provided the assumptions on the Hamiltonian and quan-
tum state are satisfied. While convergence to the final
ground state must still respect the known complexity
QMA-Complete complexity of this task [13], we believe
this still demonstrates the value of our algorithm, espe-
cially in light of the limited quantum resource require-

ments.

Mapping from the state parameters to the chip
phases. The set of phases {✓

i

}, which uniquely identi-
fies the state | i, is not equivalent to the phases which
are written to the photonic circuit {�

i

}, since the chip
phases are also used to implement the desired measure-
ment operators �

↵

⌦ �
�

. Therefore, knowing the desired
state parameters and measurement operator we compute
the appropriate values of the chip phases on the CPU at
each iteration of the optimization algorithm.

EXPERIMENTAL DETAILS
Estimation of the error on hHi
We performed measurements of the statistical and sys-
tematic errors that a↵ect our computation of hHi.
Statistical errors Statistical errors due to the Poisso-
nian nature of single photon statistics are intrinsic to the
estimation of expectation values in quantum mechanics.

These errors can be arbitrarily reduced at a sublinear
cost of measurement time (i.e. e�ciently) since the mag-
nitude of error is proportional to the square root of the
count rate. We experimentally measured the standard
deviation of an expectation value hH

i

i for a particular
state using 50 trials. The total average coincidence rate
was ⇠1500/s. The standard deviation was found to be
37KJ/mol, which is comparable with the error observed
in the measurement of the ground state energy shown in
Fig. 4

The minima of the potential energy curve was deter-
mined by a generalized least squares procedure to fit a
quadratic curve to the experimental data points in the re-
gion R = (80, 100) pm, as is common in the use of trust
region searches for minima [14], using the inverse exper-
imentally measured variances as weights. Covariances
determined by the generalized least squares procedure
were used as input to a Monte Carlo sampling procedure
to determine the minimum energy and equilibrium bond
distance as well as their uncertainties assuming Gaus-
sian random error. The uncertainties reported represent
standard deviations. Sampling error in the Monte Carlo
procedure was 3⇥10�4 pm for the equilibrium bond dis-
tance and 3⇥ 10�8 MJ/mol for the energy.

Systematic errors In all the measurements described
above we observed a constant and reproducible small
shift, ✏ = 50KJ/mol, of the expectation value with re-
spect to the theoretical value of the energy. There are
at least three e↵ects which contribute to this systematic
error.

Firstly, the down-conversion source that we use in our
experiment does not produce the pure two photon state
that is required for high-fidelity quantum interference. In
particular, higher order photon number terms and, more
significantly, photon distinguishability both degrade the
performance of our entangling gate and thus the prepa-
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ration of the state | i. This results in a shift of the
measured energy h |H | i. Higher order terms could be
e↵ectively eliminated by use of true single photon sources
(such as quantum dots or nitrogen vacancy centers in di-
amond), and there is no fundamental limit to the degree
of indistinguishability which can be achieved through im-
proved state engineering.

Secondly, imperfections in the implementation of the
photonic circuit also reduce the fidelity with which | i
is prepared and measured. Small deviations from de-
signed beamsplitter reflectivities and interferometer path
lengths, as well as imperfections in the calibration of
voltage-controlled phases shifters used to manipulate the
state, all contribute to this e↵ect. However, these are
technological limitations that can be greatly improved in
future realizations.

Finally, unbalanced input and output coupling e�-
ciency also results in skewed two-photon statistics, again
shifting the measured expectation value of hHi.

Another systematic e↵ect that can be noted in Fig.
4 is that the magnitude of the error on the experimen-
tal estimation of the ground state energy increases with
R. This is due to the fact that as R increases, the first
and second excited eigenstates of this Hamiltonian be-
come degenerate, resulting in increased di�culty for the
classical minimization, generating mixtures of states that
increases the overall variance of the estimation.

Count rate
In our experiment the mean count rate, which directly
determines the statistical error, was approximately 2000-
4000 twofold events per second. For example, for the
bond dissociation curve we measured about 100 points
per optimization run. The expectation value of a given
Hamiltonian was reconstructed at each point from four
two-qubit Pauli measurements. In the full dissociation
curve we found the ground states of 79 Hamiltonians.
Hence the full experiment was performed in about 158
hours.

State preparation is relatively fast, requiring a few mil-
liseconds to set the phases on the chip. However 17
seconds are required for cooling the chip, resulting in a

duty-cycle of ⇠ 5%. The purpose of this is to overcome
instability of the fibre-to-chip coupling due to thermal
expansion of the chip during operation. This will not be
an issue in future implementations where fibres will be
permanently fixed to the chip’s facets. Moreover the ther-
mal phase shifters used here will also likely be replaced by
alternative technologies based on the electro-optic e↵ect.
Brighter single photon sources will considerably reduce

the measurement time.

⇤ These authors contributed equally to this work.
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